No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Enterococcal Genetics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: Keith E. Weaver1
  • Editors: Vincent A. Fischetti2, Richard P. Novick3, Joseph J. Ferretti4, Daniel A. Portnoy5, Miriam Braunstein6, Julian I. Rood7
    Affiliations: 1: Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069; 2: The Rockefeller University, New York, NY; 3: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 4: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 5: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 6: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 7: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0055-2018
  • Received 04 December 2018 Accepted 08 January 2019 Published 08 March 2019
  • Keith E. Weaver, [email protected]
image of Enterococcal Genetics
    Preview this microbiology spectrum article:
    Zoom in

    Enterococcal Genetics, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0055-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0055-2018-2.gif
  • Abstract:

    The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species and . Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.

  • Citation: Weaver K. 2019. Enterococcal Genetics. Microbiol Spectrum 7(2):GPP3-0055-2018. doi:10.1128/microbiolspec.GPP3-0055-2018.


1. Dunny GM, Brown BL, Clewell DB. 1978. Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci U S A 75:3479–3483 http://dx.doi.org/10.1073/pnas.75.7.3479. [PubMed]
2. Gawron-Burke C, Clewell DB. 1982. A transposon in Streptococcus faecalis with fertility properties. Nature 300:281–284 http://dx.doi.org/10.1038/300281a0. [PubMed]
3. Franke AE, Clewell DB. 1981. Evidence for a chromosome-borne resistance transposon (Tn 916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J Bacteriol 145:494–502. [PubMed]
4. Uttley AH, Collins CH, Naidoo J, George RC. 1988. Vancomycin-resistant enterococci. Lancet 1:57–58 http://dx.doi.org/10.1016/S0140-6736(88)91037-9.
5. Leclercq R, Derlot E, Duval J, Courvalin P. 1988. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161 http://dx.doi.org/10.1056/NEJM198807213190307. [PubMed]
6. Paulsen IT, Banerjei L, Myers GSA, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM. 2003. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071–2074 http://dx.doi.org/10.1126/science.1080613. [PubMed]
7. Lindenstrauss AG, Pavlovic M, Bringmann A, Behr J, Ehrmann MA, Vogel RF. 2011. Comparison of genotypic and phenotypic cluster analyses of virulence determinants and possible role of CRISPR elements towards their incidence in Enterococcus faecalis and Enterococcus faecium. Syst Appl Microbiol 34:553–560 http://dx.doi.org/10.1016/j.syapm.2011.05.002. [PubMed]
8. Palmer KL, Gilmore MS. 2010. Multidrug-resistant enterococci lack CRISPR-cas. MBio 1:e00227-10 http://dx.doi.org/10.1128/mBio.00227-10. [PubMed]
9. Palmer KL, van Schaik W, Willems RJL, Gilmore MS. 2014. Enterococcal genomics. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190425/.
10. DebRoy S, Gao P, Garsin DA, Harvey BR, Kos V, Nes IF, Solheim M. 2014. Transcriptional and post transcriptional control of enterococcal gene regulation. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190422/.
11. Jameson KH, Wilkinson AJ. 2017. Control of initiation of DNA replication in Bacillus subtilis and Escherichia coli. Genes (Basel) 8:E22 http://dx.doi.org/10.3390/genes8010022. [PubMed]
12. Le Chatelier E, Bécherel OJ, d’Alençon E, Canceill D, Ehrlich SD, Fuchs RPP, Jannière L. 2004. Involvement of DnaE, the second replicative DNA polymerase from Bacillus subtilis, in DNA mutagenesis. J Biol Chem 279:1757–1767 http://dx.doi.org/10.1074/jbc.M310719200. [PubMed]
13. Bruck I, Goodman MF, O’Donnell M. 2003. The essential C family DnaE polymerase is error-prone and efficient at lesion bypass. J Biol Chem 278:44361–44368 http://dx.doi.org/10.1074/jbc.M308307200. [PubMed]
14. Foster KA, Barnes MH, Stephenson RO, Butler MM, Skow DJ, LaMarr WA, Brown NC. 2003. DNA polymerase III of Enterococcus faecalis: expression and characterization of recombinant enzymes encoded by the polC and dnaE genes. Protein Expr Purif 27:90–97 http://dx.doi.org/10.1016/S1046-5928(02)00577-6.
15. Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang Z, Woodgate R. 2001. The Y-family of DNA polymerases. Mol Cell 8:7–8 http://dx.doi.org/10.1016/S1097-2765(01)00278-7.
16. Permina EA, Mironov AA, Gelfand MS. 2002. Damage-repair error-prone polymerases of eubacteria: association with mobile genome elements. Gene 293:133–140 http://dx.doi.org/10.1016/S0378-1119(02)00701-1.
17. Ozawa Y, Tanimoto K, Fujimoto S, Tomita H, Ike Y. 1997. Cloning and genetic analysis of the UV resistance determinant ( uvr) encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pAD1. J Bacteriol 179:7468–7475 http://dx.doi.org/10.1128/jb.179.23.7468-7475.1997. [PubMed]
18. Yagi Y, Clewell DB. 1980. Recombination-deficient mutant of Streptococcus faecalis. J Bacteriol 143:966–970. [PubMed]
19. Weaver KE, Reddy SG. 2006. The recombination deficient Enterococcus faecalis UV202 strain is a recA mutant. Plasmid 55:164–168 http://dx.doi.org/10.1016/j.plasmid.2005.10.001. [PubMed]
20. Ip SCY, Bregu M, Barre F-X, Sherratt DJ. 2003. Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J 22:6399–6407 http://dx.doi.org/10.1093/emboj/cdg589. [PubMed]
21. Espeli O, Lee C, Marians KJ. 2003. A physical and functional interaction between Escherichia coli FtsK and topoisomerase IV. J Biol Chem 278:44639–44644 http://dx.doi.org/10.1074/jbc.M308926200. [PubMed]
22. Pucci MJ, Thanassi JA, Discotto LF, Kessler RE, Dougherty TJ. 1997. Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. J Bacteriol 179:5632–5635 http://dx.doi.org/10.1128/jb.179.17.5632-5635.1997. [PubMed]
23. Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C, Lavergne J-P, Franz-Wachtel M, Macek B, Combet C, Kuru E, VanNieuwenhze MS, Brun YV, Sherratt D, Grangeasse C. 2014. MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516:259–262 http://dx.doi.org/10.1038/nature13966. [PubMed]
24. Jacq M, Adam V, Bourgeois D, Moriscot C, Di Guilmi A-M, Vernet T, Morlot C. 2015. Remodeling of the Z-ring nanostructure during the Streptococcus pneumoniae cell cycle revealed by photoactivated localization microscopy. MBio 6:e01108-15 http://dx.doi.org/10.1128/mBio.01108-15. [PubMed]
25. Land AD, Tsui H-CT, Kocaoglu O, Vella SA, Shaw SL, Keen SK, Sham L-T, Carlson EE, Winkler ME. 2013. Requirement of essential Pbp2x and GpsB for septal ring closure in Streptococcus pneumoniae D39. Mol Microbiol 90:939–955 http://dx.doi.org/10.1111/mmi.12408. [PubMed]
26. Adams DW, Wu LJ, Errington J. 2014. Cell cycle regulation by the bacterial nucleoid. Curr Opin Microbiol 22:94–101 http://dx.doi.org/10.1016/j.mib.2014.09.020. [PubMed]
27. Rowlett VW, Margolin W. 2015. The Min system and other nucleoid-independent regulators of Z ring positioning. Front Microbiol 6:478 http://dx.doi.org/10.3389/fmicb.2015.00478. [PubMed]
28. Fadda D, Santona A, D’Ulisse V, Ghelardini P, Ennas MG, Whalen MB, Massidda O. 2007. Streptococcus pneumoniae DivIVA: localization and interactions in a MinCD-free context. J Bacteriol 189:1288–1298 http://dx.doi.org/10.1128/JB.01168-06. [PubMed]
29. Pinho MG, Kjos M, Veening J-W. 2013. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat Rev Microbiol 11:601–614 http://dx.doi.org/10.1038/nrmicro3088. [PubMed]
30. Garcia PS, Simorre J-P, Brochier-Armanet C, Grangeasse C. 2016. Cell division of Streptococcus pneumoniae: think positive! Curr Opin Microbiol 34:18–23 http://dx.doi.org/10.1016/j.mib.2016.07.014. [PubMed]
31. van Raaphorst R, Kjos M, Veening J-W. 2017. Chromosome segregation drives division site selection in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 114:E5959–E5968 http://dx.doi.org/10.1073/pnas.1620608114. [PubMed]
32. Kjos M, Veening J-W. 2014. Tracking of chromosome dynamics in live Streptococcus pneumoniae reveals that transcription promotes chromosome segregation. Mol Microbiol 91:1088–1105 http://dx.doi.org/10.1111/mmi.12517. [PubMed]
33. Minnen A, Attaiech L, Thon M, Gruber S, Veening J-W. 2011. SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae. Mol Microbiol 81:676–688 http://dx.doi.org/10.1111/j.1365-2958.2011.07722.x. [PubMed]
34. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessières P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Cordani JJ, Connerton IF, Cummings NJ, Daniel RA, Denziot F, Devine KM, Düsterhöft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, et al. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256 http://dx.doi.org/10.1038/36786. [PubMed]
35. Buck M, Gallegos M-T, Studholme DJ, Guo Y, Gralla JD. 2000. The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 182:4129–4136 http://dx.doi.org/10.1128/JB.182.15.4129-4136.2000. [PubMed]
36. Héchard Y, Pelletier C, Cenatiempo Y, Frère J. 2001. Analysis of σ(54)-dependent genes in Enterococcus faecalis: a mannose PTS permease (EII(Man)) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575–1580 http://dx.doi.org/10.1099/00221287-147-6-1575. [PubMed]
37. Débarbouillé M, Martin-Verstraete I, Klier A, Rapoport G. 1991. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators. Proc Natl Acad Sci U S A 88:2212–2216 http://dx.doi.org/10.1073/pnas.88.6.2212. [PubMed]
38. Dalet K, Briand C, Cenatiempo Y, Héchard Y. 2000. The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol 41:441–443 http://dx.doi.org/10.1007/s002840010164. [PubMed]
39. Iyer VS, Hancock LE. 2012. Deletion of σ(54) ( rpoN) alters the rate of autolysis and biofilm formation in Enterococcus faecalis. J Bacteriol 194:368–375 http://dx.doi.org/10.1128/JB.06046-11. [PubMed]
40. Ho TD, Ellermeier CD. 2012. Extra cytoplasmic function σ factor activation. Curr Opin Microbiol 15:182–188 http://dx.doi.org/10.1016/j.mib.2012.01.001. [PubMed]
41. Missiakas D, Raina S. 1998. The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066 http://dx.doi.org/10.1046/j.1365-2958.1998.00865.x. [PubMed]
42. Benachour A, Muller C, Dabrowski-Coton M, Le Breton Y, Giard J-C, Rincé A, Auffray Y, Hartke A. 2005. The Enterococcus faecalis sigV protein is an extracytoplasmic function sigma factor contributing to survival following heat, acid, and ethanol treatments. J Bacteriol 187:1022–1035 http://dx.doi.org/10.1128/JB.187.3.1022-1035.2005.
43. Le Jeune A, Torelli R, Sanguinetti M, Giard J-C, Hartke A, Auffray Y, Benachour A. 2010. The extracytoplasmic function sigma factor SigV plays a key role in the original model of lysozyme resistance and virulence of Enterococcus faecalis. PLoS One 5:e9658 http://dx.doi.org/10.1371/journal.pone.0009658. [PubMed]
44. Varahan S, Iyer VS, Moore WT, Hancock LE. 2013. Eep confers lysozyme resistance to Enterococcus faecalis via the activation of the extracytoplasmic function sigma factor SigV. J Bacteriol 195:3125–3134 http://dx.doi.org/10.1128/JB.00291-13. [PubMed]
45. Hoch JA, Silhavy TJ. 1995. Two-Component Signal Transduction. ASM Press, Washington, DC. http://dx.doi.org/10.1128/9781555818319
46. Hancock L, Perego M. 2002. Two-component signal transduction in Enterococcus faecalis. J Bacteriol 184:5819–5825 http://dx.doi.org/10.1128/JB.184.21.5819-5825.2002. [PubMed]
47. Engelbert M, Mylonakis E, Ausubel FM, Calderwood SB, Gilmore MS. 2004. Contribution of gelatinase, serine protease, and fsr to the pathogenesis of Enterococcus faecalis endophthalmitis. Infect Immun 72:3628–3633 http://dx.doi.org/10.1128/IAI.72.6.3628-3633.2004. [PubMed]
48. Qin X, Singh KV, Weinstock GM, Murray BE. 2000. Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586 http://dx.doi.org/10.1128/IAI.68.5.2579-2586.2000. [PubMed]
49. Qin X, Singh KV, Weinstock GM, Murray BE. 2001. Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol 183:3372–3382 http://dx.doi.org/10.1128/JB.183.11.3372-3382.2001. [PubMed]
50. Thomas VC, Thurlow LR, Boyle D, Hancock LE. 2008. Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol 190:5690–5698 http://dx.doi.org/10.1128/JB.00314-08. [PubMed]
51. Thurlow LR, Thomas VC, Narayanan S, Olson S, Fleming SD, Hancock LE. 2010. Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect Immun 78:4936–4943 http://dx.doi.org/10.1128/IAI.01118-09. [PubMed]
52. Nakayama J, Cao Y, Horii T, Sakuda S, Akkermans ADL, de Vos WM, Nagasawa H. 2001. Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol Microbiol 41:145–154 http://dx.doi.org/10.1046/j.1365-2958.2001.02486.x. [PubMed]
53. Nakayama J, Chen S, Oyama N, Nishiguchi K, Azab EA, Tanaka E, Kariyama R, Sonomoto K. 2006. Revised model for Enterococcus faecalis fsr quorum-sensing system: the small open reading frame fsrD encodes the gelatinase biosynthesis-activating pheromone propeptide corresponding to staphylococcal AgrD. J Bacteriol 188:8321–8326 http://dx.doi.org/10.1128/JB.00865-06. [PubMed]
54. Podbielski A, Kreikemeyer B. 2004. Cell density-dependent regulation: basic principles and effects on the virulence of Gram-positive cocci. Int J Infect Dis 8:81–95 http://dx.doi.org/10.1016/j.ijid.2003.04.003. [PubMed]
55. Comenge Y, Quintiliani R Jr, Li L, Dubost L, Brouard J-P, Hugonnet J-E, Arthur M. 2003. The CroRS two-component regulatory system is required for intrinsic β-lactam resistance in Enterococcus faecalis. J Bacteriol 185:7184–7192 http://dx.doi.org/10.1128/JB.185.24.7184-7192.2003. [PubMed]
56. Kellogg SL, Kristich CJ. 2016. Functional dissection of the CroRS two-component system required for resistance to cell wall stressors in Enterococcus faecalis. J Bacteriol 198:1326–1336 http://dx.doi.org/10.1128/JB.00995-15. [PubMed]
57. Kellogg SL, Little JL, Hoff JS, Kristich CJ. 2017. Requirement of the CroRS two-component system for resistance to cell wall-targeting antimicrobials in Enterococcus faecium. Antimicrob Agents Chemother 61:e02461-16 http://dx.doi.org/10.1128/AAC.02461-16. [PubMed]
58. Hall CL, Lytle BL, Jensen D, Hoff JS, Peterson FC, Volkman BF, Kristich CJ. 2017. Structure and dimerization of IreB, a negative regulator of cephalosporin resistance in Enterococcus faecalis. J Mol Biol 429:2324–2336 http://dx.doi.org/10.1016/j.jmb.2017.05.019. [PubMed]
59. Hall CL, Tschannen M, Worthey EA, Kristich CJ. 2013. IreB, a Ser/Thr kinase substrate, influences antimicrobial resistance in Enterococcus faecalis. Antimicrob Agents Chemother 57:6179–6186 http://dx.doi.org/10.1128/AAC.01472-13. [PubMed]
60. Kristich CJ, Little JL, Hall CL, Hoff JS. 2011. Reciprocal regulation of cephalosporin resistance in Enterococcus faecalis. MBio 2:e00199-11 http://dx.doi.org/10.1128/mBio.00199-11. [PubMed]
61. Labbe BD, Kristich CJ. 2017. Growth- and stress-induced PASTA kinase phosphorylation in Enterococcus faecalis. J Bacteriol 199:e00363-17 http://dx.doi.org/10.1128/JB.00363-17. [PubMed]
62. Churchward G. 2007. The two faces of Janus: virulence gene regulation by CovR/S in group A streptococci. Mol Microbiol 64:34–41 http://dx.doi.org/10.1111/j.1365-2958.2007.05649.x. [PubMed]
63. Teng F, Wang L, Singh KV, Murray BE, Weinstock GM. 2002. Involvement of PhoP-PhoS homologs in Enterococcus faecalis virulence. Infect Immun 70:1991–1996 http://dx.doi.org/10.1128/IAI.70.4.1991-1996.2002. [PubMed]
64. Roh JH, Singh KV, La Rosa SL, Cohen ALV, Murray BE. 2015. The two-component system GrvRS (EtaRS) regulates ace expression in Enterococcus faecalis OG1RF. Infect Immun 83:389–395 http://dx.doi.org/10.1128/IAI.02587-14. [PubMed]
65. Baureder M, Hederstedt L. 2012. Genes important for catalase activity in Enterococcus faecalis. PLoS One 7:e36725 http://dx.doi.org/10.1371/journal.pone.0036725. [PubMed]
66. Le Breton Y, Boël G, Benachour A, Prévost H, Auffray Y, Rincé A. 2003. Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses. Environ Microbiol 5:329–337 http://dx.doi.org/10.1046/j.1462-2920.2003.00405.x. [PubMed]
67. O’Keeffe T, Hill C, Ross RP. 1999. Characterization and heterologous expression of the genes encoding enterocin a production, immunity, and regulation in Enterococcus faecium DPC1146. Appl Environ Microbiol 65:1506–1515. [PubMed]
68. Guzmán Prieto AM, Wijngaarden J, Braat JC, Rogers MRC, Majoor E, Brouwer EC, Zhang X, Bayjanov JR, Bonten MJM, Willems RJL, van Schaik W. 2017. The two-component system ChtRS contributes to chlorhexidine tolerance in Enterococcus faecium. Antimicrob Agents Chemother 61:e02122-16 http://dx.doi.org/10.1128/AAC.02122-16. [PubMed]
69. Haas W, Shepard BD, Gilmore MS. 2002. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415:84–87 http://dx.doi.org/10.1038/415084a. [PubMed]
70. Rumpel S, Razeto A, Pillar CM, Vijayan V, Taylor A, Giller K, Gilmore MS, Becker S, Zweckstetter M. 2004. Structure and DNA-binding properties of the cytolysin regulator CylR2 from Enterococcus faecalis. EMBO J 23:3632–3642 http://dx.doi.org/10.1038/sj.emboj.7600367. [PubMed]
71. Coburn PS, Pillar CM, Jett BD, Haas W, Gilmore MS. 2004. Enterococcus faecalis senses target cells and in response expresses cytolysin. Science 306:2270–2272 http://dx.doi.org/10.1126/science.1103996. [PubMed]
72. Leboeuf C, Leblanc L, Auffray Y, Hartke A. 2000. Characterization of the ccpA gene of Enterococcus faecalis: identification of starvation-inducible proteins regulated by ccpA. J Bacteriol 182:5799–5806 http://dx.doi.org/10.1128/JB.182.20.5799-5806.2000. [PubMed]
73. Suárez CA, Blancato VS, Poncet S, Deutscher J, Magni C. 2011. CcpA represses the expression of the divergent cit operons of Enterococcus faecalis through multiple cre sites. BMC Microbiol 11:227 http://dx.doi.org/10.1186/1471-2180-11-227. [PubMed]
74. Mortera P, Espariz M, Suárez C, Repizo G, Deutscher J, Alarcón S, Blancato V, Magni C. 2012. Fine-tuned transcriptional regulation of malate operons in Enterococcus faecalis. Appl Environ Microbiol 78:1936–1945 http://dx.doi.org/10.1128/AEM.07280-11. [PubMed]
75. Suárez C, Espariz M, Blancato VS, Magni C. 2013. Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man) systems. PLoS One 8:e76170 http://dx.doi.org/10.1371/journal.pone.0076170. [PubMed]
76. Somarajan SR, Roh JH, Singh KV, Weinstock GM, Murray BE. 2014. CcpA is important for growth and virulence of Enterococcus faecium. Infect Immun 82:3580–3587 http://dx.doi.org/10.1128/IAI.01911-14. [PubMed]
77. Solioz M, Stoyanov JV. 2003. Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195 http://dx.doi.org/10.1016/S0168-6445(03)00053-6.
78. Low YL, Jakubovics NS, Flatman JC, Jenkinson HF, Smith AW. 2003. Manganese-dependent regulation of the endocarditis-associated virulence factor EfaA of Enterococcus faecalis. J Med Microbiol 52:113–119 http://dx.doi.org/10.1099/jmm.0.05039-0. [PubMed]
79. Abrantes MC, Kok J, Lopes MF. 2013. EfaR is a major regulator of Enterococcus faecalis manganese transporters and influences processes involved in host colonization and infection. Infect Immun 81:935–944 http://dx.doi.org/10.1128/IAI.06377-11. [PubMed]
80. Ross RP, Claiborne A. 1997. Evidence for regulation of the NADH peroxidase gene ( npr) from Enterococcus faecalis by OxyR. FEMS Microbiol Lett 151:177–183 http://dx.doi.org/10.1111/j.1574-6968.1997.tb12567.x. [PubMed]
81. Verneuil N, Rincé A, Sanguinetti M, Posteraro B, Fadda G, Auffray Y, Hartke A, Giard J-C. 2005. Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 151:3997–4004 http://dx.doi.org/10.1099/mic.0.28325-0. [PubMed]
82. Kajfasz JK, Mendoza JE, Gaca AO, Miller JH, Koselny KA, Giambiagi-Demarval M, Wellington M, Abranches J, Lemos JA. 2012. The Spx regulator modulates stress responses and virulence in Enterococcus faecalis. Infect Immun 80:2265–2275 http://dx.doi.org/10.1128/IAI.00026-12. [PubMed]
83. Verneuil N, Sanguinetti M, Le Breton Y, Posteraro B, Fadda G, Auffray Y, Hartke A, Giard J-C. 2004. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun 72:4424–4431 http://dx.doi.org/10.1128/IAI.72.8.4424-4431.2004. [PubMed]
84. La Carbona S, Sauvageot N, Giard J-C, Benachour A, Posteraro B, Auffray Y, Sanguinetti M, Hartke A. 2007. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol Microbiol 66:1148–1163 http://dx.doi.org/10.1111/j.1365-2958.2007.05987.x. [PubMed]
85. Verneuil N, Rincé A, Sanguinetti M, Auffray Y, Hartke A, Giard J-C. 2005. Implication of hypR in the virulence and oxidative stress response of Enterococcus faecalis. FEMS Microbiol Lett 252:137–141 http://dx.doi.org/10.1016/j.femsle.2005.08.043. [PubMed]
86. Papadimitriou K, Alegría Á, Bron PA, de Angelis M, Gobbetti M, Kleerebezem M, Lemos JA, Linares DM, Ross P, Stanton C, Turroni F, van Sinderen D, Varmanen P, Ventura M, Zúñiga M, Tsakalidou E, Kok J. 2016. Stress physiology of lactic acid bacteria. Microbiol Mol Biol Rev 80:837–890 http://dx.doi.org/10.1128/MMBR.00076-15. [PubMed]
87. DebRoy S, Gebbie M, Ramesh A, Goodson JR, Cruz MR, van Hoof A, Winkler WC, Garsin DA. 2014. Riboswitches: a riboswitch-containing sRNA controls gene expression by sequestration of a response regulator. Science 345:937–940 http://dx.doi.org/10.1126/science.1255091. [PubMed]
88. Fox KA, Ramesh A, Stearns JE, Bourgogne A, Reyes-Jara A, Winkler WC, Garsin DA. 2009. Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in Enterococcus faecalis. Proc Natl Acad Sci U S A 106:4435–4440 http://dx.doi.org/10.1073/pnas.0812194106. [PubMed]
89. Ramesh A, DebRoy S, Goodson JR, Fox KA, Faz H, Garsin DA, Winkler WC. 2012. The mechanism for RNA recognition by ANTAR regulators of gene expression. PLoS Genet 8:e1002666 http://dx.doi.org/10.1371/journal.pgen.1002666. [PubMed]
90. Ghim S-Y, Kim CC, Bonner ER, D’Elia JN, Grabner GK, Switzer RL. 1999. The Enterococcus faecalis pyr operon is regulated by autogenous transcriptional attenuation at a single site in the 5′ leader. J Bacteriol 181:1324–1329. [PubMed]
91. Panina EM, Vitreschak AG, Mironov AA, Gelfand MS. 2003. Regulation of biosynthesis and transport of aromatic amino acids in low-GC Gram-positive bacteria. FEMS Microbiol Lett 222:211–220 http://dx.doi.org/10.1016/S0378-1097(03)00303-3.
92. Su YA, He P, Clewell DB. 1992. Characterization of the tet(M) determinant of Tn 916: evidence for regulation by transcription attenuation. Antimicrob Agents Chemother 36:769–778 http://dx.doi.org/10.1128/AAC.36.4.769. [PubMed]
93. Gao P, Pinkston KL, Nallapareddy SR, van Hoof A, Murray BE, Harvey BR. 2010. Enterococcus faecalis rnjB is required for pilin gene expression and biofilm formation. J Bacteriol 192:5489–5498 http://dx.doi.org/10.1128/JB.00725-10. [PubMed]
94. Gao P, Pinkston KL, Bourgogne A, Murray BE, van Hoof A, Harvey BR. 2017. Functional studies of E. faecalis RNase J2 and its role in virulence and fitness. PLoS One 12:e0175212 http://dx.doi.org/10.1371/journal.pone.0175212. [PubMed]
95. Innocenti N, Golumbeanu M, Fouquier d’Hérouël A, Lacoux C, Bonnin RA, Kennedy SP, Wessner F, Serror P, Bouloc P, Repoila F, Aurell E. 2015. Whole-genome mapping of 5′ RNA ends in bacteria by tagged sequencing: a comprehensive view in Enterococcus faecalis. RNA 21:1018–1030 http://dx.doi.org/10.1261/rna.048470.114. [PubMed]
96. Fouquier d’Hérouel A, Wessner F, Halpern D, Ly-Vu J, Kennedy SP, Serror P, Aurell E, Repoila F. 2011. A simple and efficient method to search for selected primary transcripts: non-coding and antisense RNAs in the human pathogen Enterococcus faecalis. Nucleic Acids Res 39:e46 http://dx.doi.org/10.1093/nar/gkr012. [PubMed]
97. Shioya K, Michaux C, Kuenne C, Hain T, Verneuil N, Budin-Verneuil A, Hartsch T, Hartke A, Giard J-C. 2011. Genome-wide identification of small RNAs in the opportunistic pathogen Enterococcus faecalis V583. PLoS One 6:e23948 http://dx.doi.org/10.1371/journal.pone.0023948. [PubMed]
98. Michaux C, Hartke A, Martini C, Reiss S, Albrecht D, Budin-Verneuil A, Sanguinetti M, Engelmann S, Hain T, Verneuil N, Giard J-C. 2014. Involvement of Enterococcus faecalis small RNAs in stress response and virulence. Infect Immun 82:3599–3611 http://dx.doi.org/10.1128/IAI.01900-14. [PubMed]
99. Sinel C, Augagneur Y, Sassi M, Bronsard J, Cacaci M, Guérin F, Sanguinetti M, Meignen P, Cattoir V, Felden B. 2017. Small RNAs in vancomycin-resistant Enterococcus faecium involved in daptomycin response and resistance. Sci Rep 7:11067 http://dx.doi.org/10.1038/s41598-017-11265-2. [PubMed]
100. Kristich CJ, Rice LB, Arias CA. 2014. Enterococcal infection: treatment and antibiotic resistance. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190420/.
101. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–1571 http://dx.doi.org/10.1126/science.1090956. [PubMed]
102. Flannagan SE, Chow JW, Donabedian SM, Brown WJ, Perri MB, Zervos MJ, Ozawa Y, Clewell DB. 2003. Plasmid content of a vancomycin-resistant Enterococcus faecalis isolate from a patient also colonized by Staphylococcus aureus with a VanA phenotype. Antimicrob Agents Chemother 47:3954–3959 http://dx.doi.org/10.1128/AAC.47.12.3954-3959.2003. [PubMed]
103. Zhu W, Murray PR, Huskins WC, Jernigan JA, McDonald LC, Clark NC, Anderson KF, McDougal LK, Hageman JC, Olsen-Rasmussen M, Frace M, Alangaden GJ, Chenoweth C, Zervos MJ, Robinson-Dunn B, Schreckenberger PC, Reller LB, Rudrik JT, Patel JB. 2010. Dissemination of an Enterococcus Inc18-Like vanA plasmid associated with vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54:4314–4320 http://dx.doi.org/10.1128/AAC.00185-10. [PubMed]
104. McGuinness WA, Malachowa N, DeLeo FR. 2017. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med 90:269–281. [PubMed]
105. Barna JCJ, Williams DH. 1984. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 38:339–357 http://dx.doi.org/10.1146/annurev.mi.38.100184.002011. [PubMed]
106. Arthur M, Courvalin P. 1993. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother 37:1563–1571 http://dx.doi.org/10.1128/AAC.37.8.1563. [PubMed]
107. Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P. 2007. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 20:79–114 http://dx.doi.org/10.1128/CMR.00015-06. [PubMed]
108. Boyd DA, Willey BM, Fawcett D, Gillani N, Mulvey MR. 2008. Molecular characterization of Enterococcus faecalis N06-0364 with low-level vancomycin resistance harboring a novel d-Ala- d-Ser gene cluster, vanL. Antimicrob Agents Chemother 52:2667–2672 http://dx.doi.org/10.1128/AAC.01516-07. [PubMed]
109. Xu X, Lin D, Yan G, Ye X, Wu S, Guo Y, Zhu D, Hu F, Zhang Y, Wang F, Jacoby GA, Wang M. 2010. vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob Agents Chemother 54:4643–4647 http://dx.doi.org/10.1128/AAC.01710-09. [PubMed]
110. Lebreton F, Depardieu F, Bourdon N, Fines-Guyon M, Berger P, Camiade S, Leclercq R, Courvalin P, Cattoir V. 2011. d-Ala- d-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 55:4606–4612 http://dx.doi.org/10.1128/AAC.00714-11. [PubMed]
111. Arias CA, Courvalin P, Reynolds PE. 2000. vanC cluster of vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob Agents Chemother 44:1660–1666 http://dx.doi.org/10.1128/AAC.44.6.1660-1666.2000. [PubMed]
112. Dutta I, Reynolds PE. 2002. Biochemical and genetic characterization of the vanC-2 vancomycin resistance gene cluster of Enterococcus casseliflavus ATCC 25788. Antimicrob Agents Chemother 46:3125–3132 http://dx.doi.org/10.1128/AAC.46.10.3125-3132.2002. [PubMed]
113. Abadía Patiño L, Courvalin P, Perichon B. 2002. vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. J Bacteriol 184:6457–6464 http://dx.doi.org/10.1128/JB.184.23.6457-6464.2002.
114. Depardieu F, Bonora MG, Reynolds PE, Courvalin P. 2003. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol Microbiol 50:931–948 http://dx.doi.org/10.1046/j.1365-2958.2003.03737.x. [PubMed]
115. Sahm DF, Marsilio MK, Piazza G. 1999. Antimicrobial resistance in key bloodstream bacterial isolates: electronic surveillance with the Surveillance Network Database--USA. Clin Infect Dis 29:259–263 http://dx.doi.org/10.1086/520195. [PubMed]
116. Arthur M, Quintiliani R Jr. 2001. Regulation of VanA- and VanB-type glycopeptide resistance in enterococci. Antimicrob Agents Chemother 45:375–381 http://dx.doi.org/10.1128/AAC.45.2.375-381.2001. [PubMed]
117. Wright GD, Holman TR, Walsh CT. 1993. Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 32:5057–5063 http://dx.doi.org/10.1021/bi00070a013. [PubMed]
118. Holman TR, Wu Z, Wanner BL, Walsh CT. 1994. Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faecium. Biochemistry 33:4625–4631 http://dx.doi.org/10.1021/bi00181a024. [PubMed]
119. Arthur M, Depardieu F, Gerbaud G, Galimand M, Leclercq R, Courvalin P. 1997. The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn 1546 and related elements in the absence of induction. J Bacteriol 179:97–106 http://dx.doi.org/10.1128/jb.179.1.97-106.1997. [PubMed]
120. Arthur M, Depardieu F, Courvalin P. 1999. Regulated interactions between partner and non-partner sensors and response regulators that control glycopeptide resistance gene expression in enterococci. Microbiology 145:1849–1858 http://dx.doi.org/10.1099/13500872-145-8-1849. [PubMed]
121. Baptista M, Depardieu F, Reynolds P, Courvalin P, Arthur M. 1997. Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB-type enterococci. Mol Microbiol 25:93–105 http://dx.doi.org/10.1046/j.1365-2958.1997.4401812.x. [PubMed]
122. Hughes CS, Longo E, Phillips-Jones MK, Hussain R. 2017. Characterisation of the selective binding of antibiotics vancomycin and teicoplanin by the VanS receptor regulating type A vancomycin resistance in the enterococci. Biochim Biophys Acta Gen Subj 1861:1951–1959 http://dx.doi.org/10.1016/j.bbagen.2017.05.011. [PubMed]
123. Heaton MP, Discotto LF, Pucci MJ, Handwerger S. 1996. Mobilization of vancomycin resistance by transposon-mediated fusion of a VanA plasmid with an Enterococcus faecium sex pheromone-response plasmid. Gene 171:9–17 http://dx.doi.org/10.1016/0378-1119(96)00022-4.
124. Tomita H, Tanimoto K, Hayakawa S, Morinaga K, Ezaki K, Oshima H, Ike Y. 2003. Highly conjugative pMG1-like plasmids carrying Tn 1546-like transposons that encode vancomycin resistance in Enterococcus faecium. J Bacteriol 185:7024–7028 http://dx.doi.org/10.1128/JB.185.23.7024-7028.2003. [PubMed]
125. Evers S, Quintiliani R Jr, Courvalin P. 1996. Genetics of glycopeptide resistance in enterococci. Microb Drug Resist 2:219–223 http://dx.doi.org/10.1089/mdr.1996.2.219. [PubMed]
126. Woodford N, Morrison D, Johnson AP, Bateman AC, Hastings JG, Elliott TS, Cookson B. 1995. Plasmid-mediated vanB glycopeptide resistance in enterococci. Microb Drug Resist 1:235–240 http://dx.doi.org/10.1089/mdr.1995.1.235. [PubMed]
127. Carias LL, Rudin SD, Donskey CJ, Rice LB. 1998. Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn 5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J Bacteriol 180:4426–4434. [PubMed]
128. Garnier F, Taourit S, Glaser P, Courvalin P, Galimand M. 2000. Characterization of transposon Tn 1549, conferring VanB-type resistance in Enterococcus spp. Microbiology 146:1481–1489 http://dx.doi.org/10.1099/00221287-146-6-1481. [PubMed]
129. García-Solache M, Lebreton F, McLaughlin RE, Whiteaker JD, Gilmore MS, Rice LB. 2016. Homologous recombination within large chromosomal regions facilitates acquisition of β-lactam and vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 60:5777–5786 http://dx.doi.org/10.1128/AAC.00488-16. [PubMed]
130. Manson JM, Hancock LE, Gilmore MS. 2010. Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits. Proc Natl Acad Sci U S A 107:12269–12274 http://dx.doi.org/10.1073/pnas.1000139107.
131. Boyd DA, Conly J, Dedier H, Peters G, Robertson L, Slater E, Mulvey MR. 2000. Molecular characterization of the vanD gene cluster and a novel insertion element in a vancomycin-resistant Enterococcus isolated in Canada. J Clin Microbiol 38:2392–2394. [PubMed]
132. Depardieu F, Reynolds PE, Courvalin P. 2003. VanD-type vancomycin-resistant Enterococcus faecium 10/96A. Antimicrob Agents Chemother 47:7–18 http://dx.doi.org/10.1128/AAC.47.1.7-18.2003. [PubMed]
133. Casadewall B, Reynolds PE, Courvalin P. 2001. Regulation of expression of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339. J Bacteriol 183:3436–3446 http://dx.doi.org/10.1128/JB.183.11.3436-3446.2001. [PubMed]
134. Perichon B, Casadewall B, Reynolds P, Courvalin P. 2000. Glycopeptide-resistant Enterococcus faecium BM4416 is a VanD-type strain with an impaired d-alanine: d-alanine ligase. Antimicrob Agents Chemother 44:1346–1348 http://dx.doi.org/10.1128/AAC.44.5.1346-1348.2000. [PubMed]
135. Marshall CG, Lessard IAD, Park I, Wright GD. 1998. Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob Agents Chemother 42:2215–2220 http://dx.doi.org/10.1128/AAC.42.9.2215. [PubMed]
136. Marshall CG, Broadhead G, Leskiw BK, Wright GD. 1997. d-Ala- d-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc Natl Acad Sci U S A 94:6480–6483 http://dx.doi.org/10.1073/pnas.94.12.6480. [PubMed]
137. Clewell DB, Weaver KE, Ike Y, Coque TM, Francia MV, Hayes F. 2014. Extrachromosomal and mobile elements in enterococci: transmission, maintenance, and epidemiology. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190430/.
138. Jensen LB, Garcia-Migura L, Valenzuela AJS, Løhr M, Hasman H, Aarestrup FM. 2010. A classification system for plasmids from enterococci and other Gram-positive bacteria. J Microbiol Methods 80:25–43 http://dx.doi.org/10.1016/j.mimet.2009.10.012. [PubMed]
139. Lioy VS, Pratto F, de la Hoz AB, Ayora S, Alonso JC. 2010. Plasmid pSM19035, a model to study stable maintenance in Firmicutes. Plasmid 64:1–17 http://dx.doi.org/10.1016/j.plasmid.2010.04.002. [PubMed]
140. Ruiz-Masó JA, MachóN C, Bordanaba-Ruiseco L, Espinosa M, Coll M, Del Solar G. 2015. Plasmid rolling-circle replication. Microbiol Spectr 3:PLAS-0035-2014. doi:10.1128/microbiolspec.PLAS-0035-2014.
141. del Solar G, Espinosa M. 2000. Plasmid copy number control: an ever-growing story. Mol Microbiol 37:492–500 http://dx.doi.org/10.1046/j.1365-2958.2000.02005.x. [PubMed]
142. del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. 1998. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62:434–464. [PubMed]
143. Weaver KE, Kwong SM, Firth N, Francia MV. 2009. The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids. Plasmid 61:94–109 http://dx.doi.org/10.1016/j.plasmid.2008.11.004. [PubMed]
144. Fuqua WC, Winans SC. 1994. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176:2796–2806 http://dx.doi.org/10.1128/jb.176.10.2796-2806.1994. [PubMed]
145. Clewell DB, Flannagan SE, Zitzow LA, Su YA, He P, Senghas E, Weaver KE. 1991. Properties of conjugative transposon Tn 916, p 39–44. In Dunny GM, Cleary P, McKay L (ed), Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci. ASM Press, Washington, DC.
146. Cook LC, Federle MJ. 2014. Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol Rev 38:473–492 http://dx.doi.org/10.1111/1574-6976.12046. [PubMed]
147. Dunny GM. 2013. Enterococcal sex pheromones: signaling, social behavior, and evolution. Annu Rev Genet 47:457–482 http://dx.doi.org/10.1146/annurev-genet-111212-133449.
148. Dunny GM, Berntsson RP-A. 2016. Enterococcal sex pheromones: evolutionary pathways to complex, two-signal systems. J Bacteriol 198:1556–1562 http://dx.doi.org/10.1128/JB.00128-16. [PubMed]
149. Dunny GM, Johnson CM. 2011. Regulatory circuits controlling enterococcal conjugation: lessons for functional genomics. Curr Opin Microbiol 14:174–180 http://dx.doi.org/10.1016/j.mib.2011.01.008. [PubMed]
150. Weaver KE, Rice LR, Churchward G. 2002. Plasmids and transposons, p 219–263. In Gilmore MS, Clewell DB, Courvalin P, Dunny G, Murray BE, Rice LB (ed), The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. ASM Press, Washington, DC. http://dx.doi.org/10.1128/9781555817923.ch6
151. Clewell DB, An FY, Flannagan SE, Antiporta M, Dunny GM. 2000. Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Mol Microbiol 35:246–247 http://dx.doi.org/10.1046/j.1365-2958.2000.01687.x. [PubMed]
152. An FY, Clewell DB. 2002. Identification of the cAD1 sex pheromone precursor in Enterococcus faecalis. J Bacteriol 184:1880–1887 http://dx.doi.org/10.1128/JB.184.7.1880-1887.2002. [PubMed]
153. Antiporta MH, Dunny GM. 2002. ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis OG1RF. J Bacteriol 184:1155–1162 http://dx.doi.org/10.1128/jb.184.4.1155-1162.2002. [PubMed]
154. Flannagan SE, Clewell DB. 2002. Identification and characterization of genes encoding sex pheromone cAM373 activity in Enterococcus faecalis and Staphylococcus aureus. Mol Microbiol 44:803–817 http://dx.doi.org/10.1046/j.1365-2958.2002.02922.x. [PubMed]
155. An FY, Sulavik MC, Clewell DB. 1999. Identification and characterization of a determinant ( eep) on the Enterococcus faecalis chromosome that is involved in production of the peptide sex pheromone cAD1. J Bacteriol 181:5915–5921. [PubMed]
156. Brown MS, Ye J, Rawson RB, Goldstein JL. 2000. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100:391–398 http://dx.doi.org/10.1016/S0092-8674(00)80675-3.
157. Clewell DB, Pontius LT, An FY, Ike Y, Suzuki A, Nakayama J. 1990. Nucleotide sequence of the sex pheromone inhibitor (iAD1) determinant of Enterococcus faecalis conjugative plasmid pAD1. Plasmid 24:156–161 http://dx.doi.org/10.1016/0147-619X(90)90019-9.
158. Chandler JR, Dunny GM. 2008. Characterization of the sequence specificity determinants required for processing and control of sex pheromone by the intramembrane protease Eep and the plasmid-encoded protein PrgY. J Bacteriol 190:1172–1183 http://dx.doi.org/10.1128/JB.01327-07. [PubMed]
159. Berg T, Firth N, Apisiridej S, Hettiaratchi A, Leelaporn A, Skurray RA. 1998. Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative multiresistance plasmids. J Bacteriol 180:4350–4359. [PubMed]
160. Varahan S, Harms N, Gilmore MS, Tomich JM, Hancock LE. 2014. An ABC transporter, PptAB, is required for secretion of peptide sex pheromones in Enterococcus faecalis. MBio 5:e01726-14. [PubMed]
161. Leonard BAB, Podbielski A, Hedberg PJ, Dunny GM. 1996. Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. Proc Natl Acad Sci U S A 93:260–264 http://dx.doi.org/10.1073/pnas.93.1.260. [PubMed]
162. Nakayama J, Takanami Y, Horii T, Sakuda S, Suzuki A. 1998. Molecular mechanism of peptide-specific pheromone signaling in Enterococcus faecalis: functions of pheromone receptor TraA and pheromone-binding protein TraC encoded by plasmid pPD1. J Bacteriol 180:449–456. [PubMed]
163. Ruhfel RE, Manias DA, Dunny GM. 1993. Cloning and characterization of a region of the Enterococcus faecalis conjugative plasmid, pCF10, encoding a sex pheromone-binding function. J Bacteriol 175:5253–5259 http://dx.doi.org/10.1128/jb.175.16.5253-5259.1993. [PubMed]
164. Tanimoto K, An FY, Clewell DB. 1993. Characterization of the traC determinant of the Enterococcus faecalis hemolysin-bacteriocin plasmid pAD1: binding of sex pheromone. J Bacteriol 175:5260–5264 http://dx.doi.org/10.1128/jb.175.16.5260-5264.1993. [PubMed]
165. Berntsson RPA, Schuurman-Wolters GK, Dunny G, Slotboom D-J, Poolman B. 2012. Structure and mode of peptide binding of pheromone receptor PrgZ. J Biol Chem 287:37165–37170 http://dx.doi.org/10.1074/jbc.M112.386334. [PubMed]
166. Fujimoto S, Clewell DB. 1998. Regulation of the pAD1 sex pheromone response of Enterococcus faecalis by direct interaction between the cAD1 peptide mating signal and the negatively regulating, DNA-binding TraA protein. Proc Natl Acad Sci U S A 95:6430–6435 http://dx.doi.org/10.1073/pnas.95.11.6430. [PubMed]
167. Neiditch MB, Capodagli GC, Prehna G, Federle MJ. 2017. Genetic and structural analyses of RRNPP intercellular peptide signaling of Gram-positive bacteria. Annu Rev Genet 51:311–333 http://dx.doi.org/10.1146/annurev-genet-120116-023507. [PubMed]
168. Folli C, Mangiarotti L, Folloni S, Alfieri B, Gobbo M, Berni R, Rivetti C. 2008. Specificity of the TraA-DNA interaction in the regulation of the pPD1-encoded sex pheromone response in Enterococcus faecalis. J Mol Biol 380:932–945 http://dx.doi.org/10.1016/j.jmb.2008.05.058. [PubMed]
169. Kozlowicz BK, Shi K, Gu Z-Y, Ohlendorf DH, Earhart CA, Dunny GM. 2006. Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. Mol Microbiol 62:958–969 http://dx.doi.org/10.1111/j.1365-2958.2006.05434.x. [PubMed]
170. Chen Y, Bandyopadhyay A, Kozlowicz BK, Haemig HAH, Tai A, Hu WS, Dunny GM. 2017. Mechanisms of peptide sex pheromone regulation of conjugation in Enterococcus faecalis. MicrobiologyOpen 6:e00492 http://dx.doi.org/10.1002/mbo3.492. [PubMed]
171. Bae T, Kozlowicz B, Dunny GM. 2002. Two targets in pCF10 DNA for PrgX binding: their role in production of Qa and prgX mRNA and in regulation of pheromone-inducible conjugation. J Mol Biol 315:995–1007 http://dx.doi.org/10.1006/jmbi.2001.5294. [PubMed]
172. Tomita H, Clewell DB. 2000. A pAD1-encoded small RNA molecule, mD, negatively regulates Enterococcus faecalis pheromone response by enhancing transcription termination. J Bacteriol 182:1062–1073 http://dx.doi.org/10.1128/JB.182.4.1062-1073.2000. [PubMed]
173. Bae T, Kozlowicz BK, Dunny GM. 2004. Characterization of cis-acting prgQ mutants: evidence for two distinct repression mechanisms by Qa RNA and PrgX protein in pheromone-inducible enterococcal plasmid pCF10. Mol Microbiol 51:271–281 http://dx.doi.org/10.1046/j.1365-2958.2003.03832.x. [PubMed]
174. Johnson CM, Manias DA, Haemig HAH, Shokeen S, Weaver KE, Henkin TM, Dunny GM. 2010. Direct evidence for control of the pheromone-inducible prgQ operon of Enterococcus faecalis plasmid pCF10 by a countertranscript-driven attenuation mechanism. J Bacteriol 192:1634–1642 http://dx.doi.org/10.1128/JB.01525-09. [PubMed]
175. Shokeen S, Johnson CM, Greenfield TJ, Manias DA, Dunny GM, Weaver KE. 2010. Structural analysis of the anti-Q-Qs interaction: RNA-mediated regulation of E. faecalis plasmid pCF10 conjugation. Plasmid 64:26–35 http://dx.doi.org/10.1016/j.plasmid.2010.03.002. [PubMed]
176. de Freire Bastos MC, Tanimoto K, Clewell DB. 1997. Regulation of transfer of the Enterococcus faecalis pheromone-responding plasmid pAD1: temperature-sensitive transfer mutants and identification of a new regulatory determinant, traD. J Bacteriol 179:3250–3259 http://dx.doi.org/10.1128/jb.179.10.3250-3259.1997.
177. do Carmo de Freire Bastos M, Tomita H, Tanimoto K, Clewell DB. 1998. Regulation of the Enterococcus faecalis pAD1-related sex pheromone response: analyses of traD expression and its role in controlling conjugation functions. Mol Microbiol 30:381–392 http://dx.doi.org/10.1046/j.1365-2958.1998.01074.x. [PubMed]
178. Bae T, Dunny GM. 2001. Dominant-negative mutants of prgX: evidence for a role for PrgX dimerization in negative regulation of pheromone-inducible conjugation. Mol Microbiol 39:1307–1320 http://dx.doi.org/10.1111/j.1365-2958.2001.02319.x. [PubMed]
179. Chatterjee A, Johnson CM, Shu C-C, Kaznessis YN, Ramkrishna D, Dunny GM, Hu W-S. 2011. Convergent transcription confers a bistable switch in Enterococcus faecalis conjugation. Proc Natl Acad Sci U S A 108:9721–9726 http://dx.doi.org/10.1073/pnas.1101569108. [PubMed]
180. Johnson CM, Haemig HHA, Chatterjee A, Wei-Shou H, Weaver KE, Dunny GM. 2011. RNA-mediated reciprocal regulation between two bacterial operons is RNase III dependent. MBio 2:e00189-11 http://dx.doi.org/10.1128/mBio.00189-11. [PubMed]
181. Tanimoto K, Clewell DB. 1993. Regulation of the pAD1-encoded sex pheromone response in Enterococcus faecalis: expression of the positive regulator TraE1. J Bacteriol 175:1008–1018 http://dx.doi.org/10.1128/jb.175.4.1008-1018.1993. [PubMed]
182. Bensing BA, Manias DA, Dunny GM. 1997. Pheromone cCF10 and plasmid pCF10-encoded regulatory molecules act post-transcriptionally to activate expression of downstream conjugation functions. Mol Microbiol 24:285–294 http://dx.doi.org/10.1046/j.1365-2958.1997.3301710.x. [PubMed]
183. Chung JW, Bensing BA, Dunny GM. 1995. Genetic analysis of a region of the Enterococcus faecalis plasmid pCF10 involved in positive regulation of conjugative transfer functions. J Bacteriol 177:2107–2117 http://dx.doi.org/10.1128/jb.177.8.2107-2117.1995. [PubMed]
184. Chung JW, Dunny GM. 1995. Transcriptional analysis of a region of the Enterococcus faecalis plasmid pCF10 involved in positive regulation of conjugative transfer functions. J Bacteriol 177:2118–2124 http://dx.doi.org/10.1128/jb.177.8.2118-2124.1995. [PubMed]
185. An FY, Clewell DB. 1994. Characterization of the determinant ( traB) encoding sex pheromone shutdown by the hemolysin/bacteriocin plasmid pAD1 in Enterococcus faecalis. Plasmid 31:215–221 http://dx.doi.org/10.1006/plas.1994.1023. [PubMed]
186. Ike Y, Clewell DB. 1984. Genetic analysis of the pAD1 pheromone response in Streptococcus faecalis, using transposon Tn 917 as an insertional mutagen. J Bacteriol 158:777–783. [PubMed]
187. Weaver KE, Clewell DB. 1990. Regulation of the pAD1 sex pheromone response in Enterococcus faecalis: effects of host strain and traA, traB, and C region mutants on expression of an E region pheromone-inducible lacZ fusion. J Bacteriol 172:2633–2641 http://dx.doi.org/10.1128/jb.172.5.2633-2641.1990. [PubMed]
188. Chandler JR, Flynn AR, Bryan EM, Dunny GM. 2005. Specific control of endogenous cCF10 pheromone by a conserved domain of the pCF10-encoded regulatory protein PrgY in Enterococcus faecalis. J Bacteriol 187:4830–4843 http://dx.doi.org/10.1128/JB.187.14.4830-4843.2005. [PubMed]
189. De Boever EH, Clewell DB, Fraser CM. 2000. Enterococcus faecalis conjugative plasmid pAM373: complete nucleotide sequence and genetic analyses of sex pheromone response. Mol Microbiol 37:1327–1341 http://dx.doi.org/10.1046/j.1365-2958.2000.02072.x. [PubMed]
190. Pontius LT, Clewell DB. 1991. A phase variation event that activates conjugation functions encoded by the Enterococcus faecalis plasmid pAD1. Plasmid 26:172–185 http://dx.doi.org/10.1016/0147-619X(91)90041-T.
191. Hirt H, Wirth R, Muscholl A. 1996. Comparative analysis of 18 sex pheromone plasmids from Enterococcus faecalis: detection of a new insertion element on pPD1 and implications for the evolution of this plasmid family. Mol Gen Genet 252:640–647. [PubMed]
192. Olmsted SB, Erlandsen SL, Dunny GM, Wells CL. 1993. High-resolution visualization by field emission scanning electron microscopy of Enterococcus faecalis surface proteins encoded by the pheromone-inducible conjugative plasmid pCF10. J Bacteriol 175:6229–6237 http://dx.doi.org/10.1128/jb.175.19.6229-6237.1993. [PubMed]
193. Dunny GM, Zimmerman DL, Tortorello ML. 1985. Induction of surface exclusion (entry exclusion) by Streptococcus faecalis sex pheromones: use of monoclonal antibodies to identify an inducible surface antigen involved in the exclusion process. Proc Natl Acad Sci U S A 82:8582–8586 http://dx.doi.org/10.1073/pnas.82.24.8582. [PubMed]
194. Weidlich G, Wirth R, Galli D. 1992. Sex pheromone plasmid pAD1-encoded surface exclusion protein of Enterococcus faecalis. Mol Gen Genet 233:161–168 http://dx.doi.org/10.1007/BF00587575. [PubMed]
195. Clewell DB, Weaver KE. 1989. Sex pheromones and plasmid transfer in Enterococcus faecalis. Plasmid 21:175–184 http://dx.doi.org/10.1016/0147-619X(89)90041-3.
196. De Boever EH, Clewell DB. 2001. The Enterococcus faecalis pheromone-responsive plasmid pAM373 does not encode an entry exclusion function. Plasmid 45:57–60 http://dx.doi.org/10.1006/plas.2000.1494. [PubMed]
197. Ehrenfeld EE, Kessler RE, Clewell DB. 1986. Identification of pheromone-induced surface proteins in Streptococcus faecalis and evidence of a role for lipoteichoic acid in formation of mating aggregates. J Bacteriol 168:6–12 http://dx.doi.org/10.1128/jb.168.1.6-12.1986. [PubMed]
198. Trotter KM, Dunny GM. 1990. Mutants of Enterococcus faecalisdeficient as recipients in mating with donors carrying pheromone-inducible plasmids. Plasmid 24:57–67 http://dx.doi.org/10.1016/0147-619X(90)90025-8.
199. Waters CM, Dunny GM. 2001. Analysis of functional domains of the Enterococcus faecalis pheromone-induced surface protein aggregation substance. J Bacteriol 183:5659–5667 http://dx.doi.org/10.1128/JB.183.19.5659-5667.2001. [PubMed]
200. Waters CM, Hirt H, McCormick JK, Schlievert PM, Wells CL, Dunny GM. 2004. An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol Microbiol 52:1159–1171 http://dx.doi.org/10.1111/j.1365-2958.2004.04045.x. [PubMed]
201. Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB, Zervos MJ. 1993. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother 37:2474–2477 http://dx.doi.org/10.1128/AAC.37.11.2474. [PubMed]
202. Chuang-Smith ON, Wells CL, Henry-Stanley MJ, Dunny GM. 2010. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS One 5:e15798 http://dx.doi.org/10.1371/journal.pone.0015798. [PubMed]
203. Rakita RM, Vanek NN, Jacques-Palaz K, Mee M, Mariscalco MM, Dunny GM, Snuggs M, Van Winkle WB, Simon SI. 1999. Enterococcus faecalis bearing aggregation substance is resistant to killing by human neutrophils despite phagocytosis and neutrophil activation. Infect Immun 67:6067–6075. [PubMed]
204. Schlievert PM, Chuang-Smith ON, Peterson ML, Cook LCC, Dunny GM. 2010. Enterococcus faecalis endocarditis severity in rabbits is reduced by IgG Fabs interfering with aggregation substance. PLoS One 5:e13194 http://dx.doi.org/10.1371/journal.pone.0013194. [PubMed]
205. Schlievert PM, Gahr PJ, Assimacopoulos AP, Dinges MM, Stoehr JA, Harmala JW, Hirt H, Dunny GM. 1998. Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect Immun 66:218–223. [PubMed]
206. Chandler JR, Hirt H, Dunny GM. 2005. A paracrine peptide sex pheromone also acts as an autocrine signal to induce plasmid transfer and virulence factor expression in vivo. Proc Natl Acad Sci U S A 102:15617–15622 http://dx.doi.org/10.1073/pnas.0505545102. [PubMed]
207. Bhatty M, Cruz MR, Frank KL, Gomez JA, Andrade F, Garsin DA, Dunny GM, Kaplan HB, Christie PJ. 2015. Enterococcus faecalis pCF10-encoded surface proteins PrgA, PrgB (aggregation substance) and PrgC contribute to plasmid transfer, biofilm formation and virulence. Mol Microbiol 95:660–677 http://dx.doi.org/10.1111/mmi.12893. [PubMed]
208. Bhatty M, Camacho MI, Gonzalez-Rivera C, Frank KL, Dale JL, Manias DA, Dunny GM, Christie PJ. 2017. PrgU: a suppressor of sex pheromone toxicity in Enterococcus faecalis. Mol Microbiol 103:398–412 http://dx.doi.org/10.1111/mmi.13563. [PubMed]
209. Francia MV, Haas W, Wirth R, Samberger E, Muscholl-Silberhorn A, Gilmore MS, Ike Y, Weaver KE, An FY, Clewell DB. 2001. Completion of the nucleotide sequence of the Enterococcus faecalis conjugative virulence plasmid pAD1 and identification of a second transfer origin. Plasmid 46:117–127 http://dx.doi.org/10.1006/plas.2001.1533. [PubMed]
210. Hirt H, Manias DA, Bryan EM, Klein JR, Marklund JK, Staddon JH, Paustian ML, Kapur V, Dunny GM. 2005. Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10: complete sequence and comparative analysis of the transcriptional and phenotypic responses of pCF10-containing cells to pheromone induction. J Bacteriol 187:1044–1054 http://dx.doi.org/10.1128/JB.187.3.1044-1054.2005. [PubMed]
211. Alvarez-Martinez CE, Christie PJ. 2009. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808 http://dx.doi.org/10.1128/MMBR.00023-09. [PubMed]
212. Chen Y, Zhang X, Manias D, Yeo H-J, Dunny GM, Christie PJ. 2008. Enterococcus faecalis PcfC, a spatially localized substrate receptor for type IV secretion of the pCF10 transfer intermediate. J Bacteriol 190:3632–3645 http://dx.doi.org/10.1128/JB.01999-07. [PubMed]
213. Whitaker N, Chen Y, Jakubowski SJ, Sarkar MK, Li F, Christie PJ. 2015. The all-alpha domains of coupling proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-encoded type IV secretion systems confer specificity to binding of cognate DNA substrates. J Bacteriol 197:2335–2349 http://dx.doi.org/10.1128/JB.00189-15. [PubMed]
214. Li F, Alvarez-Martinez C, Chen Y, Choi K-J, Yeo H-J, Christie PJ. 2012. Enterococcus faecalis PrgJ, a VirB4-like ATPase, mediates pCF10 conjugative transfer through substrate binding. J Bacteriol 194:4041–4051 http://dx.doi.org/10.1128/JB.00648-12. [PubMed]
215. Laverde Gomez JA, Bhatty M, Christie PJ. 2014. PrgK, a multidomain peptidoglycan hydrolase, is essential for conjugative transfer of the pheromone-responsive plasmid pCF10. J Bacteriol 196:527–539 http://dx.doi.org/10.1128/JB.00950-13. [PubMed]
216. Francia MV, Clewell DB. 2002. Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373: identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein. Mol Microbiol 45:375–395 http://dx.doi.org/10.1046/j.1365-2958.2002.03007.x. [PubMed]
217. Garcillán-Barcia MP, Francia MV, de la Cruz F. 2009. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33:657–687 http://dx.doi.org/10.1111/j.1574-6976.2009.00168.x. [PubMed]
218. Francia MV, Clewell DB, de la Cruz F, Moncalián G. 2013. Catalytic domain of plasmid pAD1 relaxase TraX defines a group of relaxases related to restriction endonucleases. Proc Natl Acad Sci U S A 110:13606–13611 http://dx.doi.org/10.1073/pnas.1310037110. [PubMed]
219. Staddon JH, Bryan EM, Manias DA, Chen Y, Dunny GM. 2006. Genetic characterization of the conjugative DNA processing system of enterococcal plasmid pCF10. Plasmid 56:102–111 http://dx.doi.org/10.1016/j.plasmid.2006.05.001. [PubMed]
220. Staddon JH, Bryan EM, Manias DA, Dunny GM. 2004. Conserved target for group II intron insertion in relaxase genes of conjugative elements of Gram-positive bacteria. J Bacteriol 186:2393–2401 http://dx.doi.org/10.1128/JB.186.8.2393-2401.2004. [PubMed]
221. Chen Y, Staddon JH, Dunny GM. 2007. Specificity determinants of conjugative DNA processing in the Enterococcus faecalis plasmid pCF10 and the Lactococcus lactis plasmid pRS01. Mol Microbiol 63:1549–1564 http://dx.doi.org/10.1111/j.1365-2958.2007.05610.x. [PubMed]
222. Fujimoto S, Tomita H, Wakamatsu E, Tanimoto K, Ike Y. 1995. Physical mapping of the conjugative bacteriocin plasmid pPD1 of Enterococcus faecalis and identification of the determinant related to the pheromone response. J Bacteriol 177:5574–5581 http://dx.doi.org/10.1128/jb.177.19.5574-5581.1995. [PubMed]
223. Hedberg PJ, Leonard BAB, Ruhfel RE, Dunny GM. 1996. Identification and characterization of the genes of Enterococcus faecalis plasmid pCF10 involved in replication and in negative control of pheromone-inducible conjugation. Plasmid 35:46–57 http://dx.doi.org/10.1006/plas.1996.0005. [PubMed]
224. Weaver KE, Clewell DB, An F. 1993. Identification, characterization, and nucleotide sequence of a region of Enterococcus faecalis pheromone-responsive plasmid pAD1 capable of autonomous replication. J Bacteriol 175:1900–1909 http://dx.doi.org/10.1128/jb.175.7.1900-1909.1993. [PubMed]
225. Francia MV, Fujimoto S, Tille P, Weaver KE, Clewell DB. 2004. Replication of Enterococcus faecalis pheromone-responding plasmid pAD1: location of the minimal replicon and oriV site and RepA involvement in initiation of replication. J Bacteriol 186:5003–5016 http://dx.doi.org/10.1128/JB.186.15.5003-5016.2004. [PubMed]
226. Gering M, Götz F, Brückner R. 1996. Sequence and analysis of the replication region of the Staphylococcus xylosus plasmid pSX267. Gene 182:117–122 http://dx.doi.org/10.1016/S0378-1119(96)00526-4.
227. Kwong SM, Skurray RA, Firth N. 2004. Staphylococcus aureus multiresistance plasmid pSK41: analysis of the replication region, initiator protein binding and antisense RNA regulation. Mol Microbiol 51:497–509 http://dx.doi.org/10.1046/j.1365-2958.2003.03843.x. [PubMed]
228. Tanaka T, Ogura M. 1998. A novel Bacillus natto plasmid pLS32 capable of replication in Bacillus subtilis. FEBS Lett 422:243–246 http://dx.doi.org/10.1016/S0014-5793(98)00015-5.
229. Dunny GM, Leonard BAB. 1997. Cell-cell communication in Gram-positive bacteria. Annu Rev Microbiol 51:527–564 http://dx.doi.org/10.1146/annurev.micro.51.1.527. [PubMed]
230. Schumacher MA, Tonthat NK, Kwong SM, Chinnam NB, Liu MA, Skurray RA, Firth N. 2014. Mechanism of staphylococcal multiresistance plasmid replication origin assembly by the RepA protein. Proc Natl Acad Sci U S A 111:9121–9126 http://dx.doi.org/10.1073/pnas.1406065111. [PubMed]
231. Paulsson J, Chattoraj DK. 2006. Origin inactivation in bacterial DNA replication control. Mol Microbiol 61:9–15 http://dx.doi.org/10.1111/j.1365-2958.2006.05229.x. [PubMed]
232. Kwong SM, Firth N. 2015. Structural and sequence requirements for the antisense RNA regulating replication of staphylococcal multiresistance plasmid pSK41. Plasmid 78:17–25 http://dx.doi.org/10.1016/j.plasmid.2015.01.002. [PubMed]
233. Gerdes K, Møller-Jensen J, Bugge Jensen R. 2000. Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37:455–466 http://dx.doi.org/10.1046/j.1365-2958.2000.01975.x. [PubMed]
234. Francia MV, Weaver KE, Goicoechea P, Tille P, Clewell DB. 2007. Characterization of an active partition system for the Enterococcus faecalis pheromone-responding plasmid pAD1. J Bacteriol 189:8546–8555 http://dx.doi.org/10.1128/JB.00719-07. [PubMed]
235. Heath DG, An FY, Weaver KE, Clewell DB. 1995. Phase variation of Enterococcus faecalis pAD1 conjugation functions relates to changes in iteron sequence region. J Bacteriol 177:5453–5459 http://dx.doi.org/10.1128/jb.177.19.5453-5459.1995. [PubMed]
236. Hayes F. 2003. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301:1496–1499 http://dx.doi.org/10.1126/science.1088157. [PubMed]
237. Brantl S, Jahn N. 2015. sRNAs in bacterial type I and type III toxin-antitoxin systems. FEMS Microbiol Rev 39:413–427 http://dx.doi.org/10.1093/femsre/fuv003. [PubMed]
238. Gerdes K. 2013. Prokaryotic Toxin-Antitoxins. Springer-Verlag, Berlin, Germany. http://dx.doi.org/10.1007/978-3-642-33253-1.
239. Weaver KE. 2012. The par toxin-antitoxin system from Enterococcus faecalis plasmid pAD1 and its chromosomal homologs. RNA Biol 9:1498–1503 http://dx.doi.org/10.4161/rna.22311. [PubMed]
240. Weaver KE. 2013. Type I toxin-antitoxin loci: hok/soc and fst, p 9–26. In Gerdes K (ed), Prokaryotic Toxin-Antitoxins. Springer-Verlag, Berlin, Germany. http://dx.doi.org/10.1007/978-3-642-33253-1_2
241. Weaver KE. 2015. The type I toxin-antitoxin par locus from Enterococcus faecalis plasmid pAD1: RNA regulation by both cis- and trans-acting elements. Plasmid 78:65–70 http://dx.doi.org/10.1016/j.plasmid.2014.10.001. [PubMed]
242. Weaver KE, Tritle DJ. 1994. Identification and characterization of an Enterococcus faecalis plasmid pAD1-encoded stability determinant which produces two small RNA molecules necessary for its function. Plasmid 32:168–181 http://dx.doi.org/10.1006/plas.1994.1053. [PubMed]
243. Weaver KE, Jensen KD, Colwell A, Sriram SI. 1996. Functional analysis of the Enterococcus faecalis plasmid pAD1-encoded stability determinant par. Mol Microbiol 20:53–63 http://dx.doi.org/10.1111/j.1365-2958.1996.tb02488.x. [PubMed]
244. Greenfield TJ, Ehli E, Kirshenmann T, Franch T, Gerdes K, Weaver KE. 2000. The antisense RNA of the par locus of pAD1 regulates the expression of a 33-amino-acid toxic peptide by an unusual mechanism. Mol Microbiol 37:652–660 http://dx.doi.org/10.1046/j.1365-2958.2000.02035.x. [PubMed]
245. Greenfield TJ, Weaver KE. 2000. Antisense RNA regulation of the pAD1 par post-segregational killing system requires interaction at the 5′ and 3′ ends of the RNAs. Mol Microbiol 37:661–670 http://dx.doi.org/10.1046/j.1365-2958.2000.02034.x. [PubMed]
246. Greenfield TJ, Franch T, Gerdes K, Weaver KE. 2001. Antisense RNA regulation of the par post-segregational killing system: structural analysis and mechanism of binding of the antisense RNA, RNAII and its target, RNAI. Mol Microbiol 42:527–537 http://dx.doi.org/10.1046/j.1365-2958.2001.02663.x.
247. Shokeen S, Patel S, Greenfield TJ, Brinkman C, Weaver KE. 2008. Translational regulation by an intramolecular stem-loop is required for intermolecular RNA regulation of the par addiction module. J Bacteriol 190:6076–6083 http://dx.doi.org/10.1128/JB.00660-08. [PubMed]
248. Shokeen S, Greenfield TJ, Ehli EA, Rasmussen J, Perrault BE, Weaver KE. 2009. An intramolecular upstream helix ensures the stability of a toxin-encoding RNA in Enterococcus faecalis. J Bacteriol 191:1528–1536 http://dx.doi.org/10.1128/JB.01316-08. [PubMed]
249. Weaver KE, Ehli EA, Nelson JS, Patel S. 2004. Antisense RNA regulation by stable complex formation in the Enterococcus faecalis plasmid pAD1 par addiction system. J Bacteriol 186:6400–6408 http://dx.doi.org/10.1128/JB.186.19.6400-6408.2004. [PubMed]
250. Patel S, Weaver KE. 2006. Addiction toxin Fst has unique effects on chromosome segregation and cell division in Enterococcus faecalis and Bacillus subtilis. J Bacteriol 188:5374–5384 http://dx.doi.org/10.1128/JB.00513-06. [PubMed]
251. Weaver KE, Reddy SG, Brinkman CL, Patel S, Bayles KW, Endres JL. 2009. Identification and characterization of a family of toxin-antitoxin systems related to the Enterococcus faecalis plasmid pAD1 par addiction module. Microbiology 155:2930–2940 http://dx.doi.org/10.1099/mic.0.030932-0. [PubMed]
252. Weaver KE, Weaver DM, Wells CL, Waters CM, Gardner ME, Ehli EA. 2003. Enterococcus faecalis plasmid pAD1-encoded Fst toxin affects membrane permeability and alters cellular responses to lantibiotics. J Bacteriol 185:2169–2177 http://dx.doi.org/10.1128/JB.185.7.2169-2177.2003. [PubMed]
253. Göbl C, Kosol S, Stockner T, Rückert HM, Zangger K. 2010. Solution structure and membrane binding of the toxin fst of the par addiction module. Biochemistry 49:6567–6575 http://dx.doi.org/10.1021/bi1005128. [PubMed]
254. Fozo EM, Hemm MR, Storz G. 2008. Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 72:579–589 http://dx.doi.org/10.1128/MMBR.00025-08. [PubMed]
255. Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G. 2010. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res 38:3743–3759 http://dx.doi.org/10.1093/nar/gkq054. [PubMed]
256. Kwong SM, Jensen SO, Firth N. 2010. Prevalence of Fst-like toxin-antitoxin systems. Microbiology 156:975–977, discussion 977 http://dx.doi.org/10.1099/mic.0.038323-0. [PubMed]
257. Kawano M, Oshima T, Kasai H, Mori H. 2002. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli. Mol Microbiol 45:333–349 http://dx.doi.org/10.1046/j.1365-2958.2002.03042.x. [PubMed]
258. Weaver KE, Chen Y, Miiller EM, Johnson JN, Dangler AA, Manias DA, Clem AM, Schjodt DJ, Dunny GM. 2017. Examination of Enterococcus faecalis toxin-antitoxin system toxin Fst function utilizing a pheromone-inducible expression vector with tight repression and broad dynamic range. J Bacteriol 199:199 http://dx.doi.org/10.1128/JB.00065-17. [PubMed]
259. Brinkman CL, Bumgarner R, Kittichotirat W, Dunman PM, Kuechenmeister LJ, Weaver KE. 2013. Characterization of the effects of an rpoC mutation that confers resistance to the Fst peptide toxin-antitoxin system toxin. J Bacteriol 195:156–166 http://dx.doi.org/10.1128/JB.01597-12. [PubMed]
260. Arthur M, Molinas C, Depardieu F, Courvalin P. 1993. Characterization of Tn 1546, a Tn 3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol 175:117–127 http://dx.doi.org/10.1128/jb.175.1.117-127.1993. [PubMed]
261. Perkins JB, Youngman PJ. 1984. A physical and functional analysis of Tn 917, a Streptococcus transposon in the Tn 3 family that functions in Bacillus. Plasmid 12:119–138 http://dx.doi.org/10.1016/0147-619X(84)90058-1.
262. Hodel-Christian SL, Murray BE. 1991. Characterization of the gentamicin resistance transposon Tn 5281 from Enterococcus faecalis and comparison to staphylococcal transposons Tn 4001 and Tn 4031. Antimicrob Agents Chemother 35:1147–1152 http://dx.doi.org/10.1128/AAC.35.6.1147. [PubMed]
263. Quintiliani R Jr, Courvalin P. 1996. Characterization of Tn 1547, a composite transposon flanked by the IS 16 and IS 256-like elements, that confers vancomycin resistance in Enterococcus faecalis BM4281. Gene 172:1–8 http://dx.doi.org/10.1016/0378-1119(96)00110-2.
264. Rice LB, Carias LL. 1998. Transfer of Tn 5385, a composite, multiresistance chromosomal element from Enterococcus faecalis. J Bacteriol 180:714–721. [PubMed]
265. Shoemaker NB, Smith MD, Guild WR. 1980. DNase-resistant transfer of chromosomal cat and tet insertions by filter mating in Pneumococcus. Plasmid 3:80–87 http://dx.doi.org/10.1016/S0147-619X(80)90036-0.
266. Shoemaker NB, Barber RD, Salyers AA. 1989. Cloning and characterization of a Bacteroides conjugal tetracycline-erythromycin resistance element by using a shuttle cosmid vector. J Bacteriol 171:1294–1302 http://dx.doi.org/10.1128/jb.171.3.1294-1302.1989. [PubMed]
267. Burrus V, Pavlovic G, Decaris B, Guédon G. 2002. Conjugative transposons: the tip of the iceberg. Mol Microbiol 46:601–610 http://dx.doi.org/10.1046/j.1365-2958.2002.03191.x. [PubMed]
268. Burrus V. 2017. Mechanisms of stabilization of integrative and conjugative elements. Curr Opin Microbiol 38:44–50 http://dx.doi.org/10.1016/j.mib.2017.03.014. [PubMed]
269. Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. 2017. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 41:512–537 http://dx.doi.org/10.1093/femsre/fux008. [PubMed]
270. Johnson CM, Grossman AD. 2015. Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet 49:577–601 http://dx.doi.org/10.1146/annurev-genet-112414-055018. [PubMed]
271. Wozniak RAF, Waldor MK. 2010. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8:552–563 http://dx.doi.org/10.1038/nrmicro2382. [PubMed]
272. Roberts AP, Mullany P. 2009. A modular master on the move: the Tn 916 family of mobile genetic elements. Trends Microbiol 17:251–258 http://dx.doi.org/10.1016/j.tim.2009.03.002. [PubMed]
273. Roberts AP, Mullany P. 2011. Tn 916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol Rev 35:856–871 http://dx.doi.org/10.1111/j.1574-6976.2011.00283.x. [PubMed]
274. Lu F, Churchward G. 1995. Tn 916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency. J Bacteriol 177:1938–1946 http://dx.doi.org/10.1128/jb.177.8.1938-1946.1995. [PubMed]
275. Hosking SL, Deadman ME, Moxon ER, Peden JF, Saunders NJ, High NJ. 1998. An in silico evaluation of Tn 916 as a tool for generalized mutagenesis in Haemophilus influenzae Rd. Microbiology 144:2525–2530 http://dx.doi.org/10.1099/00221287-144-9-2525. [PubMed]
276. Poyart-Salmeron C, Trieu-Cuot P, Carlier C, Courvalin P. 1989. Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn 1545: homologies with other site-specific recombinases. EMBO J 8:2425–2433 http://dx.doi.org/10.1002/j.1460-2075.1989.tb08373.x. [PubMed]
277. Marra D, Scott JR. 1999. Regulation of excision of the conjugative transposon Tn 916. Mol Microbiol 31:609–621 http://dx.doi.org/10.1046/j.1365-2958.1999.01201.x. [PubMed]
278. Grainge I, Jayaram M. 1999. The integrase family of recombinase: organization and function of the active site. Mol Microbiol 33:449–456 http://dx.doi.org/10.1046/j.1365-2958.1999.01493.x. [PubMed]
279. Lu F, Churchward G. 1994. Conjugative transposition: Tn 916 integrase contains two independent DNA binding domains that recognize different DNA sequences. EMBO J 13:1541–1548 http://dx.doi.org/10.1002/j.1460-2075.1994.tb06416.x. [PubMed]
280. Wojciak JM, Connolly KM, Clubb RT. 1999. NMR structure of the Tn 916 integrase-DNA complex. Nat Struct Biol 6:366–373 http://dx.doi.org/10.1038/7603. [PubMed]
281. Connolly KM, Ilangovan U, Wojciak JM, Iwahara M, Clubb RT. 2000. Major groove recognition by three-stranded β-sheets: affinity determinants and conserved structural features. J Mol Biol 300:841–856 http://dx.doi.org/10.1006/jmbi.2000.3888. [PubMed]
282. Taylor KL, Churchward G. 1997. Specific DNA cleavage mediated by the integrase of conjugative transposon Tn 916. J Bacteriol 179:1117–1125 http://dx.doi.org/10.1128/jb.179.4.1117-1125.1997. [PubMed]
283. Caparon MG, Scott JR. 1989. Excision and insertion of the conjugative transposon Tn 916 involves a novel recombination mechanism. Cell 59:1027–1034 http://dx.doi.org/10.1016/0092-8674(89)90759-9.
284. Jaworski DD, Clewell DB. 1994. Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn 916 in Enterococcus faecalis. J Bacteriol 176:3328–3335 http://dx.doi.org/10.1128/jb.176.11.3328-3335.1994. [PubMed]
285. Pethel B, Churchward G. 2000. Coupling sequences flanking Tn 916 do not determine the affinity of binding of integrase to the transposon ends and adjacent bacterial DNA. Plasmid 43:123–129 http://dx.doi.org/10.1006/plas.1999.1440. [PubMed]
286. Marra D, Pethel B, Churchward GG, Scott JR. 1999. The frequency of conjugative transposition of Tn 916 is not determined by the frequency of excision. J Bacteriol 181:5414–5418. [PubMed]
287. Rudy CK, Scott JR, Churchward G. 1997. DNA binding by the Xis protein of the conjugative transposon Tn 916. J Bacteriol 179:2567–2572 http://dx.doi.org/10.1128/jb.179.8.2567-2572.1997. [PubMed]
288. Su YA, Clewell DB. 1993. Characterization of the left 4 kb of conjugative transposon Tn 916: determinants involved in excision. Plasmid 30:234–250 http://dx.doi.org/10.1006/plas.1993.1055. [PubMed]
289. Marra D, Smith JG, Scott JR. 1999. Excision of the conjugative transposon Tn 916 in Lactococcus lactis. Appl Environ Microbiol 65:2230–2231. [PubMed]
290. Rudy C, Taylor KL, Hinerfeld D, Scott JR, Churchward G. 1997. Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn 916. Nucleic Acids Res 25:4061–4066 http://dx.doi.org/10.1093/nar/25.20.4061. [PubMed]
291. Connolly KM, Iwahara M, Clubb RT. 2002. Xis protein binding to the left arm stimulates excision of conjugative transposon Tn 916. J Bacteriol 184:2088–2099 http://dx.doi.org/10.1128/JB.184.8.2088-2099.2002. [PubMed]
292. Hinerfeld D, Churchward G. 2001. Xis protein of the conjugative transposon Tn 916 plays dual opposing roles in transposon excision. Mol Microbiol 41:1459–1467 http://dx.doi.org/10.1046/j.1365-2958.2001.02626.x. [PubMed]
293. Jaworski DD, Clewell DB. 1995. A functional origin of transfer ( oriT) on the conjugative transposon Tn 916. J Bacteriol 177:6644–6651 http://dx.doi.org/10.1128/jb.177.22.6644-6651.1995. [PubMed]
294. Rocco JM, Churchward G. 2006. The integrase of the conjugative transposon Tn 916 directs strand- and sequence-specific cleavage of the origin of conjugal transfer, oriT, by the endonuclease Orf20. J Bacteriol 188:2207–2213 http://dx.doi.org/10.1128/JB.188.6.2207-2213.2006. [PubMed]
295. Flannagan SE, Zitzow LA, Su YA, Clewell DB. 1994. Nucleotide sequence of the 18-kb conjugative transposon Tn 916 from Enterococcus faecalis. Plasmid 32:350–354 http://dx.doi.org/10.1006/plas.1994.1077. [PubMed]
296. Senghas E, Jones JM, Yamamoto M, Gawron-Burke C, Clewell DB. 1988. Genetic organization of the bacterial conjugative transposon Tn 916. J Bacteriol 170:245–249 http://dx.doi.org/10.1128/jb.170.1.245-249.1988. [PubMed]
297. Celli J, Trieu-Cuot P. 1998. Circularization of Tn 916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol Microbiol 28:103–117 http://dx.doi.org/10.1046/j.1365-2958.1998.00778.x. [PubMed]
298. Scornec H, Bellanger X, Guilloteau H, Groshenry G, Merlin C. 2017. Inducibility of Tn 916 conjugative transfer in Enterococcus faecalis by subinhibitory concentrations of ribosome-targeting antibiotics. J Antimicrob Chemother 72:2722–2728 http://dx.doi.org/10.1093/jac/dkx202. [PubMed]
299. Bringel F, Van Alstine GL, Scott JR. 1992. Conjugative transposition of Tn 916: the transposon int gene is required only in the donor. J Bacteriol 174:4036–4041 http://dx.doi.org/10.1128/jb.174.12.4036-4041.1992. [PubMed]
300. Norgren M, Scott JR. 1991. The presence of conjugative transposon Tn 916 in the recipient strain does not impede transfer of a second copy of the element. J Bacteriol 173:319–324 http://dx.doi.org/10.1128/jb.173.1.319-324.1991. [PubMed]
301. Flannagan SE, Clewell DB. 1991. Conjugative transfer of Tn 916 in Enterococcus faecalis: trans activation of homologous transposons. J Bacteriol 173:7136–7141 http://dx.doi.org/10.1128/jb.173.22.7136-7141.1991. [PubMed]
302. Burrus V, Pavlovic G, Decaris B, Guédon G. 2002. The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid 48:77–97 http://dx.doi.org/10.1016/S0147-619X(02)00102-6.
303. Roberts AP, Johanesen PA, Lyras D, Mullany P, Rood JI. 2001. Comparison of Tn 5397 from Clostridium difficile, Tn 916 from Enterococcus faecalis and the CW459 tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. Microbiology 147:1243–1251 http://dx.doi.org/10.1099/00221287-147-5-1243. [PubMed]
304. Osborn AM, Böltner D. 2002. When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid 48:202–212 http://dx.doi.org/10.1016/S0147-619X(02)00117-8.
305. Mikalsen T, Pedersen T, Willems R, Coque TM, Werner G, Sadowy E, van Schaik W, Jensen LB, Sundsfjord A, Hegstad K. 2015. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics 16:282 http://dx.doi.org/10.1186/s12864-015-1407-6. [PubMed]
306. Duerkop BA, Palmer KL, Horsburgh MJ. 2014. Enterococcal bacteriophages and genome defense. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection [Internet]. Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190419/. [PubMed]
307. Perkins JB, Youngman P. 1983. Streptococcus plasmid pAM α 1 is a composite of two separable replicons, one of which is closely related to Bacillus plasmid pBC16. J Bacteriol 155:607–615. [PubMed]
308. Clewell DB, Yagi Y, Dunny GM, Schultz SK. 1974. Characterization of three plasmid deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid determining erythromycin resistance. J Bacteriol 117:283–289. [PubMed]
309. Broome-Smith J. 1980. RecA independent, site-specific recombination between ColE1 or ColK and a miniplasmid they complement for mobilization and relaxation: implications for the mechanism of DNA transfer during mobilization. Plasmid 4:51–63 http://dx.doi.org/10.1016/0147-619X(80)90082-7.
310. Llosa M, Bolland S, Grandoso G, de la Cruz F. 1994. Conjugation-independent, site-specific recombination at the oriT of the IncW plasmid R388 mediated by TrwC. J Bacteriol 176:3210–3217 http://dx.doi.org/10.1128/jb.176.11.3210-3217.1994. [PubMed]
311. Francia MV, Clewell DB. 2002. Amplification of the tetracycline resistance determinant of pAMalpha1 in Enterococcus faecalis requires a site-specific recombination event involving relaxase. J Bacteriol 184:5187–5193 http://dx.doi.org/10.1128/JB.184.18.5187-5193.2002. [PubMed]
312. Yagi Y, Clewell DB. 1980. Amplification of the tetracycline resistance determinant of plasmid pAM α 1 in Streptococcus faecalis: dependence on host recombination machinery. J Bacteriol 143:1070–1072. [PubMed]
313. Ike Y, Tanimoto K, Tomita H, Takeuchi K, Fujimoto S. 1998. Efficient transfer of the pheromone-independent Enterococcus faecium plasmid pMG1 (Gmr) (65.1 kilobases) to Enterococcus strains during broth mating. J Bacteriol 180:4886–4892. [PubMed]
314. Tomita H, Pierson C, Lim SK, Clewell DB, Ike Y. 2002. Possible connection between a widely disseminated conjugative gentamicin resistance (pMG1-like) plasmid and the emergence of vancomycin resistance in Enterococcus faecium. J Clin Microbiol 40:3326–3333 http://dx.doi.org/10.1128/JCM.40.9.3326-3333.2002. [PubMed]
315. Tanimoto K, Ike Y. 2008. Complete nucleotide sequencing and analysis of the 65-kb highly conjugative Enterococcus faecium plasmid pMG1: identification of the transfer-related region and the minimum region required for replication. FEMS Microbiol Lett 288:186–195 http://dx.doi.org/10.1111/j.1574-6968.2008.01342.x. [PubMed]
316. Tomita H, Ike Y. 2005. Genetic analysis of transfer-related regions of the vancomycin resistance Enterococcus conjugative plasmid pHTbeta: identification of oriT and a putative relaxase gene. J Bacteriol 187:7727–7737 http://dx.doi.org/10.1128/JB.187.22.7727-7737.2005. [PubMed]
317. Tanimoto K, Ike Y. 2002. Analysis of the conjugal transfer system of the pheromone-independent highly transferable Enterococcus plasmid pMG1: identification of a tra gene ( traA) up-regulated during conjugation. J Bacteriol 184:5800–5804 http://dx.doi.org/10.1128/JB.184.20.5800-5804.2002. [PubMed]
318. Grady R, Hayes F. 2003. Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol Microbiol 47:1419–1432 http://dx.doi.org/10.1046/j.1365-2958.2003.03387.x. [PubMed]
319. Halvorsen EM, Williams JJ, Bhimani AJ, Billings EA, Hergenrother PJ. 2011. Txe, an endoribonuclease of the enterococcal Axe-Txe toxin-antitoxin system, cleaves mRNA and inhibits protein synthesis. Microbiology 157:387–397 http://dx.doi.org/10.1099/mic.0.045492-0. [PubMed]
320. Condon C. 2006. Shutdown decay of mRNA. Mol Microbiol 61:573–583 http://dx.doi.org/10.1111/j.1365-2958.2006.05270.x. [PubMed]
321. Hayes F, Van Melderen L. 2011. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 46:386–408 http://dx.doi.org/10.3109/10409238.2011.600437. [PubMed]
322. Rosvoll TCS, Pedersen T, Sletvold H, Johnsen PJ, Sollid JE, Simonsen GS, Jensen LB, Nielsen KM, Sundsfjord A. 2010. PCR-based plasmid typing in Enterococcus faecium strains reveals widely distributed pRE25-, pRUM-, pIP501- and pHTbeta-related replicons associated with glycopeptide resistance and stabilizing toxin-antitoxin systems. FEMS Immunol Med Microbiol 58:254–268 http://dx.doi.org/10.1111/j.1574-695X.2009.00633.x. [PubMed]
323. Sletvold H, Johnsen PJ, Hamre I, Simonsen GS, Sundsfjord A, Nielsen KM. 2008. Complete sequence of Enterococcus faecium pVEF3 and the detection of an ω-ε-ζ toxin-antitoxin module and an ABC transporter. Plasmid 60:75–85 http://dx.doi.org/10.1016/j.plasmid.2008.04.002. [PubMed]
324. Lim S-K, Tanimoto K, Tomita H, Ike Y. 2006. Pheromone-responsive conjugative vancomycin resistance plasmids in Enterococcus faecalis isolates from humans and chicken feces. Appl Environ Microbiol 72:6544–6553 http://dx.doi.org/10.1128/AEM.00749-06. [PubMed]
325. de la Hoz AB, Ayora S, Sitkiewicz I, Fernández S, Pankiewicz R, Alonso JC, Ceglowski P. 2000. Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proc Natl Acad Sci U S A 97:728–733 http://dx.doi.org/10.1073/pnas.97.2.728. [PubMed]
326. Moreno-Del Álamo M, Tabone M, Lioy VS, Alonso JC. 2017. Toxin ζ triggers a survival response to cope with stress and persistence. Front Microbiol 8:1130 http://dx.doi.org/10.3389/fmicb.2017.01130. [PubMed]
327. Soheili S, Ghafourian S, Sekawi Z, Neela VK, Sadeghifard N, Taherikalani M, Khosravi A, Ramli R, Hamat RA. 2015. The mazEF toxin-antitoxin system as an attractive target in clinical isolates of Enterococcus faecium and Enterococcus faecalis. Drug Des Devel Ther 9:2553–2561. [PubMed]
328. Wessner F, Lacoux C, Goeders N, Fouquier d’Hérouel A, Matos R, Serror P, Van Melderen L, Repoila F. 2015. Regulatory crosstalk between type I and type II toxin-antitoxin systems in the human pathogen Enterococcus faecalis. RNA Biol 12:1099–1108 http://dx.doi.org/10.1080/15476286.2015.1084465. [PubMed]
329. Cataudella I, Trusina A, Sneppen K, Gerdes K, Mitarai N. 2012. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res 40:6424–6434 http://dx.doi.org/10.1093/nar/gks297. [PubMed]
330. Hacker J, Kaper JB. 2000. Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679 http://dx.doi.org/10.1146/annurev.micro.54.1.641. [PubMed]
331. Lesic B, Carniel E. 2005. Horizontal transfer of the high-pathogenicity island of Yersinia pseudotuberculosis. J Bacteriol 187:3352–3358 http://dx.doi.org/10.1128/JB.187.10.3352-3358.2005. [PubMed]
332. Ruzin A, Lindsay J, Novick RP. 2001. Molecular genetics of SaPI1: a mobile pathogenicity island in Staphylococcus aureus. Mol Microbiol 41:365–377 http://dx.doi.org/10.1046/j.1365-2958.2001.02488.x. [PubMed]
333. Shankar N, Baghdayan AS, Gilmore MS. 2002. Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417:746–750 http://dx.doi.org/10.1038/nature00802. [PubMed]
334. McBride SM, Coburn PS, Baghdayan AS, Willems RJL, Grande MJ, Shankar N, Gilmore MS. 2009. Genetic variation and evolution of the pathogenicity island of Enterococcus faecalis. J Bacteriol 191:3392–3402 http://dx.doi.org/10.1128/JB.00031-09. [PubMed]
335. McBride SM, Fischetti VA, Leblanc DJ, Moellering RC Jr, Gilmore MS. 2007. Genetic diversity among Enterococcus faecalis. PLoS One 2:e582 http://dx.doi.org/10.1371/journal.pone.0000582. [PubMed]
336. Coburn PS, Baghdayan AS, Dolan GT, Shankar N. 2007. Horizontal transfer of virulence genes encoded on the Enterococcus faecalis pathogenicity island. Mol Microbiol 63:530–544 http://dx.doi.org/10.1111/j.1365-2958.2006.05520.x. [PubMed]
337. Oancea C, Klare I, Witte W, Werner G. 2004. Conjugative transfer of the virulence gene, esp, among isolates of Enterococcus faecium and Enterococcus faecalis. J Antimicrob Chemother 54:232–235 http://dx.doi.org/10.1093/jac/dkh249. [PubMed]
338. Laverde Gomez JA, Hendrickx APA, Willems RJ, Top J, Sava I, Huebner J, Witte W, Werner G. 2011. Intra- and interspecies genomic transfer of the Enterococcus faecalis pathogenicity island. PLoS One 6:e16720 http://dx.doi.org/10.1371/journal.pone.0016720. [PubMed]
339. Leavis HL, Willems RJL, Top J, Spalburg E, Mascini EM, Fluit AC, Hoepelman A, de Neeling AJ, Bonten MJM. 2003. Epidemic and nonepidemic multidrug-resistant Enterococcus faecium. Emerg Infect Dis 9:1108–1115 http://dx.doi.org/10.3201/eid0909.020383. [PubMed]
340. van Schaik W, Top J, Riley DR, Boekhorst J, Vrijenhoek JEP, Schapendonk CME, Hendrickx APA, Nijman IJ, Bonten MJM, Tettelin H, Willems RJL. 2010. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics 11:239–239 http://dx.doi.org/10.1186/1471-2164-11-239. [PubMed]
341. Duerkop BA, Clements CV, Rollins D, Rodrigues JLM, Hooper LV. 2012. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc Natl Acad Sci U S A 109:17621–17626 http://dx.doi.org/10.1073/pnas.1206136109. [PubMed]
342. Matos RC, Lapaque N, Rigottier-Gois L, Debarbieux L, Meylheuc T, Gonzalez-Zorn B, Repoila F, Lopes MF, Serror P. 2013. Enterococcus faecalis prophage dynamics and contributions to pathogenic traits. PLoS Genet 9:e1003539 http://dx.doi.org/10.1371/journal.pgen.1003539. [PubMed]
343. Lepage E, Brinster S, Caron C, Ducroix-Crepy C, Rigottier-Gois L, Dunny G, Hennequet-Antier C, Serror P. 2006. Comparative genomic hybridization analysis of Enterococcus faecalis: identification of genes absent from food strains. J Bacteriol 188:6858–6868 http://dx.doi.org/10.1128/JB.00421-06. [PubMed]
344. Solheim M, Brekke MC, Snipen LG, Willems RJL, Nes IF, Brede DA. 2011. Comparative genomic analysis reveals significant enrichment of mobile genetic elements and genes encoding surface structure-proteins in hospital-associated clonal complex 2 Enterococcus faecalis. BMC Microbiol 11:3 http://dx.doi.org/10.1186/1471-2180-11-3. [PubMed]
345. Bourgogne A, Garsin DA, Qin X, Singh KV, Sillanpaa J, Yerrapragada S, Ding Y, Dugan-Rocha S, Buhay C, Shen H, Chen G, Williams G, Muzny D, Maadani A, Fox KA, Gioia J, Chen L, Shang Y, Arias CA, Nallapareddy SR, Zhao M, Prakash VP, Chowdhury S, Jiang H, Gibbs RA, Murray BE, Highlander SK, Weinstock GM. 2008. Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 9:R110–R110 http://dx.doi.org/10.1186/gb-2008-9-7-r110. [PubMed]
346. Stevens RH, Ektefaie MR, Fouts DE. 2011. The annotated complete DNA sequence of Enterococcus faecalis bacteriophage ɸEf11 and its comparison with all available phage and predicted prophage genomes. FEMS Microbiol Lett 317:9–26 http://dx.doi.org/10.1111/j.1574-6968.2010.02203.x. [PubMed]
347. Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW. 2011. Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Lett Appl Microbiol 52:559–564 http://dx.doi.org/10.1111/j.1472-765X.2011.03043.x. [PubMed]
348. Yasmin A, Kenny JG, Shankar J, Darby AC, Hall N, Edwards C, Horsburgh MJ. 2010. Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J Bacteriol 192:1122–1130 http://dx.doi.org/10.1128/JB.01293-09. [PubMed]
349. Rath D, Amlinger L, Rath A, Lundgren M. 2015. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128 http://dx.doi.org/10.1016/j.biochi.2015.03.025. [PubMed]
350. Lyons C, Raustad N, Bustos MA, Shiaris M. 2015. Incidence of type II CRISPR1-Cas systems in Enterococcus is species-dependent. PLoS One 10:e0143544 http://dx.doi.org/10.1371/journal.pone.0143544. [PubMed]
351. Price VJ, Huo W, Sharifi A, Palmer KL. 2016. CRISPR-Cas and restriction-modification act additively against conjugative antibiotic resistance plasmid transfer in Enterococcus faecalis. MSphere 1:e00064-16 http://dx.doi.org/10.1128/mSphere.00064-16. [PubMed]
352. Hullahalli K, Rodrigues M, Palmer KL. 2017. Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations. eLife 6:e26664 http://dx.doi.org/10.7554/eLife.26664. [PubMed]
353. Palmer KL, Godfrey P, Griggs A, Kos VN, Zucker J, Desjardins C, Cerqueira G, Gevers D, Walker S, Wortman J, Feldgarden M, Haas B, Birren B, Gilmore MS. 2012. Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. MBio 3:e00318-11 http://dx.doi.org/10.1128/mBio.00318-11. [PubMed]

Article metrics loading...



The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species and . Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Model for EutV- and EutX-mediated regulation of the regulon. In the absence of either EA or AdoCbl (–EA), EutV∼P dimers are not available to disrupt terminators upstream of genes. In the presence of EA but the absence of AdoCbl (+EA), the EutX riboswitch adopts a conformation that binds EutV∼P dimers, titrating them away from the gene terminators. In the presence of AdoCbl but the absence of EA (+AdoCbl), EutX adopts an alternative conformation that is not competent for binding EutV∼P dimers, but such dimers are absent due to the lack of EA. In the presence of both EA and AdoCbl (+AdoCbl, +EA), EutX is unable to bind EutV∼P dimers, which then interfere with termination in transcripts, allowing the genes to be transcribed. (Adapted from reference 87 .)

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0055-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Organization of the VanA and VanB vancomycin resistance systems. Gene functions are color coded: green, sensory and regulatory; red, essential resistance genes; blue, auxiliary resistance genes. Detailed functions of each gene are described in the text. Green arrows show the position of the VanR inducible promoters. The percentage identity of the VanB genes to their VanA homologs is given below the individual VanB genes. Homologs have identical names in both systems except for the and ligases.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0055-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Regulatory circuitry of the pheromone response. Events occurring at the cell surface. Important chromosomally encoded determinants are colored yellow with the exception of the pheromone itself, which is shown as blue circles. Plasmid-encoded determinants are color coordinated with their genes shown in panel B. The inhibitor peptide (ip) is shown as red circles and competitively inhibits pheromone binding to TraC. TraB inhibition of pheromone secretion is depicted here as sequestration, but may also involve peptide degradation. Events occurring at the DNA level. Binding of pheromone by TraA links events at the cell surface with events at the DNA level. A conformational change in TraA due to pheromone binding is indicated by the change in shape of the molecule and the change in dimerization state, although more subtle conformational changes are likely. Pheromone-free TraA binds Po and inhibits transcription. Direction of transcription from Po and Pa is indicated by the arrows. The antisense RNA, generalized to aR in this figure, stimulates termination at t1, indicated by the green arrow. Positive regulatory elements vary between different pheromone-responsive plasmids, and their mechanisms of inducing downstream transcription of the conjugation structural genes may also vary. For simplicity, the more common gene names and order are used. It should be noted that the gene order of the and genes are reversed in pAD1. The RepA gene is shown to orient the reader relative to Fig. 4 . Events at the RNA level. Relative levels of RNA produced from the Po and Pa promoters under uninduced (red) and induced (green) conditions are depicted by the sizes of the arrows.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0055-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Genetic organization of a general pheromone-responsive plasmid replicon. Gene names are given as pAD1/pCF10. The stipled box within represents the origin of replication () to which the product binds. The lined boxes at each end of the operon represent the likely centromere-like sites to which the products bind and, with the product, direct plasmid partition. The organization of the region is blown up below the replicon. The arrowheads at each end of the locus marked P represent the promoters for the RNAI and RNAII transcripts. The extent and direction of transcription of the transcripts are shown above and below the genes for RNAII and RNAI, respectively. The gene is designated by the diagonally lined box, and the sequence of the peptide is shown at the bottom. DRa and DRb are direct repeats in the DNA sequence that provide complementarity between RNAI and RNAII when transcribed in opposite directions. Overlapping transcription at the bidirectional transcriptional terminator also provides complementarity.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0055-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Model of RNAI-RNAII interaction. RNAI is the larger, black structure and RNAII is the smaller, blue structure. Stems, loops, and bulges are depicted in their approximate locations and sizes as determined by experimentation. The red stem-loop structure within RNAI sequesters the ribosome binding site and prevents translation until a complex is formed. The initial interaction occurs at a U-turn motif in the terminator loop of RNAI , followed by interaction between the complementary repeats in the 5′ end of each RNA . Since RNAII-mediated protection from the RNAI-encoded toxin occurs even when one of the repeats is mutated, the structure shown in panel C is apparently sufficient to prevent translation . Once complex formation is complete , the structure is extremely stable and perhaps due to the gap between the interacting repeats.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0055-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Genetic organization of Tn and the relative positions of Int and Xis binding sites. Functions of Tn genes are color coded: blue, recombination; green and red, positive and negative regulation, respectively; yellow, tetracycline resistance; magenta, conjugation. Gene names and open reading frame numbers are shown above the individual genes. The origin of transfer is designated by the line between s and , labelled . Promoters and the direction of transcription are designated by labeled arrows below the gene line. Binding sites for the Int-C and Int-N DNA binding domains and Xis are designated by marked circles and triangles. Int and Xis binding sites are color coordinated with the genes shown in panel A.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0055-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error