No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Temperate Phages of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Hanne Ingmer1, David Gerlach2, Christiane Wolz3
  • Editors: Vincent A. Fischetti4, Richard P. Novick5, Joseph J. Ferretti6, Daniel A. Portnoy7, Miriam Braunstein8, Julian I. Rood9
    Affiliations: 1: Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; 2: Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany; 3: Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany; 4: The Rockefeller University, New York, NY; 5: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 6: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 7: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 8: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 9: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec September 2019 vol. 7 no. 5 doi:10.1128/microbiolspec.GPP3-0058-2018
  • Received 05 February 2018 Accepted 22 January 2019 Published 27 September 2019
  • Christiane Wolz, [email protected]
image of Temperate Phages of <span class="jp-italic">Staphylococcus aureus</span>
    Preview this microbiology spectrum article:
    Zoom in

    Temperate Phages of , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/5/GPP3-0058-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/5/GPP3-0058-2018-2.gif
  • Abstract:

    Most isolates carry multiple bacteriophages in their genome, which provide the pathogen with traits important for niche adaptation. Such temperate phages often encode a variety of accessory factors that influence virulence, immune evasion and host preference of the bacterial lysogen. Moreover, transducing phages are primary vehicles for horizontal gene transfer. Wall teichoic acid (WTA) acts as a common phage receptor for staphylococcal phages and structural variations of WTA govern phage-host specificity thereby shaping gene transfer across clonal lineages and even species. Thus, bacteriophages are central for the success of as a human pathogen.

  • Citation: Ingmer H, Gerlach D, Wolz C. 2019. Temperate Phages of . Microbiol Spectrum 7(5):GPP3-0058-2018. doi:10.1128/microbiolspec.GPP3-0058-2018.


1. Novick RP, Christie GE, Penadés JR. 2010. The phage-related chromosomal islands of Gram-positive bacteria. Nat Rev Microbiol 8:541–551 http://dx.doi.org/10.1038/nrmicro2393. [PubMed]
2. Penadés JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. 2015. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol 23:171–178 http://dx.doi.org/10.1016/j.mib.2014.11.019. [PubMed]
3. Kwan T, Liu J, DuBow M, Gros P, Pelletier J. 2005. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci U S A 102:5174–5179 http://dx.doi.org/10.1073/pnas.0501140102. [PubMed]
4. Łobocka M, Hejnowicz MS, Dąbrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dąbrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Głowacka A. 2012. Genomics of staphylococcal Twort-like phages: potential therapeutics of the post-antibiotic era. Adv Virus Res 83:143–216 http://dx.doi.org/10.1016/B978-0-12-394438-2.00005-0. [PubMed]
5. Deghorain M, Van Melderen L. 2012. The staphylococci phages family: an overview. Viruses 4:3316–3335 http://dx.doi.org/10.3390/v4123316. [PubMed]
6. Xia G, Wolz C. 2013. Phages of Staphylococcus aureus and their impact on host evolution. Infect Genet Evol 21:593–601. [PubMed]
7. Brüssow H, Desiere F. 2001. Comparative phage genomics and the evolution of siphoviridae: insights from dairy phages. Mol Microbiol 39:213–222 http://dx.doi.org/10.1046/j.1365-2958.2001.02228.x. [PubMed]
8. Iandolo JJ, Worrell V, Groicher KH, Qian Y, Tian R, Kenton S, Dorman A, Ji H, Lin S, Loh P, Qi S, Zhu H, Roe BA. 2002. Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of Staphylococcus aureus 8325. Gene 289:109–118 http://dx.doi.org/10.1016/S0378-1119(02)00481-X.
9. Kahánková J, Pantůček R, Goerke C, Růžičková V, Holochová P, Doškař J. 2010. Multilocus PCR typing strategy for differentiation of Staphylococcus aureus siphoviruses reflecting their modular genome structure. Environ Microbiol 12:2527–2538 http://dx.doi.org/10.1111/j.1462-2920.2010.02226.x. [PubMed]
10. Hatfull GF, Hendrix RW. 2011. Bacteriophages and their genomes. Curr Opin Virol 1:298–303 http://dx.doi.org/10.1016/j.coviro.2011.06.009. [PubMed]
11. Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. 2003. Prophage genomics. Microbiol Mol Biol Rev 67:238–276 http://dx.doi.org/10.1128/MMBR.67.2.238-276.2003. [PubMed]
12. Goerke C, Pantucek R, Holtfreter S, Schulte B, Zink M, Grumann D, Bröker BM, Doskar J, Wolz C. 2009. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol 191:3462–3468 http://dx.doi.org/10.1128/JB.01804-08. [PubMed]
13. McCarthy AJ, Witney AA, Lindsay JA. 2012. Staphylococcus aureus temperate bacteriophage: carriage and horizontal gene transfer is lineage associated. Front Cell Infect Microbiol 2:6 http://dx.doi.org/10.3389/fcimb.2012.00006. [PubMed]
14. Lawrence JG, Hatfull GF, Hendrix RW. 2002. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J Bacteriol 184:4891–4905 http://dx.doi.org/10.1128/JB.184.17.4891-4905.2002. [PubMed]
15. Lima-Mendez G, Van Helden J, Toussaint A, Leplae R. 2008. Reticulate representation of evolutionary and functional relationships between phage genomes. Mol Biol Evol 25:762–777 http://dx.doi.org/10.1093/molbev/msn023. [PubMed]
16. McCarthy AJ, Loeffler A, Witney AA, Gould KA, Lloyd DH, Lindsay JA. 2014. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo. Genome Biol Evol 6:2697–2708 http://dx.doi.org/10.1093/gbe/evu214. [PubMed]
17. Goerke C, Wirtz C, Flückiger U, Wolz C. 2006. Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Mol Microbiol 61:1673–1685 http://dx.doi.org/10.1111/j.1365-2958.2006.05354.x. [PubMed]
18. Kraushaar B, Hammerl JA, Kienöl M, Heinig ML, Sperling N, Dinh Thanh M, Reetz J, Jäckel C, Fetsch A, Hertwig S. 2017. Acquisition of virulence factors in livestock-associated MRSA: lysogenic conversion of CC398 strains by virulence gene-containing phages. Sci Rep 7:2004 http://dx.doi.org/10.1038/s41598-017-02175-4. [PubMed]
19. Tang Y, Nielsen LN, Hvitved A, Haaber JK, Wirtz C, Andersen PS, Larsen J, Wolz C, Ingmer H. 2017. Commercial biocides induce transfer of prophage Φ13 from human strains of Staphylococcus aureus to livestock CC398. Front Microbiol 8:2418 http://dx.doi.org/10.3389/fmicb.2017.02418. [PubMed]
20. Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. 2015. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol 13:641–650 http://dx.doi.org/10.1038/nrmicro3527. [PubMed]
21. Utter B, Deutsch DR, Schuch R, Winer BY, Verratti K, Bishop-Lilly K, Sozhamannan S, Fischetti VA. 2014. Beyond the chromosome: the prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus. PLoS One 9:e100502 http://dx.doi.org/10.1371/journal.pone.0100502. [PubMed]
22. Jin T, Bokarewa M, McIntyre L, Tarkowski A, Corey GR, Reller LB, Fowler VG Jr. 2003. Fatal outcome of bacteraemic patients caused by infection with staphylokinase-deficient Staphylococcus aureus strains. J Med Microbiol 52:919–923 http://dx.doi.org/10.1099/jmm.0.05145-0. [PubMed]
23. Peacock SJ, Moore CE, Justice A, Kantzanou M, Story L, Mackie K, O’Neill G, Day NP. 2002. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun 70:4987–4996 http://dx.doi.org/10.1128/IAI.70.9.4987-4996.2002. [PubMed]
24. Boyle-Vavra S, Jones M, Gourley BL, Holmes M, Ruf R, Balsam AR, Boulware DR, Kline S, Jawahir S, Devries A, Peterson SN, Daum RS. 2011. Comparative genome sequencing of an isogenic pair of USA800 clinical methicillin-resistant Staphylococcus aureus isolates obtained before and after daptomycin treatment failure. Antimicrob Agents Chemother 55:2018–2025 http://dx.doi.org/10.1128/AAC.01593-10. [PubMed]
25. Goerke C, Matias y Papenberg S, Dasbach S, Dietz K, Ziebach R, Kahl BC, Wolz C. 2004. Increased frequency of genomic alterations in Staphylococcus aureus during chronic infection is in part due to phage mobilization. J Infect Dis 189:724–734 http://dx.doi.org/10.1086/381502. [PubMed]
26. Bertozzi Silva J, Storms Z, Sauvageau D. 2016. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363:fnw002 http://dx.doi.org/10.1093/femsle/fnw002. [PubMed]
27. Brown S, Santa Maria JP Jr, Walker S. 2013. Wall teichoic acids of Gram-positive bacteria. Annu Rev Microbiol 67:313–336 http://dx.doi.org/10.1146/annurev-micro-092412-155620. [PubMed]
28. Weidenmaier C, Lee JC. 2016. Structure and function of surface polysaccharides of Staphylococcus aureus. Curr Top Microbiol Immunol 409:57–93. [PubMed]
29. Dengler V, Meier PS, Heusser R, Kupferschmied P, Fazekas J, Friebe S, Staufer SB, Majcherczyk PA, Moreillon P, Berger-Bächi B, McCallum N. 2012. Deletion of hypothetical wall teichoic acid ligases in Staphylococcus aureus activates the cell wall stress response. FEMS Microbiol Lett 333:109–120 http://dx.doi.org/10.1111/j.1574-6968.2012.02603.x. [PubMed]
30. Schaefer K, Matano LM, Qiao Y, Kahne D, Walker S. 2017. In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins. Nat Chem Biol 13:396–401 http://dx.doi.org/10.1038/nchembio.2302. [PubMed]
31. Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, Winstel V, Gekeler C, Irazoqui JE, Peschel A, Walker S. 2012. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc Natl Acad Sci U S A 109:18909–18914 http://dx.doi.org/10.1073/pnas.1209126109. [PubMed]
32. Xia G, Maier L, Sanchez-Carballo P, Li M, Otto M, Holst O, Peschel A. 2010. Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. J Biol Chem 285:13405–13415 http://dx.doi.org/10.1074/jbc.M109.096172. [PubMed]
33. Gerlach D, Guo Y, De Castro C, Kim SH, Schlatterer K, Xu FF, Pereira C, Seeberger PH, Ali S, Codée J, Sirisarn W, Schulte B, Wolz C, Larsen J, Molinaro A, Lee BL, Xia G, Stehle T, Peschel A. 2018. Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature 563:705–709 http://dx.doi.org/10.1038/s41586-018-0730-x. [PubMed]
34. Reichmann NT, Cassona CP, Gründling A. 2013. Revised mechanism of d-alanine incorporation into cell wall polymers in Gram-positive bacteria. Microbiology 159:1868–1877 http://dx.doi.org/10.1099/mic.0.069898-0. [PubMed]
35. Winstel V, Sanchez-Carballo P, Holst O, Xia G, Peschel A. 2014. Biosynthesis of the unique wall teichoic acid of Staphylococcus aureus lineage ST395. MBio 5:e00869 http://dx.doi.org/10.1128/mBio.00869-14. [PubMed]
36. Endl J, Seidl PH, Fiedler F, Schleifer KH. 1984. Determination of cell wall teichoic acid structure of staphylococci by rapid chemical and serological screening methods. Arch Microbiol 137:272–280 http://dx.doi.org/10.1007/BF00414557. [PubMed]
37. Young FE. 1967. Requirement of glucosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proc Natl Acad Sci U S A 58:2377–2384 http://dx.doi.org/10.1073/pnas.58.6.2377. [PubMed]
38. Glaser L, Ionesco H, Schaeffer P. 1966. Teichoic acids as components of a specific phage receptor in Bacillus subtilis. Biochim Biophys Acta 124:415–417 http://dx.doi.org/10.1016/0304-4165(66)90211-X.
39. Coyette J, Ghuysen JM. 1968. Structure of the cell wall of Staphylococcus aureus, strain Copenhagen. IX. Teichoic acid and phage adsorption. Biochemistry 7:2385–2389 http://dx.doi.org/10.1021/bi00846a048. [PubMed]
40. Chatterjee AN. 1969. Use of bacteriophage-resistant mutants to study the nature of the bacteriophage receptor site of Staphylococcus aureus. J Bacteriol 98:519–527.
41. Nordström K, Forsgren A, Cox P. 1974. Prevention of bacteriophage adsorption to Staphylococcus aureus by immunoglobulin G. J Virol 14:203–206.
42. Baptista C, Santos MA, São-José C. 2008. Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J Bacteriol 190:4989–4996 http://dx.doi.org/10.1128/JB.00349-08. [PubMed]
43. Monteville MR, Ardestani B, Geller BL. 1994. Lactococcal bacteriophages require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA. Appl Environ Microbiol 60:3204–3211.
44. Li X, Koç C, Kühner P, Stierhof YD, Krismer B, Enright MC, Penadés JR, Wolz C, Stehle T, Cambillau C, Peschel A, Xia G. 2016. An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Sci Rep 6:26455 http://dx.doi.org/10.1038/srep26455. [PubMed]
45. Kaneko J, Narita-Yamada S, Wakabayashi Y, Kamio Y. 2009. Identification of ORF636 in phage phiSLT carrying Panton-Valentine leukocidin genes, acting as an adhesion protein for a poly(glycerophosphate) chain of lipoteichoic acid on the cell surface of Staphylococcus aureus. J Bacteriol 191:4674–4680 http://dx.doi.org/10.1128/JB.01793-08. [PubMed]
46. Percy MG, Gründling A. 2014. Lipoteichoic acid synthesis and function in Gram-positive bacteria. Annu Rev Microbiol 68:81–100 http://dx.doi.org/10.1146/annurev-micro-091213-112949. [PubMed]
47. Xia G, Corrigan RM, Winstel V, Goerke C, Gründling A, Peschel A. 2011. Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. J Bacteriol 193:4006–4009 http://dx.doi.org/10.1128/JB.01412-10. [PubMed]
48. Bae T, Baba T, Hiramatsu K, Schneewind O. 2006. Prophages of Staphylococcus aureus Newman and their contribution to virulence. Mol Microbiol 62:1035–1047 http://dx.doi.org/10.1111/j.1365-2958.2006.05441.x. [PubMed]
49. Winstel V, Liang C, Sanchez-Carballo P, Steglich M, Munar M, Bröker BM, Penadés JR, Nübel U, Holst O, Dandekar T, Peschel A, Xia G. 2013. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat Commun 4:2345 http://dx.doi.org/10.1038/ncomms3345. [PubMed]
50. Chen J, Novick RP. 2009. Phage-mediated intergeneric transfer of toxin genes. Science 323:139–141 http://dx.doi.org/10.1126/science.1164783. [PubMed]
51. Umeda A, Yokoyama S, Arizono T, Amako K. 1992. Location of peptidoglycan and teichoic acid on the cell wall surface of Staphylococcus aureus as determined by immunoelectron microscopy. J Electron Microsc (Tokyo) 41:46–52.
52. Sadovskaya I, Vinogradov E, Li J, Jabbouri S. 2004. Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohydr Res 339:1467–1473 http://dx.doi.org/10.1016/j.carres.2004.03.017. [PubMed]
53. Winstel V, Xia G, Peschel A. 2014. Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. Int J Med Microbiol 304:215–221 http://dx.doi.org/10.1016/j.ijmm.2013.10.009. [PubMed]
54. Li X, Gerlach D, Du X, Larsen J, Stegger M, Kühner P, Peschel A, Xia G, Winstel V. 2015. An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae. Sci Rep 5:17219 http://dx.doi.org/10.1038/srep17219. [PubMed]
55. Yamaguchi T, Hayashi T, Takami H, Ohnishi M, Murata T, Nakayama K, Asakawa K, Ohara M, Komatsuzawa H, Sugai M. 2001. Complete nucleotide sequence of a Staphylococcus aureus exfoliative toxin B plasmid and identification of a novel ADP-ribosyltransferase, EDIN-C. Infect Immun 69:7760–7771 http://dx.doi.org/10.1128/IAI.69.12.7760-7771.2001. [PubMed]
56. Li M, Du X, Villaruz AE, Diep BA, Wang D, Song Y, Tian Y, Hu J, Yu F, Lu Y, Otto M. 2012. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat Med 18:816–819 http://dx.doi.org/10.1038/nm.2692. [PubMed]
57. van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, van Strijp JA. 2006. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol 188:1310–1315 http://dx.doi.org/10.1128/JB.188.4.1310-1315.2006. [PubMed]
58. Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, Missiakas DM. 2004. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci USA 101:12312–12317 http://dx.doi.org/10.1073/pnas.0404728101. [PubMed]
59. Chabelskaya S, Gaillot O, Felden B. 2010. A Staphylococcus aureus small RNA is required for bacterial virulence and regulates the expression of an immune-evasion molecule. PLoS Pathog 6:e1000927 http://dx.doi.org/10.1371/journal.ppat.1000927. [PubMed]
60. Pinel-Marie ML, Brielle R, Felden B. 2014. Dual toxic-peptide-coding Staphylococcus aureus RNA under antisense regulation targets host cells and bacterial rivals unequally. Cell Reports 7:424–435 http://dx.doi.org/10.1016/j.celrep.2014.03.012. [PubMed]
61. Diene SM, Corvaglia AR, François P, van der Mee-Marquet N, Regional Infection Control Group of the Centre Region. 2017. Prophages and adaptation of Staphylococcus aureus ST398 to the human clinic. BMC Genomics 18:133 http://dx.doi.org/10.1186/s12864-017-3516-x. [PubMed]
62. Deutsch DR, Utter B, Fischetti VA. 2016. Uncovering novel mobile genetic elements and their dynamics through an extra-chromosomal sequencing approach. Mob Genet Elements 6:e1189987 http://dx.doi.org/10.1080/2159256X.2016.1189987. [PubMed]
63. Zeman M, Mašlaňová I, Indráková A, Šiborová M, Mikulášek K, Bendíčková K, Plevka P, Vrbovská V, Zdráhal Z, Doškař J, Pantůček R. 2017. Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci Rep 7:46319 http://dx.doi.org/10.1038/srep46319. [PubMed]
64. Sumby P, Waldor MK. 2003. Transcription of the toxin genes present within the Staphylococcal phage phiSa3ms is intimately linked with the phage’s life cycle. J Bacteriol 185:6841–6851 http://dx.doi.org/10.1128/JB.185.23.6841-6851.2003. [PubMed]
65. Goerke C, Köller J, Wolz C. 2006. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob Agents Chemother 50:171–177 http://dx.doi.org/10.1128/AAC.50.1.171-177.2006. [PubMed]
66. Wirtz C, Witte W, Wolz C, Goerke C. 2009. Transcription of the phage-encoded Panton-Valentine leukocidin of Staphylococcus aureus is dependent on the phage life-cycle and on the host background. Microbiology 155:3491–3499 http://dx.doi.org/10.1099/mic.0.032466-0. [PubMed]
67. Růžičková V, Pantůček R, Petráš P, Machová I, Kostýlková K, Doškař J. 2012. Major clonal lineages in impetigo Staphylococcus aureus strains isolated in Czech and Slovak maternity hospitals. Int J Med Microbiol 302:237–241 http://dx.doi.org/10.1016/j.ijmm.2012.04.001. [PubMed]
68. Holochová P, Růzicková V, Dostálová L, Pantůcek R, Petrás P, Doskar J. 2010. Rapid detection and differentiation of the exfoliative toxin A-producing Staphylococcus aureus strains based on phiETA prophage polymorphisms. Diagn Microbiol Infect Dis 66:248–252 http://dx.doi.org/10.1016/j.diagmicrobio.2009.10.008. [PubMed]
69. Shi D, Higuchi W, Takano T, Saito K, Ozaki K, Takano M, Nitahara Y, Yamamoto T. 2011. Bullous impetigo in children infected with methicillin-resistant Staphylococcus aureus alone or in combination with methicillin-susceptible S. aureus: analysis of genetic characteristics, including assessment of exfoliative toxin gene carriage. J Clin Microbiol 49:1972–1974 http://dx.doi.org/10.1128/JCM.01742-10. [PubMed]
70. Yamaguchi T, Nishifuji K, Sasaki M, Fudaba Y, Aepfelbacher M, Takata T, Ohara M, Komatsuzawa H, Amagai M, Sugai M. 2002. Identification of the Staphylococcus aureusetd pathogenicity island which encodes a novel exfoliative toxin, ETD, and EDIN-B. Infect Immun 70:5835–5845 http://dx.doi.org/10.1128/IAI.70.10.5835-5845.2002. [PubMed]
71. Kurt K, Rasigade JP, Laurent F, Goering RV, Žemličková H, Machova I, Struelens MJ, Zautner AE, Holtfreter S, Bröker B, Ritchie S, Reaksmey S, Limmathurotsakul D, Peacock SJ, Cuny C, Layer F, Witte W, Nübel U. 2013. Subpopulations of Staphylococcus aureus clonal complex 121 are associated with distinct clinical entities. PLoS One 8:e58155 http://dx.doi.org/10.1371/journal.pone.0058155. [PubMed]
72. Spaan AN, Henry T, van Rooijen WJM, Perret M, Badiou C, Aerts PC, Kemmink J, de Haas CJC, van Kessel KPM, Vandenesch F, Lina G, van Strijp JAG. 2013. The staphylococcal toxin Panton-Valentine leukocidin targets human C5a receptors. Cell Host Microbe 13:584–594 http://dx.doi.org/10.1016/j.chom.2013.04.006. [PubMed]
73. Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, Liassine N, Bes M, Greenland T, Reverdy ME, Etienne J. 2003. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9:978–984 http://dx.doi.org/10.3201/eid0908.030089. [PubMed]
74. Zanger P, Nurjadi D, Schleucher R, Scherbaum H, Wolz C, Kremsner PG, Schulte B. 2012. Import and spread of Panton-Valentine leukocidin-positive Staphylococcus aureus through nasal carriage and skin infections in travelers returning from the tropics and subtropics. Clin Infect Dis 54:483–492 http://dx.doi.org/10.1093/cid/cir822. [PubMed]
75. Shallcross LJ, Fragaszy E, Johnson AM, Hayward AC. 2013. The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 13:43–54 http://dx.doi.org/10.1016/S1473-3099(12)70238-4.
76. Saeed K, Gould I, Espositio S, Ahmad-Saeed N, Ahmed SS, Alp E, Bal AM, Bassetti M, Bonnet E, Chan M, Coombs G, Dancer S, David MZ, De Simone G, Dryden M, Guardabassi L, Hanitsch LG, Hijazi K, Kruger R, Lee A, Leistner R, Pagliano P, Righi E, Schneider-Burrus S, Skov RL, Tattevin P, Van Wamel W, Vos MC, Voss A. 2017. Panton-Valentine leucocidin (PVL) Staphylococcus aureus a position statement from the international society of chemotherapy. Int J Antimicrob Agents 215:52–125. [PubMed]
77. Kaneko J, Kimura T, Narita S, Tomita T, Kamio Y. 1998. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes. Gene 215:57–67 http://dx.doi.org/10.1016/S0378-1119(98)00278-9.
78. Ma XX, Ito T, Kondo Y, Cho M, Yoshizawa Y, Kaneko J, Katai A, Higashiide M, Li S, Hiramatsu K. 2008. Two different Panton-Valentine leukocidin phage lineages predominate in Japan. J Clin Microbiol 46:3246–3258 http://dx.doi.org/10.1128/JCM.00136-08. [PubMed]
79. Narita S, Kaneko J, Chiba J, Piémont Y, Jarraud S, Etienne J, Kamio Y. 2001. Phage conversion of Panton-Valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, phiSLT. Gene 268:195–206 http://dx.doi.org/10.1016/S0378-1119(01)00390-0.
80. Boakes E, Kearns AM, Ganner M, Perry C, Hill RL, Ellington MJ. 2011. Distinct bacteriophages encoding Panton-Valentine leukocidin (PVL) among international methicillin-resistant Staphylococcus aureus clones harboring PVL. J Clin Microbiol 49:684–692 http://dx.doi.org/10.1128/JCM.01917-10. [PubMed]
81. Chen L, Shopsin B, Zhao Y, Smyth D, Wasserman GA, Fang C, Liu L, Kreiswirth BN. 2012. Real-time nucleic acid sequence-based amplification assay for rapid detection and quantification of agr functionality in clinical Staphylococcus aureus isolates. J Clin Microbiol 50:657–661 http://dx.doi.org/10.1128/JCM.06253-11. [PubMed]
82. Otter JA, Kearns AM, French GL, Ellington MJ. 2010. Panton-Valentine leukocidin-encoding bacteriophage and gene sequence variation in community-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 16:68–73 http://dx.doi.org/10.1111/j.1469-0691.2009.02925.x. [PubMed]
83. Wirtz C, Witte W, Wolz C, Goerke C. 2010. Insertion of host DNA into PVL-encoding phages of the Staphylococcus aureus lineage ST80 by intra-chromosomal recombination. Virology 406:322–327 http://dx.doi.org/10.1016/j.virol.2010.07.017. [PubMed]
84. Sanchini A, Del Grosso M, Villa L, Ammendolia MG, Superti F, Monaco M, Pantosti A. 2014. Typing of Panton-Valentine leukocidin-encoding phages carried by methicillin-susceptible and methicillin-resistant Staphylococcus aureus from Italy. Clin Microbiol Infect 20:O840–O846 http://dx.doi.org/10.1111/1469-0691.12679. [PubMed]
85. Zhao H, Hu F, Jin S, Xu X, Zou Y, Ding B, He C, Gong F, Liu Q. 2016. Typing of Panton-Valentine leukocidin-encoding phages and lukSF-PV gene sequence variation in Staphylococcus aureus from China. Front Microbiol 7:1200 http://dx.doi.org/10.3389/fmicb.2016.01200.
86. Verkaik NJ, Benard M, Boelens HA, de Vogel CP, Nouwen JL, Verbrugh HA, Melles DC, van Belkum A, van Wamel WJ. 2011. Immune evasion cluster-positive bacteriophages are highly prevalent among human Staphylococcus aureus strains, but they are not essential in the first stages of nasal colonization. Clin Microbiol Infect 17:343–348 http://dx.doi.org/10.1111/j.1469-0691.2010.03227.x. [PubMed]
87. Herrera A, Kulhankova K, Sonkar VK, Dayal S, Klingelhutz AJ, Salgado-Pabón W, Schlievert PM. 2017. Staphylococcal β-toxin modulates human aortic endothelial cell and platelet function through sphingomyelinase and biofilm ligase activities. MBio 8:e00273-17 http://dx.doi.org/10.1128/mBio.00273-17. [PubMed]
88. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, van Strijp JA. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695 http://dx.doi.org/10.1084/jem.20031636. [PubMed]
89. Peetermans M, Vanassche T, Liesenborghs L, Lijnen RH, Verhamme P. 2016. Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity. Crit Rev Microbiol 42:866–882 http://dx.doi.org/10.3109/1040841X.2015.1080214. [PubMed]
90. Rooijakkers SH, Ruyken M, Roos A, Daha MR, Presanis JS, Sim RB, van Wamel WJ, van Kessel KP, van Strijp JA. 2005. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6:920–927 http://dx.doi.org/10.1038/ni1235. [PubMed]
91. Schulte B, Bierbaum G, Pohl K, Goerke C, Wolz C. 2013. Diversification of clonal complex 5 methicillin-resistant Staphylococcus aureus strains (Rhine-Hesse clone) within Germany. J Clin Microbiol 51:212–216 http://dx.doi.org/10.1128/JCM.01967-12. [PubMed]
92. Nübel U, Dordel J, Kurt K, Strommenger B, Westh H, Shukla SK, Zemlicková H, Leblois R, Wirth T, Jombart T, Balloux F, Witte W. 2010. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog 6:e1000855 http://dx.doi.org/10.1371/journal.ppat.1000855. [PubMed]
93. Holden MT, Lindsay JA, Corton C, Quail MA, Cockfield JD, Pathak S, Batra R, Parkhill J, Bentley SD, Edgeworth JD. 2010. Genome sequence of a recently emerged, highly transmissible, multi-antibiotic- and antiseptic-resistant variant of methicillin-resistant Staphylococcus aureus, sequence type 239 (TW). J Bacteriol 192:888–892 http://dx.doi.org/10.1128/JB.01255-09. [PubMed]
94. Guinane CM, Penadés JR, Fitzgerald JR. 2011. The role of horizontal gene transfer in Staphylococcus aureus host adaptation. Virulence 2:241–243 http://dx.doi.org/10.4161/viru.2.3.16193. [PubMed]
95. Huijsdens XW, van Dijke BJ, Spalburg E, van Santen-Verheuvel MG, Heck ME, Pluister GN, Voss A, Wannet WJ, de Neeling AJ. 2006. Community-acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob 5:26 http://dx.doi.org/10.1186/1476-0711-5-26. [PubMed]
96. Schijffelen MJ, Boel CH, van Strijp JA, Fluit AC. 2010. Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC Genomics 11:376 http://dx.doi.org/10.1186/1471-2164-11-376. [PubMed]
97. Argudín MA, Tenhagen BA, Fetsch A, Sachsenröder J, Käsbohrer A, Schroeter A, Hammerl JA, Hertwig S, Helmuth R, Bräunig J, Mendoza MC, Appel B, Rodicio MR, Guerra B. 2011. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl Environ Microbiol 77:3052–3060 http://dx.doi.org/10.1128/AEM.02260-10. [PubMed]
98. Valentin-Domelier AS, Girard M, Bertrand X, Violette J, François P, Donnio PY, Talon D, Quentin R, Schrenzel J, van der Mee-Marquet N, Bloodstream Infection Study Group of the Réseau des Hygiénistes du Centre (RHC). 2011. Methicillin-susceptible ST398 Staphylococcus aureus responsible for bloodstream infections: an emerging human-adapted subclone? PLoS One 6:e28369 http://dx.doi.org/10.1371/journal.pone.0028369. [PubMed]
99. Price-Whelan A, Poon CK, Benson MA, Eidem TT, Roux CM, Boyd JM, Dunman PM, Torres VJ, Krulwich TA. 2013. Transcriptional profiling of Staphylococcus aureus during growth in 2 M NaCl leads to clarification of physiological roles for Kdp and Ktr K+ uptake systems. MBio 4:e00407-13 http://dx.doi.org/10.1128/mBio.00407-13. [PubMed]
100. McCarthy AJ, van Wamel W, Vandendriessche S, Larsen J, Denis O, Garcia-Graells C, Uhlemann AC, Lowy FD, Skov R, Lindsay JA. 2012. Staphylococcus aureus CC398 clade associated with human-to-human transmission. Appl Environ Microbiol 78:8845–8848 http://dx.doi.org/10.1128/AEM.02398-12. [PubMed]
101. Jung P, Abdelbary MM, Kraushaar B, Fetsch A, Geisel J, Herrmann M, Witte W, Cuny C, Bischoff M. 2017. Impact of bacteriophage Saint3 carriage on the immune evasion capacity and hemolytic potential of Staphylococcus aureus CC398. Vet Microbiol 200:46–51 http://dx.doi.org/10.1016/j.vetmic.2016.02.015. [PubMed]
102. Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, Pearson T, Waters AE, Foster JT, Schupp J, Gillece J, Driebe E, Liu CM, Springer B, Zdovc I, Battisti A, Franco A, Zmudzki J, Schwarz S, Butaye P, Jouy E, Pomba C, Porrero MC, Ruimy R, Smith TC, Robinson DA, Weese JS, Arriola CS, Yu F, Laurent F, Keim P, Skov R, Aarestrup FM. 2012. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3:e00305-11 http://dx.doi.org/10.1128/mBio.00305-11. [PubMed]
103. Uhlemann AC, Porcella SF, Trivedi S, Sullivan SB, Hafer C, Kennedy AD, Barbian KD, McCarthy AJ, Street C, Hirschberg DL, Lipkin WI, Lindsay JA, DeLeo FR, Lowy FD. 2012. Identification of a highly transmissible animal-independent Staphylococcus aureus ST398 clone with distinct genomic and cell adhesion properties. MBio 3:e00027-12 http://dx.doi.org/10.1128/mBio.00027-12. [PubMed]
104. Coleman D, Knights J, Russell R, Shanley D, Birkbeck TH, Dougan G, Charles I. 1991. Insertional inactivation of the Staphylococcus aureus beta-toxin by bacteriophage phi 13 occurs by site- and orientation-specific integration of the phi 13 genome. Mol Microbiol 5:933–939 http://dx.doi.org/10.1111/j.1365-2958.1991.tb00768.x. [PubMed]
105. van Alen S, Ballhausen B, Kaspar U, Köck R, Becker K. 2018. Prevalence and genomic structure of bacteriophage phi3 in human-derived livestock-associated methicillin-resistant Staphylococcus aureus isolates from 2000 to 2015. J Clin Microbiol 56:e00140-18 http://dx.doi.org/10.1128/JCM.00140-18. [PubMed]
106. Resch G, François P, Morisset D, Stojanov M, Bonetti EJ, Schrenzel J, Sakwinska O, Moreillon P. 2013. Human-to-bovine jump of Staphylococcus aureus CC8 is associated with the loss of a β-hemolysin converting prophage and the acquisition of a new staphylococcal cassette chromosome. PLoS One 8:e58187 http://dx.doi.org/10.1371/journal.pone.0058187. [PubMed]
107. van der Mee-Marquet NL, Corvaglia A, Haenni M, Bertrand X, Franck JB, Kluytmans J, Girard M, Quentin R, François P. 2014. Emergence of a novel subpopulation of CC398 Staphylococcus aureus infecting animals is a serious hazard for humans. Front Microbiol 5:652 http://dx.doi.org/10.3389/fmicb.2014.00652. [PubMed]
108. van der Mee-Marquet N, Corvaglia AR, Valentin AS, Hernandez D, Bertrand X, Girard M, Kluytmans J, Donnio PY, Quentin R, François P. 2013. Analysis of prophages harbored by the human-adapted subpopulation of Staphylococcus aureus CC398. Infect Genet Evol 18:299–308 http://dx.doi.org/10.1016/j.meegid.2013.06.009. [PubMed]
109. Kato F, Kadomoto N, Iwamoto Y, Bunai K, Komatsuzawa H, Sugai M. 2011. Regulatory mechanism for exfoliative toxin production in Staphylococcus aureus. Infect Immun 79:1660–1670 http://dx.doi.org/10.1128/IAI.00872-10. [PubMed]
110. Rooijakkers SH, Ruyken M, van Roon J, van Kessel KP, van Strijp JA, van Wamel WJ. 2006. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell Microbiol 8:1282–1293 http://dx.doi.org/10.1111/j.1462-5822.2006.00709.x. [PubMed]
111. Bronner S, Stoessel P, Gravet A, Monteil H, Prévost G. 2000. Variable expressions of Staphylococcus aureus bicomponent leucotoxins semiquantified by competitive reverse transcription-PCR. Appl Environ Microbiol 66:3931–3938 http://dx.doi.org/10.1128/AEM.66.9.3931-3938.2000. [PubMed]
112. Dumitrescu O, Choudhury P, Boisset S, Badiou C, Bes M, Benito Y, Wolz C, Vandenesch F, Etienne J, Cheung AL, Bowden MG, Lina G. 2011. Beta-lactams interfering with PBP1 induce Panton-Valentine leukocidin expression by triggering sarA and rot global regulators of Staphylococcus aureus. Antimicrob Agents Chemother 55:3261–3271 http://dx.doi.org/10.1128/AAC.01401-10. [PubMed]
113. Wagner PL, Waldor MK. 2002. Bacteriophage control of bacterial virulence. Infect Immun 70:3985–3993 http://dx.doi.org/10.1128/IAI.70.8.3985-3993.2002. [PubMed]
114. Maiques E, Ubeda C, Campoy S, Salvador N, Lasa I, Novick RP, Barbé J, Penadés JR. 2006. beta-Lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J Bacteriol 188:2726–2729 http://dx.doi.org/10.1128/JB.188.7.2726-2729.2006. [PubMed]
115. Zhang X, McDaniel AD, Wolf LE, Keusch GT, Waldor MK, Acheson DW. 2000. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis 181:664–670 http://dx.doi.org/10.1086/315239. [PubMed]
116. Nováček J, Šiborová M, Benešík M, Pantůček R, Doškař J, Plevka P. 2016. Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate. Proc Natl Acad Sci U S A 113:9351–9356 http://dx.doi.org/10.1073/pnas.1605883113. [PubMed]
117. Pantůcek R, Rosypalová A, Doskar J, Kailerová J, Růzicková V, Borecká P, Snopková S, Horváth R, Götz F, Rosypal S. 1998. The polyvalent staphylococcal phage phi 812: its host-range mutants and related phages. Virology 246:241–252 http://dx.doi.org/10.1006/viro.1998.9203. [PubMed]
118. Takeuchi I, Osada K, Azam AH, Asakawa H, Miyanaga K, Tanji Y. 2016. The presence of two receptor-binding proteins contributes to the wide host range of staphylococcal Twort-like phages. Appl Environ Microbiol 82:5763–5774 http://dx.doi.org/10.1128/AEM.01385-16. [PubMed]
119. Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327 http://dx.doi.org/10.1038/nrmicro2315. [PubMed]
120. Seed KD. 2015. Battling phages: how bacteria defend against viral attack. PLoS Pathog 11:e1004847 http://dx.doi.org/10.1371/journal.ppat.1004847. [PubMed]
121. Uchiyama J, Taniguchi M, Kurokawa K, Takemura-Uchiyama I, Ujihara T, Shimakura H, Sakaguchi Y, Murakami H, Sakaguchi M, Matsuzaki S. 2017. Adsorption of Staphylococcus viruses S13′ and S24-1 on Staphylococcus aureus strains with different glycosidic linkage patterns of wall teichoic acids. J Gen Virol 98:2171–2180 http://dx.doi.org/10.1099/jgv.0.000865. [PubMed]
122. Kutter EM, Kuhl SJ, Abedon ST. 2015. Re-establishing a place for phage therapy in Western medicine. Future Microbiol 10:685–688 http://dx.doi.org/10.2217/fmb.15.28. [PubMed]
123. Górski A, Międzybrodzki R, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Rogóż P, Jończyk-Matysiak E, Dąbrowska K, Majewska J, Borysowski J. 2016. Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol 7:1515 http://dx.doi.org/10.3389/fmicb.2016.01515.
124. Gutierrez D, Fernandez L, Rodriguez A. 2018. Are phage lytic proteins the secret weapon to kill Staphylococcus aureus? MBio 9:e01923-17. [PubMed]
125. El Haddad L, Roy JP, Khalil GE, St-Gelais D, Champagne CP, Labrie S, Moineau S. 2016. Efficacy of two Staphylococcus aureus phage cocktails in cheese production. Int J Food Microbiol 217:7–13 http://dx.doi.org/10.1016/j.ijfoodmicro.2015.10.001. [PubMed]
126. Alves DR, Gaudion A, Bean JE, Perez Esteban P, Arnot TC, Harper DR, Kot W, Hansen LH, Enright MC, Jenkins AT. 2014. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol 80:6694–6703 http://dx.doi.org/10.1128/AEM.01789-14. [PubMed]
127. Gutiérrez D, Vandenheuvel D, Martínez B, Rodríguez A, Lavigne R, García P. 2015. Two Phages, phiIPLA-RODI and phiIPLA-C1C, Lyse Mono- and Dual-Species Staphylococcal Biofilms. Appl Environ Microbiol 81:3336–3348 http://dx.doi.org/10.1128/AEM.03560-14. [PubMed]
128. Fernández L, González S, Campelo AB, Martínez B, Rodríguez A, García P. 2017. Low-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus. Sci Rep 7:40965 http://dx.doi.org/10.1038/srep40965. [PubMed]
129. Breyne K, Honaker RW, Hobbs Z, Richter M, Żaczek M, Spangler T, Steenbrugge J, Lu R, Kinkhabwala A, Marchon B, Meyer E, Mokres L. 2017. Efficacy and Safety of a Bovine-Associated Staphylococcus aureus Phage Cocktail in a Murine Model of Mastitis. Front Microbiol 8:2348 http://dx.doi.org/10.3389/fmicb.2017.02348. [PubMed]
130. Deghorain M, Bobay LM, Smeesters PR, Bousbata S, Vermeersch M, Perez-Morga D, Drèze PA, Rocha EP, Touchon M, Van Melderen L. 2012. Characterization of novel phages isolated in coagulase-negative staphylococci reveals evolutionary relationships with Staphylococcus aureus phages. J Bacteriol 194:5829–5839 http://dx.doi.org/10.1128/JB.01085-12. [PubMed]
131. Otto M. 2013. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and virulence. BioEssays 35:4–11 http://dx.doi.org/10.1002/bies.201200112. [PubMed]
132. Wielders CL, Vriens MR, Brisse S, de Graaf-Miltenburg LA, Troelstra A, Fleer A, Schmitz FJ, Verhoef J, Fluit AC. 2001. In-vivo transfer of mecA DNA to Staphylococcus aureus [corrected]. Lancet 357:1674–1675 http://dx.doi.org/10.1016/S0140-6736(00)04832-7.
133. Morse ML. 1959. Transduction by staphylococcal bacteriophage. Proc Natl Acad Sci USA 45:722–727 http://dx.doi.org/10.1073/pnas.45.5.722. [PubMed]
134. Pattee PA, Baldwin JN. 1961. Transduction of resistance to chlortetracycline and novobiocin in Staphylococcus aureus. J Bacteriol 82:875–881.
135. Dowell CE, Rosenblum ED. 1962. Serology and transductin in staphylococcal phage. J Bacteriol 84:1071–1075.
136. Novick R. 1967. Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology 33:155–166 http://dx.doi.org/10.1016/0042-6822(67)90105-5.
137. Kayser FH, Wüst J, Corrodi P. 1972. Transduction and elimination of resistance determinants in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2:217–223 http://dx.doi.org/10.1128/AAC.2.3.217. [PubMed]
138. Mašlaňová I, Stříbná S, Doškař J, Pantůček R. 2016. Efficient plasmid transduction to Staphylococcus aureus strains insensitive to the lytic action of transducing phage. FEMS Microbiol Lett 363:363 http://dx.doi.org/10.1093/femsle/fnw211. [PubMed]
139. Murphey WH, Rosenblum ED. 1964. Selective medium for carbohydrate-utilizing transductants of Staphylococcus aureus. J Bacteriol 87:1198–1201.
140. Ubelaker MH, Rosenblum ED. 1978. Transduction of plasmid determinants in Staphylococcus aureus and Escherichia coli. J Bacteriol 133:699–707.
141. Christie GE, Matthews AM, King DG, Lane KD, Olivarez NP, Tallent SM, Gill SR, Novick RP. 2010. The complete genomes of Staphylococcus aureus bacteriophages 80 and 80α--implications for the specificity of SaPI mobilization. Virology 407:381–390 http://dx.doi.org/10.1016/j.virol.2010.08.036. [PubMed]
142. Novick RP, Edelman I, Lofdahl S. 1986. Small Staphylococcus aureus plasmids are transduced as linear multimers that are formed and resolved by replicative processes. J Mol Biol 192:209–220 http://dx.doi.org/10.1016/0022-2836(86)90360-8.
143. Chlebowicz MA, Mašlaňová I, Kuntová L, Grundmann H, Pantůček R, Doškař J, van Dijl JM, Buist G. 2014. The Staphylococcal Cassette Chromosome mec type V from Staphylococcus aureus ST398 is packaged into bacteriophage capsids. Int J Med Microbiol 304:764–774 http://dx.doi.org/10.1016/j.ijmm.2014.05.010. [PubMed]
144. Scharn CR, Tenover FC, Goering RV. 2013. Transduction of staphylococcal cassette chromosome mec elements between strains of Staphylococcus aureus. Antimicrob Agents Chemother 57:5233–5238 http://dx.doi.org/10.1128/AAC.01058-13. [PubMed]
145. Cohen S, Sweeney HM. 1973. Effect of the prophage and penicillinase plasmid of the recipient strain upon the transduction and the stability of methicillin resistance in Staphylococcus aureus. J Bacteriol 116:803–811.
146. Krausz KL, Bose JL. 2016. Bacteriophage Transduction in Staphylococcus aureus: Broth-Based Method. Methods Mol Biol 1373:63–68 http://dx.doi.org/10.1007/7651_2014_185. [PubMed]
147. Varga M, Pantůček R, Růžičková V, Doškař J. 2016. Molecular characterization of a new efficiently transducing bacteriophage identified in meticillin-resistant Staphylococcus aureus. J Gen Virol 97:258–268 http://dx.doi.org/10.1099/jgv.0.000329. [PubMed]
148. Uchiyama J, Takemura-Uchiyama I, Sakaguchi Y, Gamoh K, Kato S, Daibata M, Ujihara T, Misawa N, Matsuzaki S. 2014. Intragenus generalized transduction in Staphylococcus spp. by a novel giant phage. ISME J 8:1949–1952 http://dx.doi.org/10.1038/ismej.2014.29. [PubMed]
149. Waldron DE, Lindsay JA. 2006. Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J Bacteriol 188:5578–5585 http://dx.doi.org/10.1128/JB.00418-06. [PubMed]
150. Matthews AM, Novick RP. 2005. Staphylococcal phages, p 297–318. In Waldor MK, Friedman DI, Adhya SL (ed), Phages Their Role in Bacterial Pathogenesis and Biotechnology American Society for Microbiology Press. Washington, DC.
151. Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845 http://dx.doi.org/10.1126/science.1165771. [PubMed]
152. Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB, Westh H, Penadés JR, Ingmer H. 2016. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun 7:13333 http://dx.doi.org/10.1038/ncomms13333. [PubMed]
153. Zinder ND, Lederberg J. 1952. Genetic exchange in Salmonella. J Bacteriol 64:679–699.
154. Stanczak-Mrozek KI, Laing KG, Lindsay JA. 2017. Resistance gene transfer: induction of transducing phage by sub-inhibitory concentrations of antimicrobials is not correlated to induction of lytic phage. J Antimicrob Chemother 72:1624–1631 http://dx.doi.org/10.1093/jac/dkx056. [PubMed]
155. Chen J, Quiles-Puchalt N, Chiang YN, Bacigalupe R, Fillol-Salom A, Chee MSJ, Fitzgerald JR, Penadés JR. 2018. Genome hypermobility by lateral transduction. Science 362:207–212 http://dx.doi.org/10.1126/science.aat5867. [PubMed]

Article metrics loading...



Most isolates carry multiple bacteriophages in their genome, which provide the pathogen with traits important for niche adaptation. Such temperate phages often encode a variety of accessory factors that influence virulence, immune evasion and host preference of the bacterial lysogen. Moreover, transducing phages are primary vehicles for horizontal gene transfer. Wall teichoic acid (WTA) acts as a common phage receptor for staphylococcal phages and structural variations of WTA govern phage-host specificity thereby shaping gene transfer across clonal lineages and even species. Thus, bacteriophages are central for the success of as a human pathogen.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Receptor specificity of phages. Siphoviruses Φ11, Φ80, Φ52A, Φ47, and Φ77 and podovirus SA24-1 recognize α-or β-1,4-GlcNAc-RboP WTA. β-1,3-GlcNAc-WTA is adsorbed to less strongly by Φ80, Φ52A, and Φ11. Podoviruses ΦP68, Φ44AHJD, and Φ66 bind to β-1,4-GlcNAc-RboP WTA and are blocked by β-1,3-GlcNAc or α-1,4-GlcNAc modifications. Siphovirus Φ187 binds to α-GalNAC-GroP. Myovirus ΦK, Φ812, attache to the backbone of GroP and/or RboP. ΦSA012 recognizes both the RboP WTA backbone and α-1,4-GlcNAc-RboP by two different RBPs.

Source: microbiolspec September 2019 vol. 7 no. 5 doi:10.1128/microbiolspec.GPP3-0058-2018
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Classification and properties of selected

Source: microbiolspec September 2019 vol. 7 no. 5 doi:10.1128/microbiolspec.GPP3-0058-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error