No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antibiotic Resistance and the MRSA Problem

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Martin Vestergaard1, Dorte Frees2, Hanne Ingmer3
  • Editors: Vincent A. Fischetti4, Richard P. Novick5, Joseph J. Ferretti6, Daniel A. Portnoy7, Miriam Braunstein8, Julian I. Rood9
    Affiliations: 1: Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; 2: Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; 3: Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; 4: The Rockefeller University, New York, NY; 5: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 6: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 7: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 8: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 9: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0057-2018
  • Received 22 February 2018 Accepted 17 January 2019 Published 22 March 2019
  • Hanne Ingmer, [email protected]
image of Antibiotic Resistance and the MRSA Problem
    Preview this microbiology spectrum article:
    Zoom in

    Antibiotic Resistance and the MRSA Problem, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0057-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0057-2018-2.gif
  • Abstract:

    is capable of becoming resistant to all classes of antibiotics clinically available and resistance can develop through mutations in chromosomal genes or through acquisition of horizontally transferred resistance determinants. This review covers the most important antibiotics available for treatment of infections and a special emphasis is dedicated to the current knowledge of the wide variety of resistance mechanisms that employ to withstand antibiotics. Since resistance development has been inevitable for all currently available antibiotics, new therapies are continuously under development. Besides development of new small molecules affecting cell viability, alternative approaches including anti-virulence and bacteriophage therapeutics are being investigated and may become important tools to combat staphylococcal infections in the future.

  • Citation: Vestergaard M, Frees D, Ingmer H. 2019. Antibiotic Resistance and the MRSA Problem. Microbiol Spectrum 7(2):GPP3-0057-2018. doi:10.1128/microbiolspec.GPP3-0057-2018.


1. Boyle-Vavra S, Daum RS. 2016. Molecular strategies of Staphylococcus aureus for resisting antibiotics, p 249–300. In Somerville GA (ed), Staphylococcus : Genetics and Physiology. Caister Academic Press, Poole, UK.
2. Haaber J, Penadés JR, Ingmer H. 2017. Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol 25:893–905 http://dx.doi.org/10.1016/j.tim.2017.05.011. [PubMed]
3. •••. In press.
4. •••. In press.
5. Novick RP, Richmond MH. 1965. Nature and interactions of the genetic elements governing penicillinase synthesis in Staphylococcus aureus. J Bacteriol 90:467–480. [PubMed]
6. Tipper DJ, Strominger JL. 1965. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl- d-alanyl- d-alanine. Proc Natl Acad Sci U S A 54:1133–1141 http://dx.doi.org/10.1073/pnas.54.4.1133. [PubMed]
7. Tomasz A. 1979. The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33:113–137 http://dx.doi.org/10.1146/annurev.mi.33.100179.000553. [PubMed]
8. Bayles KW. 2000. The bactericidal action of penicillin: new clues to an unsolved mystery. Trends Microbiol 8:274–278 http://dx.doi.org/10.1016/S0966-842X(00)01762-5.
9. Maidhof H, Johannsen L, Labischinski H, Giesbrecht P. 1989. Onset of penicillin-induced bacteriolysis in staphylococci is cell cycle dependent. J Bacteriol 171:2252–2257 http://dx.doi.org/10.1128/jb.171.4.2252-2257.1989. [PubMed]
10. Giesbrecht P, Kersten T, Maidhof H, Wecke J. 1998. Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol Mol Biol Rev 62:1371–1414. [PubMed]
11. Kirby WM. 1944. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 99:452–453 http://dx.doi.org/10.1126/science.99.2579.452. [PubMed]
12. Bondi A Jr, Dietz CC. 1945. Penicillin resistant staphylococci. Proc Soc Exp Biol Med 60:55–58 http://dx.doi.org/10.3181/00379727-60-15089. [PubMed]
13. Berg T, Firth N, Apisiridej S, Hettiaratchi A, Leelaporn A, Skurray RA. 1998. Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative multiresistance plasmids. J Bacteriol 180:4350–4359. [PubMed]
14. Tenover FC, McDougal LK, Goering RV, Killgore G, Projan SJ, Patel JB, Dunman PM. 2006. Characterization of a strain of community-associated methicillin-resistant Staphylococcus aureus widely disseminated in the United States. J Clin Microbiol 44:108–118 http://dx.doi.org/10.1128/JCM.44.1.108-118.2006. [PubMed]
15. Chambers HF, Deleo FR. 2009. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641 http://dx.doi.org/10.1038/nrmicro2200. [PubMed]
16. Novick RP, Roth C. 1968. Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J Bacteriol 95:1335–1342. [PubMed]
17. Jevons MP. 1961. “Celbenin”-resistant staphylococci. BMJ 1:124–125 http://dx.doi.org/10.1136/bmj.1.5219.124-a.
18. Katayama Y, Ito T, Hiramatsu K. 2000. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44:1549–1555 http://dx.doi.org/10.1128/AAC.44.6.1549-1555.2000. [PubMed]
19. Ito T, Katayama Y, Asada K, Mori N, Tsutsumimoto K, Tiensasitorn C, Hiramatsu K. 2001. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1323–1336 http://dx.doi.org/10.1128/AAC.45.5.1323-1336.2001. [PubMed]
20. Wu S, Piscitelli C, de Lencastre H, Tomasz A. 1996. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb Drug Resist 2:435–441 http://dx.doi.org/10.1089/mdr.1996.2.435. [PubMed]
21. Wu SW, de Lencastre H, Tomasz A. 2001. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J Bacteriol 183:2417–2424 http://dx.doi.org/10.1128/JB.183.8.2417-2424.2001. [PubMed]
22. Antignac A, Tomasz A. 2009. Reconstruction of the phenotypes of methicillin-resistant Staphylococcus aureus by replacement of the staphylococcal cassette chromosome mec with a plasmid-borne copy of Staphylococcus sciuri pbpD gene. Antimicrob Agents Chemother 53:435–441 http://dx.doi.org/10.1128/AAC.01099-08. [PubMed]
23. Rolo J, Worning P, Boye Nielsen J, Sobral R, Bowden R, Bouchami O, Damborg P, Guardabassi L, Perreten V, Westh H, Tomasz A, de Lencastre H, Miragaia M. 2017. Evidence for the evolutionary steps leading to mecA-mediated β-lactam resistance in staphylococci. PLoS Genet 13:e1006674 http://dx.doi.org/10.1371/journal.pgen.1006674. [PubMed]
24. Harkins CP, Pichon B, Doumith M, Parkhill J, Westh H, Tomasz A, de Lencastre H, Bentley SD, Kearns AM, Holden MTG. 2017. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol 18:130 http://dx.doi.org/10.1186/s13059-017-1252-9. [PubMed]
25. García-Álvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA. 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 11:595–603 http://dx.doi.org/10.1016/S1473-3099(11)70126-8.
26. Paterson GK, Harrison EM, Holmes MA. 2014. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol 22:42–47 http://dx.doi.org/10.1016/j.tim.2013.11.003. [PubMed]
27. Hiramatsu K, Ito T, Tsubakishita S, Sasaki T, Takeuchi F, Morimoto Y, Katayama Y, Matsuo M, Kuwahara-Arai K, Hishinuma T, Baba T. 2013. Genomic basis for methicillin resistance in Staphylococcus aureus. Infect Chemother 45:117–136 http://dx.doi.org/10.3947/ic.2013.45.2.117. [PubMed]
28. Boundy S, Safo MK, Wang L, Musayev FN, O’Farrell HC, Rife JP, Archer GL. 2013. Characterization of the Staphylococcus aureus rRNA methyltransferase encoded by orfX, the gene containing the staphylococcal chromosome cassette mec (SCC mec) insertion site. J Biol Chem 288:132–140 http://dx.doi.org/10.1074/jbc.M112.385138. [PubMed]
29. Wisplinghoff H, Rosato AE, Enright MC, Noto M, Craig W, Archer GL. 2003. Related clones containing SCC mec type IV predominate among clinically significant Staphylococcus epidermidis isolates. Antimicrob Agents Chemother 47:3574–3579 http://dx.doi.org/10.1128/AAC.47.11.3574-3579.2003. [PubMed]
30. Shore AC, Coleman DC. 2013. Staphylococcal cassette chromosome mec: recent advances and new insights. Int J Med Microbiol 303:350–359 http://dx.doi.org/10.1016/j.ijmm.2013.02.002. [PubMed]
31. Mašlaňová I, Doškař J, Varga M, Kuntová L, Mužík J, Malúšková D, Růžičková V, Pantůček R. 2013. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCC mec with different frequencies. Environ Microbiol Rep 5:66–73 http://dx.doi.org/10.1111/j.1758-2229.2012.00378.x. [PubMed]
32. Scharn CR, Tenover FC, Goering RV. 2013. Transduction of staphylococcal cassette chromosome mec elements between strains of Staphylococcus aureus. Antimicrob Agents Chemother 57:5233–5238 http://dx.doi.org/10.1128/AAC.01058-13. [PubMed]
33. Chlebowicz MA, Mašlaňová I, Kuntová L, Grundmann H, Pantůček R, Doškař J, van Dijl JM, Buist G. 2014. The staphylococcal cassette chromosome mec type V from Staphylococcus aureus ST398 is packaged into bacteriophage capsids. Int J Med Microbiol 304:764–774 http://dx.doi.org/10.1016/j.ijmm.2014.05.010. [PubMed]
34. Ray MD, Boundy S, Archer GL. 2016. Transfer of the methicillin resistance genomic island among staphylococci by conjugation. Mol Microbiol 100:675–685 http://dx.doi.org/10.1111/mmi.13340. [PubMed]
35. de Lencastre H, Oliveira D, Tomasz A. 2007. Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power. Curr Opin Microbiol 10:428–435 http://dx.doi.org/10.1016/j.mib.2007.08.003. [PubMed]
36. Kreiswirth B, Kornblum J, Arbeit RD, Eisner W, Maslow JN, McGeer A, Low DE, Novick RP. 1993. Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. Science 259:227–230 http://dx.doi.org/10.1126/science.8093647. [PubMed]
37. Roberts GA, Houston PJ, White JH, Chen K, Stephanou AS, Cooper LP, Dryden DT, Lindsay JA. 2013. Impact of target site distribution for type I restriction enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) populations. Nucleic Acids Res 41:7472–7484 http://dx.doi.org/10.1093/nar/gkt535. [PubMed]
38. International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). 2009. Classification of staphylococcal cassette chromosome mec (SCC mec): guidelines for reporting novel SCC mec elements. Antimicrob Agents Chemother 53:4961–4967 http://dx.doi.org/10.1128/AAC.00579-09. [PubMed]
39. Bal AM, Coombs GW, Holden MTG, Lindsay JA, Nimmo GR, Tattevin P, Skov RL. 2016. Genomic insights into the emergence and spread of international clones of healthcare-, community- and livestock-associated meticillin-resistant Staphylococcus aureus: blurring of the traditional definitions. J Glob Antimicrob Resist 6:95–101 http://dx.doi.org/10.1016/j.jgar.2016.04.004. [PubMed]
40. Tomasz A, Nachman S, Leaf H. 1991. Stable classes of phenotypic expression in methicillin-resistant clinical isolates of staphylococci. Antimicrob Agents Chemother 35:124–129 http://dx.doi.org/10.1128/AAC.35.1.124. [PubMed]
41. de Lencastre H, Chung M, Westh H. 2000. Archaic strains of methicillin-resistant Staphylococcus aureus: molecular and microbiological properties of isolates from the 1960s in Denmark. Microb Drug Resist 6:1–10 http://dx.doi.org/10.1089/mdr.2000.6.1. [PubMed]
42. Bæk KT, Gründling A, Mogensen RG, Thøgersen L, Petersen A, Paulander W, Frees D. 2014. β-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease. Antimicrob Agents Chemother 58:4593–4603 http://dx.doi.org/10.1128/AAC.02802-14. [PubMed]
43. Mwangi MM, Kim C, Chung M, Tsai J, Vijayadamodar G, Benitez M, Jarvie TP, Du L, Tomasz A. 2013. Whole-genome sequencing reveals a link between β-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. Microb Drug Resist 19:153–159 http://dx.doi.org/10.1089/mdr.2013.0053. [PubMed]
44. Kim C, Mwangi M, Chung M, Milheiriço C, de Lencastre H, Tomasz A. 2013. The mechanism of heterogeneous beta-lactam resistance in MRSA: key role of the stringent stress response. PLoS One 8:e82814 http://dx.doi.org/10.1371/journal.pone.0082814. [PubMed]
45. Stahlhut SG, Alqarzaee AA, Jensen C, Fisker NS, Pereira AR, Pinho MG, Thomas VC, Frees D. 2017. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Sci Rep 7:11739 http://dx.doi.org/10.1038/s41598-017-12122-y. [PubMed]
46. Parvez MAK, Shibata H, Nakano T, Niimi S, Fujii N, Arakaki N, Higuti T. 2008. No relationship exists between PBP 2a amounts expressed in different MRSA strains obtained clinically and their β-lactam MIC values. J Med Invest 55:246–253 http://dx.doi.org/10.2152/jmi.55.246. [PubMed]
47. Gallagher LA, Coughlan S, Black NS, Lalor P, Waters EM, Wee B, Watson M, Downing T, Fitzgerald JR, Fleming GTA, O’Gara JP. 2017. Tandem amplification of the staphylococcal cassette chromosome mec element can drive high-level methicillin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 61:e00869-17 http://dx.doi.org/10.1128/AAC.00869-17. [PubMed]
48. Peacock SJ, Paterson GK. 2015. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem 84:577–601 http://dx.doi.org/10.1146/annurev-biochem-060614-034516. [PubMed]
49. Hososaka Y, Hanaki H, Endo H, Suzuki Y, Nagasawa Z, Otsuka Y, Nakae T, Sunakawa K. 2007. Characterization of oxacillin-susceptible mecA-positive Staphylococcus aureus: a new type of MRSA. J Infect Chemother 13:79–86 http://dx.doi.org/10.1007/s10156-006-0502-7. [PubMed]
50. Murakami K, Tomasz A. 1989. Involvement of multiple genetic determinants in high-level methicillin resistance in Staphylococcus aureus. J Bacteriol 171:874–879 http://dx.doi.org/10.1128/jb.171.2.874-879.1989. [PubMed]
51. Berger-Bächi B, Rohrer S. 2002. Factors influencing methicillin resistance in staphylococci. Arch Microbiol 178:165–171 http://dx.doi.org/10.1007/s00203-002-0436-0. [PubMed]
52. Tan CM, Therien AG, Lu J, Lee SH, Caron A, Gill CJ, Lebeau-Jacob C, Benton-Perdomo L, Monteiro JM, Pereira PM. 2012. Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics. Sci Transl Med 4:126ra35.
53. Pinho MG, de Lencastre H, Tomasz A. 2001. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc Natl Acad Sci U S A 98:10886–10891 http://dx.doi.org/10.1073/pnas.191260798. [PubMed]
54. Campbell J, Singh AK, Santa Maria JP Jr, Kim Y, Brown S, Swoboda JG, Mylonakis E, Wilkinson BJ, Walker S. 2011. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 6:106–116 http://dx.doi.org/10.1021/cb100269f. [PubMed]
55. Ejim L, Farha MA, Falconer SB, Wildenhain J, Coombes BK, Tyers M, Brown ED, Wright GD. 2011. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol 7:348–350 http://dx.doi.org/10.1038/nchembio.559. [PubMed]
56. Roemer T, Schneider T, Pinho MG. 2013. Auxiliary factors: a chink in the armor of MRSA resistance to β-lactam antibiotics. Curr Opin Microbiol 16:538–548 http://dx.doi.org/10.1016/j.mib.2013.06.012. [PubMed]
57. Drawz SM, Bonomo RA. 2010. Three decades of β-lactamase inhibitors. Clin Microbiol Rev 23:160–201 http://dx.doi.org/10.1128/CMR.00037-09. [PubMed]
58. Saravolatz LD, Stein GE, Johnson LB. 2011. Ceftaroline: a novel cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Clin Infect Dis 52:1156–1163 http://dx.doi.org/10.1093/cid/cir147. [PubMed]
59. Lim D, Strynadka NC. 2002. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol 9:870–876.
60. Otero LH, Rojas-Altuve A, Llarrull LI, Carrasco-López C, Kumarasiri M, Lastochkin E, Fishovitz J, Dawley M, Hesek D, Lee M, Johnson JW, Fisher JF, Chang M, Mobashery S, Hermoso JA. 2013. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc Natl Acad Sci U S A 110:16808–16813 http://dx.doi.org/10.1073/pnas.1300118110. [PubMed]
61. Harrison EM, Ba X, Blane B, Ellington MJ, Loeffler A, Hill RL, Holmes MA, Peacock SJ. 2016. PBP2a substitutions linked to ceftaroline resistance in MRSA isolates from the UK. J Antimicrob Chemother 71:268–269 http://dx.doi.org/10.1093/jac/dkv317. [PubMed]
62. Sanchez EH, Mendes RE, Sader HS, Allison GM. 2016. In vivo emergence of ceftaroline resistance during therapy for MRSA vertebral osteomyelitis. J Antimicrob Chemother 71:1736–1738 http://dx.doi.org/10.1093/jac/dkw001. [PubMed]
63. Levine DP. 2006. Vancomycin: a history. Clin Infect Dis 42(Suppl 1) :S5–S12 http://dx.doi.org/10.1086/491709. [PubMed]
64. Barna JC, Williams DH. 1984. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 38:339–357 http://dx.doi.org/10.1146/annurev.mi.38.100184.002011. [PubMed]
65. Arthur M, Reynolds P, Courvalin P. 1996. Glycopeptide resistance in enterococci. Trends Microbiol 4:401–407 http://dx.doi.org/10.1016/0966-842X(96)10063-9.
66. Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, Shah S, Rudrik JT, Pupp GR, Brown WJ, Cardo D, Fridkin SK, Vancomycin-Resistant Staphylococcus aureus Investigative Team. 2003. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348:1342–1347 http://dx.doi.org/10.1056/NEJMoa025025. [PubMed]
67. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–1571 http://dx.doi.org/10.1126/science.1090956. [PubMed]
68. Gardete S, Tomasz A. 2014. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest 124:2836–2840 http://dx.doi.org/10.1172/JCI68834. [PubMed]
69. Zhu W, Murray PR, Huskins WC, Jernigan JA, McDonald LC, Clark NC, Anderson KF, McDougal LK, Hageman JC, Olsen-Rasmussen M, Frace M, Alangaden GJ, Chenoweth C, Zervos MJ, Robinson-Dunn B, Schreckenberger PC, Reller LB, Rudrik JT, Patel JB. 2010. Dissemination of an Enterococcus Inc18-like vanA plasmid associated with vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54:4314–4320 http://dx.doi.org/10.1128/AAC.00185-10. [PubMed]
70. Severin A, Wu SW, Tabei K, Tomasz A. 2004. Penicillin-binding protein 2 is essential for expression of high-level vancomycin resistance and cell wall synthesis in vancomycin-resistant Staphylococcus aureus carrying the enterococcal vanA gene complex. Antimicrob Agents Chemother 48:4566–4573 http://dx.doi.org/10.1128/AAC.48.12.4566-4573.2004. [PubMed]
71. Ortwine JK, Werth BJ, Sakoulas G, Rybak MJ. 2013. Reduced glycopeptide and lipopeptide susceptibility in Staphylococcus aureus and the “seesaw effect”: taking advantage of the back door left open? Drug Resist Updat 16:73–79 http://dx.doi.org/10.1016/j.drup.2013.10.002. [PubMed]
72. Lodise TP, Graves J, Evans A, Graffunder E, Helmecke M, Lomaestro BM, Stellrecht K. 2008. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother 52:3315–3320 http://dx.doi.org/10.1128/AAC.00113-08. [PubMed]
73. Wi YM, Kim JM, Joo E-J, Ha YE, Kang C-I, Ko KS, Chung DR, Song J-H, Peck KR. 2012. High vancomycin minimum inhibitory concentration is a predictor of mortality in meticillin-resistant Staphylococcus aureus bacteraemia. Int J Antimicrob Agents 40:108–113 http://dx.doi.org/10.1016/j.ijantimicag.2012.04.003. [PubMed]
74. Woods CJ, Chowdhury A, Patel VM, Shorr AF. 2012. Impact of vancomycin minimum inhibitory concentration on mortality among critically ill patients with methicillin-resistant Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol 33:1246–1249 http://dx.doi.org/10.1086/668433. [PubMed]
75. Wang J-L, Lai C-H, Lin H-H, Chen W-F, Shih Y-C, Hung C-H. 2013. High vancomycin minimum inhibitory concentrations with heteroresistant vancomycin-intermediate Staphylococcus aureus in meticillin-resistant S. aureus bacteraemia patients. Int J Antimicrob Agents 42:390–394 http://dx.doi.org/10.1016/j.ijantimicag.2013.07.010. [PubMed]
76. Cameron DR, Lin Y-H, Trouillet-Assant S, Tafani V, Kostoulias X, Mouhtouris E, Skinner N, Visvanathan K, Baines SL, Howden B, Monk IR, Laurent F, Stinear TP, Howden BP, Peleg AY. 2017. Vancomycin-intermediate Staphylococcus aureus isolates are attenuated for virulence when compared with susceptible progenitors. Clin Microbiol Infect 23:767–773 http://dx.doi.org/10.1016/j.cmi.2017.03.027. [PubMed]
77. Gould IM, Cauda R, Esposito S, Gudiol F, Mazzei T, Garau J. 2011. Management of serious meticillin-resistant Staphylococcus aureus infections: what are the limits? Int J Antimicrob Agents 37:202–209 http://dx.doi.org/10.1016/j.ijantimicag.2010.10.030. [PubMed]
78. Daum RS, Gupta S, Sabbagh R, Milewski WM. 1992. Characterization of Staphylococcus aureus isolates with decreased susceptibility to vancomycin and teicoplanin: isolation and purification of a constitutively produced protein associated with decreased susceptibility. J Infect Dis 166:1066–1072 http://dx.doi.org/10.1093/infdis/166.5.1066. [PubMed]
79. Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labischinski H, Hiramatsu K. 1998. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother 42:199–209 http://dx.doi.org/10.1093/jac/42.2.199. [PubMed]
80. Sieradzki K, Tomasz A. 2003. Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J Bacteriol 185:7103–7110 http://dx.doi.org/10.1128/JB.185.24.7103-7110.2003. [PubMed]
81. Cui L, Murakami H, Kuwahara-Arai K, Hanaki H, Hiramatsu K. 2000. Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob Agents Chemother 44:2276–2285 http://dx.doi.org/10.1128/AAC.44.9.2276-2285.2000. [PubMed]
82. Cui L, Ma X, Sato K, Okuma K, Tenover FC, Mamizuka EM, Gemmell CG, Kim M-N, Ploy M-C, El-Solh N, Ferraz V, Hiramatsu K. 2003. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol 41:5–14 http://dx.doi.org/10.1128/JCM.41.1.5-14.2003. [PubMed]
83. Cui L, Iwamoto A, Lian J-Q, Neoh HM, Maruyama T, Horikawa Y, Hiramatsu K. 2006. Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 50:428–438 http://dx.doi.org/10.1128/AAC.50.2.428-438.2006. [PubMed]
84. Howden BP, Johnson PD, Ward PB, Stinear TP, Davies JK. 2006. Isolates with low-level vancomycin resistance associated with persistent methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 50:3039–3047 http://dx.doi.org/10.1128/AAC.00422-06. [PubMed]
85. Boyle-Vavra S, Carey RB, Daum RS. 2001. Development of vancomycin and lysostaphin resistance in a methicillin-resistant Staphylococcus aureus isolate. J Antimicrob Chemother 48:617–625 http://dx.doi.org/10.1093/jac/48.5.617. [PubMed]
86. Boyle-Vavra S, Labischinski H, Ebert CC, Ehlert K, Daum RS. 2001. A spectrum of changes occurs in peptidoglycan composition of glycopeptide-intermediate clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 45:280–287 http://dx.doi.org/10.1128/AAC.45.1.280-287.2001. [PubMed]
87. Koehl JL, Muthaiyan A, Jayaswal RK, Ehlert K, Labischinski H, Wilkinson BJ. 2004. Cell wall composition and decreased autolytic activity and lysostaphin susceptibility of glycopeptide-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 48:3749–3757 http://dx.doi.org/10.1128/AAC.48.10.3749-3757.2004. [PubMed]
88. Meehl M, Herbert S, Götz F, Cheung A. 2007. Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 51:2679–2689 http://dx.doi.org/10.1128/AAC.00209-07. [PubMed]
89. Hiramatsu K, Kayayama Y, Matsuo M, Aiba Y, Saito M, Hishinuma T, Iwamoto A. 2014. Vancomycin-intermediate resistance in Staphylococcus aureus. J Glob Antimicrob Resist 2:213–224 http://dx.doi.org/10.1016/j.jgar.2014.04.006. [PubMed]
90. McGuinness WA, Malachowa N, DeLeo FR. 2017. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med 90:269–281. [PubMed]
91. Vidaillac C, Gardete S, Tewhey R, Sakoulas G, Kaatz GW, Rose WE, Tomasz A, Rybak MJ. 2013. Alternative mutational pathways to intermediate resistance to vancomycin in methicillin-resistant Staphylococcus aureus. J Infect Dis 208:67–74 http://dx.doi.org/10.1093/infdis/jit127. [PubMed]
92. Hu Q, Peng H, Rao X. 2016. Molecular events for promotion of vancomycin resistance in vancomycin intermediate Staphylococcus aureus. Front Microbiol 7:1601 http://dx.doi.org/10.3389/fmicb.2016.01601. [PubMed]
93. Katayama Y, Sekine M, Hishinuma T, Aiba Y, Hiramatsu K. 2016. Complete reconstitution of the vancomycin-intermediate Staphylococcus aureus phenotype of strain Mu50 in vancomycin-susceptible S. aureus. Antimicrob Agents Chemother 60:3730–3742 http://dx.doi.org/10.1128/AAC.00420-16. [PubMed]
94. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, Bruce D, Rubin E, Myers E, Siggia ED, Tomasz A. 2007. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A 104:9451–9456 http://dx.doi.org/10.1073/pnas.0609839104. [PubMed]
95. Howden BP, McEvoy CR, Allen DL, Chua K, Gao W, Harrison PF, Bell J, Coombs G, Bennett-Wood V, Porter JL, Robins-Browne R, Davies JK, Seemann T, Stinear TP. 2011. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog 7:e1002359 http://dx.doi.org/10.1371/journal.ppat.1002359. [PubMed]
96. Gardete S, Kim C, Hartmann BM, Mwangi M, Roux CM, Dunman PM, Chambers HF, Tomasz A. 2012. Genetic pathway in acquisition and loss of vancomycin resistance in a methicillin resistant Staphylococcus aureus (MRSA) strain of clonal type USA300. PLoS Pathog 8:e1002505. [PubMed]
97. Matsuo M, Cui L, Kim J, Hiramatsu K. 2013. Comprehensive identification of mutations responsible for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)-to-VISA conversion in laboratory-generated VISA strains derived from hVISA clinical strain Mu3. Antimicrob Agents Chemother 57:5843–5853 http://dx.doi.org/10.1128/AAC.00425-13. [PubMed]
98. Roch M, Clair P, Renzoni A, Reverdy M-E, Dauwalder O, Bes M, Martra A, Freydière A-M, Laurent F, Reix P, Dumitrescu O, Vandenesch F. 2014. Exposure of Staphylococcus aureus to subinhibitory concentrations of β-lactam antibiotics induces heterogeneous vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 58:5306–5314 http://dx.doi.org/10.1128/AAC.02574-14. [PubMed]
99. Katayama Y, Murakami-Kuroda H, Cui L, Hiramatsu K. 2009. Selection of heterogeneous vancomycin-intermediate Staphylococcus aureus by imipenem. Antimicrob Agents Chemother 53:3190–3196 http://dx.doi.org/10.1128/AAC.00834-08. [PubMed]
100. Renzoni A, Kelley WL, Barras C, Monod A, Huggler E, François P, Schrenzel J, Studer R, Vaudaux P, Lew DP. 2009. Identification by genomic and genetic analysis of two new genes playing a key role in intermediate glycopeptide resistance in Staphylococcus aureus. Antimicrob Agents Chemother 53:903–911 http://dx.doi.org/10.1128/AAC.01287-08. [PubMed]
101. Donegan NP, Marvin JS, Cheung AL. 2014. Role of adaptor TrfA and ClpPC in controlling levels of SsrA-tagged proteins and antitoxins in Staphylococcus aureus. J Bacteriol 196:4140–4151 http://dx.doi.org/10.1128/JB.02222-14. [PubMed]
102. Frees D, Chastanet A, Qazi S, Sørensen K, Hill P, Msadek T, Ingmer H. 2004. Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol 54:1445–1462 http://dx.doi.org/10.1111/j.1365-2958.2004.04368.x. [PubMed]
103. Howden BP, Smith DJ, Mansell A, Johnson PD, Ward PB, Stinear TP, Davies JK. 2008. Different bacterial gene expression patterns and attenuated host immune responses are associated with the evolution of low-level vancomycin resistance during persistent methicillin-resistant Staphylococcus aureus bacteraemia. BMC Microbiol 8:39 http://dx.doi.org/10.1186/1471-2180-8-39. [PubMed]
104. Saito M, Katayama Y, Hishinuma T, Iwamoto A, Aiba Y, Kuwahara-Arai K, Cui L, Matsuo M, Aritaka N, Hiramatsu K. 2014. “Slow VISA,” a novel phenotype of vancomycin resistance, found in vitro in heterogeneous vancomycin-intermediate Staphylococcus aureus strain Mu3. Antimicrob Agents Chemother 58:5024–5035 http://dx.doi.org/10.1128/AAC.02470-13. [PubMed]
105. Matsuo M, Hishinuma T, Katayama Y, Hiramatsu K. 2015. A mutation of RNA polymerase β′ subunit (RpoC) converts heterogeneously vancomycin-intermediate Staphylococcus aureus (hVISA) into “slow VISA”. Antimicrob Agents Chemother 59:4215–4225 http://dx.doi.org/10.1128/AAC.00135-15. [PubMed]
106. Geiger T, Kästle B, Gratani FL, Goerke C, Wolz C. 2014. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J Bacteriol 196:894–902 http://dx.doi.org/10.1128/JB.01201-13. [PubMed]
107. Katayama Y, Azechi T, Miyazaki M, Takata T, Sekine M, Matsui H, Hanaki H, Yahara K, Sasano H, Asakura K, Takaku T, Ochiai T, Komatsu N, Chambers HF. 2017. Prevalence of slow-growth vancomycin nonsusceptibility in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 61:e00452-17 http://dx.doi.org/10.1128/AAC.00452-17. [PubMed]
108. Haaber J, Friberg C, McCreary M, Lin R, Cohen SN, Ingmer H. 2015. Reversible antibiotic tolerance induced in Staphylococcus aureus by concurrent drug exposure. MBio 6:e02268-14 http://dx.doi.org/10.1128/mBio.02268-14. [PubMed]
109. Cornaglia G, Rossolini GM. 2009. Forthcoming therapeutic perspectives for infections due to multidrug-resistant Gram-positive pathogens. Clin Microbiol Infect 15:218–223 http://dx.doi.org/10.1111/j.1469-0691.2009.02740.x. [PubMed]
110. Van Bambeke F. 2015. Lipoglycopeptide antibacterial agents in Gram-positive infections: a comparative review. Drugs 75:2073–2095 http://dx.doi.org/10.1007/s40265-015-0505-8. [PubMed]
111. Higgins DL, Chang R, Debabov DV, Leung J, Wu T, Krause KM, Sandvik E, Hubbard JM, Kaniga K, Schmidt DE Jr, Gao Q, Cass RT, Karr DE, Benton BM, Humphrey PP. 2005. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:1127–1134 http://dx.doi.org/10.1128/AAC.49.3.1127-1134.2005. [PubMed]
112. Karlowsky JA, Nichol K, Zhanel GG. 2015. Telavancin: mechanisms of action, in vitro activity, and mechanisms of resistance. Clin Infect Dis 61(Suppl 2) :S58–S68 http://dx.doi.org/10.1093/cid/civ534. [PubMed]
113. Citron DM, Tyrrell KL, Goldstein EJ. 2014. Comparative in vitro activities of dalbavancin and seven comparator agents against 41 Staphylococcus species cultured from osteomyelitis infections and 18 VISA and hVISA strains. Diagn Microbiol Infect Dis 79:438–440 http://dx.doi.org/10.1016/j.diagmicrobio.2014.05.014. [PubMed]
114. Smith JR, Roberts KD, Rybak MJ. 2015. Dalbavancin: a novel lipoglycopeptide antibiotic with extended activity against Gram-positive infections. Infect Dis Ther 4:245–258 http://dx.doi.org/10.1007/s40121-015-0077-7. [PubMed]
115. McKay GA, Beaulieu S, Arhin FF, Belley A, Sarmiento I, Parr T Jr, Moeck G. 2009. Time-kill kinetics of oritavancin and comparator agents against Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother 63:1191–1199 http://dx.doi.org/10.1093/jac/dkp126. [PubMed]
116. Kim SJ, Cegelski L, Stueber D, Singh M, Dietrich E, Tanaka KS, Parr TR Jr, Far AR, Schaefer J. 2008. Oritavancin exhibits dual mode of action to inhibit cell-wall biosynthesis in Staphylococcus aureus. J Mol Biol 377:281–293 http://dx.doi.org/10.1016/j.jmb.2008.01.031. [PubMed]
117. Zhanel GG, Trapp S, Gin AS, DeCorby M, Lagacé-Wiens PR, Rubinstein E, Hoban DJ, Karlowsky JA. 2008. Dalbavancin and telavancin: novel lipoglycopeptides for the treatment of Gram-positive infections. Expert Rev Anti Infect Ther 6:67–81 http://dx.doi.org/10.1586/14787210.6.1.67. [PubMed]
118. Bal AM, Garau J, Gould IM, Liao CH, Mazzei T, Nimmo GR, Soriano A, Stefani S, Tenover FC. 2013. Vancomycin in the treatment of meticillin-resistant Staphylococcus aureus (MRSA) infection: end of an era? J Glob Antimicrob Resist 1:23–30 http://dx.doi.org/10.1016/j.jgar.2013.01.002. [PubMed]
119. Kosowska-Shick K, Clark C, Pankuch GA, McGhee P, Dewasse B, Beachel L, Appelbaum PC. 2009. Activity of telavancin against staphylococci and enterococci determined by MIC and resistance selection studies. Antimicrob Agents Chemother 53:4217–4224 http://dx.doi.org/10.1128/AAC.00742-09. [PubMed]
120. Goldstein BP, Draghi DC, Sheehan DJ, Hogan P, Sahm DF. 2007. Bactericidal activity and resistance development profiling of dalbavancin. Antimicrob Agents Chemother 51:1150–1154 http://dx.doi.org/10.1128/AAC.00620-06. [PubMed]
121. Werth BJ, Jain R, Hahn A, Cummings L, Weaver T, Waalkes A, Sengupta D, Salipante SJ, Rakita RM, Butler-Wu SM. 2017. Emergence of dalbavancin non-susceptible, vancomycin-intermediate Staphylococcus aureus (VISA) after treatment of MRSA central line-associated bloodstream infection with a dalbavancin- and vancomycin-containing regimen. Clin Microbiol Infect 24:429.e1–429.e5 http://dx.doi.org/10.1016/j.cmi.2017.07.028. [PubMed]
122. Yoo JI, Kim JW, Kang GS, Kim HS, Yoo JS, Lee YS. 2013. Prevalence of amino acid changes in the yvqF, vraSR, graSR, and tcaRAB genes from vancomycin intermediate resistant Staphylococcus aureus. J Microbiol 51:160–165 http://dx.doi.org/10.1007/s12275-013-3088-7. [PubMed]
123. Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI. 2008. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis 46:1069–1077 http://dx.doi.org/10.1086/527442. [PubMed]
124. Falagas ME, Roussos N, Gkegkes ID, Rafailidis PI, Karageorgopoulos DE. 2009. Fosfomycin for the treatment of infections caused by Gram-positive cocci with advanced antimicrobial drug resistance: a review of microbiological, animal and clinical studies. Expert Opin Investig Drugs 18:921–944 http://dx.doi.org/10.1517/13543780902967624. [PubMed]
125. Michalopoulos AS, Livaditis IG, Gougoutas V. 2011. The revival of fosfomycin. Int J Infect Dis 15:e732–e739 http://dx.doi.org/10.1016/j.ijid.2011.07.007. [PubMed]
126. Roberts AA, Sharma SV, Strankman AW, Duran SR, Rawat M, Hamilton CJ. 2013. Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus. Biochem J 451:69–79 http://dx.doi.org/10.1042/BJ20121541. [PubMed]
127. Fu Z, Ma Y, Chen C, Guo Y, Hu F, Liu Y, Xu X, Wang M. 2016. Prevalence of fosfomycin resistance and mutations in murA, glpT, and uhpT in methicillin-resistant Staphylococcus aureus strains isolated from blood and cerebrospinal fluid samples. Front Microbiol 6:1544 http://dx.doi.org/10.3389/fmicb.2015.01544. [PubMed]
128. Castañeda-García A, Blázquez J, Rodríguez-Rojas A. 2013. Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics (Basel) 2:217–236 http://dx.doi.org/10.3390/antibiotics2020217. [PubMed]
129. Takahata S, Ida T, Hiraishi T, Sakakibara S, Maebashi K, Terada S, Muratani T, Matsumoto T, Nakahama C, Tomono K. 2010. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents 35:333–337 http://dx.doi.org/10.1016/j.ijantimicag.2009.11.011. [PubMed]
130. Miller WR, Bayer AS, Arias CA. 2016. Mechanism of action and resistance to daptomycin in Staphylococcus aureus and enterococci. Cold Spring Harb Perspect Med 6:a026997 http://dx.doi.org/10.1101/cshperspect.a026997. [PubMed]
131. Boucher H, Miller LG, Razonable RR. 2010. Serious infections caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis 51(Suppl 2) :S183–S197 http://dx.doi.org/10.1086/653519. [PubMed]
132. Mascio CT, Alder JD, Silverman JA. 2007. Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother 51:4255–4260 http://dx.doi.org/10.1128/AAC.00824-07. [PubMed]
133. Sader HS, Farrell DJ, Flamm RK, Jones RN. 2014. Daptomycin activity tested against 164457 bacterial isolates from hospitalised patients: summary of 8 years of a Worldwide Surveillance Programme (2005-2012). Int J Antimicrob Agents 43:465–469 http://dx.doi.org/10.1016/j.ijantimicag.2014.01.018. [PubMed]
134. Peleg AY, Miyakis S, Ward DV, Earl AM, Rubio A, Cameron DR, Pillai S, Moellering RC Jr, Eliopoulos GM. 2012. Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. PLoS One 7:e28316 http://dx.doi.org/10.1371/journal.pone.0028316. [PubMed]
135. Bayer AS, Mishra NN, Sakoulas G, Nonejuie P, Nast CC, Pogliano J, Chen K-T, Ellison SN, Yeaman MR, Yang S-J. 2014. Heterogeneity of mprF sequences in methicillin-resistant Staphylococcus aureus clinical isolates: role in cross-resistance between daptomycin and host defense antimicrobial peptides. Antimicrob Agents Chemother 58:7462–7467 http://dx.doi.org/10.1128/AAC.03422-14. [PubMed]
136. Bayer AS, Mishra NN, Chen L, Kreiswirth BN, Rubio A, Yang S-J. 2015. Frequency and distribution of single-nucleotide polymorphisms within mprF in methicillin-resistant Staphylococcus aureus clinical isolates and their role in cross-resistance to daptomycin and host defense antimicrobial peptides. Antimicrob Agents Chemother 59:4930–4937 http://dx.doi.org/10.1128/AAC.00970-15. [PubMed]
137. Ernst CM, Staubitz P, Mishra NN, Yang S-J, Hornig G, Kalbacher H, Bayer AS, Kraus D, Peschel A. 2009. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog 5:e1000660 http://dx.doi.org/10.1371/journal.ppat.1000660. [PubMed]
138. Kang K-M, Mishra NN, Park KT, Lee G-Y, Park YH, Bayer AS, Yang S-J. 2017. Phenotypic and genotypic correlates of daptomycin-resistant methicillin-susceptible Staphylococcus aureus clinical isolates. J Microbiol 55:153–159 http://dx.doi.org/10.1007/s12275-017-6509-1. [PubMed]
139. Bayer AS, Mishra NN, Cheung AL, Rubio A, Yang S-J. 2016. Dysregulation of mprF and dltABCD expression among daptomycin-non-susceptible MRSA clinical isolates. J Antimicrob Chemother 71:2100–2104 http://dx.doi.org/10.1093/jac/dkw142. [PubMed]
140. Friedman L, Alder JD, Silverman JA. 2006. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 50:2137–2145 http://dx.doi.org/10.1128/AAC.00039-06. [PubMed]
141. Cui L, Isii T, Fukuda M, Ochiai T, Neoh HM, Camargo IL, Watanabe Y, Shoji M, Hishinuma T, Hiramatsu K. 2010. An RpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus. Antimicrob Agents Chemother 54:5222–5233 http://dx.doi.org/10.1128/AAC.00437-10. [PubMed]
142. Bertsche U, Weidenmaier C, Kuehner D, Yang S-J, Baur S, Wanner S, Francois P, Schrenzel J, Yeaman MR, Bayer AS. 2011. Correlation of daptomycin resistance in a clinical Staphylococcus aureus strain with increased cell wall teichoic acid production and d-alanylation. Antimicrob Agents Chemother 55:3922–3928 http://dx.doi.org/10.1128/AAC.01226-10. [PubMed]
143. Bertsche U, Yang S-J, Kuehner D, Wanner S, Mishra NN, Roth T, Nega M, Schneider A, Mayer C, Grau T, Bayer AS, Weidenmaier C. 2013. Increased cell wall teichoic acid production and d-alanylation are common phenotypes among daptomycin-resistant methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. PLoS One 8:e67398 http://dx.doi.org/10.1371/journal.pone.0067398. [PubMed]
144. Bæk KT, Thøgersen L, Mogenssen RG, Mellergaard M, Thomsen LE, Petersen A, Skov S, Cameron DR, Peleg AY, Frees D. 2015. Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX gene. Antimicrob Agents Chemother 59:6983–6991 http://dx.doi.org/10.1128/AAC.01303-15. [PubMed]
145. Cameron DR, Mortin LI, Rubio A, Mylonakis E, Moellering RC Jr,Eliopoulos GM, Peleg AY. 2015. Impact of daptomycin resistance on Staphylococcus aureus virulence. Virulence 6:127–131 http://dx.doi.org/10.1080/21505594.2015.1011532. [PubMed]
146. Pader V, Hakim S, Painter KL, Wigneshweraraj S, Clarke TB, Edwards AM. 2016. Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol 2:16194 http://dx.doi.org/10.1038/nmicrobiol.2016.194. [PubMed]
147. Mendes RE, Deshpande LM, Jones RN. 2014. Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist Updat 17:1–12 http://dx.doi.org/10.1016/j.drup.2014.04.002. [PubMed]
148. Cabellos C, Garrigós C, Taberner F, Force E, Pachón-Ibañez ME. 2014. Experimental study of the efficacy of linezolid alone and in combinations against experimental meningitis due to Staphylococcus aureus strains with decreased susceptibility to beta-lactams and glycopeptides. J Infect Chemother 20:563–568 http://dx.doi.org/10.1016/j.jiac.2014.05.008. [PubMed]
149. Leach KL, Swaney SM, Colca JR, McDonald WG, Blinn JR, Thomasco LM, Gadwood RC, Shinabarger D, Xiong L, Mankin AS. 2007. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell 26:393–402 http://dx.doi.org/10.1016/j.molcel.2007.04.005. [PubMed]
150. Colca JR, McDonald WG, Waldon DJ, Thomasco LM, Gadwood RC, Lund ET, Cavey GS, Mathews WR, Adams LD, Cecil ET, Pearson JD, Bock JH, Mott JE, Shinabarger DL, Xiong L, Mankin AS. 2003. Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. J Biol Chem 278:21972–21979 http://dx.doi.org/10.1074/jbc.M302109200. [PubMed]
151. Diep BA, Afasizheva A, Le HN, Kajikawa O, Matute-Bello G, Tkaczyk C, Sellman B, Badiou C, Lina G, Chambers HF. 2013. Effects of linezolid on suppressing in vivo production of staphylococcal toxins and improving survival outcomes in a rabbit model of methicillin-resistant Staphylococcus aureus necrotizing pneumonia. J Infect Dis 208:75–82 http://dx.doi.org/10.1093/infdis/jit129. [PubMed]
152. Bonn F, Pané-Farré J, Schlüter R, Schaffer M, Fuchs S, Bernhardt J, Riedel K, Otto A, Völker U, van Dijl JM, Hecker M, Mäder U, Becher D. 2016. Global analysis of the impact of linezolid onto virulence factor production in S. aureus USA300. Int J Med Microbiol 306:131–140 http://dx.doi.org/10.1016/j.ijmm.2016.02.004. [PubMed]
153. Wada A, Ohta H, Kulthanan K, Hiramatsu K. 1993. Molecular cloning and mapping of 16S-23S rRNA gene complexes of Staphylococcus aureus. J Bacteriol 175:7483–7487 http://dx.doi.org/10.1128/jb.175.22.7483-7487.1993. [PubMed]
154. Toh SM, Xiong L, Arias CA, Villegas MV, Lolans K, Quinn J, Mankin AS. 2007. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol Microbiol 64:1506–1514 http://dx.doi.org/10.1111/j.1365-2958.2007.05744.x. [PubMed]
155. Tsiodras S, Gold HS, Sakoulas G, Eliopoulos GM, Wennersten C, Venkataraman L, Moellering RC Jr, Ferraro MJ. 2001. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358:207–208 http://dx.doi.org/10.1016/S0140-6736(01)05410-1.
156. Meka VG, Pillai SK, Sakoulas G, Wennersten C, Venkataraman L, DeGirolami PC, Eliopoulos GM, Moellering RC Jr, Gold HS. 2004. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J Infect Dis 190:311–317 http://dx.doi.org/10.1086/421471. [PubMed]
157. Besier S, Ludwig A, Zander J, Brade V, Wichelhaus TA. 2008. Linezolid resistance in Staphylococcus aureus: gene dosage effect, stability, fitness costs, and cross-resistances. Antimicrob Agents Chemother 52:1570–1572 http://dx.doi.org/10.1128/AAC.01098-07.
158. Locke JB, Hilgers M, Shaw KJ. 2009. Novel ribosomal mutations in Staphylococcus aureus strains identified through selection with the oxazolidinones linezolid and torezolid (TR-700). Antimicrob Agents Chemother 53:5265–5274 http://dx.doi.org/10.1128/AAC.00871-09. [PubMed]
159. Tsakris A, Pillai SK, Gold HS, Thauvin-Eliopoulos C, Venkataraman L, Wennersten C, Moellering RC Jr, Eliopoulos GM. 2007. Persistence of rRNA operon mutated copies and rapid re-emergence of linezolid resistance in Staphylococcus aureus. J Antimicrob Chemother 60:649–651 http://dx.doi.org/10.1093/jac/dkm246. [PubMed]
160. Locke JB, Hilgers M, Shaw KJ. 2009. Mutations in ribosomal protein L3 are associated with oxazolidinone resistance in staphylococci of clinical origin. Antimicrob Agents Chemother 53:5275–5278 http://dx.doi.org/10.1128/AAC.01032-09. [PubMed]
161. Pillai SK, Sakoulas G, Wennersten C, Eliopoulos GM, Moellering RC Jr, Ferraro MJ, Gold HS. 2002. Linezolid resistance in Staphylococcus aureus: characterization and stability of resistant phenotype. J Infect Dis 186:1603–1607 http://dx.doi.org/10.1086/345368. [PubMed]
162. Mendes RE, Deshpande LM, Castanheira M, DiPersio J, Saubolle MA, Jones RN. 2008. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrob Agents Chemother 52:2244–2246 http://dx.doi.org/10.1128/AAC.00231-08. [PubMed]
163. Morales G, Picazo JJ, Baos E, Candel FJ, Arribi A, Peláez B, Andrade R, de la Torre M-Á, Fereres J, Sánchez-García M. 2010. Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis 50:821–825 http://dx.doi.org/10.1086/650574. [PubMed]
164. Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B. 2005. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol 57:1064–1073 http://dx.doi.org/10.1111/j.1365-2958.2005.04754.x. [PubMed]
165. Kehrenberg C, Cuny C, Strommenger B, Schwarz S, Witte W. 2009. Methicillin-resistant and -susceptible Staphylococcus aureus strains of clonal lineages ST398 and ST9 from swine carry the multidrug resistance gene cfr. Antimicrob Agents Chemother 53:779–781 http://dx.doi.org/10.1128/AAC.01376-08. [PubMed]
166. Shen J, Wang Y, Schwarz S. 2013. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 68:1697–1706 http://dx.doi.org/10.1093/jac/dkt092. [PubMed]
167. Cafini F, Nguyen TT, Higashide M, Román F, Prieto J, Morikawa K. 2016. Horizontal gene transmission of the cfr gene to MRSA and Enterococcus: role of Staphylococcus epidermidis as a reservoir and alternative pathway for the spread of linezolid resistance. J Antimicrob Chemother 71:587–592 http://dx.doi.org/10.1093/jac/dkv391. [PubMed]
168. Locke JB, Zurenko GE, Shaw KJ, Bartizal K. 2014. Tedizolid for the management of human infections: in vitro characteristics. Clin Infect Dis 58(Suppl 1) :S35–S42 http://dx.doi.org/10.1093/cid/cit616. [PubMed]
169. Le VT, Le HN, Pinheiro MG, Hahn KJ, Dinh ML, Larson KB, Flanagan SD, Badiou C, Lina G, Tkaczyk C, Sellman BR, Diep BA. 2017. Effects of tedizolid phosphate on survival outcomes and suppression of production of staphylococcal toxins in a rabbit model of methicillin-resistant Staphylococcus aureus necrotizing pneumonia. Antimicrob Agents Chemother 61:e02734-16 http://dx.doi.org/10.1128/AAC.02734-16. [PubMed]
170. Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM. 2013. The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 68:4–11 http://dx.doi.org/10.1093/jac/dks354. [PubMed]
171. López-Hernández I, Valverde MD, Díaz NB, Pascual A. 2015. First report of linezolid dependence in methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 21:650.e1–650.e4. [PubMed]
172. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, Rybak M, Talan DA, Chambers HF. 2011. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52:285–292. [PubMed]
173. Herigon JC, Hersh AL, Gerber JS, Zaoutis TE, Newland JG. 2010. Antibiotic management of Staphylococcus aureus infections in US children’s hospitals, 1999-2008. Pediatrics 125:e1294–e1300 http://dx.doi.org/10.1542/peds.2009-2867. [PubMed]
174. Wilson DN. 2014. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 12:35–48 http://dx.doi.org/10.1038/nrmicro3155. [PubMed]
175. Vannuffel P, Cocito C. 1996. Mechanism of action of streptogramins and macrolides. Drugs 51(Suppl 1) :20–30 http://dx.doi.org/10.2165/00003495-199600511-00006. [PubMed]
176. Hancock RE. 2005. Mechanisms of action of newer antibiotics for Gram-positive pathogens. Lancet Infect Dis 5:209–218 http://dx.doi.org/10.1016/S1473-3099(05)70051-7.
177. Roberts MC. 2008. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282:147–159 http://dx.doi.org/10.1111/j.1574-6968.2008.01145.x. [PubMed]
178. Pyörälä S, Baptiste KE, Catry B, van Duijkeren E, Greko C, Moreno MA, Pomba MCMF, Rantala M, Ružauskas M, Sanders P, Threlfall EJ, Torren-Edo J, Törneke K. 2014. Macrolides and lincosamides in cattle and pigs: use and development of antimicrobial resistance. Vet J 200:230–239 http://dx.doi.org/10.1016/j.tvjl.2014.02.028. [PubMed]
179. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. 2006. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother 50:2500–2505 http://dx.doi.org/10.1128/AAC.00131-06. [PubMed]
180. Prunier A-L, Malbruny B, Tandé D, Picard B, Leclercq R. 2002. Clinical isolates of Staphylococcus aureus with ribosomal mutations conferring resistance to macrolides. Antimicrob Agents Chemother 46:3054–3056 http://dx.doi.org/10.1128/AAC.46.9.3054-3056.2002. [PubMed]
181. Prunier A-L, Malbruny B, Laurans M, Brouard J, Duhamel J-F, Leclercq R. 2003. High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J Infect Dis 187:1709–1716 http://dx.doi.org/10.1086/374937. [PubMed]
182. Wright GD. 2005. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57:1451–1470 http://dx.doi.org/10.1016/j.addr.2005.04.002. [PubMed]
183. Poole K. 2005. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51 http://dx.doi.org/10.1093/jac/dki171. [PubMed]
184. Reynolds E, Ross JI, Cove JH. 2003. msr(A) and related macrolide/streptogramin resistance determinants: incomplete transporters? Int J Antimicrob Agents 22:228–236 http://dx.doi.org/10.1016/S0924-8579(03)00218-8.
185. Gentry DR, McCloskey L, Gwynn MN, Rittenhouse SF, Scangarella N, Shawar R, Holmes DJ. 2008. Genetic characterization of Vga ABC proteins conferring reduced susceptibility to pleuromutilins in Staphylococcus aureus. Antimicrob Agents Chemother 52:4507–4509 http://dx.doi.org/10.1128/AAC.00915-08. [PubMed]
186. Floyd JL, Smith KP, Kumar SH, Floyd JT, Varela MF. 2010. LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob Agents Chemother 54:5406–5412 http://dx.doi.org/10.1128/AAC.00580-10. [PubMed]
187. Huang J, O’Toole PW, Shen W, Amrine-Madsen H, Jiang X, Lobo N, Palmer LM, Voelker L, Fan F, Gwynn MN, McDevitt D. 2004. Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob Agents Chemother 48:909–917 http://dx.doi.org/10.1128/AAC.48.3.909-917.2004. [PubMed]
188. Cunha BA. 2001. Antibiotic side effects. Med Clin North Am 85:149–185.
189. Fraunfelder FW, Fraunfelder FT. 2013. Restricting topical ocular chloramphenicol eye drop use in the United States. Did we overreact? Am J Ophthalmol 156:420–422 http://dx.doi.org/10.1016/j.ajo.2013.05.004. [PubMed]
190. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. 2004. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28:519–542 http://dx.doi.org/10.1016/j.femsre.2004.04.001. [PubMed]
191. Lyon BR, Skurray R. 1987. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 51:88–134. [PubMed]
192. Kehrenberg C, Schwarz S. 2006. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother 50:1156–1163 http://dx.doi.org/10.1128/AAC.50.4.1156-1163.2006. [PubMed]
193. Novak R. 2011. Are pleuromutilin antibiotics finally fit for human use? Ann N Y Acad Sci 1241:71–81 http://dx.doi.org/10.1111/j.1749-6632.2011.06219.x. [PubMed]
194. Yang LP, Keam SJ. 2008. Retapamulin: a review of its use in the management of impetigo and other uncomplicated superficial skin infections. Drugs 68:855–873 http://dx.doi.org/10.2165/00003495-200868060-00008. [PubMed]
195. Kosowska-Shick K, Clark C, Credito K, McGhee P, Dewasse B, Bogdanovich T, Appelbaum PC. 2006. Single- and multistep resistance selection studies on the activity of retapamulin compared to other agents against Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother 50:765–769 http://dx.doi.org/10.1128/AAC.50.2.765-769.2006. [PubMed]
196. Gentry DR, Rittenhouse SF, McCloskey L, Holmes DJ. 2007. Stepwise exposure of Staphylococcus aureus to pleuromutilins is associated with stepwise acquisition of mutations in rplC and minimally affects susceptibility to retapamulin. Antimicrob Agents Chemother 51:2048–2052 http://dx.doi.org/10.1128/AAC.01066-06. [PubMed]
197. Kadlec K, Fessler AT, Hauschild T, Schwarz S. 2012. Novel and uncommon antimicrobial resistance genes in livestock-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 18:745–755 http://dx.doi.org/10.1111/j.1469-0691.2012.03842.x. [PubMed]
198. Magnet S, Blanchard JS. 2005. Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–498 http://dx.doi.org/10.1021/cr0301088. [PubMed]
199. Kotra LP, Haddad J, Mobashery S. 2000. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother 44:3249–3256 http://dx.doi.org/10.1128/AAC.44.12.3249-3256.2000. [PubMed]
200. Garneau-Tsodikova S, Labby KJ. 2016. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. Medchemcomm 7:11–27 http://dx.doi.org/10.1039/C5MD00344J. [PubMed]
201. Ramirez MS, Tolmasky ME. 2010. Aminoglycoside modifying enzymes. Drug Resist Updat 13:151–171 http://dx.doi.org/10.1016/j.drup.2010.08.003.
202. Daigle DM, Hughes DW, Wright GD. 1999. Prodigious substrate specificity of AAC(6′)-APH(2″), an aminoglycoside antibiotic resistance determinant in enterococci and staphylococci. Chem Biol 6:99–110 http://dx.doi.org/10.1016/S1074-5521(99)80006-4.
203. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G. 2006. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305 http://dx.doi.org/10.1038/nrmicro1384.
204. Kahl BC, Becker K, Löffler B. 2016. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin Microbiol Rev 29:401–427 http://dx.doi.org/10.1128/CMR.00069-15.
205. Takahashi Y, Igarashi M. 2017. Destination of aminoglycoside antibiotics in the ‘post-antibiotic era’. J Antibiot (Tokyo). doi:10.1038/ja.2017.117.
206. Wachino J, Shibayama K, Kimura K, Yamane K, Suzuki S, Arakawa Y. 2010. RmtC introduces G1405 methylation in 16S rRNA and confers high-level aminoglycoside resistance on Gram-positive microorganisms. FEMS Microbiol Lett 311:56–60 http://dx.doi.org/10.1111/j.1574-6968.2010.02068.x.
207. Zhanel GG, Karlowsky JA, Rubinstein E, Hoban DJ. 2006. Tigecycline: a novel glycylcycline antibiotic. Expert Rev Anti Infect Ther 4:9–25 http://dx.doi.org/10.1586/14787210.4.1.9.
208. Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260 http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001.
209. Nelson ML, Levy SB. 2011. The history of the tetracyclines. Ann N Y Acad Sci 1241:17–32 http://dx.doi.org/10.1111/j.1749-6632.2011.06354.x.
210. Kasbekar N. 2006. Tigecycline: a new glycylcycline antimicrobial agent. Am J Health Syst Pharm 63:1235–1243 http://dx.doi.org/10.2146/ajhp050487.
211. Jensen SO, Lyon BR. 2009. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol 4:565–582 http://dx.doi.org/10.2217/fmb.09.30.
212. Li S, Skov RL, Han X, Larsen AR, Larsen J, Sørum M, Wulf M, Voss A, Hiramatsu K, Ito T. 2011. Novel types of staphylococcal cassette chromosome mec elements identified in clonal complex 398 methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 55:3046–3050 http://dx.doi.org/10.1128/AAC.01475-10.
213. Truong-Bolduc QC, Dunman PM, Strahilevitz J, Projan SJ, Hooper DC. 2005. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 187:2395–2405 http://dx.doi.org/10.1128/JB.187.7.2395-2405.2005.
214. Connell SR, Tracz DM, Nierhaus KH, Taylor DE. 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47:3675–3681 http://dx.doi.org/10.1128/AAC.47.12.3675-3681.2003.
215. Schmitz F-J, Krey A, Sadurski R, Verhoef J, Milatovic D, Fluit AC, European SENTRY Participants. 2001. Resistance to tetracycline and distribution of tetracycline resistance genes in European Staphylococcus aureus isolates. J Antimicrob Chemother 47:239–240 http://dx.doi.org/10.1093/jac/47.2.239.
216. Larsen J, Clasen J, Hansen JE, Paulander W, Petersen A, Larsen AR, Frees D. 2016. Copresence of tet (K) and tet (M) in livestock-associated methicillin-resistant Staphylococcus aureus clonal complex 398 is associated with increased fitness during exposure to sublethal concentrations of tetracycline. Antimicrob Agents Chemother 60:4401–4403 http://dx.doi.org/10.1128/AAC.00426-16.
217. Fluit AC, Florijn A, Verhoef J, Milatovic D. 2005. Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline. Antimicrob Agents Chemother 49:1636–1638 http://dx.doi.org/10.1128/AAC.49.4.1636-1638.2005.
218. Sun Y, Cai Y, Liu X, Bai N, Liang B, Wang R. 2013. The emergence of clinical resistance to tigecycline. Int J Antimicrob Agents 41:110–116 http://dx.doi.org/10.1016/j.ijantimicag.2012.09.005.
219. Sader HS, Farrell DJ, Flamm RK, Jones RN. 2014. Variation in potency and spectrum of tigecycline activity against bacterial strains from U.S. medical centers since its approval for clinical use (2006 to 2012). Antimicrob Agents Chemother 58:2274–2280 http://dx.doi.org/10.1128/AAC.02684-13.
220. Garza-González E, Llaca-Díaz JM, Bosques-Padilla FJ, González GM. 2010. Prevalence of multidrug-resistant bacteria at a tertiary-care teaching hospital in Mexico: special focus on Acinetobacter baumannii. Chemotherapy 56:275–279 http://dx.doi.org/10.1159/000319903.
221. McAleese F, Petersen P, Ruzin A, Dunman PM, Murphy E, Projan SJ, Bradford PA. 2005. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 49:1865–1871 http://dx.doi.org/10.1128/AAC.49.5.1865-1871.2005.
222. Dabul ANG, Avaca-Crusca JS, Van Tyne D, Gilmore MS, Camargo ILBC. 2017. Resistance in in vitro selected tigecycline-resistant methicillin-resistant Staphylococcus aureus sequence type 5 is driven by mutations in mepR and mepA genes. Microbial Drug Resist 24:519–526.
223. Beabout K, Hammerstrom TG, Perez AM, Magalhães BF, Prater AG, Clements TP, Arias CA, Saxer G, Shamoo Y. 2015. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility. Antimicrob Agents Chemother 59:5561–5566 http://dx.doi.org/10.1128/AAC.00547-15.
224. Thomas CM, Hothersall J, Willis CL, Simpson TJ. 2010. Resistance to and synthesis of the antibiotic mupirocin. Nat Rev Microbiol 8:281–289 http://dx.doi.org/10.1038/nrmicro2278.
225. Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F. 2006. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–739 http://dx.doi.org/10.1016/S0140-6736(06)68231-7.
226. Seah C, Alexander DC, Louie L, Simor A, Low DE, Longtin J, Melano RG. 2012. MupB, a new high-level mupirocin resistance mechanism in Staphylococcus aureus. Antimicrob Agents Chemother 56:1916–1920 http://dx.doi.org/10.1128/AAC.05325-11.
227. Howden BP, Grayson ML. 2006. Dumb and dumber: the potential waste of a useful antistaphylococcal agent: emerging fusidic acid resistance in Staphylococcus aureus. Clin Infect Dis 42:394–400 http://dx.doi.org/10.1086/499365.
228. O’Neill AJ, Cove JH, Chopra I. 2001. Mutation frequencies for resistance to fusidic acid and rifampicin in Staphylococcus aureus. J Antimicrob Chemother 47:647–650 http://dx.doi.org/10.1093/jac/47.5.647.
229. Farrell DJ, Castanheira M, Chopra I. 2011. Characterization of global patterns and the genetics of fusidic acid resistance. Clin Infect Dis 52(Suppl 7) :S487–S492 http://dx.doi.org/10.1093/cid/cir164.
230. Norström T, Lannergård J, Hughes D. 2007. Genetic and phenotypic identification of fusidic acid-resistant mutants with the small-colony-variant phenotype in Staphylococcus aureus. Antimicrob Agents Chemother 51:4438–4446 http://dx.doi.org/10.1128/AAC.00328-07. [PubMed]
231. Lannergård J, Cao S, Norström T, Delgado A, Gustafson JE, Hughes D. 2011. Genetic complexity of fusidic acid-resistant small colony variants (SCV) in Staphylococcus aureus. PLoS One 6:e28366. [PubMed]
232. O’Neill AJ, McLaws F, Kahlmeter G, Henriksen AS, Chopra I. 2007. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob Agents Chemother 51:1737–1740 http://dx.doi.org/10.1128/AAC.01542-06. [PubMed]
233. Cox G, Thompson GS, Jenkins HT, Peske F, Savelsbergh A, Rodnina MV, Wintermeyer W, Homans SW, Edwards TA, O’Neill AJ. 2012. Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid. Proc Natl Acad Sci U S A 109:2102–2107 http://dx.doi.org/10.1073/pnas.1117275109. [PubMed]
234. Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Spratt BG, Parkhill J. 2004. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101:9786–9791 http://dx.doi.org/10.1073/pnas.0402521101. [PubMed]
235. O’Neill AJ, Larsen AR, Skov R, Henriksen AS, Chopra I. 2007. Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus. J Clin Microbiol 45:1505–1510 http://dx.doi.org/10.1128/JCM.01984-06. [PubMed]
236. Chen H-J, Chang Y-C, Tsai J-C, Hung W-C, Lin Y-T, You S-J, Tseng S-P, Teng L-J. 2013. New structure of phage-related islands carrying fusB and a virulence gene in fusidic acid-resistant Staphylococcus epidermidis. Antimicrob Agents Chemother 57:5737–5739 http://dx.doi.org/10.1128/AAC.01433-13. [PubMed]
237. Blondeau JM. 2004. Fluoroquinolones: mechanism of action, classification, and development of resistance. Surv Ophthalmol 49(Suppl 2) :S73–S78 http://dx.doi.org/10.1016/j.survophthal.2004.01.005. [PubMed]
238. Gade ND, Qazi MS. 2013. Fluoroquinolone therapy in Staphylococcus aureus infections: where do we stand? J Lab Physicians 5:109–112 http://dx.doi.org/10.4103/0974-2727.119862. [PubMed]
239. MacDougall C, Powell JP, Johnson CK, Edmond MB, Polk RE. 2005. Hospital and community fluoroquinolone use and resistance in Staphylococcus aureus and Escherichia coli in 17 US hospitals. Clin Infect Dis 41:435–440 http://dx.doi.org/10.1086/432056. [PubMed]
240. Foster TJ. 2017. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 41:430–449 http://dx.doi.org/10.1093/femsre/fux007. [PubMed]
241. Tanaka M, Wang T, Onodera Y, Uchida Y, Sato K. 2000. Mechanism of quinolone resistance in Staphylococcus aureus. J Infect Chemother 6:131–139 http://dx.doi.org/10.1007/s101560070010. [PubMed]
242. Ince D, Hooper DC. 2001. Mechanisms and frequency of resistance to gatifloxacin in comparison to AM-1121 and ciprofloxacin in Staphylococcus aureus. Antimicrob Agents Chemother 45:2755–2764 http://dx.doi.org/10.1128/AAC.45.10.2755-2764.2001. [PubMed]
243. Hooper DC. 2000. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis 31(Suppl 2) :S24–S28 http://dx.doi.org/10.1086/314056. [PubMed]
244. Floss HG, Yu T-W. 2005. Rifamycin-mode of action, resistance, and biosynthesis. Chem Rev 105:621–632 http://dx.doi.org/10.1021/cr030112j. [PubMed]
245. Wichelhaus TA, Böddinghaus B, Besier S, Schäfer V, Brade V, Ludwig A. 2002. Biological cost of rifampin resistance from the perspective of Staphylococcus aureus. Antimicrob Agents Chemother 46:3381–3385 http://dx.doi.org/10.1128/AAC.46.11.3381-3385.2002. [PubMed]
246. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z. 2015. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6:10063 http://dx.doi.org/10.1038/ncomms10063. [PubMed]
247. Huovinen P, Huovinen P. 2001. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis 32:1608–1614 http://dx.doi.org/10.1086/320532. [PubMed]
248. Hampele IC, D’Arcy A, Dale GE, Kostrewa D, Nielsen J, Oefner C, Page MG, Schönfeld H-J, Stüber D, Then RL. 1997. Structure and function of the dihydropteroate synthase from Staphylococcus aureus. J Mol Biol 268:21–30. http://dx.doi.org/10.1006/jmbi.1997.0944. [PubMed]
249. Vickers AA, Potter NJ, Fishwick CW, Chopra I, O’Neill AJ. 2009. Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques. J Antimicrob Chemother 63:1112–1117 http://dx.doi.org/10.1093/jac/dkp090. [PubMed]
250. Nurjadi D, Schäfer J, Friedrich-Jänicke B, Mueller A, Neumayr A, Calvo-Cano A, Goorhuis A, Molhoek N, Lagler H, Kantele A. 2015. Predominance of dfrG as determinant of trimethoprim resistance in imported Staphylococcus aureus. Clin Microbiol Infect 21:1095.e5–1095.e9. [PubMed]
251. Kriegeskorte A, Lorè NI, Bragonzi A, Riva C, Kelkenberg M, Becker K, Proctor RA, Peters G, Kahl BC. 2015. Thymidine-dependent Staphylococcus aureus small-colony variants are induced by trimethoprim-sulfamethoxazole (SXT) and have increased fitness during SXT challenge. Antimicrob Agents Chemother 59:7265–7272 http://dx.doi.org/10.1128/AAC.00742-15.
252. Chatterjee I, Kriegeskorte A, Fischer A, Deiwick S, Theimann N, Proctor RA, Peters G, Herrmann M, Kahl BC. 2008. In vivo mutations of thymidylate synthase (encoded by thyA) are responsible for thymidine dependency in clinical small-colony variants of Staphylococcus aureus. J Bacteriol 190:834–842 http://dx.doi.org/10.1128/JB.00912-07.
253. Besier S, Zander J, Siegel E, Saum SH, Hunfeld K-P, Ehrhart A, Brade V, Wichelhaus TA. 2008. Thymidine-dependent Staphylococcus aureus small-colony variants: human pathogens that are relevant not only in cases of cystic fibrosis lung disease. J Clin Microbiol 46:3829–3832 http://dx.doi.org/10.1128/JCM.01440-08.
254. WHO. 2017. Antibacterial Agents in Clinical Development: an Analysis of the Antibacterial Clinical Development Pipeline, Including Tuberculosis. World Health Organization, Geneva, Switzerland.
255. Remy JM, Tow-Keogh CA, McConnell TS, Dalton JM, Devito JA. 2012. Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: resistance selection and characterization. J Antimicrob Chemother 67:2814–2820 http://dx.doi.org/10.1093/jac/dks307.
256. Butler MS, Blaskovich MA, Cooper MA. 2016. Antibiotics in the clinical pipeline at the end of 2015. J Antibiot (Tokyo) 70:3–24.
257. Mensa B, Howell GL, Scott R, DeGrado WF. 2014. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob Agents Chemother 58:5136–5145 http://dx.doi.org/10.1128/AAC.02955-14.
258. Vermote A, Van Calenbergh S. 2017. Small-molecule potentiators for conventional antibiotics against Staphylococcus aureus. ACS Infect Dis 3:780–796 http://dx.doi.org/10.1021/acsinfecdis.7b00084.
259. Vestergaard M, Nøhr-Meldgaard K, Bojer MS, Krogsgård Nielsen C, Meyer RL, Slavetinsky C, Peschel A, Ingmer H. 2017. Inhibition of the ATP synthase eliminates the intrinsic resistance of Staphylococcus aureus towards polymyxins. MBio 8:e01114-17 http://dx.doi.org/10.1128/mBio.01114-17.
260. Klitgaard JK, Skov MN, Kallipolitis BH, Kolmos HJ. 2008. Reversal of methicillin resistance in Staphylococcus aureus by thioridazine. J Antimicrob Chemother 62:1215–1221 http://dx.doi.org/10.1093/jac/dkn417.
261. Rasmussen KS, Poulsen MØ, Jacobsen K, Skov MN, Kolmos HJ, Kallipolitis BH, Klitgaard JK. 2017. Combination of thioridazine and dicloxacillin as a possible treatment strategy of staphylococci. New Microbiol 40:146–147.
262. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock RE, Harper D, Henderson IR, Hilpert K, Jones BV, Kadioglu A, Knowles D, Ólafsdóttir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas CM, Trust TJ, Warn P, Rex JH. 2016. Alternatives to antibiotics: a pipeline portfolio review. Lancet Infect Dis 16:239–251 http://dx.doi.org/10.1016/S1473-3099(15)00466-1.
263. Bebbington C, Yarranton G. 2008. Antibodies for the treatment of bacterial infections: current experience and future prospects. Curr Opin Biotechnol 19:613–619 http://dx.doi.org/10.1016/j.copbio.2008.10.002.
264. Lowy FD. 1998. Staphylococcus aureus infections. N Engl J Med 339:520–532 http://dx.doi.org/10.1056/NEJM199808203390806.
265. Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, DePalatis L, Raab H, Hazenbos WL, Morisaki JH, Kim J, Park S, Darwish M, Lee BC, Hernandez H, Loyet KM, Lupardus P, Fong R, Yan D, Chalouni C, Luis E, Khalfin Y, Plise E, Cheong J, Lyssikatos JP, Strandh M, Koefoed K, Andersen PS, Flygare JA, Wah Tan M, Brown EJ, Mariathasan S. 2015. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527:323–328 http://dx.doi.org/10.1038/nature16057.
266. Rasko DA, Sperandio V. 2010. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9:117–128 http://dx.doi.org/10.1038/nrd3013.
267. Nielsen A, Månsson M, Bojer MS, Gram L, Larsen TO, Novick RP, Frees D, Frøkiær H, Ingmer H. 2014. Solonamide B inhibits quorum sensing and reduces Staphylococcus aureus mediated killing of human neutrophils. PLoS One 9:e84992 http://dx.doi.org/10.1371/journal.pone.0084992.
268. Dickey SW, Cheung GYC, Otto M. 2017. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 16:457–471 http://dx.doi.org/10.1038/nrd.2017.23.
269. Baldry M, Nielsen A, Bojer MS, Zhao Y, Friberg C, Ifrah D, Glasser Heede N, Larsen TO, Frøkiær H, Frees D, Zhang L, Dai H, Ingmer H. 2016. Norlichexanthone reduces virulence gene expression and biofilm formation in Staphylococcus aureus. PLoS One 11:e0168305 http://dx.doi.org/10.1371/journal.pone.0168305.
270. Mayville P, Ji G, Beavis R, Yang H, Goger M, Novick RP, Muir TW. 1999. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc Natl Acad Sci U S A 96:1218–1223 http://dx.doi.org/10.1073/pnas.96.4.1218.
271. Paharik AE, Parlet CP, Chung N, Todd DA, Rodriguez EI, Van Dyke MJ, Cech NB, Horswill AR. 2017. Coagulase-negative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing. Cell Host Microbe 22:746–756.e5 http://dx.doi.org/10.1016/j.chom.2017.11.001.
272. Sulakvelidze A, Alavidze Z, Morris JG Jr. 2001. Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659 http://dx.doi.org/10.1128/AAC.45.3.649-659.2001.
273. Merril CR, Scholl D, Adhya SL. 2003. The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2:489–497 http://dx.doi.org/10.1038/nrd1111.
274. Fernebro J. 2011. Fighting bacterial infections-future treatment options. Drug Resist Updat 14:125–139 http://dx.doi.org/10.1016/j.drup.2011.02.001.
275. Vuong C, Yeh AJ, Cheung GY, Otto M. 2016. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs 25:73–93 http://dx.doi.org/10.1517/13543784.2016.1109077.
276. Rolinson GN. 1998. Forty years of beta-lactam research. J Antimicrob Chemother 41:589–603 http://dx.doi.org/10.1093/jac/41.6.589.
277. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. 2011. Carbapenems: past, present, and future. Antimicrob Agents Chemother 55:4943–4960 http://dx.doi.org/10.1128/AAC.00296-11.
278. Reynolds PE. 1989. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8:943–950 http://dx.doi.org/10.1007/BF01967563.
279. Zhanel GG, Love R, Adam H, Golden A, Zelenitsky S, Schweizer F, Gorityala B, Lagacé-Wiens PR, Rubinstein E, Walkty A, Gin AS, Gilmour M, Hoban DJ, Lynch JP III, Karlowsky JA. 2015. Tedizolid: a novel oxazolidinone with potent activity against multidrug-resistant Gram-positive pathogens. Drugs 75:253–270 http://dx.doi.org/10.1007/s40265-015-0352-7. [PubMed]
280. Moellering RC Jr. 2003. Linezolid: the first oxazolidinone antimicrobial. Ann Intern Med 138:135–142 http://dx.doi.org/10.7326/0003-4819-138-2-200301210-00015. [PubMed]
281. Gaynor M, Mankin AS. 2003. Macrolide antibiotics: binding site, mechanism of action, resistance. Curr Top Med Chem 3:949–961 http://dx.doi.org/10.2174/1568026033452159.
282. Mast Y, Wohlleben W. 2014. Streptogramins: two are better than one! Int J Med Microbiol 304:44–50 http://dx.doi.org/10.1016/j.ijmm.2013.08.008. [PubMed]
283. Spízek J, Novotná J, Řezanka T. 2004. Lincosamides: chemical structure, biosynthesis, mechanism of action, resistance, and applications. Adv Appl Microbiol 56:121–154 http://dx.doi.org/10.1016/S0065-2164(04)56004-5.
284. Yunis AA. 1988. Chloramphenicol: relation of structure to activity and toxicity. Annu Rev Pharmacol Toxicol 28:83–100 http://dx.doi.org/10.1146/annurev.pa.28.040188.000503. [PubMed]
285. Curbete MM, Salgado HRN. 2016. A critical review of the properties of fusidic acid and analytical methods for its determination. Crit Rev Anal Chem 46:352–360 http://dx.doi.org/10.1080/10408347.2015.1084225. [PubMed]
286. Masters PA, O’Bryan TA, Zurlo J, Miller DQ, Joshi N. 2003. Trimethoprim-sulfamethoxazole revisited. Arch Intern Med 163:402–410 http://dx.doi.org/10.1001/archinte.163.4.402. [PubMed]

Article metrics loading...



is capable of becoming resistant to all classes of antibiotics clinically available and resistance can develop through mutations in chromosomal genes or through acquisition of horizontally transferred resistance determinants. This review covers the most important antibiotics available for treatment of infections and a special emphasis is dedicated to the current knowledge of the wide variety of resistance mechanisms that employ to withstand antibiotics. Since resistance development has been inevitable for all currently available antibiotics, new therapies are continuously under development. Besides development of new small molecules affecting cell viability, alternative approaches including anti-virulence and bacteriophage therapeutics are being investigated and may become important tools to combat staphylococcal infections in the future.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Generic image for table

Antibiotics used against

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0057-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error