1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

in Animals

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Andreas F. Haag1, J. Ross Fitzgerald2, José R. Penadés3
  • Editors: Vincent A. Fischetti4, Richard P. Novick5, Joseph J. Ferretti6, Daniel A. Portnoy7, Miriam Braunstein8, Julian I. Rood9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Institute of Infection, Immunity, and Inflammation, University of Glasgow, G12 8TA, Glasgow, UK; 2: The Roslin Institute, University of Edinburgh, Edinburgh, UK; 3: Institute of Infection, Immunity, and Inflammation, University of Glasgow, G12 8TA, Glasgow, UK; 4: The Rockefeller University, New York, NY; 5: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 6: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 7: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 8: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 9: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0060-2019
  • Received 02 January 2019 Accepted 04 February 2019 Published 24 May 2019
  • Andreas F. Haag, [email protected]
image of <span class="jp-italic">Staphylococcus aureus</span> in Animals
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    in Animals, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0060-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0060-2019-2.gif
  • Abstract:

    is a mammalian commensal and opportunistic pathogen that colonizes niches such as skin, nares and diverse mucosal membranes of about 20-30% of the human population. can cause a wide spectrum of diseases in humans and both methicillin-sensitive and methicillin-resistant strains are common causes of nosocomial- and community-acquired infections. Despite the prevalence of literature characterising staphylococcal pathogenesis in humans, is a major cause of infection and disease in a plethora of animal hosts leading to a significant impact on public health and agriculture. Infections in animals are deleterious to animal health, and animals can act as a reservoir for staphylococcal transmission to humans.

    Host-switching events between humans and animals and amongst animals are frequent and have been accentuated with the domestication and/or commercialisation of specific animal species. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements such as phages, pathogenicity islands and plasmids as well as further host-specific mutations allowing it to expand into new host populations.

    In this chapter, we will be giving an overview of in animals, how this bacterial species was, and is, being transferred to new host species and the key elements thought to be involved in its adaptation to new ecological host niches. We will also highlight animal hosts as a reservoir for the development and transfer of antimicrobial resistance determinants.

  • Citation: Haag A, Fitzgerald J, Penadés J. 2019. in Animals. Microbiol Spectrum 7(3):GPP3-0060-2019. doi:10.1128/microbiolspec.GPP3-0060-2019.

References

1. Devriese LA, Vancanneyt M, Baele M, Vaneechoutte M, De Graef E, Snauwaert C, Cleenwerck I, Dawyndt P, Swings J, Decostere A, Haesebrouck F. 2005. Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. Int J Syst Evol Microbiol 55:1569–1573 http://dx.doi.org/10.1099/ijs.0.63413-0. [PubMed]
2. Guardabassi L, Loeber ME, Jacobson A. 2004. Transmission of multiple antimicrobial-resistant Staphylococcus intermedius between dogs affected by deep pyoderma and their owners. Vet Microbiol 98:23–27 http://dx.doi.org/10.1016/j.vetmic.2003.09.021.[PubMed]
3. Guardabassi L, Schwarz S, Lloyd DH. 2004. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother 54:321–332 http://dx.doi.org/10.1093/jac/dkh332. [PubMed]
4. Sasaki T, Kikuchi K, Tanaka Y, Takahashi N, Kamata S, Hiramatsu K. 2007. Reclassification of phenotypically identified Staphylococcus intermedius strains. J Clin Microbiol 45:2770–2778 http://dx.doi.org/10.1128/JCM.00360-07. [PubMed]
5. Sasaki T, Tsubakishita S, Tanaka Y, Sakusabe A, Ohtsuka M, Hirotaki S, Kawakami T, Fukata T, Hiramatsu K. 2010. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J Clin Microbiol 48:765–769 http://dx.doi.org/10.1128/JCM.01232-09. [PubMed]
6. Hovelius B, Mårdh PA. 1984. Staphylococcus saprophyticus as a common cause of urinary tract infections. Rev Infect Dis 6:328–337 http://dx.doi.org/10.1093/clinids/6.3.328.
7. Fey PD, Olson ME. 2010. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol 5:917–933 http://dx.doi.org/10.2217/fmb.10.56. [PubMed]
8. Mateo M, Maestre JR, Aguilar L, Cafini F, Puente P, Sánchez P, Alou L, Giménez MJ, Prieto J. 2005. Genotypic versus phenotypic characterization, with respect to susceptibility and identification, of 17 clinical isolates of Staphylococcus lugdunensis. J Antimicrob Chemother 56:287–291 http://dx.doi.org/10.1093/jac/dki227. [PubMed]
9. Riegel P, Jesel-Morel L, Laventie B, Boisset S, Vandenesch F, Prévost G. 2011. Coagulase-positive Staphylococcus pseudintermedius from animals causing human endocarditis. Int J Med Microbiol 301:237–239 http://dx.doi.org/10.1016/j.ijmm.2010.09.001. [PubMed]
10. Peton V, Le Loir Y. 2014. Staphylococcus aureus in veterinary medicine. Infect Genet Evol 21:602–615 http://dx.doi.org/10.1016/j.meegid.2013.08.011. [PubMed]
11. Roberson JR, Fox LK, Hancock DD, Gay JM, Besser TE. 1994. Ecology of Staphylococcus aureus isolated from various sites on dairy farms. J Dairy Sci 77:3354–3364 http://dx.doi.org/10.3168/jds.S0022-0302(94)77277-5.
12. Nagase N, Sasaki A, Yamashita K, Shimizu A, Wakita Y, Kitai S, Kawano J. 2002. Isolation and species distribution of staphylococci from animal and human skin. J Vet Med Sci 64:245–250 http://dx.doi.org/10.1292/jvms.64.245. [PubMed]
13. Simpson VR, Davison NJ, Kearns AM, Pichon B, Hudson LO, Koylass M, Blackett T, Butler H, Rasigade JP, Whatmore AM. 2013. Association of a lukM-positive clone of Staphylococcus aureus with fatal exudative dermatitis in red squirrels ( Sciurus vulgaris). Vet Microbiol 162:987–991 http://dx.doi.org/10.1016/j.vetmic.2012.10.025. [PubMed]
14. McBurney S, Veitch AM, Daoust P-Y. 2000. Bacterial valvular endocarditis in a black bear from Labrador. J Wildl Dis 36:788–791 http://dx.doi.org/10.7589/0090-3558-36.4.788. [PubMed]
15. Pandey GS, Nomura Y, Kobayashi K, Fujise H, Yamada T. 1998. Cutaneous staphylococcal granuloma in a free living zebra ( Equus burchelli) in Zambia. J Vet Med Sci 60:137–138 http://dx.doi.org/10.1292/jvms.60.137. [PubMed]
16. Hamir AN. 2010. Systemic Staphylococcus aureus infection in a free-ranging raccoon ( Procyon lotor). J Wildl Dis 46:665–668 http://dx.doi.org/10.7589/0090-3558-46.2.665. [PubMed]
17. Colgrove GS, Migaki G. 1976. Cerebral abscess associated with stranding in a dolphin. J Wildl Dis 12:271–274 http://dx.doi.org/10.7589/0090-3558-12.2.271. [PubMed]
18. Van Pelt RW, Dietrich RA. 1973. Staphylococcal infection and toxoplasmosis in a young harbor seal. J Wildl Dis 9:258–261 http://dx.doi.org/10.7589/0090-3558-9.3.258. [PubMed]
19. Clausen B, Ashford WA. 1980. Bacteriologic survey of black rhinoceros ( Diceros bicornis). J Wildl Dis 16:475–480 http://dx.doi.org/10.7589/0090-3558-16.4.475. [PubMed]
20. Meemken D, Blaha T, Hotzel H, Strommenger B, Klein G, Ehricht R, Monecke S, Kehrenberg C. 2013. Genotypic and phenotypic characterization of Staphylococcus aureus isolates from wild boars. Appl Environ Microbiol 79:1739–1742 http://dx.doi.org/10.1128/AEM.03189-12. [PubMed]
21. Porrero MC, Mentaberre G, Sánchez S, Fernández-Llario P, Casas-Díaz E, Mateos A, Vidal D, Lavín S, Fernández-Garayzábal JF, Domínguez L. 2014. Carriage of Staphylococcus aureus by free-living wild animals in Spain. Appl Environ Microbiol 80:4865–4870 http://dx.doi.org/10.1128/AEM.00647-14. [PubMed]
22. van den Berg S, van Wamel WJ, Snijders SV, Ouwerling B, de Vogel CP, Boelens HA, Willems RJ, Huijsdens XW, Verreck FA, Kondova I, Heidt PJ, Verbrugh HA, van Belkum A. 2011. Rhesus macaques ( Macaca mulatta) are natural hosts of specific Staphylococcus aureus lineages. PLoS One 6:e26170 http://dx.doi.org/10.1371/journal.pone.0026170. [PubMed]
23. Nagel M, Dischinger J, Türck M, Verrier D, Oedenkoven M, Ngoubangoye B, Le Flohic G, Drexler JF, Bierbaum G, Gonzalez JP. 2013. Human-associated Staphylococcus aureus strains within great ape populations in Central Africa (Gabon). Clin Microbiol Infect 19:1072–1077 http://dx.doi.org/10.1111/1469-0691.12119. [PubMed]
24. Paterson GK, Larsen AR, Robb A, Edwards GE, Pennycott TW, Foster G, Mot D, Hermans K, Baert K, Peacock SJ, Parkhill J, Zadoks RN, Holmes MA. 2012. The newly described mecA homologue, mecA LGA251, is present in methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. J Antimicrob Chemother 67:2809–2813 http://dx.doi.org/10.1093/jac/dks329. [PubMed]
25. Wobeser G, Kost W. 1992. Starvation, staphylococcosis, and vitamin A deficiency among mallards overwintering in Saskatchewan. J Wildl Dis 28:215–222 http://dx.doi.org/10.7589/0090-3558-28.2.215. [PubMed]
26. Hennekinne JA, Kerouanton A, Brisabois A, De Buyser ML. 2003. Discrimination of Staphylococcus aureus biotypes by pulsed-field gel electrophoresis of DNA macro-restriction fragments. J Appl Microbiol 94:321–329 http://dx.doi.org/10.1046/j.1365-2672.2003.01837.x. [PubMed]
27. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008–1015.
28. Smith EM, Green LE, Medley GF, Bird HE, Fox LK, Schukken YH, Kruze JV, Bradley AJ, Zadoks RN, Dowson CG. 2005. Multilocus sequence typing of intercontinental bovine Staphylococcus aureus isolates. J Clin Microbiol 43:4737–4743 http://dx.doi.org/10.1128/JCM.43.9.4737-4743.2005. [PubMed]
29. Smyth DS, Feil EJ, Meaney WJ, Hartigan PJ, Tollersrud T, Fitzgerald JR, Enright MC, Smyth CJ. 2009. Molecular genetic typing reveals further insights into the diversity of animal-associated Staphylococcus aureus. J Med Microbiol 58:1343–1353 http://dx.doi.org/10.1099/jmm.0.009837-0. [PubMed]
30. Cuny C, Wieler LH, Witte W. 2015. Livestock-associated MRSA: the impact on humans. Antibiotics (Basel) 4:521–543 http://dx.doi.org/10.3390/antibiotics4040521. [PubMed]
31. Shepheard MA, Fleming VM, Connor TR, Corander J, Feil EJ, Fraser C, Hanage WP. 2013. Historical zoonoses and other changes in host tropism of Staphylococcus aureus, identified by phylogenetic analysis of a population dataset. PLoS One 8:e62369 http://dx.doi.org/10.1371/journal.pone.0062369. [PubMed]
32. Weinert LA, Welch JJ, Suchard MA, Lemey P, Rambaut A, Fitzgerald JR. 2012. Molecular dating of human-to-bovid host jumps by Staphylococcus aureus reveals an association with the spread of domestication. Biol Lett 8:829–832 http://dx.doi.org/10.1098/rsbl.2012.0290. [PubMed]
33. Spoor LE, McAdam PR, Weinert LA, Rambaut A, Hasman H, Aarestrup FM, Kearns AM, Larsen AR, Skov RL, Fitzgerald JR. 2013. Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. MBio 4:e00356-13 http://dx.doi.org/10.1128/mBio.00356-13. [PubMed]
34. Kock R, Friedrich A, Cookson B, van Gemert-Pijnen JE, Harbarth S, Kluytmans J, Mielke M, Peters G, Skov RL, Struelens MJ, Tacconelli E, Witte W, Friedrich AW. 2014. Systematic literature analysis and review of targeted preventive measures to limit healthcare-associated infections by meticillin-resistant Staphylococcus aureus. Euro Surveill 19:20860.
35. Cuny C, Friedrich A, Kozytska S, Layer F, Nübel U, Ohlsen K, Strommenger B, Walther B, Wieler L, Witte W. 2010. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int J Med Microbiol 300:109–117 http://dx.doi.org/10.1016/j.ijmm.2009.11.002. [PubMed]
36. Fitzgerald JR. 2012. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol 20:192–198 http://dx.doi.org/10.1016/j.tim.2012.01.006. [PubMed]
37. Espinosa-Gongora C, Moodley A, Lipinska U, Broens EM, Hermans K, Butaye P, Devriese LA, Haesebrouck F, Guardabassi L. 2014. Phenotypes and genotypes of old and contemporary porcine strains indicate a temporal change in the S. aureus population structure in pigs. PLoS One 9:e101988 http://dx.doi.org/10.1371/journal.pone.0101988. [PubMed]
38. Pantosti A. 2012. Methicillin-resistant Staphylococcus aureus associated with animals and its relevance to human health. Front Microbiol 3:127 http://dx.doi.org/10.3389/fmicb.2012.00127. [PubMed]
39. Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, Pearson T, Waters AE, Foster JT, Schupp J, Gillece J, Driebe E, Liu CM, Springer B, Zdovc I, Battisti A, Franco A, Zmudzki J, Schwarz S, Butaye P, Jouy E, Pomba C, Porrero MC, Ruimy R, Smith TC, Robinson DA, Weese JS, Arriola CS, Yu F, Laurent F, Keim P, Skov R, Aarestrup FM. 2012. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3:e00305-11 http://dx.doi.org/10.1128/mBio.00305-11. [PubMed]
40. Lowder BV, Guinane CM, Ben Zakour NL, Weinert LA, Conway-Morris A, Cartwright RA, Simpson AJ, Rambaut A, Nübel U, Fitzgerald JR. 2009. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc Natl Acad Sci U S A 106:19545–19550 http://dx.doi.org/10.1073/pnas.0909285106. [PubMed]
41. Lowder BV, Fitzgerald JR. 2010. Human origin for avian pathogenic Staphylococcus aureus. Virulence 1:283–284 http://dx.doi.org/10.4161/viru.1.4.11838. [PubMed]
42. Walther B, Hermes J, Cuny C, Wieler LH, Vincze S, Abou Elnaga Y, Stamm I, Kopp PA, Kohn B, Witte W, Jansen A, Conraths FJ, Semmler T, Eckmanns T, Lübke-Becker A. 2012. Sharing more than friendship: nasal colonization with coagulase-positive staphylococci (CPS) and co-habitation aspects of dogs and their owners. PLoS One 7:e35197 http://dx.doi.org/10.1371/journal.pone.0035197. [PubMed]
43. Richardson EJ, Bacigalupe R, Harrison EM, Weinert LA, Lycett S, Vrieling M, Robb K, Hoskisson PA, Holden MTG, Feil EJ, Paterson GK, Tong SYC, Shittu A, van Wamel W, Aanensen DM, Parkhill J, Peacock SJ, Corander J, Holmes M, Fitzgerald JR. 2018. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat Ecol Evol 2:1468–1478 http://dx.doi.org/10.1038/s41559-018-0617-0. [PubMed]
44. Viana D, Comos M, McAdam PR, Ward MJ, Selva L, Guinane CM, González-Muñoz BM, Tristan A, Foster SJ, Fitzgerald JR, Penadés JR. 2015. A single natural nucleotide mutation alters bacterial pathogen host tropism. Nat Genet 47:361–366 http://dx.doi.org/10.1038/ng.3219. [PubMed]
45. Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DG, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM, members of the Pfizer mastitis research consortium. 2011. Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol 144:270–289 http://dx.doi.org/10.1016/j.vetimm.2011.08.022. [PubMed]
46. Le Maréchal C, Thiéry R, Vautor E, Le Loir Y. 2011. Mastitis impact on technological properties of milk and quality of milk products: a review. Dairy Sci Technol 91:247–282 http://dx.doi.org/10.1007/s13594-011-0009-6.
47. Le Loir Y, Baron F, Gautier M. 2003. Staphylococcus aureus and food poisoning. Genet Mol Res 2:63–76.
48. Sakwinska O, Giddey M, Moreillon M, Morisset D, Waldvogel A, Moreillon P. 2011. Staphylococcus aureus host range and human-bovine host shift. Appl Environ Microbiol 77:5908–5915 http://dx.doi.org/10.1128/AEM.00238-11. [PubMed]
49. Budd KE, Mitchell J, Keane OM. 2016. Lineage associated expression of virulence traits in bovine-adapted Staphylococcus aureus. Vet Microbiol 189:24–31 http://dx.doi.org/10.1016/j.vetmic.2016.04.013. [PubMed]
50. McCarthy AJ, Lindsay JA. 2010. Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions. BMC Microbiol 10:173 http://dx.doi.org/10.1186/1471-2180-10-173. [PubMed]
51. Menegotto F, González-Cabrero S, Lorenzo B, Cubero Á, Cuervo W, Gutiérrez MP, Simarro M, Orduña A, Bratos MA. 2012. Molecular epidemiology of methicillin-resistant Staphylococcus aureus in a Spanish hospital over a 4-year period: clonal replacement, decreased antimicrobial resistance, and identification of community-acquired and livestock-associated clones. Diagn Microbiol Infect Dis 74:332–337 http://dx.doi.org/10.1016/j.diagmicrobio.2012.08.001. [PubMed]
52. Udo EE, Aly NY, Sarkhoo E, Al-Sawan R, Al-Asar AS. 2011. Detection and characterization of an ST97-SCC mec-V community-associated meticillin-resistant Staphylococcus aureus clone in a neonatal intensive care unit and special care baby unit. J Med Microbiol 60:600–604 http://dx.doi.org/10.1099/jmm.0.028381-0. [PubMed]
53. Resch G, François P, Morisset D, Stojanov M, Bonetti EJ, Schrenzel J, Sakwinska O, Moreillon P. 2013. Human-to-bovine jump of Staphylococcus aureus CC8 is associated with the loss of a β-hemolysin converting prophage and the acquisition of a new staphylococcal cassette chromosome. PLoS One 8:e58187 http://dx.doi.org/10.1371/journal.pone.0058187. [PubMed]
54. Bar-Gal GK, Blum SE, Hadas L, Ehricht R, Monecke S, Leitner G. 2015. Host-specificity of Staphylococcus aureus causing intramammary infections in dairy animals assessed by genotyping and virulence genes. Vet Microbiol 176:143–154 http://dx.doi.org/10.1016/j.vetmic.2015.01.007. [PubMed]
55. Fournier C, Kuhnert P, Frey J, Miserez R, Kirchhofer M, Kaufmann T, Steiner A, Graber HU. 2008. Bovine Staphylococcus aureus: association of virulence genes, genotypes and clinical outcome. Res Vet Sci 85:439–448 http://dx.doi.org/10.1016/j.rvsc.2008.01.010. [PubMed]
56. Piccinini R, Borromeo V, Zecconi A. 2010. Relationship between S. aureus gene pattern and dairy herd mastitis prevalence. Vet Microbiol 145:100–105 http://dx.doi.org/10.1016/j.vetmic.2010.03.005. [PubMed]
57. Piccinini R, Tassi R, Daprà V, Pilla R, Fenner J, Carter B, Anjum MF. 2012. Study of Staphylococcus aureus collected at slaughter from dairy cows with chronic mastitis. J Dairy Res 79:249–255 http://dx.doi.org/10.1017/S002202991200009X. [PubMed]
58. Younis A, Krifucks O, Fleminger G, Heller ED, Gollop N, Saran A, Leitner G. 2005. Staphylococcus aureus leucocidin, a virulence factor in bovine mastitis. J Dairy Res 72:188–194 http://dx.doi.org/10.1017/S002202990500083X. [PubMed]
59. Alonzo F III, Torres VJ. 2014. The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 78:199–230 http://dx.doi.org/10.1128/MMBR.00055-13. [PubMed]
60. Schlotter K, Ehricht R, Hotzel H, Monecke S, Pfeffer M, Donat K. 2012. Leukocidin genes lukF-P83 and lukM are associated with Staphylococcus aureus clonal complexes 151, 479 and 133 isolated from bovine udder infections in Thuringia, Germany. Vet Res (Faisalabad) 43:42 http://dx.doi.org/10.1186/1297-9716-43-42. [PubMed]
61. Spaan AN, van Strijp JAG, Torres VJ. 2017. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol 15:435–447 http://dx.doi.org/10.1038/nrmicro.2017.27. [PubMed]
62. Deringer JR, Ely RJ, Monday SR, Stauffacher CV, Bohach GA. 1997. Vbeta-dependent stimulation of bovine and human T cells by host-specific staphylococcal enterotoxins. Infect Immun 65:4048–4054.
63. Viana D, Blanco J, Tormo-Más MA, Selva L, Guinane CM, Baselga R, Corpa J, Lasa I, Novick RP, Fitzgerald JR, Penadés JR. 2010. Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI-carried variants of von Willebrand factor-binding protein. Mol Microbiol 77:1583–1594 http://dx.doi.org/10.1111/j.1365-2958.2010.07312.x. [PubMed]
64. Spoor LE, Richardson E, Richards AC, Wilson GJ, Mendonca C, Gupta RK, McAdam PR, Nutbeam-Tuffs S, Black NS, O’Gara JP, Lee CY, Corander J, Fitzgerald JR. 2015. Recombination-mediated remodelling of host-pathogen interactions during Staphylococcus aureus niche adaptation. Microb Genom 1:e000036 http://dx.doi.org/10.1099/mgen.0.000036. [PubMed]
65. Pyrah ITG, Scott PR, Penny CD. 1994. Possible involvement of Staphylococcus aureus as a primary pathogen in lamb septicaemia. Vet Rec 134:679–680 http://dx.doi.org/10.1136/vr.134.26.679. [PubMed]
66. Bates P. 2003. Bacterial associations with the sheep scab mite ( Psoroptes ovis). Vet Rec 152:206–208 http://dx.doi.org/10.1136/vr.152.7.206. [PubMed]
67. Foster AP. 2012. Staphylococcal skin disease in livestock. Vet Dermatol 23:342–351, e63 http://dx.doi.org/10.1111/j.1365-3164.2012.01093.x. [PubMed]
68. de la Fuente R, Ballesteros C, Bautista V, Medina A, Orden JA, Domínguez-Bernal G, Vindel A. 2011. Staphylococcus aureus subsp. anaerobius isolates from different countries are clonal in nature. Vet Microbiol 150:198–202 http://dx.doi.org/10.1016/j.vetmic.2010.12.022. [PubMed]
69. Devriese LA, Van Damme LR, Fameree L. 1972. Methicillin (cloxacillin)-resistant Staphylococcus aureus strains isolated from bovine mastitis cases. Zentralbl Veterinarmed B 19:598–605 http://dx.doi.org/10.1111/j.1439-0450.1972.tb00439.x.
70. Lee JH. 2003. Methicillin (oxacillin)-resistant Staphylococcus aureus strains isolated from major food animals and their potential transmission to humans. Appl Environ Microbiol 69:6489–6494 http://dx.doi.org/10.1128/AEM.69.11.6489-6494.2003. [PubMed]
71. Kaszanyitzky EJ, Egyed Z, Jánosi S, Keseru J, Gál Z, Szabó I, Veres Z, Somogyi P. 2004. Staphylococci isolated from animals and food with phenotypically reduced susceptibility to β-lactamase-resistant β-lactam antibiotics. Acta Vet Hung 52:7–17 http://dx.doi.org/10.1556/AVet.52.2004.1.2. [PubMed]
72. Kwon NH, Park KT, Moon JS, Jung WK, Kim SH, Kim JM, Hong SK, Koo HC, Joo YS, Park YH. 2005. Staphylococcal cassette chromosome mec (SCC mec) characterization and molecular analysis for methicillin-resistant Staphylococcus aureus and novel SCC mec subtype IVg isolated from bovine milk in Korea. J Antimicrob Chemother 56:624–632 http://dx.doi.org/10.1093/jac/dki306. [PubMed]
73. Juhász-Kaszanyitzky E, Jánosi S, Somogyi P, Dán A, van der Graaf-van Bloois L, van Duijkeren E, Wagenaar JA. 2007. MRSA transmission between cows and humans. Emerg Infect Dis 13:630–632 http://dx.doi.org/10.3201/eid1304.060833. [PubMed]
74. Umoh VJ, Adesiyun AA, Gomwalk NE. 1990. Antibiogram of staphylococcal strains isolated from milk and milk-products. Zentralbl Veterinarmed B 37:701–706. [PubMed]
75. Costa EO, Benites NR, Guerra JL, Melville PA. 2000. Antimicrobial susceptibility of Staphylococcus spp. isolated from mammary parenchymas of slaughtered dairy cows. J Vet Med B Infect Dis Vet Public Health 47:99–103 http://dx.doi.org/10.1046/j.1439-0450.2000.00319.x. [PubMed]
76. Erskine RJ, Walker RD, Bolin CA, Bartlett PC, White DG. 2002. Trends in antibacterial susceptibility of mastitis pathogens during a seven-year period. J Dairy Sci 85:1111–1118 http://dx.doi.org/10.3168/jds.S0022-0302(02)74172-6.
77. Fessler A, Scott C, Kadlec K, Ehricht R, Monecke S, Schwarz S. 2010. Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. J Antimicrob Chemother 65:619–625 http://dx.doi.org/10.1093/jac/dkq021. [PubMed]
78. Holmes MA, Zadoks RN. 2011. Methicillin resistant S. aureus in human and bovine mastitis. J Mammary Gland Biol Neoplasia 16:373–382 http://dx.doi.org/10.1007/s10911-011-9237-x. [PubMed]
79. García-Álvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA. 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 11:595–603 http://dx.doi.org/10.1016/S1473-3099(11)70126-8.
80. Li T, Lu H, Wang X, Gao Q, Dai Y, Shang J, Li M. 2017. Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Front Cell Infect Microbiol 7:127 http://dx.doi.org/10.3389/fcimb.2017.00127.
81. Wu Z, Li F, Liu D, Xue H, Zhao X. 2015. Novel type XII staphylococcal cassette chromosome mec harboring a new cassette chromosome recombinase, CcrC2. Antimicrob Agents Chemother 59:7597–7601 http://dx.doi.org/10.1128/AAC.01692-15. [PubMed]
82. Yan X, Li Z, Chlebowicz MA, Tao X, Ni M, Hu Y, Li Z, Grundmann H, Murray S, Pascoe B, Sheppard SK, Bo X, Dijl JM, Du P, Zhang M, You Y, Yu X, Meng F, Wang S, Zhang J. 2016. Genetic features of livestock-associated Staphylococcus aureus ST9 isolates from Chinese pigs that carry the lsa(E) gene for quinupristin/dalfopristin resistance. Int J Med Microbiol 306:722–729 http://dx.doi.org/10.1016/j.ijmm.2016.08.001. [PubMed]
83. Zhou W, Li X, Osmundson T, Shi L, Ren J, Yan H. 2018. WGS analysis of ST9-MRSA-XII isolates from live pigs in China provides insights into transmission among porcine, human and bovine hosts. J Antimicrob Chemother 73:2652–2661 http://dx.doi.org/10.1093/jac/dky245. [PubMed]
84. Basanisi MG, La Bella G, Nobili G, Franconieri I, La Salandra G. 2017. Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiol 62:141–146 http://dx.doi.org/10.1016/j.fm.2016.10.020. [PubMed]
85. Loncaric I, Kübber-Heiss A, Posautz A, Stalder GL, Hoffmann D, Rosengarten R, Walzer C. 2014. mecC- and mecA-positive meticillin-resistant Staphylococcus aureus (MRSA) isolated from livestock sharing habitat with wildlife previously tested positive for mecC-positive MRSA. Vet Dermatol 25:147–148 http://dx.doi.org/10.1111/vde.12116. [PubMed]
86. Paterson GK, Harrison EM, Holmes MA. 2014. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol 22:42–47 http://dx.doi.org/10.1016/j.tim.2013.11.003. [PubMed]
87. Cuny C, Layer F, Strommenger B, Witte W. 2011. Rare occurrence of methicillin-resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. PLoS One 6:e24360 http://dx.doi.org/10.1371/journal.pone.0024360. [PubMed]
88. Rosell JM, de la Fuente LF. 2009. Culling and mortality in breeding rabbits. Prev Vet Med 88:120–127 http://dx.doi.org/10.1016/j.prevetmed.2008.08.003. [PubMed]
89. Rosell JM, de la Fuente LF. 2018. Mastitis on rabbit farms: prevalence and risk factors. Animals (Basel) 8:E98 http://dx.doi.org/10.3390/ani8060098. [PubMed]
90. Corpa JM, Hermans K, Haesebrouck E. 2010. Main pathologies associated with Staphylococcus aureus infections in rabbits: a review. 17:11.
91. Segura P, Martinez J, Peris B, Selva L, Viana D, Penades JR, Corpa JM. 2007. Staphylococcal infections in rabbit does on two industrial farms. Vet Rec 160:869–872 http://dx.doi.org/10.1136/vr.160.25.869. [PubMed]
92. Okerman L, Devriese LA, Maertens L, Okerman F, Godard C. 1984. Cutaneous staphylococcosis in rabbits. Vet Rec 114:313–315 http://dx.doi.org/10.1136/vr.114.13.313. [PubMed]
93. Viana D, Selva L, Segura P, Penadés JR, Corpa JM. 2007. Genotypic characterization of Staphylococcus aureus strains isolated from rabbit lesions. Vet Microbiol 121:288–298 http://dx.doi.org/10.1016/j.vetmic.2006.12.003. [PubMed]
94. Viana D, Selva L, Callanan JJ, Guerrero I, Ferrian S, Corpa JM. 2011. Strains of Staphylococcus aureus and pathology associated with chronic suppurative mastitis in rabbits. Vet J 190:403–407 http://dx.doi.org/10.1016/j.tvjl.2010.11.022. [PubMed]
95. Vancraeynest D, Haesebrouck F, Deplano A, Denis O, Godard C, Wildemauwe C, Hermans K. 2006. International dissemination of a high virulence rabbit Staphylococcus aureus clone. J Vet Med B Infect Dis Vet Public Health 53:418–422 http://dx.doi.org/10.1111/j.1439-0450.2006.00977.x. [PubMed]
96. Guerrero I, Ferrian S, Penadés M, García-Quirós A, Pascual JJ, Selva L, Viana D, Corpa JM. 2015. Host responses associated with chronic staphylococcal mastitis in rabbits. Vet J 204:338–344 http://dx.doi.org/10.1016/j.tvjl.2015.03.020. [PubMed]
97. Hermans K, Devriese LA, Haesebrouck F. 2003. Rabbit staphylococcosis: difficult solutions for serious problems. Vet Microbiol 91:57–64 http://dx.doi.org/10.1016/S0378-1135(02)00260-2.
98. Meulemans L, Hermans K, Duchateau L, Haesebrouck F. 2007. High and low virulence Staphylococcus aureus strains in a rabbit skin infection model. Vet Microbiol 125:333–340 http://dx.doi.org/10.1016/j.vetmic.2007.05.024. [PubMed]
99. Devriese LA, Hendrickx W, Godard C, Okerman L, Haesebrouck F. 1996. A new pathogenic Staphylococcus aureus type in commercial rabbits. Zentralbl Veterinarmed B 43:313–315. [PubMed]
100. Hermans K, De Herdt P, Devriese LA, Hendrickx W, Godard C, Haesebrouck F. 1999. Colonization of rabbits with Staphylococcus aureus in flocks with and without chronic staphylococcosis. Vet Microbiol 67:37–46 http://dx.doi.org/10.1016/S0378-1135(99)00028-0.
101. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F. 1999. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410 http://dx.doi.org/10.1074/jbc.274.13.8405. [PubMed]
102. Murray S, Pascoe B, Méric G, Mageiros L, Yahara K, Hitchings MD, Friedmann Y, Wilkinson TS, Gormley FJ, Mack D, Bray JE, Lamble S, Bowden R, Jolley KA, Maiden MCJ, Wendlandt S, Schwarz S, Corander J, Fitzgerald JR, Sheppard SK. 2017. Recombination-mediated host adaptation by avian Staphylococcus aureus. Genome Biol Evol 9:830–842 http://dx.doi.org/10.1093/gbe/evx037. [PubMed]
103. Bystroń J, Podkowik M, Piasecki T, Wieliczko A, Molenda J, Bania J. 2010. Genotypes and enterotoxin gene content of S. aureus isolates from poultry. Vet Microbiol 144:498–501 http://dx.doi.org/10.1016/j.vetmic.2010.01.029. [PubMed]
104. Monecke S, Ruppelt A, Wendlandt S, Schwarz S, Slickers P, Ehricht R, Jäckel SC. 2013. Genotyping of Staphylococcus aureus isolates from diseased poultry. Vet Microbiol 162:806–812 http://dx.doi.org/10.1016/j.vetmic.2012.10.018. [PubMed]
105. Abdelbary MM, Wittenberg A, Cuny C, Layer F, Kurt K, Wieler LH, Walther B, Skov R, Larsen J, Hasman H, Fitzgerald JR, Smith TC, Wagenaar JA, Pantosti A, Hallin M, Struelens MJ, Edwards G, Böse R, Nübel U, Witte W. 2014. Phylogenetic analysis of Staphylococcus aureus CC398 reveals a sub-lineage epidemiologically associated with infections in horses. PLoS One 9:e88083 http://dx.doi.org/10.1371/journal.pone.0088083. [PubMed]
106. Richards SA. 1971. The significance of changes in the temperature of the skin and body core of the chicken in the regulation of heat loss. J Physiol 216:1–10 http://dx.doi.org/10.1113/jphysiol.1971.sp009505. [PubMed]
107. Herron-Olson L, Fitzgerald JR, Musser JM, Kapur V. 2007. Molecular correlates of host specialization in Staphylococcus aureus. PLoS One 2:e1120 http://dx.doi.org/10.1371/journal.pone.0001120. [PubMed]
108. Ehrlich SD. 1977. Replication and expression of plasmids from Staphylococcus aureus in Bacillus subtilis. Proc Natl Acad Sci U S A 74:1680–1682 http://dx.doi.org/10.1073/pnas.74.4.1680. [PubMed]
109. Pyzik E, Marek A. 2013. Plasmid profile analysis and evaluation of antibiotic susceptibility of Staphylococcus aureus strains isolated from table chicken eggs. Pol J Vet Sci 16:307–312 http://dx.doi.org/10.2478/pjvs-2013-0042. [PubMed]
110. Abdalrahman LS, Stanley A, Wells H, Fakhr MK. 2015. Isolation, virulence, and antimicrobial resistance of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin sensitive Staphylococcus aureus (MSSA) strains from Oklahoma retail poultry meats. Int J Environ Res Public Health 12:6148–6161 http://dx.doi.org/10.3390/ijerph120606148. [PubMed]
111. Takeuchi S, Kinoshita T, Kaidoh T, Hashizume N. 1999. Purification and characterization of protease produced by Staphylococcus aureus isolated from a diseased chicken. Vet Microbiol 67:195–202 http://dx.doi.org/10.1016/S0378-1135(99)00034-6.
112. Takeuchi S, Matsunaga K, Inubushi S, Higuchi H, Imaizumi K, Kaidoh T. 2002. Structural gene and strain specificity of a novel cysteine protease produced by Staphylococcus aureus isolated from a diseased chicken. Vet Microbiol 89:201–210 http://dx.doi.org/10.1016/S0378-1135(02)00171-2.
113. Cui S, Li J, Hu C, Jin S, Li F, Guo Y, Ran L, Ma Y. 2009. Isolation and characterization of methicillin-resistant Staphylococcus aureus from swine and workers in China. J Antimicrob Chemother 64:680–683 http://dx.doi.org/10.1093/jac/dkp275. [PubMed]
114. Guardabassi L, O’Donoghue M, Moodley A, Ho J, Boost M. 2009. Novel lineage of methicillin-resistant Staphylococcus aureus, Hong Kong. Emerg Infect Dis 15:1998–2000 http://dx.doi.org/10.3201/eid1512.090378. [PubMed]
115. Frana TS, Beahm AR, Hanson BM, Kinyon JM, Layman LL, Karriker LA, Ramirez A, Smith TC. 2013. Isolation and characterization of methicillin-resistant Staphylococcus aureus from pork farms and visiting veterinary students. PLoS One 8:e53738 http://dx.doi.org/10.1371/journal.pone.0053738. [PubMed]
116. Sun J, Yang M, Sreevatsan S, Davies PR. 2015. Prevalence and characterization of Staphylococcus aureus in growing pigs in the USA. PLoS One 10:e0143670 http://dx.doi.org/10.1371/journal.pone.0143670. [PubMed]
117. Salgado CD, Farr BM, Calfee DP. 2003. Community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clin Infect Dis 36:131–139 http://dx.doi.org/10.1086/345436. [PubMed]
118. Otto M. 2013. Community-associated MRSA: what makes them special? Int J Med Microbiol 303:324–330 http://dx.doi.org/10.1016/j.ijmm.2013.02.007. [PubMed]
119. Tavares A, Miragaia M, Rolo J, Coelho C, de Lencastre H, CA-MRSA/MSSA Working Group. 2013. High prevalence of hospital-associated methicillin-resistant Staphylococcus aureus in the community in Portugal: evidence for the blurring of community-hospital boundaries. Eur J Clin Microbiol Infect Dis 32:1269–1283 http://dx.doi.org/10.1007/s10096-013-1872-2. [PubMed]
120. Liu C, Graber CJ, Karr M, Diep BA, Basuino L, Schwartz BS, Enright MC, O’Hanlon SJ, Thomas JC, Perdreau-Remington F, Gordon S, Gunthorpe H, Jacobs R, Jensen P, Leoung G, Rumack JS, Chambers HF. 2008. A population-based study of the incidence and molecular epidemiology of methicillin-resistant Staphylococcus aureus disease in San Francisco, 2004-2005. Clin Infect Dis 46:1637–1646 http://dx.doi.org/10.1086/587893. [PubMed]
121. van Duijkeren E, Jansen MD, Flemming SC, de Neeling H, Wagenaar JA, Schoormans AH, van Nes A, Fluit AC. 2007. Methicillin-resistant Staphylococcus aureus in pigs with exudative epidermitis. Emerg Infect Dis 13:1408–1410 http://dx.doi.org/10.3201/eid1309.061268. [PubMed]
122. Armand-Lefevre L, Ruimy R, Andremont A. 2005. Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerg Infect Dis 11:711–714 http://dx.doi.org/10.3201/eid1105.040866. [PubMed]
123. van Belkum A, Melles DC, Peeters JK, van Leeuwen WB, van Duijkeren E, Huijsdens XW, Spalburg E, de Neeling AJ, Verbrugh HA, Dutch Working Party on Surveillance and Research of MRSA-SOM. 2008. Methicillin-resistant and -susceptible Staphylococcus aureus sequence type 398 in pigs and humans. Emerg Infect Dis 14:479–483 http://dx.doi.org/10.3201/eid1403.070760. [PubMed]
124. Deiters C, Günnewig V, Friedrich AW, Mellmann A, Köck R. 2015. Are cases of methicillin-resistant Staphylococcus aureus clonal complex (CC) 398 among humans still livestock-associated? Int J Med Microbiol 305:110–113 http://dx.doi.org/10.1016/j.ijmm.2014.11.007. [PubMed]
125. Cuny C, Nathaus R, Layer F, Strommenger B, Altmann D, Witte W. 2009. Nasal colonization of humans with methicillin-resistant Staphylococcus aureus (MRSA) CC398 with and without exposure to pigs. PLoS One 4:e6800 http://dx.doi.org/10.1371/journal.pone.0006800. [PubMed]
126. Larsen J, Petersen A, Sørum M, Stegger M, van Alphen L, Valentiner-Branth P, Knudsen LK, Larsen LS, Feingold B, Price LB, Andersen PS, Larsen AR, Skov RL. 2015. Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011. Euro Surveill 20:30021 http://dx.doi.org/10.2807/1560-7917.ES.2015.20.37.30021. [PubMed]
127. Ward MJ, Gibbons CL, McAdam PR, van Bunnik BA, Girvan EK, Edwards GF, Fitzgerald JR, Woolhouse ME. 2014. Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus clonal complex 398. Appl Environ Microbiol 80:7275–7282 http://dx.doi.org/10.1128/AEM.01777-14. [PubMed]
128. Köck R, Harlizius J, Bressan N, Laerberg R, Wieler LH, Witte W, Deurenberg RH, Voss A, Becker K, Friedrich AW. 2009. Prevalence and molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) among pigs on German farms and import of livestock-related MRSA into hospitals. Eur J Clin Microbiol Infect Dis 28:1375–1382 http://dx.doi.org/10.1007/s10096-009-0795-4. [PubMed]
129. Köck R, Schaumburg F, Mellmann A, Köksal M, Jurke A, Becker K, Friedrich AW. 2013. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PLoS One 8:e55040 http://dx.doi.org/10.1371/journal.pone.0055040. [PubMed]
130. Bens CC, Voss A, Klaassen CH. 2006. Presence of a novel DNA methylation enzyme in methicillin-resistant Staphylococcus aureus isolates associated with pig farming leads to uninterpretable results in standard pulsed-field gel electrophoresis analysis. J Clin Microbiol 44:1875–1876 http://dx.doi.org/10.1128/JCM.44.5.1875-1876.2006. [PubMed]
131. Stegger M, Lindsay JA, Moodley A, Skov R, Broens EM, Guardabassi L. 2011. Rapid PCR detection of Staphylococcus aureus clonal complex 398 by targeting the restriction-modification system carrying sau1-hsdS1. J Clin Microbiol 49:732–734 http://dx.doi.org/10.1128/JCM.01970-10. [PubMed]
132. Li S, Skov RL, Han X, Larsen AR, Larsen J, Sørum M, Wulf M, Voss A, Hiramatsu K, Ito T. 2011. Novel types of staphylococcal cassette chromosome mec elements identified in clonal complex 398 methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 55:3046–3050 http://dx.doi.org/10.1128/AAC.01475-10. [PubMed]
133. Argudín MA, Tenhagen BA, Fetsch A, Sachsenröder J, Käsbohrer A, Schroeter A, Hammerl JA, Hertwig S, Helmuth R, Bräunig J, Mendoza MC, Appel B, Rodicio MR, Guerra B. 2011. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl Environ Microbiol 77:3052–3060 http://dx.doi.org/10.1128/AEM.02260-10. [PubMed]
134. Hallin M, De Mendonça R, Denis O, Lefort A, El Garch F, Butaye P, Hermans K, Struelens MJ. 2011. Diversity of accessory genome of human and livestock-associated ST398 methicillin resistant Staphylococcus aureus strains. Infect Genet Evol 11:290–299 http://dx.doi.org/10.1016/j.meegid.2010.10.021. [PubMed]
135. Wulf MW, Sørum M, van Nes A, Skov R, Melchers WJ, Klaassen CH, Voss A. 2008. Prevalence of methicillin-resistant Staphylococcus aureus among veterinarians: an international study. Clin Microbiol Infect 14:29–34 http://dx.doi.org/10.1111/j.1469-0691.2007.01873.x. [PubMed]
136. Bisdorff B, Scholhölter JL, Claußen K, Pulz M, Nowak D, Radon K. 2012. MRSA-ST398 in livestock farmers and neighbouring residents in a rural area in Germany. Epidemiol Infect 140:1800–1808 http://dx.doi.org/10.1017/S0950268811002378. [PubMed]
137. Graveland H, Wagenaar JA, Bergs K, Heesterbeek H, Heederik D. 2011. Persistence of livestock associated MRSA CC398 in humans is dependent on intensity of animal contact. PLoS One 6:e16830 http://dx.doi.org/10.1371/journal.pone.0016830. [PubMed]
138. van Cleef BA, Graveland H, Haenen AP, van de Giessen AW, Heederik D, Wagenaar JA, Kluytmans JA. 2011. Persistence of livestock-associated methicillin-resistant Staphylococcus aureus in field workers after short-term occupational exposure to pigs and veal calves. J Clin Microbiol 49:1030–1033 http://dx.doi.org/10.1128/JCM.00493-10. [PubMed]
139. Richter A, Sting R, Popp C, Rau J, Tenhagen BA, Guerra B, Hafez HM, Fetsch A. 2012. Prevalence of types of methicillin-resistant Staphylococcus aureus in turkey flocks and personnel attending the animals. Epidemiol Infect 140:2223–2232 http://dx.doi.org/10.1017/S095026881200009X. [PubMed]
140. Schaumburg F, Köck R, Mellmann A, Richter L, Hasenberg F, Kriegeskorte A, Friedrich AW, Gatermann S, Peters G, von Eiff C, Becker K, study group. 2012. Population dynamics among methicillin-resistant Staphylococcus aureus isolates in Germany during a 6-year period. J Clin Microbiol 50:3186–3192 http://dx.doi.org/10.1128/JCM.01174-12. [PubMed]
141. van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, van Strijp JA. 2006. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol 188:1310–1315 http://dx.doi.org/10.1128/JB.188.4.1310-1315.2006. [PubMed]
142. Rooijakkers SH, Ruyken M, Roos A, Daha MR, Presanis JS, Sim RB, van Wamel WJ, van Kessel KP, van Strijp JA. 2005. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6:920–927 http://dx.doi.org/10.1038/ni1235. [PubMed]
143. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, van Strijp JA. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695 http://dx.doi.org/10.1084/jem.20031636. [PubMed]
144. McCarthy AJ, Witney AA, Gould KA, Moodley A, Guardabassi L, Voss A, Denis O, Broens EM, Hinds J, Lindsay JA. 2011. The distribution of mobile genetic elements (MGEs) in MRSA CC398 is associated with both host and country. Genome Biol Evol 3:1164–1174 http://dx.doi.org/10.1093/gbe/evr092. [PubMed]
145. McCarthy AJ, van Wamel W, Vandendriessche S, Larsen J, Denis O, Garcia-Graells C, Uhlemann AC, Lowy FD, Skov R, Lindsay JA. 2012. Staphylococcus aureus CC398 clade associated with human-to-human transmission. Appl Environ Microbiol 78:8845–8848 http://dx.doi.org/10.1128/AEM.02398-12. [PubMed]
146. Schijffelen MJ, Boel CH, van Strijp JA, Fluit AC. 2010. Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC Genomics 11:376 http://dx.doi.org/10.1186/1471-2164-11-376. [PubMed]
147. Yu F, Chen Z, Liu C, Zhang X, Lin X, Chi S, Zhou T, Chen Z, Chen X. 2008. Prevalence of Staphylococcus aureus carrying Panton-Valentine leukocidin genes among isolates from hospitalised patients in China. Clin Microbiol Infect 14:381–384 http://dx.doi.org/10.1111/j.1469-0691.2007.01927.x. [PubMed]
148. Corvaglia AR, François P, Hernandez D, Perron K, Linder P, Schrenzel J. 2010. A type III-like restriction endonuclease functions as a major barrier to horizontal gene transfer in clinical Staphylococcus aureus strains. Proc Natl Acad Sci U S A 107:11954–11958 http://dx.doi.org/10.1073/pnas.1000489107. [PubMed]
149. Loeffler A, Boag AK, Sung J, Lindsay JA, Guardabassi L, Dalsgaard A, Smith H, Stevens KB, Lloyd DH. 2005. Prevalence of methicillin-resistant Staphylococcus aureus among staff and pets in a small animal referral hospital in the UK. J Antimicrob Chemother 56:692–697 http://dx.doi.org/10.1093/jac/dki312. [PubMed]
150. van Duijkeren E, Wolfhagen MJ, Box AT, Heck ME, Wannet WJ, Fluit AC. 2004. Human-to-dog transmission of methicillin-resistant Staphylococcus aureus. Emerg Infect Dis 10:2235–2237 http://dx.doi.org/10.3201/eid1012.040387. [PubMed]
151. Rutland BE, Weese JS, Bolin C, Au J, Malani AN. 2009. Human-to-dog transmission of methicillin-resistant Staphylococcus aureus. Emerg Infect Dis 15:1328–1330 http://dx.doi.org/10.3201/eid1508.081635. [PubMed]
152. Loeffler A, Lloyd DH. 2010. Companion animals: a reservoir for methicillin-resistant Staphylococcus aureus in the community? Epidemiol Infect 138:595–605 http://dx.doi.org/10.1017/S0950268809991476. [PubMed]
153. Faires MC, Traverse M, Tater KC, Pearl DL, Weese JS. 2010. Methicillin-resistant and -susceptible Staphylococcus aureus infections in dogs. Emerg Infect Dis 16:69–75 http://dx.doi.org/10.3201/eid1601.081758. [PubMed]
154. Morris DO, Lautenbach E, Zaoutis T, Leckerman K, Edelstein PH, Rankin SC. 2012. Potential for pet animals to harbour methicillin-resistant Staphylococcus aureus when residing with human MRSA patients. Zoonoses Public Health 59:286–293 http://dx.doi.org/10.1111/j.1863-2378.2011.01448.x. [PubMed]
155. Deurenberg RH, Stobberingh EE. 2009. The molecular evolution of hospital- and community-associated methicillin-resistant Staphylococcus aureus. Curr Mol Med 9:100–115 http://dx.doi.org/10.2174/15665249787581637. [PubMed]
156. Weese JS, van Duijkeren E. 2010. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet Microbiol 140:418–429 http://dx.doi.org/10.1016/j.vetmic.2009.01.039. [PubMed]
157. van Duijkeren E, Moleman M, Sloet van Oldruitenborgh-Oosterbaan MM, Multem J, Troelstra A, Fluit AC, van Wamel WJ, Houwers DJ, de Neeling AJ, Wagenaar JA. 2010. Methicillin-resistant Staphylococcus aureus in horses and horse personnel: an investigation of several outbreaks. Vet Microbiol 141:96–102 http://dx.doi.org/10.1016/j.vetmic.2009.08.009. [PubMed]
158. Witte W, Strommenger B, Stanek C, Cuny C. 2007. Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, Central Europe. Emerg Infect Dis 13:255–258 http://dx.doi.org/10.3201/eid1302.060924. [PubMed]
159. Seguin JC, Walker RD, Caron JP, Kloos WE, George CG, Hollis RJ, Jones RN, Pfaller MA. 1999. Methicillin-resistant Staphylococcus aureus outbreak in a veterinary teaching hospital: potential human-to-animal transmission. J Clin Microbiol 37:1459–1463.
160. Morgan M. 2008. Methicillin-resistant Staphylococcus aureus and animals: zoonosis or humanosis? J Antimicrob Chemother 62:1181–1187 http://dx.doi.org/10.1093/jac/dkn405. [PubMed]
161. Cuny C, Strommenger B, Witte W, Stanek C. 2008. Clusters of infections in horses with MRSA ST1, ST254, and ST398 in a veterinary hospital. Microb Drug Resist 14:307–310 http://dx.doi.org/10.1089/mdr.2008.0845. [PubMed]
162. Koop G, Vrieling M, Storisteanu DM, Lok LS, Monie T, van Wigcheren G, Raisen C, Ba X, Gleadall N, Hadjirin N, Timmerman AJ, Wagenaar JA, Klunder HM, Fitzgerald JR, Zadoks R, Paterson GK, Torres C, Waller AS, Loeffler A, Loncaric I, Hoet AE, Bergström K, De Martino L, Pomba C, de Lencastre H, Ben Slama K, Gharsa H, Richardson EJ, Chilvers ER, de Haas C, van Kessel K, van Strijp JA, Harrison EM, Holmes MA. 2017. Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Sci Rep 7:40660 http://dx.doi.org/10.1038/srep40660. [PubMed]
163. de Jong NWM, Vrieling M, Garcia BL, Koop G, Brettmann M, Aerts PC, Ruyken M, van Strijp JAG, Holmes M, Harrison EM, Geisbrecht BV, Rooijakkers SHM. 2018. Identification of a staphylococcal complement inhibitor with broad host specificity in equid Staphylococcus aureus strains. J Biol Chem 293:4468–4477 http://dx.doi.org/10.1074/jbc.RA117.000599. [PubMed]
164. Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29:527–543 http://dx.doi.org/10.1046/j.1365-2958.1998.00947.x. [PubMed]
165. Schaumburg F, Pauly M, Anoh E, Mossoun A, Wiersma L, Schubert G, Flammen A, Alabi AS, Muyembe-Tamfum J-J, Grobusch MP, Karhemere S, Akoua-Koffi C, Couacy-Hymann E, Kremsner PG, Mellmann A, Becker K, Leendertz FH, Peters G. 2015. Staphylococcus aureus complex from animals and humans in three remote African regions. Clin Microbiol Infect 21:345.e1–345.e8 http://dx.doi.org/10.1016/j.cmi.2014.12.001. [PubMed]
166. Senghore M, Bayliss SC, Kwambana-Adams BA, Foster-Nyarko E, Manneh J, Dione M, Badji H, Ebruke C, Doughty EL, Thorpe HA, Jasinska AJ, Schmitt CA, Cramer JD, Turner TR, Weinstock G, Freimer NB, Pallen MJ, Feil EJ, Antonio M. 2016. Transmission of Staphylococcus aureus from humans to green monkeys in The Gambia as revealed by whole-genome sequencing. Appl Environ Microbiol 82:5910–5917 http://dx.doi.org/10.1128/AEM.01496-16. [PubMed]
167. Koymans KJ, Vrieling M, Gorham RD Jr, van Strijp JAG. 2017. Staphylococcal immune evasion proteins: structure, function, and host adaptation. Curr Top Microbiol Immunol 409:441–489 http://dx.doi.org/10.1007/82_2015_5017. [PubMed]
168. Löffler B, Hussain M, Grundmeier M, Brück M, Holzinger D, Varga G, Roth J, Kahl BC, Proctor RA, Peters G. 2010. Staphylococcus aureus Panton-Valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog 6:e1000715 http://dx.doi.org/10.1371/journal.ppat.1000715. [PubMed]
169. Vrieling M, Boerhout EM, van Wigcheren GF, Koymans KJ, Mols-Vorstermans TG, de Haas CJ, Aerts PC, Daemen IJ, van Kessel KP, Koets AP, Rutten VP, Nuijten PJ, van Strijp JA, Benedictus L. 2016. LukMF' is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis. Sci Rep 6:37759 http://dx.doi.org/10.1038/srep37759. [PubMed]
170. Wilson GJ, Seo KS, Cartwright RA, Connelley T, Chuang-Smith ON, Merriman JA, Guinane CM, Park JY, Bohach GA, Schlievert PM, Morrison WI, Fitzgerald JR. 2011. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog 7:e1002271 http://dx.doi.org/10.1371/journal.ppat.1002271. [PubMed]
171. Smyth DS, Hartigan PJ, Meaney WJ, Fitzgerald JR, Deobald CF, Bohach GA, Smyth CJ. 2005. Superantigen genes encoded by the egc cluster and SaPIbov are predominant among Staphylococcus aureus isolates from cows, goats, sheep, rabbits and poultry. J Med Microbiol 54:401–411 http://dx.doi.org/10.1099/jmm.0.45863-0. [PubMed]
172. Fitzgerald JR, Monday SR, Foster TJ, Bohach GA, Hartigan PJ, Meaney WJ, Smyth CJ. 2001. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J Bacteriol 183:63–70 http://dx.doi.org/10.1128/JB.183.1.63-70.2001. [PubMed]
173. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, Etienne J, Vandenesch F, Bonneville M, Lina G. 2001. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166:669–677 http://dx.doi.org/10.4049/jimmunol.166.1.669. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0060-2019
2019-05-24
2019-09-17

Abstract:

is a mammalian commensal and opportunistic pathogen that colonizes niches such as skin, nares and diverse mucosal membranes of about 20-30% of the human population. can cause a wide spectrum of diseases in humans and both methicillin-sensitive and methicillin-resistant strains are common causes of nosocomial- and community-acquired infections. Despite the prevalence of literature characterising staphylococcal pathogenesis in humans, is a major cause of infection and disease in a plethora of animal hosts leading to a significant impact on public health and agriculture. Infections in animals are deleterious to animal health, and animals can act as a reservoir for staphylococcal transmission to humans.

Host-switching events between humans and animals and amongst animals are frequent and have been accentuated with the domestication and/or commercialisation of specific animal species. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements such as phages, pathogenicity islands and plasmids as well as further host-specific mutations allowing it to expand into new host populations.

In this chapter, we will be giving an overview of in animals, how this bacterial species was, and is, being transferred to new host species and the key elements thought to be involved in its adaptation to new ecological host niches. We will also highlight animal hosts as a reservoir for the development and transfer of antimicrobial resistance determinants.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Humans act as a major hub for host jumps. has been isolated from a plethora of vertebrates and has undergone multiple series of host jumps. A major exchange hub is humans that interact with domesticated livestock and companion animals. Arrow thickness indicates the frequency of host jumps, with colors from yellow to red indicating their likelihood. Figure adapted from reference 43 .

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0060-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Selected staphylococcal elements associated with specific hosts

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0060-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error