1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Pathogenicity of Enterococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Elizabeth Fiore1,2, Daria Van Tyne3,4, Michael S. Gilmore5,6
  • Editors: Vincent A. Fischetti7, Richard P. Novick8, Joseph J. Ferretti9, Daniel A. Portnoy10, Miriam Braunstein11, Julian I. Rood12
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114; 2: Department of Microbiology, Harvard Medical School, Boston, MA 02115; 3: Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114; 4: Department of Microbiology, Harvard Medical School, Boston, MA 02115; 5: Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114; 6: Department of Microbiology, Harvard Medical School, Boston, MA 02115; 7: The Rockefeller University, New York, NY; 8: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 9: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 10: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 11: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 12: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0053-2018
  • Received 24 August 2018 Accepted 10 December 2018 Published 12 July 2019
  • Michael S. Gilmore, [email protected]
image of Pathogenicity of Enterococci
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Pathogenicity of Enterococci, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0053-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0053-2018-2.gif
  • Abstract:

    Enterococci are unusually well adapted for survival and persistence in a variety of adverse environments, including on inanimate surfaces in the hospital environment and at sites of infection. This intrinsic ruggedness undoubtedly played a role in providing opportunities for enterococci to interact with other overtly drug-resistant microbes and acquire additional resistances on mobile elements. The rapid rise of antimicrobial resistance among hospital-adapted enterococci has rendered hospital-acquired infections a leading therapeutic challenge. With about a quarter of a genome of additional DNA conveyed by mobile elements, there are undoubtedly many more properties that have been acquired that help enterococci persist and spread in the hospital setting and cause diseases that have yet to be defined. Much remains to be learned about these ancient and rugged microbes, particularly in the area of pathogenic mechanisms involved with human diseases.

  • Citation: Fiore E, Van Tyne D, Gilmore M. 2019. Pathogenicity of Enterococci. Microbiol Spectrum 7(4):GPP3-0053-2018. doi:10.1128/microbiolspec.GPP3-0053-2018.

References

1. Thiercelin ME. 1899. Sur un diplocoque saprophyte de l’intestin susceptible de devenir pathogen. C R Seances Soc Biol Fil 5:269–271.
2. Thiercelin ME. 1899. Morphologie et modes de reproduction de l’enterocoque. C R Seances Soc Biol Fil 11:551–553.
3. Maccallum WG, Hastings TW. 1899. A case of acute endocarditis caused by Micrococcus zymogenes (nov. spec.), with a description of the microorganism. J Exp Med 4:521–534 http://dx.doi.org/10.1084/jem.4.5-6.521. [PubMed]
4. Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM. 2016. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infect Control Hosp Epidemiol 37:1288–1301 http://dx.doi.org/10.1017/ice.2016.174. [PubMed]
5. Aly NY, Al-Mousa HH, Al Asar SM, Sayed E, Al Asar M. 2008. Nosocomial infections in a medical-surgical intensive care unit. Med Princ Pract 17:373–377 http://dx.doi.org/10.1159/000141500. [PubMed]
6. Kristich CJ, Rice LB, Arias CA. 2014. Enterococcal infection: treatment and antibiotic resistance. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190424/.
7. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK, National Healthcare Safety Network Team, Participating National Healthcare Safety Network Facilities. 2008. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 29:996–1011 http://dx.doi.org/10.1086/591861. [PubMed]
8. Megran DW. 1992. Enterococcal endocarditis. Clin Infect Dis 15:63–71 http://dx.doi.org/10.1093/clinids/15.1.63. [PubMed]
9. Hancock LE, Gilmore MS. 2006. Pathogenicity of enterococci, p 251–258. In Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI (ed), Gram-Positive Pathogens. ASM Press, Washington, DC.
10. Gilmore MS, Clewell DB, Ike Y, Shankar N. 2014. Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190424/.
11. Van Tyne D, Gilmore MS. 2014. Friend turned foe: evolution of enterococcal virulence and antibiotic resistance. Annu Rev Microbiol 68:337–356 http://dx.doi.org/10.1146/annurev-micro-091213-113003. [PubMed]
12. Eggesbø M, Moen B, Peddada S, Baird D, Rugtveit J, Midtvedt T, Bushel PR, Sekelja M, Rudi K. 2011. Development of gut microbiota in infants not exposed to medical interventions. APMIS 119:17–35 http://dx.doi.org/10.1111/j.1600-0463.2010.02688.x. [PubMed]
13. Lawley TD, Walker AW. 2013. Intestinal colonization resistance. Immunology 138:1–11 http://dx.doi.org/10.1111/j.1365-2567.2012.03616.x. [PubMed]
14. Chadfield MS, Christensen JP, Juhl-Hansen J, Christensen H, Bisgaard M. 2005. Characterization of Enterococcus hirae outbreaks in broiler flocks demonstrating increased mortality because of septicemia and endocarditis and/or altered production parameters. Avian Dis 49:16–23 http://dx.doi.org/10.1637/7205-050604. [PubMed]
15. Jung A, Rautenschlein S. 2014. Comprehensive report of an Enterococcus cecorum infection in a broiler flock in Northern Germany. BMC Vet Res 10:311 http://dx.doi.org/10.1186/s12917-014-0311-7. [PubMed]
16. Martin JD, Mundt JO. 1972. Enterococci in insects. Appl Microbiol 24:575–580.
17. Lebreton F, Willems RJL, Gilmore MS. 2014. Enterococcus diversity, origins in nature, and gut colonization. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary, Boston, MA.
18. Mundt JO. 1963. Occurrence of enterococci on plants in a wild environment. Appl Microbiol 11:141–144.
19. Lancefield RC. 1933. A serological differentiation of human and other groups of hemolytic streptococci. J Exp Med 57:571–595 http://dx.doi.org/10.1084/jem.57.4.571. [PubMed]
20. Schleifer KH, Kilpper-Balz R. 1984. Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Evol Microbiol 34:31–34 http://dx.doi.org/10.1099/00207713-34-1-31.
21. Lebreton F, Manson AL, Saavedra JT, Straub TJ, Earl AM, Gilmore MS. 2017. Tracing the enterococci from Paleozoic origins to the hospital. Cell 169:849–861.e13 http://dx.doi.org/10.1016/j.cell.2017.04.027. [PubMed]
22. Hollenbeck BL, Rice LB. 2012. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3:421–433 http://dx.doi.org/10.4161/viru.21282. [PubMed]
23. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, Lee YJ, Dubin KA, Socci ND, Viale A, Perales MA, Jenq RR, van den Brink MRM, Pamer EG. 2012. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 55:905–914 http://dx.doi.org/10.1093/cid/cis580. [PubMed]
24. Moellering RC Jr, Wennersten C, Weinberg AN. 1971. Synergy of penicillin and gentamicin against enterococci. J Infect Dis 124(Suppl) :S207–S209 http://dx.doi.org/10.1093/infdis/124.Supplement_1.S207. [PubMed]
25. Basker MJ, Slocombe B, Sutherland R. 1977. Aminoglycoside-resistant enterococci. J Clin Pathol 30:375–380 http://dx.doi.org/10.1136/jcp.30.4.375. [PubMed]
26. Ferretti JJ, Gilmore KS, Courvalin P. 1986. Nucleotide sequence analysis of the gene specifying the bifunctional 6′-aminoglycoside acetyltransferase 2ʺ-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J Bacteriol 167:631–638 http://dx.doi.org/10.1128/jb.167.2.631-638.1986. [PubMed]
27. Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A. 2010. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 16:541–554 http://dx.doi.org/10.1111/j.1469-0691.2010.03226.x. [PubMed]
28. Murray BE. 1992. Beta-lactamase-producing enterococci. Antimicrob Agents Chemother 36:2355–2359 http://dx.doi.org/10.1128/AAC.36.11.2355. [PubMed]
29. Geraci JE, Heilman FR, Nichols DR, Ross GT, Wellman WE. 1956. Some laboratory and clinical experiences with a new antibiotic, vancomycin. Proc Staff Meet Mayo Clin 31:564–582.
30. Levine DP. 2006. Vancomycin: a history. Clin Infect Dis 42(Suppl 1) :S5–S12 http://dx.doi.org/10.1086/491709. [PubMed]
31. Bisno AL, Dismukes WE, Durack DT, Kaplan EL, Karchmer AW, Kaye D, Rahimtoola SH, Sande MA, Sanford JP, Watanakunakorn C, Wilson WR. 1989. Antimicrobial treatment of infective endocarditis due to viridans streptococci, enterococci, and staphylococci. JAMA 261:1471–1477 http://dx.doi.org/10.1001/jama.1989.03420100107033. [PubMed]
32. Kirst HA, Thompson DG, Nicas TI. 1998. Historical yearly usage of vancomycin. Antimicrob Agents Chemother 42:1303–1304 http://dx.doi.org/10.1128/AAC.42.5.1303. [PubMed]
33. Uttley AH, Collins CH, Naidoo J, George RC. 1988. Vancomycin-resistant enterococci. Lancet 1:57–58 http://dx.doi.org/10.1016/S0140-6736(88)91037-9.
34. Leclercq R, Derlot E, Duval J, Courvalin P. 1988. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161 http://dx.doi.org/10.1056/NEJM198807213190307. [PubMed]
35. Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R, Solliday J, Clarke B. 1989. In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 33:1588–1591 http://dx.doi.org/10.1128/AAC.33.9.1588. [PubMed]
36. Arias CA, Murray BE. 2008. Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti Infect Ther 6:637–655. [PubMed]
37. Bingen E, Lambert-Zechovsky N, Leclercq R, Doit C, Mariani-Kurkdjian P. 1990. Bactericidal activity of vancomycin, daptomycin, ampicillin and aminoglycosides against vancomycin-resistant Enterococcus faecium. J Antimicrob Chemother 26:619–626 http://dx.doi.org/10.1093/jac/26.5.619. [PubMed]
38. Lesho E, Wortmann GW, Craft D, Moran KA. 2006. De novo daptomycin nonsusceptibility in a clinical isolate. J Clin Microbiol 44:673. [PubMed]
39. Long JK, Choueiri TK, Hall GS, Avery RK, Sekeres MA. 2005. Daptomycin-resistant Enterococcus faecium in a patient with acute myeloid leukemia. Mayo Clin Proc 80:1215–1216 http://dx.doi.org/10.4065/80.9.1215. [PubMed]
40. Lewis JS II, Owens A, Cadena J, Sabol K, Patterson JE, Jorgensen JH. 2005. Emergence of daptomycin resistance in Enterococcus faecium during daptomycin therapy. Antimicrob Agents Chemother 49:1664–1665 http://dx.doi.org/10.1128/AAC.49.4.1664-1665.2005. [PubMed]
41. Palmer KL, Daniel A, Hardy C, Silverman J, Gilmore MS. 2011. Genetic basis for daptomycin resistance in enterococci. Antimicrob Agents Chemother 55:3345–3356 http://dx.doi.org/10.1128/AAC.00207-11. [PubMed]
42. Arias CA, Panesso D, McGrath DM, Qin X, Mojica MF, Miller C, Diaz L, Tran TT, Rincon S, Barbu EM, Reyes J, Roh JH, Lobos E, Sodergren E, Pasqualini R, Arap W, Quinn JP, Shamoo Y, Murray BE, Weinstock GM. 2011. Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med 365:892–900 http://dx.doi.org/10.1056/NEJMoa1011138. [PubMed]
43. Montero CI, Stock F, Murray PR. 2008. Mechanisms of resistance to daptomycin in Enterococcus faecium. Antimicrob Agents Chemother 52:1167–1170 http://dx.doi.org/10.1128/AAC.00774-07. [PubMed]
44. Saito HE, Harp JR, Fozo EM. 2014. Incorporation of exogenous fatty acids protects Enterococcus faecalis from membrane-damaging agents. Appl Environ Microbiol 80:6527–6538 http://dx.doi.org/10.1128/AEM.02044-14. [PubMed]
45. Hines KM, Waalkes A, Penewit K, Holmes EA, Salipante SJ, Werth BJ, Xu L. 2017. Characterization of the mechanisms of daptomycin resistance among gram-positive bacterial pathogens by multidimensional lipidomics. mSphere 2:e00492-17. [PubMed]
46. Gonzales RD, Schreckenberger PC, Graham MB, Kelkar S, DenBesten K, Quinn JP. 2001. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 357:1179 http://dx.doi.org/10.1016/S0140-6736(00)04376-2.
47. Auckland C, Teare L, Cooke F, Kaufmann ME, Warner M, Jones G, Bamford K, Ayles H, Johnson AP. 2002. Linezolid-resistant enterococci: report of the first isolates in the United Kingdom. J Antimicrob Chemother 50:743–746 http://dx.doi.org/10.1093/jac/dkf246. [PubMed]
48. Marshall SH, Donskey CJ, Hutton-Thomas R, Salata RA, Rice LB. 2002. Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob Agents Chemother 46:3334–3336 http://dx.doi.org/10.1128/AAC.46.10.3334-3336.2002. [PubMed]
49. Bourgeois-Nicolaos N, Massias L, Couson B, Butel MJ, Andremont A, Doucet-Populaire F. 2007. Dose dependence of emergence of resistance to linezolid in Enterococcus faecalis in vivo. J Infect Dis 195:1480–1488 http://dx.doi.org/10.1086/513876. [PubMed]
50. Diaz L, Kiratisin P, Mendes RE, Panesso D, Singh KV, Arias CA. 2012. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother 56:3917–3922 http://dx.doi.org/10.1128/AAC.00419-12. [PubMed]
51. Fiedler S, Bender JK, Klare I, Halbedel S, Grohmann E, Szewzyk U, Werner G. 2016. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). J Antimicrob Chemother 71:871–881 http://dx.doi.org/10.1093/jac/dkv420. [PubMed]
52. Cattoir V, Isnard C, Cosquer T, Odhiambo A, Bucquet F, Guérin F, Giard J-C. 2015. Genomic analysis of reduced susceptibility to tigecycline in Enterococcus faecium. Antimicrob Agents Chemother 59:239–244 http://dx.doi.org/10.1128/AAC.04174-14. [PubMed]
53. Chenoweth C, Schaberg D. 1990. The epidemiology of enterococci. Eur J Clin Microbiol Infect Dis 9:80–89 http://dx.doi.org/10.1007/BF01963631.
54. Huycke MM, Spiegel CA, Gilmore MS. 1991. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 35:1626–1634 http://dx.doi.org/10.1128/AAC.35.8.1626. [PubMed]
55. Hayden MK. 2000. Insights into the epidemiology and control of infection with vancomycin-resistant enterococci. Clin Infect Dis 31:1058–1065 http://dx.doi.org/10.1086/318126. [PubMed]
56. Porwancher R, Sheth A, Remphrey S, Taylor E, Hinkle C, Zervos M. 1997. Epidemiological study of hospital-acquired infection with vancomycin-resistant Enterococcus faecium: possible transmission by an electronic ear-probe thermometer. Infect Control Hosp Epidemiol 18:771–773 http://dx.doi.org/10.2307/30141323. [PubMed]
57. Hartke A, Giard JC, Laplace JM, Auffray Y. 1998. Survival of Enterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl Environ Microbiol 64:4238–4245.
58. Maraccini PA, Ferguson DM, Boehm AB. 2012. Diurnal variation in Enterococcus species composition in polluted ocean water and a potential role for the enterococcal carotenoid in protection against photoinactivation. Appl Environ Microbiol 78:305–310 http://dx.doi.org/10.1128/AEM.06821-11. [PubMed]
59. Figdor D, Davies JK, Sundqvist G. 2003. Starvation survival, growth and recovery of Enterococcus faecalis in human serum. Oral Microbiol Immunol 18:234–239 http://dx.doi.org/10.1034/j.1399-302X.2003.00072.x. [PubMed]
60. Heim S, Lleo M, Bonato B, Guzman CA, Canepari P. 2002. The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. J Bacteriol 184:6739–6745 http://dx.doi.org/10.1128/JB.184.23.6739-6745.2002. [PubMed]
61. Lleó MM, Tafi MC, Canepari P. 1998. Nonculturable Enterococcus faecalis cells are metabolically active and capable of resuming active growth. Syst Appl Microbiol 21:333–339 http://dx.doi.org/10.1016/S0723-2020(98)80041-6.
62. Flahaut S, Frere J, Boutibonnes P, Auffray Y. 1996. Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis. Appl Environ Microbiol 62:2416–2420.
63. Flahaut S, Hartke A, Giard JC, Auffray Y. 1997. Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection, and changes in protein synthesis. Appl Environ Microbiol 63:812–814.
64. Flahaut S, Hartke A, Giard J-C, Benachour A, Boutibonnes P, Auffray Y. 1996. Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett 138:49–54 http://dx.doi.org/10.1111/j.1574-6968.1996.tb08133.x. [PubMed]
65. Flahaut S, Laplace JM, Frère J, Auffray Y. 1998. The oxidative stress response in Enterococcus faecalis: relationship between H 2O 2 tolerance and H 2O 2 stress proteins. Lett Appl Microbiol 26:259–264 http://dx.doi.org/10.1046/j.1472-765X.1998.00325.x. [PubMed]
66. Giard JC, Hartke A, Flahaut S, Benachour A, Boutibonnes P, Auffray Y. 1996. Starvation-induced multiresistance in Enterococcus faecalis JH2-2. Curr Microbiol 32:264–271 http://dx.doi.org/10.1007/s002849900048. [PubMed]
67. Giard JC, Hartke A, Flahaut S, Boutibonnes P, Auffray Y. 1997. Glucose starvation response in Enterococcus faecalis JH2-2: survival and protein analysis. Res Microbiol 148:27–35 http://dx.doi.org/10.1016/S0923-2508(97)81897-9.
68. Giard J-C, Laplace JM, Rincé A, Pichereau V, Benachour A, Leboeuf C, Flahaut S, Auffray Y, Hartke A. 2001. The stress proteome of Enterococcus faecalis. Electrophoresis 22:2947–2954 http://dx.doi.org/10.1002/1522-2683(200108)22:14<2947::AID-ELPS2947>3.0.CO;2-K.
69. Laplace JM, Thuault M, Hartke A, Boutibonnes P, Auffray Y. 1997. Sodium hypochlorite stress in Enterococcus faecalis: influence of antecedent growth conditions and induced proteins. Curr Microbiol 34:284–289 http://dx.doi.org/10.1007/s002849900183. [PubMed]
70. Rince A, Flahaut S, Auffray Y. 2000. Identification of general stress genes in Enterococcus faecalis. Int J Food Microbiol 55:87–91 http://dx.doi.org/10.1016/S0168-1605(00)00180-X.
71. Hancock LE, Perego M. 2004. Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J Bacteriol 186:7951–7958 http://dx.doi.org/10.1128/JB.186.23.7951-7958.2004. [PubMed]
72. Le Breton Y, Boël G, Benachour A, Prévost H, Auffray Y, Rincé A. 2003. Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses. Environ Microbiol 5:329–337 http://dx.doi.org/10.1046/j.1462-2920.2003.00405.x. [PubMed]
73. Guzmán Prieto AM, Wijngaarden J, Braat JC, Rogers MRC, Majoor E, Brouwer EC, Zhang X, Bayjanov JR, Bonten MJM, Willems RJL, van Schaik W. 2017. The two-component system ChtRS contributes to chlorhexidine tolerance in Enterococcus faecium. Antimicrob Agents Chemother 61:e02122-16 http://dx.doi.org/10.1128/AAC.02122-16. [PubMed]
74. Weinstock DM, Conlon M, Iovino C, Aubrey T, Gudiol C, Riedel E, Young JW, Kiehn TE, Zuccotti G. 2007. Colonization, bloodstream infection, and mortality caused by vancomycin-resistant enterococcus early after allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant 13:615–621 http://dx.doi.org/10.1016/j.bbmt.2007.01.078. [PubMed]
75. Garsin DA, Frank KL, Silanpää J, Ausubel FM, Hartke A, Shankar N, Murray BE. 2014. Pathogenesis and models of enterococcal infection. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190424/.
76. Johnson AP. 1994. The pathogenicity of enterococci. J Antimicrob Chemother 33:1083–1089 http://dx.doi.org/10.1093/jac/33.6.1083. [PubMed]
77. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, Kota K, Sunyaev SR, Weinstock GM, Bork P. 2013. Genomic variation landscape of the human gut microbiome. Nature 493:45–50 http://dx.doi.org/10.1038/nature11711. [PubMed]
78. Noble CJ. 1978. Carriage of group D streptococci in the human bowel. J Clin Pathol 31:1182–1186 http://dx.doi.org/10.1136/jcp.31.12.1182. [PubMed]
79. Mullineaux-Sanders C, Suez J, Elinav E, Frankel G. 2018. Sieving through gut models of colonization resistance. Nat Microbiol 3:132–140 http://dx.doi.org/10.1038/s41564-017-0095-1. [PubMed]
80. Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, Viale A, Socci ND, van den Brink MRMM, Kamboj M, Pamer EG. 2010. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120:4332–4341 http://dx.doi.org/10.1172/JCI43918. [PubMed]
81. Darlong V, Jayalakhsmi TS, Kaul HL, Tandon R. 2003. Stress ulcer prophylaxis in patients on ventilator. Trop Gastroenterol 24:124–128.
82. Başaran ÜN, Celayir S, Eray N, Oztürk R, Senyüz OF. 1998. The effect of an H 2-receptor antagonist on small-bowel colonization and bacterial translocation in newborn rats. Pediatr Surg Int 13:118–120 http://dx.doi.org/10.1007/s003830050263.
83. Suzuki T, Shibata C, Yamaguchi A, Igarashi K, Kobayashi H. 1993. Complementation of an Enterococcus hirae ( Streptococcus faecalis) mutant in the alpha subunit of the H(+)-ATPase by cloned genes from the same and different species. Mol Microbiol 9:111–118 http://dx.doi.org/10.1111/j.1365-2958.1993.tb01673.x. [PubMed]
84. Teng F, Wang L, Singh KV, Murray BE, Weinstock GM. 2002. Involvement of PhoP-PhoS homologs in Enterococcus faecalis virulence. Infect Immun 70:1991–1996 http://dx.doi.org/10.1128/IAI.70.4.1991-1996.2002. [PubMed]
85. Donskey CJ. 2004. The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin Infect Dis 39:219–226 http://dx.doi.org/10.1086/422002. [PubMed]
86. Donskey CJ, Hanrahan JA, Hutton RA, Rice LB. 2000. Effect of parenteral antibiotic administration on the establishment of colonization with vancomycin-resistant Enterococcus faecium in the mouse gastrointestinal tract. J Infect Dis 181:1830–1833 http://dx.doi.org/10.1086/315428. [PubMed]
87. Donskey CJ, Helfand MS, Pultz NJ, Rice LB. 2004. Effect of parenteral fluoroquinolone administration on persistence of vancomycin-resistant Enterococcus faecium in the mouse gastrointestinal tract. Antimicrob Agents Chemother 48:326–328 http://dx.doi.org/10.1128/AAC.48.1.326-328.2004. [PubMed]
88. Donskey CJ, Hanrahan JA, Hutton RA, Rice LB. 1999. Effect of parenteral antibiotic administration on the establishment of colonization with vancomycin-resistant Enterococcus faecium in the mouse gastrointestinal tract. J Infect Dis 180:384–390 http://dx.doi.org/10.1086/314874. [PubMed]
89. Dancer SJ. 2001. The problem with cephalosporins. J Antimicrob Chemother 48:463–478 http://dx.doi.org/10.1093/jac/48.4.463. [PubMed]
90. Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M, Schnabl B, DeMatteo RP, Pamer EG. 2008. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804–807 http://dx.doi.org/10.1038/nature07250. [PubMed]
91. Pham TAN, Clare S, Goulding D, Arasteh JM, Stares MD, Browne HP, Keane JA, Page AJ, Kumasaka N, Kane L, Mottram L, Harcourt K, Hale C, Arends MJ, Gaffney DJ, Dougan G, Lawley TD, Sanger Mouse Genetics Project. 2014. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16:504–516 http://dx.doi.org/10.1016/j.chom.2014.08.017. [PubMed]
92. Shankar N, Baghdayan AS, Gilmore MS. 2002. Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417:746–750 http://dx.doi.org/10.1038/nature00802. [PubMed]
93. Huycke MM, Moore D, Joyce W, Wise P, Shepard L, Kotake Y, Gilmore MS. 2001. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 42:729–740 http://dx.doi.org/10.1046/j.1365-2958.2001.02638.x.
94. Huycke MM, Abrams V, Moore DR. 2002. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 23:529–536 http://dx.doi.org/10.1093/carcin/23.3.529. [PubMed]
95. Wang X, Allen TD, May RJ, Lightfoot S, Houchen CW, Huycke MM. 2008. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res 68:9909–9917 http://dx.doi.org/10.1158/0008-5472.CAN-08-1551. [PubMed]
96. Mondot S, Kang S, Furet JP, Aguirre de Carcer D, McSweeney C, Morrison M, Marteau P, Doré J, Leclerc M. 2011. Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis 17:185–192 http://dx.doi.org/10.1002/ibd.21436. [PubMed]
97. Shiga H, Kajiura T, Shinozaki J, Takagi S, Kinouchi Y, Takahashi S, Negoro K, Endo K, Kakuta Y, Suzuki M, Shimosegawa T. 2012. Changes of faecal microbiota in patients with Crohn’s disease treated with an elemental diet and total parenteral nutrition. Dig Liver Dis 44:736–742 http://dx.doi.org/10.1016/j.dld.2012.04.014. [PubMed]
98. Furrie E, Macfarlane S, Cummings JH, Macfarlane GT. 2004. Systemic antibodies towards mucosal bacteria in ulcerative colitis and Crohn’s disease differentially activate the innate immune response. Gut 53:91–98 http://dx.doi.org/10.1136/gut.53.1.91. [PubMed]
99. Ocvirk S, Sava IG, Lengfelder I, Lagkouvardos I, Steck N, Roh JH, Tchaptchet S, Bao Y, Hansen JJ, Huebner J, Carroll IM, Murray BE, Sartor RB, Haller D. 2015. Surface-associated lipoproteins link Enterococcus faecalis virulence to colitogenic activity in IL-10-deficient mice independent of their expression levels. PLoS Pathog 11:e1004911 http://dx.doi.org/10.1371/journal.ppat.1004911. [PubMed]
100. Brock TD, Davie JM. 1963. Probable identity of a group D hemolysin with a bacteriocine. J Bacteriol 86:708–712.
101. Brock TD, Peacher B, Pierson D. 1963. Survey of the bacteriocines of enterococci. J Bacteriol 86:702–707.
102. Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P, Cao Y, Bousounis P, Kristich CJ, Salzman NH. 2015. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526:719–722 http://dx.doi.org/10.1038/nature15524. [PubMed]
103. Gilmore MS, Rauch M, Ramsey MM, Himes PR, Varahan S, Manson JM, Lebreton F, Hancock LE. 2015. Pheromone killing of multidrug-resistant Enterococcus faecalis V583 by native commensal strains. Proc Natl Acad Sci U S A 112:7273–7278 http://dx.doi.org/10.1073/pnas.1500553112. [PubMed]
104. Lebreton F, van Schaik W, McGuire AM, Godfrey P, Griggs A, Mazumdar V, Corander J, Cheng L, Saif S, Young S, Zeng Q, Wortman J, Birren B, Willems RJ, Earl AM, Gilmore MS. 2013. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio 4:e00534-13 http://dx.doi.org/10.1128/mBio.00534-13. [PubMed]
105. Zhang X, Top J, de Been M, Bierschenk D, Rogers M, Leendertse M, Bonten MJM, van der Poll T, Willems RJL, van Schaik W. 2013. Identification of a genetic determinant in clinical Enterococcus faecium strains that contributes to intestinal colonization during antibiotic treatment. J Infect Dis 207:1780–1786 http://dx.doi.org/10.1093/infdis/jit076. [PubMed]
106. Montealegre MC, Singh KV, Murray BE. 2016. Gastrointestinal tract colonization dynamics by different Enterococcus faecium clades. J Infect Dis 213:1914–1922 http://dx.doi.org/10.1093/infdis/jiv597. [PubMed]
107. Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M, Lipuma L, Ling L, Gobourne A, No D, Taur Y, Jenq RR, van den Brink MRM, Xavier JB, Pamer EG. 2013. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81:965–973 http://dx.doi.org/10.1128/IAI.01197-12. [PubMed]
108. Caballero S, Kim S, Carter RA, Leiner IM, Sušac B, Miller L, Kim GJ, Ling L, Pamer EG. 2017. Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 21:592–602.e4 http://dx.doi.org/10.1016/j.chom.2017.04.002. [PubMed]
109. Wells CL, Maddaus MA, Simmons RL. 1988. Proposed mechanisms for the translocation of intestinal bacteria. Rev Infect Dis 10:958–979 http://dx.doi.org/10.1093/clinids/10.5.958.
110. Gentry-Weeks CR, Karkhoff-Schweizer R, Pikis A, Estay M, Keith JM. 1999. Survival of Enterococcus faecalis in mouse peritoneal macrophages. Infect Immun 67:2160–2165.
111. Wells CL, Erlandsen SL. 1991. Localization of translocating Escherichia coli, Proteus mirabilis, and Enterococcus faecalis within cecal and colonic tissues of monoassociated mice. Infect Immun 59:4693–4697.
112. Wells CL, Jechorek RP, Erlandsen SL. 1990. Evidence for the translocation of Enterococcus faecalis across the mouse intestinal tract. J Infect Dis 162:82–90 http://dx.doi.org/10.1093/infdis/162.1.82. [PubMed]
113. Payne JM, Sansom BF, Garner RJ, Thomson AR, Miles BJ. 1960. Uptake of small resin particles (1-5 microns diameter) by the alimentary canal of the calf. Nature 188:586–587 http://dx.doi.org/10.1038/188586a0. [PubMed]
114. Olmsted SB, Dunny GM, Erlandsen SL, Wells CL. 1994. A plasmid-encoded surface protein on Enterococcus faecalis augments its internalization by cultured intestinal epithelial cells. J Infect Dis 170:1549–1556 http://dx.doi.org/10.1093/infdis/170.6.1549. [PubMed]
115. Waters CM, Hirt H, McCormick JK, Schlievert PM, Wells CL, Dunny GM. 2004. An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol Microbiol 52:1159–1171 http://dx.doi.org/10.1111/j.1365-2958.2004.04045.x. [PubMed]
116. Waters CM, Wells CL, Dunny GM. 2003. The aggregation domain of aggregation substance, not the RGD motifs, is critical for efficient internalization by HT-29 enterocytes. Infect Immun 71:5682–5689 http://dx.doi.org/10.1128/IAI.71.10.5682-5689.2003. [PubMed]
117. Billington EO, Phang SH, Gregson DB, Pitout JDD, Ross T, Church DL, Laupland KB, Parkins MD. 2014. Incidence, risk factors, and outcomes for Enterococcus spp. blood stream infections: a population-based study. Int J Infect Dis 26:76–82 http://dx.doi.org/10.1016/j.ijid.2014.02.012. [PubMed]
118. Buetti N, Atkinson A, Marschall J, Kronenberg A, Swiss Centre for Antibiotic Resistance (ANRESIS). 2017. Incidence of bloodstream infections: a nationwide surveillance of acute care hospitals in Switzerland 2008-2014. BMJ Open 7:e013665 http://dx.doi.org/10.1136/bmjopen-2016-013665. [PubMed]
119. Noskin GA, Peterson LR, Warren JR. 1995. Enterococcus faecium and Enterococcus faecalis bacteremia: acquisition and outcome. Clin Infect Dis 20:296–301 http://dx.doi.org/10.1093/clinids/20.2.296. [PubMed]
120. Pinholt M, Østergaard C, Arpi M, Bruun NE, Schønheyder HC, Gradel KO, Søgaard M, Knudsen JD, Danish Collaborative Bacteraemia Network (DACOBAN). 2014. Incidence, clinical characteristics and 30-day mortality of enterococcal bacteraemia in Denmark 2006-2009: a population-based cohort study. Clin Microbiol Infect 20:145–151 http://dx.doi.org/10.1111/1469-0691.12236. [PubMed]
121. Jett BD, Huycke MM, Gilmore MS. 1994. Virulence of enterococci. Clin Microbiol Rev 7:462–478 http://dx.doi.org/10.1128/CMR.7.4.462. [PubMed]
122. Arias CA, Murray BE. 2012. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–278 http://dx.doi.org/10.1038/nrmicro2761. [PubMed]
123. Stroud L, Edwards J, Danzing L, Culver D, Gaynes R. 1996. Risk factors for mortality associated with enterococcal bloodstream infections. Infect Control Hosp Epidemiol 17:576–580 http://dx.doi.org/10.2307/30141943. [PubMed]
124. Caballero-Granado FJ, Cisneros JM, Luque R, Torres-Tortosa M, Gamboa F, Díez F, Villanueva JL, Pérez-Cano R, Pasquau J, Merino D, Menchero A, Mora D, López-Ruz MA, Vergara A. 1998. Comparative study of bacteremias caused by Enterococcus spp. with and without high-level resistance to gentamicin. The Grupo Andaluz para el estudio de las Enfermedades Infecciosas. J Clin Microbiol 36:520–525.
125. Miyazaki S, Ohno A, Kobayashi I, Uji T, Yamaguchi K, Goto S. 1993. Cytotoxic effect of hemolytic culture supernatant from Enterococcus faecalis on mouse polymorphonuclear neutrophils and macrophages. Microbiol Immunol 37:265–270 http://dx.doi.org/10.1111/j.1348-0421.1993.tb03209.x. [PubMed]
126. Ike Y, Hashimoto H, Clewell DB. 1984. Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect Immun 45:528–530.
127. Dupont H, Montravers P, Mohler J, Carbon C. 1998. Disparate findings on the role of virulence factors of Enterococcus faecalis in mouse and rat models of peritonitis. Infect Immun 66:2570–2575.
128. Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB, Zervos MJ. 1993. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother 37:2474–2477 http://dx.doi.org/10.1128/AAC.37.11.2474. [PubMed]
129. Jett BD, Jensen HG, Nordquist RE, Gilmore MS. 1992. Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect Immun 60:2445–2452.
130. Garsin DA, Sifri CD, Mylonakis E, Qin X, Singh KV, Murray BE, Calderwood SB, Ausubel FM. 2001. A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A 98:10892–10897 http://dx.doi.org/10.1073/pnas.191378698. [PubMed]
131. Guzmàn CA, Pruzzo C, LiPira G, Calegari L. 1989. Role of adherence in pathogenesis of Enterococcus faecalis urinary tract infection and endocarditis. Infect Immun 57:1834–1838.
132. Kreft B, Marre R, Schramm U, Wirth R. 1992. Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect Immun 60:25–30.
133. Galli D, Lottspeich F, Wirth R. 1990. Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1. Mol Microbiol 4:895–904 http://dx.doi.org/10.1111/j.1365-2958.1990.tb00662.x. [PubMed]
134. Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS, Johnson DE. 2001. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun 69:4366–4372 http://dx.doi.org/10.1128/IAI.69.7.4366-4372.2001. [PubMed]
135. Tomita H, Ike Y. 2004. Tissue-specific adherent Enterococcus faecalis strains that show highly efficient adhesion to human bladder carcinoma T24 cells also adhere to extracellular matrix proteins. Infect Immun 72:5877–5885 http://dx.doi.org/10.1128/IAI.72.10.5877-5885.2004. [PubMed]
136. Nallapareddy SR, Qin X, Weinstock GM, Höök M, Murray BE, Murray BE. 2000. Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 68:5218–5224 http://dx.doi.org/10.1128/IAI.68.9.5218-5224.2000. [PubMed]
137. Nallapareddy SR, Singh KV, Duh RW, Weinstock GM, Murray BE. 2000. Diversity of ace, a gene encoding a microbial surface component recognizing adhesive matrix molecules, from different strains of Enterococcus faecalis and evidence for production of ace during human infections. Infect Immun 68:5210–5217 http://dx.doi.org/10.1128/IAI.68.9.5210-5217.2000. [PubMed]
138. Nallapareddy SR, Weinstock GM, Murray BE. 2003. Clinical isolates of Enterococcus faecium exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMM family. Mol Microbiol 47:1733–1747 http://dx.doi.org/10.1046/j.1365-2958.2003.03417.x. [PubMed]
139. Rich RL, Kreikemeyer B, Owens RT, LaBrenz S, Narayana SVL, Weinstock GM, Murray BE, Höök M. 1999. Ace is a collagen-binding MSCRAMM from Enterococcus faecalis. J Biol Chem 274:26939–26945 http://dx.doi.org/10.1074/jbc.274.38.26939. [PubMed]
140. Sillanpää J, Xu Y, Nallapareddy SR, Murray BE, Höök M. 2004. A family of putative MSCRAMMs from Enterococcus faecalis. Microbiology 150:2069–2078 http://dx.doi.org/10.1099/mic.0.27074-0. [PubMed]
141. Shiono A, Ike Y. 1999. Isolation of Enterococcus faecalis clinical isolates that efficiently adhere to human bladder carcinoma T24 cells and inhibition of adhesion by fibronectin and trypsin treatment. Infect Immun 67:1585–1592.
142. Ton-That H, Marraffini LA, Schneewind O. 2004. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol Microbiol 53:251–261 http://dx.doi.org/10.1111/j.1365-2958.2004.04117.x. [PubMed]
143. Ton-That H, Schneewind O. 2004. Assembly of pili in Gram-positive bacteria. Trends Microbiol 12:228–234 http://dx.doi.org/10.1016/j.tim.2004.03.004. [PubMed]
144. Ton-That H, Schneewind O. 2003. Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol 50:1429–1438 http://dx.doi.org/10.1046/j.1365-2958.2003.03782.x. [PubMed]
145. Nallapareddy SR, Singh KV, Sillanpää J, Zhao M, Murray BE. 2011. Relative contributions of Ebp pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect Immun 79:2901–2910 http://dx.doi.org/10.1128/IAI.00038-11. [PubMed]
146. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. 2015. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269–284 http://dx.doi.org/10.1038/nrmicro3432. [PubMed]
147. Guiton PS, Hung CS, Hancock LE, Caparon MG, Hultgren SJ. 2010. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract infections. Infect Immun 78:4166–4175 http://dx.doi.org/10.1128/IAI.00711-10. [PubMed]
148. Nielsen HV, Guiton PS, Kline KA, Port GC, Pinkner JS, Neiers F, Normark S, Henriques-Normark B, Caparon MG, Hultgren SJ. 2012. The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection. MBio 3:e00177-12 http://dx.doi.org/10.1128/mBio.00177-12. [PubMed]
149. Flores-Mireles AL, Pinkner JS, Caparon MG, Hultgren SJ. 2014. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci Transl Med 6:254ra127 http://dx.doi.org/10.1126/scitranslmed.3009384. [PubMed]
150. Munita JM, Arias CA, Murray BE. 2012. Enterococcal endocarditis: can we win the war? Curr Infect Dis Rep 14:339–349 http://dx.doi.org/10.1007/s11908-012-0270-8. [PubMed]
151. Murdoch DR, Corey GR, Hoen B, Miró JM, Fowler VG Jr, Bayer AS, Karchmer AW, Olaison L, Pappas PA, Moreillon P, Chambers ST, Chu VH, Falcó V, Holland DJ, Jones P, Klein JL, Raymond NJ, Read KM, Tripodi MF, Utili R, Wang A, Woods CW, Cabell CH, International Collaboration on Endocarditis-Prospective Cohort Study (ICE-PCS) Investigators. 2009. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch Intern Med 169:463–473 http://dx.doi.org/10.1001/archinternmed.2008.603. [PubMed]
152. Giannitsioti E, Skiadas I, Antoniadou A, Tsiodras S, Kanavos K, Triantafyllidi H, Giamarellou H, Hellenic Endocarditis Study Group. 2007. Nosocomial vs. community-acquired infective endocarditis in Greece: changing epidemiological profile and mortality risk. Clin Microbiol Infect 13:763–769 http://dx.doi.org/10.1111/j.1469-0691.2007.01746.x. [PubMed]
153. Cremieux AC, Maziere B, Vallois JM, Ottaviani M, Azancot A, Raffoul H, Bouvet A, Pocidalo JJ, Carbon C. 1989. Evaluation of antibiotic diffusion into cardiac vegetations by quantitative autoradiography. J Infect Dis 159:938–944 http://dx.doi.org/10.1093/infdis/159.5.938. [PubMed]
154. Durack DT. 1975. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J Pathol 115:81–89 http://dx.doi.org/10.1002/path.1711150204. [PubMed]
155. Chuang-Smith ON, Wells CL, Henry-Stanley MJ, Dunny GM. 2010. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS One 5:e15798 http://dx.doi.org/10.1371/journal.pone.0015798. [PubMed]
156. Clewell DB, Weaver KE, Dunny GM, Coque TM, Francia MV, Hayes F. 2014. Extrachromosomal and mobile elements in enterococci: transmission, maintenance, and epidemiology. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190424/.
157. Schlievert PM, Dunny GM, Stoehr JA, Assimacopoulos AP. 1997. Aggregation and binding substances enhance pathogenicity in a rabbit model of Enterococcus faecalis endocarditis, p 789–791. In Horaud T, Bouvet A, Leclercq R, de Montclos H, Sicard M (ed), Streptococci and the Host. Advances in Experimental Medicine and Biology, vol 418. Springer, Boston, MA. http://dx.doi.org/10.1007/978-1-4899-1825-3_186. [PubMed]
158. Chuang ON, Schlievert PM, Wells CL, Manias DA, Tripp TJ, Dunny GM. 2009. Multiple functional domains of Enterococcus faecalis aggregation substance Asc10 contribute to endocarditis virulence. Infect Immun 77:539–548 http://dx.doi.org/10.1128/IAI.01034-08. [PubMed]
159. Low YL, Jakubovics NS, Flatman JC, Jenkinson HF, Smith AW. 2003. Manganese-dependent regulation of the endocarditis-associated virulence factor EfaA of Enterococcus faecalis. J Med Microbiol 52:113–119 http://dx.doi.org/10.1099/jmm.0.05039-0. [PubMed]
160. Shepard BD, Gilmore MS. 2002. Differential expression of virulence-related genes in Enterococcus faecalis in response to biological cues in serum and urine. Infect Immun 70:4344–4352 http://dx.doi.org/10.1128/IAI.70.8.4344-4352.2002. [PubMed]
161. Abrantes MC, Kok J, Lopes MF. 2013. EfaR is a major regulator of Enterococcus faecalis manganese transporters and influences processes involved in host colonization and infection. Infect Immun 81:935–944 http://dx.doi.org/10.1128/IAI.06377-11. [PubMed]
162. Nallapareddy SR, Singh KV, Sillanpää J, Garsin DA, Höök M, Erlandsen SL, Murray BE. 2006. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J Clin Invest 116(10) :2799-807. [PubMed]
163. Thurlow LR, Thomas VC, Narayanan S, Olson S, Fleming SD, Hancock LE. 2010. Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect Immun 78:4936–4943 http://dx.doi.org/10.1128/IAI.01118-09. [PubMed]
164. Singh KV, Nallapareddy SR, Sillanpää J, Murray BE. 2010. Importance of the collagen adhesin ace in pathogenesis and protection against Enterococcus faecalis experimental endocarditis. PLoS Pathog 6:e1000716 http://dx.doi.org/10.1371/journal.ppat.1000716. [PubMed]
165. Singh KV, La Rosa SL, Somarajan SR, Roh JH, Murray BE. 2015. The fibronectin-binding protein EfbA contributes to pathogenesis and protects against infective endocarditis caused by Enterococcus faecalis. Infect Immun 83:4487–4494 http://dx.doi.org/10.1128/IAI.00884-15. [PubMed]
166. Paganelli FL, Huebner J, Singh KV, Zhang X, van Schaik W, Wobser D, Braat JC, Murray BE, Bonten MJM, Willems RJL, Leavis HL. 2016. Genome-wide screening identifies phosphotransferase system permease BepA to be involved in Enterococcus faecium endocarditis and biofilm formation. J Infect Dis 214:189–195 http://dx.doi.org/10.1093/infdis/jiw108. [PubMed]
167. Madsen KT, Skov MN, Gill S, Kemp M. 2017. Virulence factors associated with Enterococcus Faecalis infective endocarditis: a mini review. Open Microbiol J 11:1–11 http://dx.doi.org/10.2174/1874285801711010001. [PubMed]
168. Heikens E, Singh KV, Jacques-Palaz KD, van Luit-Asbroek M, Oostdijk EAN, Bonten MJM, Murray BE, Willems RJL. 2011. Contribution of the enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis. Microbes Infect 13:1185–1190 http://dx.doi.org/10.1016/j.micinf.2011.08.006. [PubMed]
169. Nallapareddy SR, Singh KV, Murray BE. 2008. Contribution of the collagen adhesin Acm to pathogenesis of Enterococcus faecium in experimental endocarditis. Infect Immun 76:4120–4128 http://dx.doi.org/10.1128/IAI.00376-08. [PubMed]
170. Giacometti A, Cirioni O, Schimizzi AM, Del Prete MS, Barchiesi F, D’Errico MM, Petrelli E, Scalise G. 2000. Epidemiology and microbiology of surgical wound infections. J Clin Microbiol 38:918–922.
171. Han DP, Wisniewski SR, Wilson LA, Barza M, Vine AK, Doft BH, Kelsey SF, Blodi BA, Elner SG, Johnson MW, Jessup LM, Khanderia S, Pierson CL, Willis J, McIver F, Stanley S, Sneed SR, Capone AJ, Aaberg TM. 1996. Spectrum and susceptibilities of microbiologic isolates in the Endophthalmitis Vitrectomy Study. Am J Ophthalmol 122:1–17 http://dx.doi.org/10.1016/S0002-9394(14)71959-2.
172. Engelbert M, Gilmore MS. 2005. Fas ligand but not complement is critical for control of experimental Staphylococcus aureus endophthalmitis. Invest Ophthalmol Vis Sci 46:2479–2486 http://dx.doi.org/10.1167/iovs.04-1139. [PubMed]
173. Jett BD, Atkuri RV, Gilmore MS. 1998. Enterococcus faecalis localization in experimental endophthalmitis: role of plasmid-encoded aggregation substance. Infect Immun 66:843–848.
174. Mylonakis E, Engelbert M, Qin X, Sifri CD, Murray BE, Ausubel FM, Gilmore MS, Calderwood SB. 2002. The Enterococcus faecalisfsrB gene, a key component of the fsr quorum-sensing system, is associated with virulence in the rabbit endophthalmitis model. Infect Immun 70:4678–4681 http://dx.doi.org/10.1128/IAI.70.8.4678-4681.2002. [PubMed]
175. Rôças IN, Siqueira JF Jr, Santos KRN. 2004. Association of Enterococcus faecalis with different forms of periradicular diseases. J Endod 30:315–320 http://dx.doi.org/10.1097/00004770-200405000-00004. [PubMed]
176. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. 2006. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 32:93–98 http://dx.doi.org/10.1016/j.joen.2005.10.049. [PubMed]
177. Zoletti GO, Pereira EM, Schuenck RP, Teixeira LM, Siqueira JF Jr, dos Santos KRN. 2011. Characterization of virulence factors and clonal diversity of Enterococcus faecalis isolates from treated dental root canals. Res Microbiol 162:151–158 http://dx.doi.org/10.1016/j.resmic.2010.09.018. [PubMed]
178. Penas PP, Mayer MPA, Gomes BPFA, Endo M, Pignatari ACC, Bauab KC, Pinheiro ET. 2013. Analysis of genetic lineages and their correlation with virulence genes in Enterococcus faecalis clinical isolates from root canal and systemic infections. J Endod 39:858–864 http://dx.doi.org/10.1016/j.joen.2013.01.009. [PubMed]
179. Lin YH, Mickel AK, Chogle S. 2003. Effectiveness of selected materials against Enterococcus faecalis. Part 3. The antibacterial effect of calcium hydroxide and chlorhexidine on Enterococcus faecalis. J Endod 29:565–566 http://dx.doi.org/10.1097/00004770-200309000-00006. [PubMed]
180. Barroso LS, Habitante SM, Jorge AOC, Faria IS. 2004. Microorganisms growth in endodontic citric-acid solutions with and without microbiological stabilizer. J Endod 30:42–44 http://dx.doi.org/10.1097/00004770-200401000-00009.
181. Byström A, Sunvqvist G. 1985. The antibacterial action of sodium hypochlorite and EDTA in 60 cases of endodontic therapy. Int Endod J 18:35–40 http://dx.doi.org/10.1111/j.1365-2591.1985.tb00416.x. [PubMed]
182. Hubble TS, Hatton JF, Nallapareddy SR, Murray BE, Gillespie MJ. 2003. Influence of Enterococcus faecalis proteases and the collagen-binding protein, Ace, on adhesion to dentin. Oral Microbiol Immunol 18:121–126 http://dx.doi.org/10.1034/j.1399-302X.2003.00059.x. [PubMed]
183. Harvey BS, Baker CJ, Edwards MS. 1992. Contributions of complement and immunoglobulin to neutrophil-mediated killing of enterococci. Infect Immun 60:3635–3640.
184. Leendertse M, Willems RJL, Giebelen IAJ, Roelofs JJTH, Bonten MJM, van der Poll T. 2009. Neutrophils are essential for rapid clearance of Enterococcus faecium in mice. Infect Immun 77:485–491 http://dx.doi.org/10.1128/IAI.00863-08. [PubMed]
185. Arduino RC, Murray BE, Rakita RM. 1994. Roles of antibodies and complement in phagocytic killing of enterococci. Infect Immun 62:987–993.
186. Gaglani MJ, Baker CJ, Edwards MS. 1997. Contribution of antibody to neutrophil-mediated killing of Enterococcus faecalis. J Clin Immunol 17:478–484 http://dx.doi.org/10.1023/A:1027371727225. [PubMed]
187. Novak RM, Holzer TJ, Libertin CR. 1993. Human neutrophil oxidative response and phagocytic killing of clinical and laboratory strains of Enterococcus faecalis. Diagn Microbiol Infect Dis 17:1–6 http://dx.doi.org/10.1016/0732-8893(93)90061-B.
188. Park SY, Shin YP, Kim CH, Park HJ, Seong YS, Kim BS, Seo SJ, Lee IH. 2008. Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. J Immunol 181:6328–6336 http://dx.doi.org/10.4049/jimmunol.181.9.6328. [PubMed]
189. Bottone EJ, Patel L, Patel P, Robin T. 1998. Mucoid encapsulated Enterococcus faecalis: an emerging morphotype isolated from patients with urinary tract infections. Diagn Microbiol Infect Dis 31:429–430 http://dx.doi.org/10.1016/S0732-8893(98)00027-3.
190. Bottone EJ. 1999. Encapsulated Enterococcus faecalis: role of encapsulation in persistence in mouse peritoneum in absence of mouse lethality. Diagn Microbiol Infect Dis 33:65–68 http://dx.doi.org/10.1016/S0732-8893(98)00125-4.
191. Rakita RM, Vanek NN, Jacques-Palaz K, Mee M, Mariscalco MM, Dunny GM, Snuggs M, Van Winkle WB, Simon SI. 1999. Enterococcus faecalis bearing aggregation substance is resistant to killing by human neutrophils despite phagocytosis and neutrophil activation. Infect Immun 67:6067–6075.
192. Zou J, Shankar N. 2016. The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to promote intracellular survival in macrophages. Cell Microbiol 18:831–843 http://dx.doi.org/10.1111/cmi.12556. [PubMed]
193. Baureder M, Reimann R, Hederstedt L. 2012. Contribution of catalase to hydrogen peroxide resistance in Enterococcus faecalis. FEMS Microbiol Lett 331:160–164 http://dx.doi.org/10.1111/j.1574-6968.2012.02567.x. [PubMed]
194. Hanock LE, Gilmore MS, Hancock LE, Gilmore MS. 2002. The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall 99:1574–1579. [PubMed]
195. Huebner J, Quaas A, Krueger WA, Goldmann DA, Pier GB. 2000. Prophylactic and therapeutic efficacy of antibodies to a capsular polysaccharide shared among vancomycin-sensitive and -resistant enterococci. Infect Immun 68:4631–4636 http://dx.doi.org/10.1128/IAI.68.8.4631-4636.2000. [PubMed]
196. Huebner J, Wang Y, Krueger WA, Madoff LC, Martirosian G, Boisot S, Goldmann DA, Kasper DL, Tzianabos AO, Pier GB. 1999. Isolation and chemical characterization of a capsular polysaccharide antigen shared by clinical isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium. Infect Immun 67:1213–1219.
197. Hufnagel M, Hancock LE, Koch S, Theilacker C, Gilmore MS, Huebner J. 2004. Serological and genetic diversity of capsular polysaccharides in Enterococcus faecalis. J Clin Microbiol 42:2548–2557 http://dx.doi.org/10.1128/JCM.42.6.2548-2557.2004. [PubMed]
198. Thurlow LR, Thomas VC, Hancock LE. 2009. Capsular polysaccharide production in Enterococcus faecalis and contribution of CpsF to capsule serospecificity. J Bacteriol 191:6203–6210 http://dx.doi.org/10.1128/JB.00592-09. [PubMed]
199. Hancock LE, Shepard BD, Gilmore MS. 2003. Molecular analysis of the Enterococcus faecalis serotype 2 polysaccharide determinant. J Bacteriol 185:4393–4401 http://dx.doi.org/10.1128/JB.185.15.4393-4401.2003. [PubMed]
200. Teng F, Jacques-Palaz KD, Weinstock GM, Murray BE. 2002. Evidence that the enterococcal polysaccharide antigen gene ( epa) cluster is widespread in Enterococcus faecalis and influences resistance to phagocytic killing of E. faecalis. Infect Immun 70:2010–2015 http://dx.doi.org/10.1128/IAI.70.4.2010-2015.2002. [PubMed]
201. Xu Y, Murray BE, Weinstock GM. 1998. A cluster of genes involved in polysaccharide biosynthesis from Enterococcus faecalis OG1RF. Infect Immun 66:4313–4323.
202. Xu Y, Singh KV, Qin X, Murray BE, Weinstock GM. 2000. Analysis of a gene cluster of Enterococcus faecalis involved in polysaccharide biosynthesis. Infect Immun 68:815–823 http://dx.doi.org/10.1128/IAI.68.2.815-823.2000. [PubMed]
203. Geiss-Liebisch S, Rooijakkers SHM, Beczala A, Sanchez-Carballo P, Kruszynska K, Repp C, Sakinc T, Vinogradov E, Holst O, Huebner J, Theilacker C. 2012. Secondary cell wall polymers of Enterococcus faecalis are critical for resistance to complement activation via mannose-binding lectin. J Biol Chem 287:37769–37777 http://dx.doi.org/10.1074/jbc.M112.358283. [PubMed]
204. Theilacker C, Sanchez-Carballo P, Toma I, Fabretti F, Sava I, Kropec A, Holst O, Huebner J. 2009. Glycolipids are involved in biofilm accumulation and prolonged bacteraemia in Enterococcus faecalis. Mol Microbiol 71:1055–1069 http://dx.doi.org/10.1111/j.1365-2958.2008.06587.x. [PubMed]
205. Rigottier-Gois L, Madec C, Navickas A, Matos RC, Akary-Lepage E, Mistou MY, Serror P. 2015. The surface rhamnopolysaccharide epa of Enterococcus faecalis is a key determinant of intestinal colonization. J Infect Dis 211:62–71 http://dx.doi.org/10.1093/infdis/jiu402. [PubMed]
206. Prajsnar TK, Renshaw SA, Ogryzko NV, Foster SJ, Serror P, Mesnage S. 2013. Zebrafish as a novel vertebrate model to dissect enterococcal pathogenesis. Infect Immun 81:4271–4279 http://dx.doi.org/10.1128/IAI.00976-13. [PubMed]
207. Singh KV, Lewis RJ, Murray BE. 2009. Importance of the epa locus of Enterococcus faecalis OG1RF in a mouse model of ascending urinary tract infection. J Infect Dis 200:417–420 http://dx.doi.org/10.1086/600124. [PubMed]
208. Montravers P, Mohler J, Saint Julien L, Carbon C. 1997. Evidence of the proinflammatory role of Enterococcus faecalis in polymicrobial peritonitis in rats. Infect Immun 65:144–149.
209. Park O-J, Han JY, Baik JE, Jeon JH, Kang S-S, Yun C-H, Oh J-W, Seo HS, Han SH. 2013. Lipoteichoic acid of Enterococcus faecalis induces the expression of chemokines via TLR2 and PAFR signaling pathways. J Leukoc Biol 94:1275–1284 http://dx.doi.org/10.1189/jlb.1012522. [PubMed]
210. Diederich AK, Wobser D, Spiess M, Sava IG, Huebner J, Sakιnç T. 2014. Role of glycolipids in the pathogenesis of Enterococcus faecalis urinary tract infection. PLoS One 9:e96295 http://dx.doi.org/10.1371/journal.pone.0096295. [PubMed]
211. Yang J, Park OJ, Kim J, Baik JE, Yun CH, Han SH. 2016. Lipoteichoic acid of Enterococcus faecalis inhibits the differentiation of macrophages into osteoclasts. J Endod 42:570–574 http://dx.doi.org/10.1016/j.joen.2016.01.012. [PubMed]
212. Bhakdi S, Klonisch T, Nuber P, Fischer W. 1991. Stimulation of monokine production by lipoteichoic acids. Infect Immun 59:4614–4620.
213. Bruserud Ø, Wendelbo Ø, Paulsen K. 2004. Lipoteichoic acid derived from Enterococcus faecalis modulates the functional characteristics of both normal peripheral blood leukocytes and native human acute myelogenous leukemia blasts. Eur J Haematol 73:340–350 http://dx.doi.org/10.1111/j.1600-0609.2004.00307.x. [PubMed]
214. Schlievert PM, Gahr PJ, Assimacopoulos AP, Dinges MM, Stoehr JA, Harmala JW, Hirt H, Dunny GM. 1998. Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect Immun 66:218–223.
215. Gold OG, Jordan HV, van Houte J. 1975. The prevalence of enterococci in the human mouth and their pathogenicity in animal models. Arch Oral Biol 20:473–477 http://dx.doi.org/10.1016/0003-9969(75)90236-8.
216. Qin X, Singh KV, Weinstock GM, Murray BE. 2000. Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586 http://dx.doi.org/10.1128/IAI.68.5.2579-2586.2000. [PubMed]
217. Huycke MM, Sahm DF, Gilmore MS. 1998. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis 4:239–249 http://dx.doi.org/10.3201/eid0402.980211. [PubMed]
218. Coburn PS, Gilmore MS. 2003. The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol 5:661–669 http://dx.doi.org/10.1046/j.1462-5822.2003.00310.x. [PubMed]
219. Van Tyne D, Martin MJ, Gilmore MS. 2013. Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins (Basel) 5:895–911 http://dx.doi.org/10.3390/toxins5050895. [PubMed]
220. Haas W, Shepard BD, Gilmore MS. 2002. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415:84–87 http://dx.doi.org/10.1038/415084a. [PubMed]
221. Sifri CD, Mylonakis E, Singh KV, Qin X, Garsin DA, Murray BE, Ausubel FM, Calderwood SB. 2002. Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice. Infect Immun 70:5647–5650 http://dx.doi.org/10.1128/IAI.70.10.5647-5650.2002. [PubMed]
222. Engelbert M, Mylonakis E, Ausubel FM, Calderwood SB, Gilmore MS. 2004. Contribution of gelatinase, serine protease, and fsr to the pathogenesis of Enterococcus faecalis endophthalmitis. Infect Immun 72:3628–3633 http://dx.doi.org/10.1128/IAI.72.6.3628-3633.2004. [PubMed]
223. Hancock LE, Perego M. 2004. The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol 186:5629–5639 http://dx.doi.org/10.1128/JB.186.17.5629-5639.2004. [PubMed]
224. Kristich CJ, Li Y-H, Cvitkovitch DG, Dunny GM. 2004. Esp-independent biofilm formation by Enterococcus faecalis. J Bacteriol 186:154–163 http://dx.doi.org/10.1128/JB.186.1.154-163.2004. [PubMed]
225. Qin X, Singh KV, Weinstock GM, Murray BE. 2001. Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol 183:3372–3382 http://dx.doi.org/10.1128/JB.183.11.3372-3382.2001. [PubMed]
226. Nakayama J, Cao Y, Horii T, Sakuda S, Akkermans ADL, de Vos WM, Nagasawa H. 2001. Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol Microbiol 41:145–154 http://dx.doi.org/10.1046/j.1365-2958.2001.02486.x. [PubMed]
227. Mohamed JA, Huang W, Nallapareddy SR, Teng F, Murray BE. 2004. Influence of isolate origin and presence of various genes on biofilm formation by Enterococcus faecium. Infect Immun 72:3658–3663 http://dx.doi.org/10.1128/IAI.72.6.3658-3663.2004. [PubMed]
228. Del Papa MF, Perego M. 2011. Enterococcus faecalis virulence regulator FsrA binding to target promoters. J Bacteriol 193:1527–1532 http://dx.doi.org/10.1128/JB.01522-10. [PubMed]
229. Dundar H, Brede DA, La Rosa SL, El-Gendy AO, Diep DB, Nes IF. 2015. The fsr quorum-sensing system and cognate gelatinase orchestrate the expression and processing of proprotein EF_1097 into the mature antimicrobial peptide enterocin O16. J Bacteriol 197:2112–2121 http://dx.doi.org/10.1128/JB.02513-14. [PubMed]
230. Coque TM, Patterson JE, Steckelberg JM, Murray BE. 1995. Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J Infect Dis 171:1223–1229 http://dx.doi.org/10.1093/infdis/171.5.1223. [PubMed]
231. Roberts JC, Singh KV, Okhuysen PC, Murray BE. 2004. Molecular epidemiology of the fsr locus and of gelatinase production among different subsets of Enterococcus faecalis isolates. J Clin Microbiol 42:2317–2320 http://dx.doi.org/10.1128/JCM.42.5.2317-2320.2004. [PubMed]
232. Pillai SK, Sakoulas G, Gold HS, Wennersten C, Eliopoulos GM, Moellering RC Jr, Inouye RT. 2002. Prevalence of the fsr locus in Enterococcus faecalis infections. J Clin Microbiol 40:2651–2652 http://dx.doi.org/10.1128/JCM.40.7.2651-2652.2002. [PubMed]
233. Biswas PP, Dey S, Adhikari L, Sen A. 2014. Virulence markers of vancomycin resistant enterococci isolated from infected and colonized patients. J Glob Infect Dis 6:157–163 http://dx.doi.org/10.4103/0974-777X.145242. [PubMed]
234. Anderson AC, Jonas D, Huber I, Karygianni L, Wölber J, Hellwig E, Arweiler N, Vach K, Wittmer A, Al-Ahmad A. 2016. Enterococcus faecalis from food, clinical specimens, and oral sites: prevalence of virulence factors in association with biofilm formation. Front Microbiol 6:1534 http://dx.doi.org/10.3389/fmicb.2015.01534.
235. Nakayama J, Kariyama R, Kumon H. 2002. Description of a 23.9-kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinase-negative phenotype of clinical isolates of Enterococcus faecalis in urine. Appl Environ Microbiol 68:3152–3155 http://dx.doi.org/10.1128/AEM.68.6.3152-3155.2002. [PubMed]
236. Rice LB, Carias L, Rudin S, Vael C, Goossens H, Konstabel C, Klare I, Nallapareddy SR, Huang W, Murray BE. 2003. A potential virulence gene, hylEfm, predominates in Enterococcus faecium of clinical origin. J Infect Dis 187:508–512 http://dx.doi.org/10.1086/367711. [PubMed]
237. Leavis H, Top J, Shankar N, Borgen K, Bonten M, van Embden J, Willems RJL. 2004. A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J Bacteriol 186:672–682 http://dx.doi.org/10.1128/JB.186.3.672-682.2004. [PubMed]
238. van Schaik W, Top J, Riley DR, Boekhorst J, Vrijenhoek JEP, Schapendonk CME, Hendrickx AP, Nijman IJ, Bonten MJM, Tettelin H, Willems RJL. 2010. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics 11:239 http://dx.doi.org/10.1186/1471-2164-11-239. [PubMed]
239. Moy TI, Mylonakis E, Calderwood SB, Ausubel FM, Calderwood SB. 2004. Cytotoxicity of hydrogen peroxide produced by Enterococcus faecium. Infect Immun 72:4512–4520 http://dx.doi.org/10.1128/IAI.72.8.4512-4520.2004. [PubMed]
240. Huycke MM, Joyce W, Wack MF. 1996. Augmented production of extracellular superoxide by blood isolates of Enterococcus faecalis. J Infect Dis 173:743–746 http://dx.doi.org/10.1093/infdis/173.3.743. [PubMed]
241. Ramsey M, Hartke A, Huycke M. 2014. The physiology and metabolism of enterococci, p 1–43. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary, Boston, MA.
242. Paulsen IT, Banerjei L, Myers GSA, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM. 2003. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071–2074. [PubMed]
243. Bourgogne A, Garsin DA, Qin X, Singh KV, Sillanpaa J, Yerrapragada S, Ding Y, Dugan-Rocha S, Buhay C, Shen H, Chen G, Williams G, Muzny D, Maadani A, Fox KA, Gioia J, Chen L, Shang Y, Arias CA, Nallapareddy SR, Zhao M, Prakash VP, Chowdhury S, Jiang H, Gibbs RA, Murray BE, Highlander SK, Weinstock GM. 2008. Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 9:R110 http://dx.doi.org/10.1186/gb-2008-9-7-r110. [PubMed]
244. McBride SM, Coburn PS, Baghdayan AS, Willems RJL, Grande MJ, Shankar N, Gilmore MS. 2009. Genetic variation and evolution of the pathogenicity island of Enterococcus faecalis. J Bacteriol 191:3392–3402 http://dx.doi.org/10.1128/JB.00031-09. [PubMed]
245. Palmer KL, Gilmore MS. 2010. Multidrug-resistant enterococci lack CRISPR-cas. MBio 1:e00227-10 http://dx.doi.org/10.1128/mBio.00227-10. [PubMed]
246. Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Van Embden JDA, Willems RJL. 2002. Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol 40:1963–1971 http://dx.doi.org/10.1128/JCM.40.6.1963-1971.2002. [PubMed]
247. Ruiz-Garbajosa P, Bonten MJM, Robinson DA, Top J, Nallapareddy SR, Torres C, Coque TM, Cantón R, Baquero F, Murray BE, del Campo R, Willems RJL. 2006. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J Clin Microbiol 44:2220–2228 http://dx.doi.org/10.1128/JCM.02596-05. [PubMed]
248. Willems RJL, Top J, van Schaik W, Leavis H, Bonten M, Sirén J, Hanage WP, Corander J. 2012. Restricted gene flow among hospital subpopulations of Enterococcus faecium. MBio 3:e00151-12 http://dx.doi.org/10.1128/mBio.00151-12. [PubMed]
249. McBride SM, Fischetti VA, Leblanc DJ, Moellering RC Jr, Gilmore MS. 2007. Genetic diversity among Enterococcus faecalis. PLoS One 2:e582 http://dx.doi.org/10.1371/journal.pone.0000582. [PubMed]
250. Raven KE, Reuter S, Gouliouris T, Reynolds R, Russell JE, Brown NM, Török ME, Parkhill J, Peacock SJ. 2016. Genome-based characterization of hospital-adapted Enterococcus faecalis lineages. Nat Microbiol 1:15033.
251. Kim EB, Marco ML. 2014. Nonclinical and clinical Enterococcus faecium strains, but not Enterococcus faecalis strains, have distinct structural and functional genomic features. Appl Environ Microbiol 80:154–165 http://dx.doi.org/10.1128/AEM.03108-13. [PubMed]
252. Galloway-Peña J, Roh JH, Latorre M, Qin X, Murray BE. 2012. Genomic and SNP analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS One 7:e30187 http://dx.doi.org/10.1371/journal.pone.0030187. [PubMed]
253. Palmer KL, Godfrey P, Griggs A, Kos VN, Zucker J, Desjardins C, Cerqueira G, Gevers D, Walker S, Wortman J, Feldgarden M, Haas B, Birren B, Gilmore MS. 2012. Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. MBio 3:e00318-11. [PubMed]
254. Van Schaik W, Willems RJLJLL. 2010. Genome-based insights into the evolution of enterococci. Clin Microbiol Infect 16:527–532. [PubMed]
255. Goh HMS, Yong MHA, Chong KKL, Kline KA, Kline KA. 2017. Model systems for the study of enterococcal colonization and infection. Virulence 8:1525–1562 http://dx.doi.org/10.1080/21505594.2017.1279766. [PubMed]
256. Yuen GJ, Ausubel FM. 2014. Enterococcus infection biology: lessons from invertebrate host models. J Microbiol 52:200–210 http://dx.doi.org/10.1007/s12275-014-4011-6. [PubMed]
257. Cox CR, Gilmore MS. 2007. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 75:1565–1576 http://dx.doi.org/10.1128/IAI.01496-06. [PubMed]
258. Lebreton F, Le Bras F, Reffuveille F, Ladjouzi R, Giard J-C, Leclercq R, Cattoir V. 2011. Galleria mellonella as a model for studying Enterococcus faecium host persistence. J Mol Microbiol Biotechnol 21:191–196 http://dx.doi.org/10.1159/000332737. [PubMed]
259. Moy TI, Ball AR, Anklesaria Z, Casadei G, Lewis K, Ausubel FM. 2006. Identification of novel antimicrobials using a live-animal infection model. Proc Natl Acad Sci U S A 103:10414–10419 http://dx.doi.org/10.1073/pnas.0604055103. [PubMed]
260. Garrison PK, Freedman LR. 1970. Experimental endocarditis. I. Staphylococcal endocarditis in rabbits resulting from placement of a polyethylene catheter in the right side of the heart. Yale J Biol Med 42:394–410.
261. Santoro J, Levison ME. 1978. Rat model of experimental endocarditis. Infect Immun 19:915–918.
262. Barnes AMT, Dale JL, Chen Y, Manias DA, Greenwood Quaintance KE, Karau MK, Kashyap PC, Patel R, Wells CL, Dunny GM. 2017. Enterococcus faecalis readily colonizes the entire gastrointestinal tract and forms biofilms in a germ-free mouse model. Virulence 8:282–296 http://dx.doi.org/10.1080/21505594.2016.1208890. [PubMed]
263. Leendertse M, Willems RJ, Giebelen IA, van den Pangaart PS, Wiersinga WJ, de Vos AF, Florquin S, Bonten MJ, van der Poll T, Leendertse M, De Vos AF, Van Der Poll T. 2008. TLR2-dependent MyD88 signaling contributes to early host defense in murine Enterococcus faecium peritonitis. J Immunol 180:4865–4874 http://dx.doi.org/10.4049/jimmunol.180.7.4865. [PubMed]
264. Johnson JR, Clabots C, Hirt H, Waters C, Dunny G. 2004. Enterococcal aggregation substance and binding substance are not major contributors to urinary tract colonization by Enterococcus faecalis in a mouse model of ascending unobstructed urinary tract infection. Infect Immun 72:2445–2448 http://dx.doi.org/10.1128/IAI.72.4.2445-2448.2004. [PubMed]
265. Kau AL, Martin SM, Lyon W, Hayes E, Caparon MG, Hultgren SJ. 2005. Enterococcus faecalis tropism for the kidneys in the urinary tract of C57BL/6J mice. Infect Immun 73:2461–2468 http://dx.doi.org/10.1128/IAI.73.4.2461-2468.2005. [PubMed]
266. Stevens SX, Jensen HG, Jett BD, Gilmore MS. 1992. A hemolysin-encoding plasmid contributes to bacterial virulence in experimental Enterococcus faecalis endophthalmitis. Invest Ophthalmol Vis Sci 33:1650–1656.
267. Hirt H, Schlievert PM, Dunny GM. 2002. In vivo induction of virulence and antibiotic resistance transfer in Enterococcus faecalis mediated by the sex pheromone-sensing system of pCF10. Infect Immun 70:716–723 http://dx.doi.org/10.1128/IAI.70.2.716-723.2002. [PubMed]
268. Trotter KM, Dunny GM. 1990. Mutants of Enterococcus faecalis deficient as recipients in mating with donors carrying pheromone-inducible plasmids. Plasmid 24:57–67 http://dx.doi.org/10.1016/0147-619X(90)90025-8.
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0053-2018
2019-07-12
2019-08-18

Abstract:

Enterococci are unusually well adapted for survival and persistence in a variety of adverse environments, including on inanimate surfaces in the hospital environment and at sites of infection. This intrinsic ruggedness undoubtedly played a role in providing opportunities for enterococci to interact with other overtly drug-resistant microbes and acquire additional resistances on mobile elements. The rapid rise of antimicrobial resistance among hospital-adapted enterococci has rendered hospital-acquired infections a leading therapeutic challenge. With about a quarter of a genome of additional DNA conveyed by mobile elements, there are undoubtedly many more properties that have been acquired that help enterococci persist and spread in the hospital setting and cause diseases that have yet to be defined. Much remains to be learned about these ancient and rugged microbes, particularly in the area of pathogenic mechanisms involved with human diseases.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Animal hosts that have been associated with enterococcal colonization. A simplified tree of life with blue shading indicating animals from which enterococci have been isolated. Corresponding geologic periods are indicated on the left. Reproduced with permission from reference 11 .

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0053-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Routes of dissemination of enterococci from the intestinal reservoir of a hospitalized patient. Bacteria from the intestine can seed infections throughout the body and contaminate surfaces, leading to patient-to-patient spread. Reproduced with permission from reference 122 .

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0053-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Population structure of and based on comparisons of whole genomes. RAxML tree of 1,344 single copy core genes found in 73 genomes, showing the clade structure of the population. Reproduced with permission from reference 104 . Phylogeny of 515 isolates based on 1,293 conserved core genes found in 99% of isolates. The L1, L2, and L3 lineages are highlighted with red, purple, and turquoise lines, respectively. Reproduced with permission from reference 250 .

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0053-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Enterococcal virulence factors

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0053-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error