No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Genetics of -Group Streptococci in Health and Disease

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Angela Nobbs1, Jens Kreth2
  • Editors: Vincent A. Fischetti3, Richard P. Novick4, Joseph J. Ferretti5, Daniel A. Portnoy6, Miriam Braunstein7, Julian I. Rood8
    Affiliations: 1: Bristol Dental School, University of Bristol, Bristol, United Kingdom; 2: Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239; 3: The Rockefeller University, New York, NY; 4: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 5: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 6: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 7: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 8: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec January 2019 vol. 7 no. 1 doi:10.1128/microbiolspec.GPP3-0052-2018
  • Received 04 December 2018 Accepted 10 December 2018 Published 25 January 2019
  • Angela Nobbs, [email protected]
image of Genetics of <span class="jp-italic">sanguinis</span>-Group Streptococci in Health and Disease
    Preview this microbiology spectrum article:
    Zoom in

    Genetics of -Group Streptococci in Health and Disease, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/1/GPP3-0052-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/1/GPP3-0052-2018-2.gif
  • Abstract:

    With the application of increasingly advanced “omics” technologies to the study of our resident oral microbiota, the presence of a defined, health-associated microbial community has been recognized. Within this community,-group streptococci, comprising the closely related and , together with , often predominate. Their ubiquitous and abundant nature reflects the evolution of these bacteria as highly effective colonizers of the oral cavity. Through interactions with host tissues and other microbes, and the capacity to readily adapt to prevailing environmental conditions, -group streptococci are able to shape accretion of the oral plaque biofilm and promote development of a microbial community that exists in harmony with its host. Nonetheless, upon gaining access to the blood stream, those very same colonization capabilities can confer upon -group streptococci the ability to promote systemic disease. This article focuses on the role of -group streptococci as the commensurate commensals, highlighting those aspects of their biology that enable the coordination of health-associated biofilm development. This includes the molecular mechanisms, both synergistic and antagonistic, that underpin adhesion to substrata, intercellular communication, and polymicrobial community formation. As our knowledge of these processes advances, so will the opportunities to exploit this understanding for future development of novel strategies to control oral and extraoral disease.

  • Citation: Nobbs A, Kreth J. 2019. Genetics of -Group Streptococci in Health and Disease. Microbiol Spectrum 7(1):GPP3-0052-2018. doi:10.1128/microbiolspec.GPP3-0052-2018.


1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732 http://dx.doi.org/10.1128/JCM.43.11.5721-5732.2005. [PubMed]
2. Diaz PI, Hoare A, Hong BY. 2016. Subgingival microbiome shifts and community dynamics in periodontal diseases. J Calif Dent Assoc 44:421–435. [PubMed]
3. Hajishengallis G, Lamont RJ. 2012. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 27:409–419 http://dx.doi.org/10.1111/j.2041-1014.2012.00663.x. [PubMed]
4. Simón-Soro A, Mira A. 2015. Solving the etiology of dental caries. Trends Microbiol 23:76–82 http://dx.doi.org/10.1016/j.tim.2014.10.010. [PubMed]
5. Magalhães AP, Azevedo NF, Pereira MO, Lopes SP. 2016. The cystic fibrosis microbiome in an ecological perspective and its impact in antibiotic therapy. Appl Microbiol Biotechnol 100:1163–1181 http://dx.doi.org/10.1007/s00253-015-7177-x. [PubMed]
6. Stacy A, McNally L, Darch SE, Brown SP, Whiteley M. 2016. The biogeography of polymicrobial infection. Nat Rev Microbiol 14:93–105 http://dx.doi.org/10.1038/nrmicro.2015.8. [PubMed]
7. Hajishengallis G, Lamont RJ. 2016. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends Microbiol 24:477–489 http://dx.doi.org/10.1016/j.tim.2016.02.010. [PubMed]
8. Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ Jr, Kolenbrander PE. 2006. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 72:2837–2848 http://dx.doi.org/10.1128/AEM.72.4.2837-2848.2006. [PubMed]
9. Rosan B, Lamont RJ. 2000. Dental plaque formation. Microbes Infect 2:1599–1607 http://dx.doi.org/10.1016/S1286-4579(00)01316-2. [PubMed]
10. He X, McLean JS, Guo L, Lux R, Shi W. 2014. The social structure of microbial community involved in colonization resistance. ISME J 8:564–574 http://dx.doi.org/10.1038/ismej.2013.172. [PubMed]
11. Martín R, Miquel S, Ulmer J, Kechaou N, Langella P, Bermúdez-Humarán LG. 2013. Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb Cell Fact 12:71 http://dx.doi.org/10.1186/1475-2859-12-71. [PubMed]
12. Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, Mongodin EF, Nelson KE, Gill SR, Fraser-Liggett CM, Relman DA. 2010. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 4:962–974 http://dx.doi.org/10.1038/ismej.2010.30. [PubMed]
13. Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, Socransky SS, Hasturk H, Van Dyke TE, Dewhirst F, Paster BJ. 2009. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol 80:1421–1432 http://dx.doi.org/10.1902/jop.2009.090185. [PubMed]
14. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A, Pignatelli M, Mira A. 2012. The oral metagenome in health and disease. ISME J 6:46–56 http://dx.doi.org/10.1038/ismej.2011.85. [PubMed]
15. Facklam R. 2002. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15:613–630 http://dx.doi.org/10.1128/CMR.15.4.613-630.2002. [PubMed]
16. Hoshino T, Fujiwara T, Kilian M. 2005. Use of phylogenetic and phenotypic analyses to identify nonhemolytic streptococci isolated from bacteremic patients. J Clin Microbiol 43:6073–6085 http://dx.doi.org/10.1128/JCM.43.12.6073-6085.2005.
17. Nobbs AH, Jenkinson HF, Everett DB. 2015. Generic determinants of Streptococcus colonization and infection. Infect Genet Evol 33:361–370 http://dx.doi.org/10.1016/j.meegid.2014.09.018.
18. Nobbs AH, Jenkinson HF, Jakubovics NS. 2011. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res 90:1271–1278 http://dx.doi.org/10.1177/0022034511399096.
19. Nobbs AH, Lamont RJ, Jenkinson HF. 2009. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450 http://dx.doi.org/10.1128/MMBR.00014-09.
20. Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. 2006. Bacterial interactions and successions during plaque development. Periodontol 2000 42:47–79 http://dx.doi.org/10.1111/j.1600-0757.2006.00187.x. [PubMed]
21. Hannig M, Joiner A. 2006. The structure, function and properties of the acquired pellicle. Monogr Oral Sci 19:29–64. [PubMed]
22. Ventura TMDS, Cassiano LPS, Souza E Silva CM, Taira EA, Leite AL, Rios D, Buzalaf MAR. 2017. The proteomic profile of the acquired enamel pellicle according to its location in the dental arches. Arch Oral Biol 79:20–29 http://dx.doi.org/10.1016/j.archoralbio.2017.03.001. [PubMed]
23. Boehlke C, Zierau O, Hannig C. 2015. Salivary amylase: the enzyme of unspecialized euryphagous animals. Arch Oral Biol 60:1162–1176 http://dx.doi.org/10.1016/j.archoralbio.2015.05.008. [PubMed]
24. Nikitkova AE, Haase EM, Scannapieco FA. 2013. Taking the starch out of oral biofilm formation: molecular basis and functional significance of salivary α-amylase binding to oral streptococci. Appl Environ Microbiol 79:416–423 http://dx.doi.org/10.1128/AEM.02581-12.
25. Rogers JD, Haase EM, Brown AE, Douglas CW, Gwynn JP, Scannapieco FA. 1998. Identification and analysis of a gene ( abpA) encoding a major amylase-binding protein in Streptococcus gordonii. Microbiology 144:1223–1233 http://dx.doi.org/10.1099/00221287-144-5-1223.
26. Rogers JD, Palmer RJ Jr, Kolenbrander PE, Scannapieco FA. 2001. Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. Infect Immun 69:7046–7056 http://dx.doi.org/10.1128/IAI.69.11.7046-7056.2001.
27. Liang X, Liu B, Zhu F, Scannapieco FA, Haase EM, Matthews S, Wu H. 2016. A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property. Sci Rep 6:30966 http://dx.doi.org/10.1038/srep30966.
28. Okahashi N, Nakata M, Terao Y, Isoda R, Sakurai A, Sumitomo T, Yamaguchi M, Kimura RK, Oiki E, Kawabata S, Ooshima T. 2011. Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation. Microb Pathog 50:148–154 http://dx.doi.org/10.1016/j.micpath.2011.01.005.
29. Delius J, Trautmann S, Médard G, Kuster B, Hannig M, Hofmann T. 2017. Label-free quantitative proteome analysis of the surface-bound salivary pellicle. Colloids Surf B Biointerfaces 152:68–76 http://dx.doi.org/10.1016/j.colsurfb.2017.01.005. [PubMed]
30. Scannapieco FA, Bhandary K, Ramasubbu N, Levine MJ. 1990. Structural relationship between the enzymatic and streptococcal binding sites of human salivary alpha-amylase. Biochem Biophys Res Commun 173:1109–1115 http://dx.doi.org/10.1016/S0006-291X(05)80900-3.
31. Dawes C, Pedersen AM, Villa A, Ekström J, Proctor GB, Vissink A, Aframian D, McGowan R, Aliko A, Narayana N, Sia YW, Joshi RK, Jensen SB, Kerr AR, Wolff A. 2015. The functions of human saliva: a review sponsored by the World Workshop on Oral Medicine VI. Arch Oral Biol 60:863–874 http://dx.doi.org/10.1016/j.archoralbio.2015.03.004.
32. Tabak LA. 1995. In defense of the oral cavity: structure, biosynthesis, and function of salivary mucins. Annu Rev Physiol 57:547–564 http://dx.doi.org/10.1146/annurev.ph.57.030195.002555. [PubMed]
33. Plummer C, Wu H, Kerrigan SW, Meade G, Cox D, Ian Douglas CW. 2005. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br J Haematol 129:101–109 http://dx.doi.org/10.1111/j.1365-2141.2005.05421.x. [PubMed]
34. Deng L, Bensing BA, Thamadilok S, Yu H, Lau K, Chen X, Ruhl S, Sullam PM, Varki A. 2014. Oral streptococci utilize a Siglec-like domain of serine-rich repeat adhesins to preferentially target platelet sialoglycans in human blood. PLoS Pathog 10:e1004540 http://dx.doi.org/10.1371/journal.ppat.1004540.
35. Crocker PR, Paulson JC, Varki A. 2007. Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266 http://dx.doi.org/10.1038/nri2056.
36. Frenkel ES, Ribbeck K. 2015. Salivary mucins in host defense and disease prevention. J Oral Microbiol 7:29759 http://dx.doi.org/10.3402/jom.v7.29759.
37. Ganeshkumar N, Song M, McBride BC. 1988. Cloning of a Streptococcus sanguis adhesin which mediates binding to saliva-coated hydroxyapatite. Infect Immun 56:1150–1157.
38. Crump KE, Bainbridge B, Brusko S, Turner LS, Ge X, Stone V, Xu P, Kitten T. 2014. The relationship of the lipoprotein SsaB, manganese and superoxide dismutase in Streptococcus sanguinis virulence for endocarditis. Mol Microbiol 92:1243–1259 http://dx.doi.org/10.1111/mmi.12625.
39. Gurung I, Spielman I, Davies MR, Lala R, Gaustad P, Biais N, Pelicic V. 2016. Functional analysis of an unusual type IV pilus in the Gram-positive Streptococcus sanguinis. Mol Microbiol 99:380–392 http://dx.doi.org/10.1111/mmi.13237.
40. Aynapudi J, El-Rami F, Ge X, Stone V, Zhu B, Kitten T, Xu P. 2017. Involvement of signal peptidase I in Streptococcus sanguinis biofilm formation. Microbiology 163:1306–1318 http://dx.doi.org/10.1099/mic.0.000516.
41. Auclair SM, Bhanu MK, Kendall DA. 2012. Signal peptidase I: cleaving the way to mature proteins. Protein Sci 21:13–25 http://dx.doi.org/10.1002/pro.757.
42. Kreth J, Herzberg MC. 2015. Molecular principles of adhesion and biofilm formation, p 23–54. In Chavez de Paz LE, Sedgley CM, Kishen A (ed), The Root Canal Biofilm. Springer, Berlin Germany. http://dx.doi.org/10.1007/978-3-662-47415-0_2
43. Vacca Smith AM, Ng-Evans L, Wunder D, Bowen WH. 2000. Studies concerning the glucosyltransferase of Streptococcus sanguis. Caries Res 34:295–302 http://dx.doi.org/10.1159/000016605. [PubMed]
44. Liu J, Stone VN, Ge X, Tang M, Elrami F, Xu P. 2017. TetR family regulator brpT modulates biofilm formation in Streptococcus sanguinis. PLoS One 12:e0169301 http://dx.doi.org/10.1371/journal.pone.0169301.
45. Ricker A, Vickerman M, Dongari-Bagtzoglou A. 2014. Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans. J Oral Microbiol 6:23419 http://dx.doi.org/10.3402/jom.v6.23419.
46. Tanzer JM, Thompson AM, Grant LP, Vickerman MM, Scannapieco FA. 2008. Streptococcus gordonii’s sequenced strain CH1 glucosyltransferase determines persistent but not initial colonization of teeth of rats. Arch Oral Biol 53:133–140 http://dx.doi.org/10.1016/j.archoralbio.2007.08.011.
47. Sulavik MC, Clewell DB. 1996. Rgg is a positive transcriptional regulator of the Streptococcus gordonii gtfG gene. J Bacteriol 178:5826–5830 http://dx.doi.org/10.1128/jb.178.19.5826-5830.1996.
48. Das T, Sehar S, Manefield M. 2013. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep 5:778–786 http://dx.doi.org/10.1111/1758-2229.12085.
49. Weerkamp AH, Uyen HM, Busscher HJ. 1988. Effect of zeta potential and surface energy on bacterial adhesion to uncoated and saliva-coated human enamel and dentin. J Dent Res 67:1483–1487 http://dx.doi.org/10.1177/00220345880670120801. [PubMed]
50. Kreth J, Vu H, Zhang Y, Herzberg MC. 2009. Characterization of hydrogen peroxide-induced DNA release by Streptococcus sanguinis and Streptococcus gordonii. J Bacteriol 191:6281–6291 http://dx.doi.org/10.1128/JB.00906-09.
51. Barnes AM, Ballering KS, Leibman RS, Wells CL, Dunny GM. 2012. Enterococcus faecalis produces abundant extracellular structures containing DNA in the absence of cell lysis during early biofilm formation. MBio 3:e00193-12 http://dx.doi.org/10.1128/mBio.00193-12.
52. Peterson BW, van der Mei HC, Sjollema J, Busscher HJ, Sharma PK. 2013. A distinguishable role of eDNA in the viscoelastic relaxation of biofilms. MBio 4:e00497-13 http://dx.doi.org/10.1128/mBio.00497-13.
53. Rocco CJ, Davey ME, Bakaletz LO, Goodman SD. 2017. Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics. Mol Oral Microbiol 32:118–130 http://dx.doi.org/10.1111/omi.12157.
54. Blehert DS, Palmer RJ Jr, Xavier JB, Almeida JS, Kolenbrander PE. 2003. Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J Bacteriol 185:4851–4860 http://dx.doi.org/10.1128/JB.185.16.4851-4860.2003.
55. Redanz S, Standar K, Podbielski A, Kreikemeyer B. 2012. Heterologous expression of sahH reveals that biofilm formation is autoinducer-2-independent in Streptococcus sanguinis but is associated with an intact activated methionine cycle. J Biol Chem 287:36111–36122 http://dx.doi.org/10.1074/jbc.M112.379230.
56. Zhang Y, Whiteley M, Kreth J, Lei Y, Khammanivong A, Evavold JN, Fan J, Herzberg MC. 2009. The two-component system BfrAB regulates expression of ABC transporters in Streptococcus gordonii and Streptococcus sanguinis. Microbiology 155:165–173 http://dx.doi.org/10.1099/mic.0.023168-0.
57. Camargo TM, Stipp RN, Alves LA, Harth-Chu EN, Höfling JF, Mattos-Graner RO. 2018. A novel two-component system of Streptococcus sanguinis affecting functions associated with viability in saliva and biofilm formation. Infect Immun 86:e00942-17 http://dx.doi.org/10.1128/IAI.00942-17. [PubMed]
58. Robinson JC, Rostami N, Casement J, Vollmer W, Rickard AH, Jakubovics NS. 2017. ArcR modulates biofilm formation in the dental plaque colonizer Streptococcus gordonii. Mol Oral Microbiol 33:143–154 http://dx.doi.org/10.1111/omi.12207. [PubMed]
59. Vickerman MM, Iobst S, Jesionowski AM, Gill SR. 2007. Genome-wide transcriptional changes in Streptococcus gordonii in response to competence signaling peptide. J Bacteriol 189:7799–7807 http://dx.doi.org/10.1128/JB.01023-07.
60. Rodriguez AM, Callahan JE, Fawcett P, Ge X, Xu P, Kitten T. 2011. Physiological and molecular characterization of genetic competence in Streptococcus sanguinis. Mol Oral Microbiol 26:99–116 http://dx.doi.org/10.1111/j.2041-1014.2011.00606.x. [PubMed]
61. Yoshida Y, Palmer RJ, Yang J, Kolenbrander PE, Cisar JO. 2006. Streptococcal receptor polysaccharides: recognition molecules for oral biofilm formation. BMC Oral Health 6(Suppl 1) :S12 http://dx.doi.org/10.1186/1472-6831-6-S1-S12.
62. Mishra A, Devarajan B, Reardon ME, Dwivedi P, Krishnan V, Cisar JO, Das A, Narayana SV, Ton-That H. 2011. Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate Actinomyces interactions with streptococci and host cells during oral biofilm development. Mol Microbiol 81:1205–1220 http://dx.doi.org/10.1111/j.1365-2958.2011.07745.x.
63. Yang J, Yoshida Y, Cisar JO. 2014. Genetic basis of coaggregation receptor polysaccharide biosynthesis in Streptococcus sanguinis and related species. Mol Oral Microbiol 29:24–31 http://dx.doi.org/10.1111/omi.12042. [PubMed]
64. Back CR, Douglas SK, Emerson JE, Nobbs AH, Jenkinson HF. 2015. Streptococcus gordonii DL1 adhesin SspB V-region mediates coaggregation via receptor polysaccharide of Actinomyces oris T14V. Mol Oral Microbiol 30:411–424 http://dx.doi.org/10.1111/omi.12106.
65. Jakubovics NS, Gill SR, Iobst SE, Vickerman MM, Kolenbrander PE. 2008. Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol 190:3646–3657 http://dx.doi.org/10.1128/JB.00088-08.
66. Zhou P, Liu J, Li X, Takahashi Y, Qi F. 2015. The sialic acid binding protein, Hsa, in Streptococcus gordonii DL1 also mediates intergeneric coaggregation with Veillonella species. PLoS One 10:e0143898 http://dx.doi.org/10.1371/journal.pone.0143898. [PubMed]
67. Hamilton IRN, Ng SKC. 1983. Stimulation of glycolysis through lactate consumption in a resting cell mixture of Streptococcus salivarius and Veillonella parvula. FEMS Microbiol Lett 20:61–65 http://dx.doi.org/10.1111/j.1574-6968.1983.tb00090.x.
68. Kaplan CW, Lux R, Haake SK, Shi W. 2009. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol Microbiol 71:35–47 http://dx.doi.org/10.1111/j.1365-2958.2008.06503.x. [PubMed]
69. Lima BP, Shi W, Lux R. 2017. Identification and characterization of a novel Fusobacterium nucleatum adhesin involved in physical interaction and biofilm formation with Streptococcus gordonii. Microbiologyopen 6:e00444 http://dx.doi.org/10.1002/mbo3.444.
70. Lamont RJ, El-Sabaeny A, Park Y, Cook GS, Costerton JW, Demuth DR. 2002. Role of the Streptococcus gordonii SspB protein in the development of Porphyromonas gingivalis biofilms on streptococcal substrates. Microbiology 148:1627–1636 http://dx.doi.org/10.1099/00221287-148-6-1627.
71. Maeda K, Nagata H, Yamamoto Y, Tanaka M, Tanaka J, Minamino N, Shizukuishi S. 2004. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis functions as a coadhesin for Porphyromonas gingivalis major fimbriae. Infect Immun 72:1341–1348 http://dx.doi.org/10.1128/IAI.72.3.1341-1348.2004.
72. Ramsey MM, Rumbaugh KP, Whiteley M. 2011. Metabolite cross-feeding enhances virulence in a model polymicrobial infection. PLoS Pathog 7:e1002012 http://dx.doi.org/10.1371/journal.ppat.1002012.
73. Silverman RJ, Nobbs AH, Vickerman MM, Barbour ME, Jenkinson HF. 2010. Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infect Immun 78:4644–4652 http://dx.doi.org/10.1128/IAI.00685-10.
74. Whitmore SE, Lamont RJ. 2011. The pathogenic persona of community-associated oral streptococci. Mol Microbiol 81:305–314 http://dx.doi.org/10.1111/j.1365-2958.2011.07707.x. [PubMed]
75. Cuadra-Saenz G, Rao DL, Underwood AJ, Belapure SA, Campagna SR, Sun Z, Tammariello S, Rickard AH. 2012. Autoinducer-2 influences interactions amongst pioneer colonizing streptococci in oral biofilms. Microbiology 158:1783–1795 http://dx.doi.org/10.1099/mic.0.057182-0.
76. Jang YJ, Sim J, Jun HK, Choi BK. 2013. Differential effect of autoinducer 2 of Fusobacterium nucleatum on oral streptococci. Arch Oral Biol 58:1594–1602 http://dx.doi.org/10.1016/j.archoralbio.2013.08.006. [PubMed]
77. Rickard AH, Palmer RJ Jr, Blehert DS, Campagna SR, Semmelhack MF, Egland PG, Bassler BL, Kolenbrander PE. 2006. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 60:1446–1456 http://dx.doi.org/10.1111/j.1365-2958.2006.05202.x.
78. McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ. 2003. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185:274–284 http://dx.doi.org/10.1128/JB.185.1.274-284.2003.
79. Bamford CV, d’Mello A, Nobbs AH, Dutton LC, Vickerman MM, Jenkinson HF. 2009. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 77:3696–3704 http://dx.doi.org/10.1128/IAI.00438-09.
80. Zhu L, Kreth J. 2012. The role of hydrogen peroxide in environmental adaptation of oral microbial communities. Oxid Med Cell Longev 2012:717843 http://dx.doi.org/10.1155/2012/717843. [PubMed]
81. Carlsson J, Edlund MB. 1987. Pyruvate oxidase in Streptococcus sanguis under various growth conditions. Oral Microbiol Immunol 2:10–14 http://dx.doi.org/10.1111/j.1399-302X.1987.tb00263.x.
82. Carlsson J, Edlund MB, Lundmark SK. 1987. Characteristics of a hydrogen peroxide-forming pyruvate oxidase from Streptococcus sanguis. Oral Microbiol Immunol 2:15–20 http://dx.doi.org/10.1111/j.1399-302X.1987.tb00264.x. [PubMed]
83. Kreth J, Zhang Y, Herzberg MC. 2008. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 190:4632–4640 http://dx.doi.org/10.1128/JB.00276-08. [PubMed]
84. Zheng LY, Itzek A, Chen ZY, Kreth J. 2011. Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis. Int J Oral Sci 3:82–89 http://dx.doi.org/10.4248/IJOS11030. [PubMed]
85. Banerjee RK, Datta AG. 1986. Salivary peroxidases. Mol Cell Biochem 70:21–29 http://dx.doi.org/10.1007/BF00233801. [PubMed]
86. Marquis RE. 1995. Oxygen metabolism, oxidative stress and acid-base physiology of dental plaque biofilms. J Ind Microbiol 15:198–207 http://dx.doi.org/10.1007/BF01569826. [PubMed]
87. Herrero ER, Slomka V, Bernaerts K, Boon N, Hernandez-Sanabria E, Passoni BB, Quirynen M, Teughels W. 2016. Antimicrobial effects of commensal oral species are regulated by environmental factors. J Dent 47:23–33 http://dx.doi.org/10.1016/j.jdent.2016.02.007. [PubMed]
88. Zheng L, Chen Z, Itzek A, Ashby M, Kreth J. 2011. Catabolite control protein A controls hydrogen peroxide production and cell death in Streptococcus sanguinis. J Bacteriol 193:516–526 http://dx.doi.org/10.1128/JB.01131-10.
89. Redanz S, Masilamani R, Cullin N, Giacaman RA, Merritt J, Kreth J. 2018. Distinct regulatory role of carbon catabolite protein A (CcpA) in oral streptococcal spxB expression. J Bacteriol 200:e00619-17 http://dx.doi.org/10.1128/JB.00619-17. [PubMed]
90. Zheng L, Itzek A, Chen Z, Kreth J. 2011. Environmental influences on competitive hydrogen peroxide production in Streptococcus gordonii. Appl Environ Microbiol 77:4318–4328 http://dx.doi.org/10.1128/AEM.00309-11.
91. Cheng X, Redanz S, Cullin N, Zhou X, Xu X, Joshi V, Koley D, Merritt J, Kreth J. 2018. Plasticity of the pyruvate node modulates hydrogen peroxide production and acid tolerance in multiple oral streptococci. Appl Environ Microbiol 84:e01697-17 http://dx.doi.org/10.1128/AEM.01697-17. [PubMed]
92. Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. 2016. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci U S A 113:E791–E800 http://dx.doi.org/10.1073/pnas.1522149113. [PubMed]
93. Deng H, Ding Y, Fu MD, Xiao XR, Liu J, Zhou T. 2004. Purification and characterization of sanguicin: a bacteriocin produced by Streptococcus sanguis. Sichuan Da Xue Xue Bao Yi Xue Ban 35:555–558. (In Chinese.) [PubMed]
94. Fujimura S, Nakamura T. 1979. Sanguicin, a bacteriocin of oral Streptococcus sanguis. Antimicrob Agents Chemother 16:262–265 http://dx.doi.org/10.1128/AAC.16.3.262.
95. Kreth J, Merritt J, Shi W, Qi F. 2005. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203 http://dx.doi.org/10.1128/JB.187.21.7193-7203.2005.
96. Ma S, Ge W, Yan Y, Huang X, Ma L, Li C, Yu S, Chen C. 2017. Effects of Streptococcus sanguinis bacteriocin on deformation, adhesion ability, and Young’s modulus of Candida albicans. BioMed Res Int 2017:5291486 http://dx.doi.org/10.1155/2017/5291486.
97. Ma S, Zhao Y, Xia X, Dong X, Ge W, Li H. 2015. Effects of Streptococcus sanguinis bacteriocin on cell surface hydrophobicity, membrane permeability, and ultrastructure of Candida thallus. BioMed Res Int 2015:514152 http://dx.doi.org/10.1155/2015/514152.
98. Telles DR, Karki N, Marshall MW. 2017. Oral fungal infections: diagnosis and management. Dent Clin North Am 61:319–349 http://dx.doi.org/10.1016/j.cden.2016.12.004. [PubMed]
99. Fontaine L, Wahl A, Fléchard M, Mignolet J, Hols P. 2015. Regulation of competence for natural transformation in streptococci. Infect Genet Evol 33:343–360 http://dx.doi.org/10.1016/j.meegid.2014.09.010. [PubMed]
100. Rostami N, Shields RC, Yassin SA, Hawkins AR, Bowen L, Luo TL, Rickard AH, Holliday R, Preshaw PM, Jakubovics NS. 2017. A critical role for extracellular DNA in dental plaque formation. J Dent Res 96:208–216 http://dx.doi.org/10.1177/0022034516675849. [PubMed]
101. Schlafer S, Meyer RL, Dige I, Regina VR. 2017. Extracellular DNA contributes to dental biofilm stability. Caries Res 51:436–442 http://dx.doi.org/10.1159/000477447. [PubMed]
102. Cullin N, Merritt J, Kreth J. 2017. Beyond cell division: the ecological roles of autolysins in oral biofilm communities. Curr Oral Health Rep 4:14–21 http://dx.doi.org/10.1007/s40496-017-0118-2.
103. Itzek A, Zheng L, Chen Z, Merritt J, Kreth J. 2011. Hydrogen peroxide-dependent DNA release and transfer of antibiotic resistance genes in Streptococcus gordonii. J Bacteriol 193:6912–6922 http://dx.doi.org/10.1128/JB.05791-11.
104. Steinmoen H, Knutsen E, Håvarstein LS. 2002. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci U S A 99:7681–7686 http://dx.doi.org/10.1073/pnas.112464599.
105. Jurcisek JA, Brockman KL, Novotny LA, Goodman SD, Bakaletz LO. 2017. Nontypeable Haemophilus influenzae releases DNA and DNABII proteins via a T4SS-like complex and ComE of the type IV pilus machinery. Proc Natl Acad Sci U S A 114:E6632–E6641 http://dx.doi.org/10.1073/pnas.1705508114.
106. Cullin N, Redanz S, Lampi KJ, Merritt J, Kreth J. 2017. Murein hydrolase LytF of Streptococcus sanguinis and the ecological consequences of competence development. Appl Environ Microbiol 83:e01709-17 http://dx.doi.org/10.1128/AEM.01709-17. [PubMed]
107. Veening JW, Blokesch M. 2017. Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 15:621–629 http://dx.doi.org/10.1038/nrmicro.2017.66. [PubMed]
108. Roberts AP, Kreth J. 2014. The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome. Front Cell Infect Microbiol 4:124 http://dx.doi.org/10.3389/fcimb.2014.00124. [PubMed]
109. Hannan S, Ready D, Jasni AS, Rogers M, Pratten J, Roberts AP. 2010. Transfer of antibiotic resistance by transformation with eDNA within oral biofilms. FEMS Immunol Med Microbiol 59:345–349 http://dx.doi.org/10.1111/j.1574-695X.2010.00661.x. [PubMed]
110. Zheng W, Tan MF, Old LA, Paterson IC, Jakubovics NS, Choo SW. 2017. Distinct biological potential of Streptococcus gordonii and Streptococcus sanguinis revealed by comparative genome analysis. Sci Rep 7:2949 http://dx.doi.org/10.1038/s41598-017-02399-4. [PubMed]
111. Men X, Shibata Y, Takeshita T, Yamashita Y. 2016. Identification of anion channels responsible for fluoride resistance in oral streptococci. PLoS One 11:e0165900 http://dx.doi.org/10.1371/journal.pone.0165900. [PubMed]
112. Olsen I, Tribble GD, Fiehn NE, Wang BY. 2013. Bacterial sex in dental plaque. J Oral Microbiol 5:20736 http://dx.doi.org/10.3402/jom.v5i0.20736. [PubMed]
113. Sukumar S, Roberts AP, Martin FE, Adler CJ. 2016. Metagenomic insights into transferable antibiotic resistance in oral bacteria. J Dent Res 95:969–976 http://dx.doi.org/10.1177/0022034516648944. [PubMed]
114. Koch G, Yepes A, Förstner KU, Wermser C, Stengel ST, Modamio J, Ohlsen K, Foster KR, Lopez D. 2014. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 158:1060–1071 http://dx.doi.org/10.1016/j.cell.2014.06.046. [PubMed]
115. Zheng J, Gänzle MG, Lin XB, Ruan L, Sun M. 2015. Diversity and dynamics of bacteriocins from human microbiome. Environ Microbiol 17:2133–2143 http://dx.doi.org/10.1111/1462-2920.12662. [PubMed]
116. Peyyala R, Kirakodu SS, Novak KF, Ebersole JL. 2012. Oral microbial biofilm stimulation of epithelial cell responses. Cytokine 58:65–72 http://dx.doi.org/10.1016/j.cyto.2011.12.016. [PubMed]
117. Peyret-Lacombe A, Brunel G, Watts M, Charveron M, Duplan H. 2009. TLR2 sensing of F. nucleatum and S. sanguinis distinctly triggered gingival innate response. Cytokine 46:201–210 http://dx.doi.org/10.1016/j.cyto.2009.01.006. [PubMed]
118. Sliepen I, Van Damme J, Van Essche M, Loozen G, Quirynen M, Teughels W. 2009. Microbial interactions influence inflammatory host cell responses. J Dent Res 88:1026–1030 http://dx.doi.org/10.1177/0022034509347296. [PubMed]
119. Lee SH. 2015. Antagonistic effect of peptidoglycan of Streptococcus sanguinis on lipopolysaccharide of major periodontal pathogens. J Microbiol 53:553–560 http://dx.doi.org/10.1007/s12275-015-5319-6. [PubMed]
120. Dworkin J. 2014. The medium is the message: interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans. Annu Rev Microbiol 68:137–154 http://dx.doi.org/10.1146/annurev-micro-091213-112844. [PubMed]
121. Niven CF Jr, White JC. 1946. A study of streptococci associated with subacute bacterial endocarditis. J Bacteriol 51:790. [PubMed]
122. White JC, Niven CF Jr. 1946. Streptococcus s.b.e.: a Streptococcus associated with subacute bacterial endocarditis. J Bacteriol 51:717–722. [PubMed]
123. Washburn MR, White JC, Niven CF Jr. 1946. Streptococcus s.b.e.: immunological characteristics. J Bacteriol 51:723–729. [PubMed]
124. Niven CF, Kiziuta Z, White JC. 1946. Synthesis of a polysaccharide from sucrose by Streptococcus s.b.e. J Bacteriol 51:711–716. [PubMed]
125. Truper HG, De’clari L. 1997. Taxonomic note: necessary correction of specific epithets formed as substantives (nouns) “in apposition.” Int J Syst Bacteriol 47:908–909 http://dx.doi.org/10.1099/00207713-47-3-908.
126. Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Tleyjeh IM, Rybak MJ, Barsic B, Lockhart PB, Gewitz MH, Levison ME, Bolger AF, Steckelberg JM, Baltimore RS, Fink AM, O’Gara P, Taubert KA, American Heart Association Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young, Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Stroke Council. 2015. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation 132:1435–1486 http://dx.doi.org/10.1161/CIR.0000000000000296. [PubMed]
127. Hoen B, Duval X. 2013. Infective endocarditis. N Engl J Med 369:785 http://dx.doi.org/10.1056/NEJMc1307282. [PubMed]
128. Mylonakis E, Calderwood SB. 2001. Infective endocarditis in adults. N Engl J Med 345:1318–1330 http://dx.doi.org/10.1056/NEJMra010082. [PubMed]
129. Garrison PK, Freedman LR. 1970. Experimental endocarditis I. Staphylococcal endocarditis in rabbits resulting from placement of a polyethylene catheter in the right side of the heart. Yale J Biol Med 42:394–410. [PubMed]
130. Paik S, Senty L, Das S, Noe JC, Munro CL, Kitten T. 2005. Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis. Infect Immun 73:6064–6074 http://dx.doi.org/10.1128/IAI.73.9.6064-6074.2005. [PubMed]
131. Herzberg MC, MacFarlane GD, Gong K, Armstrong NN, Witt AR, Erickson PR, Meyer MW. 1992. The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infect Immun 60:4809–4818. [PubMed]
132. Do T, Gilbert SC, Klein J, Warren S, Wade WG, Beighton D. 2011. Clonal structure of Streptococcus sanguinis strains isolated from endocarditis cases and the oral cavity. Mol Oral Microbiol 26:291–302 http://dx.doi.org/10.1111/j.2041-1014.2011.00618.x. [PubMed]
133. Turner LS, Kanamoto T, Unoki T, Munro CL, Wu H, Kitten T. 2009. Comprehensive evaluation of Streptococcus sanguinis cell wall-anchored proteins in early infective endocarditis. Infect Immun 77:4966–4975 http://dx.doi.org/10.1128/IAI.00760-09. [PubMed]
134. Petersen HJ, Keane C, Jenkinson HF, Vickerman MM, Jesionowski A, Waterhouse JC, Cox D, Kerrigan SW. 2010. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa. Infect Immun 78:413–422 http://dx.doi.org/10.1128/IAI.00664-09. [PubMed]
135. Haworth JA, Jenkinson HF, Petersen HJ, Back CR, Brittan JL, Kerrigan SW, Nobbs AH. 2017. Concerted functions of Streptococcus gordonii surface proteins PadA and Hsa mediate activation of human platelets and interactions with extracellular matrix. Cell Microbiol 19:e12667 http://dx.doi.org/10.1111/cmi.12667. [PubMed]
136. Kerrigan SW, Jakubovics NS, Keane C, Maguire P, Wynne K, Jenkinson HF, Cox D. 2007. Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function. Infect Immun 75:5740–5747 http://dx.doi.org/10.1128/IAI.00909-07. [PubMed]
137. Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, Jenkinson HF. 2010. The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol 77:276–286 http://dx.doi.org/10.1111/j.1365-2958.2010.07212.x. [PubMed]
138. Chen L, Ge X, Wang X, Patel JR, Xu P. 2012. SpxA1 involved in hydrogen peroxide production, stress tolerance and endocarditis virulence in Streptococcus sanguinis. PLoS One 7:e40034 http://dx.doi.org/10.1371/journal.pone.0040034. [PubMed]
139. Ge X, Yu Y, Zhang M, Chen L, Chen W, Elrami F, Kong F, Kitten T, Xu P. 2016. Involvement of NADH oxidase in competition and endocarditis virulence in Streptococcus sanguinis. Infect Immun 84:1470–1477 http://dx.doi.org/10.1128/IAI.01203-15. [PubMed]
140. Morita C, Sumioka R, Nakata M, Okahashi N, Wada S, Yamashiro T, Hayashi M, Hamada S, Sumitomo T, Kawabata S. 2014. Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity. PLoS One 9:e103125 http://dx.doi.org/10.1371/journal.pone.0103125. [PubMed]
141. Fukushima K, Noda M, Saito Y, Ikeda T. 2012. Streptococcus sanguis meningitis: report of a case and review of the literature. Intern Med 51:3073–3076 http://dx.doi.org/10.2169/internalmedicine.51.7962. [PubMed]
142. Herzberg MC, Nobbs A, Tao L, Kilic A, Beckman E, Khammanivong A, Zhang Y. 2005. Oral streptococci and cardiovascular disease: searching for the platelet aggregation-associated protein gene and mechanisms of Streptococcus sanguis-induced thrombosis. J Periodontol 76(11-s) :2101–2105 http://dx.doi.org/10.1902/jop.2005.76.11-S.2101.
143. Whiley RA, Fleming EV, Makhija R, Waite RD. 2015. Environment and colonisation sequence are key parameters driving cooperation and competition between Pseudomonas aeruginosa cystic fibrosis strains and oral commensal streptococci. PLoS One 10:e0115513 http://dx.doi.org/10.1371/journal.pone.0115513. [PubMed]
144. Kreth J, Giacaman RA, Raghavan R, Merritt J. 2017. The road less traveled: defining molecular commensalism with Streptococcus sanguinis. Mol Oral Microbiol 32:181–196 http://dx.doi.org/10.1111/omi.12170. [PubMed]

Article metrics loading...



With the application of increasingly advanced “omics” technologies to the study of our resident oral microbiota, the presence of a defined, health-associated microbial community has been recognized. Within this community,-group streptococci, comprising the closely related and , together with , often predominate. Their ubiquitous and abundant nature reflects the evolution of these bacteria as highly effective colonizers of the oral cavity. Through interactions with host tissues and other microbes, and the capacity to readily adapt to prevailing environmental conditions, -group streptococci are able to shape accretion of the oral plaque biofilm and promote development of a microbial community that exists in harmony with its host. Nonetheless, upon gaining access to the blood stream, those very same colonization capabilities can confer upon -group streptococci the ability to promote systemic disease. This article focuses on the role of -group streptococci as the commensurate commensals, highlighting those aspects of their biology that enable the coordination of health-associated biofilm development. This includes the molecular mechanisms, both synergistic and antagonistic, that underpin adhesion to substrata, intercellular communication, and polymicrobial community formation. As our knowledge of these processes advances, so will the opportunities to exploit this understanding for future development of novel strategies to control oral and extraoral disease.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Summary of key components important in commensalism. The schematic shows important components for the role of as a commensal organism, including community integration and biofilm development, community interference and streptococcal antagonism, and interactions with salivary proteins, host cells, and the immune system. Pg, ; Fn, ; Sg, ; eDNA, extracellular DNA; CSP, competence stimulating peptide. Reprinted with permission from reference 144 .

Source: microbiolspec January 2019 vol. 7 no. 1 doi:10.1128/microbiolspec.GPP3-0052-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error