1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Pathogenicity Islands and Their Role in Staphylococcal Biology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: Richard P. Novick1
  • Editors: Vincent A. Fischetti2, Richard P. Novick3, Joseph J. Ferretti4, Daniel A. Portnoy5, Miriam Braunstein6, Julian I. Rood7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: NYU School of Medicine, Skirball Institute of Biomolecular Medicine and Departments of Medicine and Microbiology, New York, NY 10016; 2: The Rockefeller University, New York, NY; 3: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 4: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 5: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 6: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 7: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0062-2019
  • Received 15 February 2018 Accepted 25 February 2018 Published 07 June 2019
  • Richard P. Novick, [email protected]
image of Pathogenicity Islands and Their Role in Staphylococcal Biology
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Pathogenicity Islands and Their Role in Staphylococcal Biology, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0062-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0062-2019-2.gif
  • Abstract:

    Pathogenicity islands are members of a vast collection of genomic islands that encode important virulence, antibiotic resistance and other accessory functions and have a critical role in bacterial gene transfer. is host to a large family of such islands, known as SaPIs, which encode super antigen and other virulence determinants, are mobilized by helper phages and transferred at extremely high frequencies. They benefit their host cells by interfering with phage predation and enhancing horizontal gene transfer. This chapter describes their life cycle, the bases of their phage interference mechanisms, their transfer system and their conversion to antibacterial agents for treatment ofstaphylococcal infections.

  • Citation: Novick R. 2019. Pathogenicity Islands and Their Role in Staphylococcal Biology. Microbiol Spectrum 7(3):GPP3-0062-2019. doi:10.1128/microbiolspec.GPP3-0062-2019.

References

1. Hayes W. 1968. The Genetics of Bacteria and their Viruses, 2nd ed. Blackwell Scientific Publications, Oxford, Edinburgh, UK.
2. Jordan E, Saedler H, Starlinger P. 1967. Strong-polar mutations in the transferase gene of the glactose operon in E coli. P. Mol Gen Genet 100:296–306.
3. Summers DK. 1996. The Biology of Plasmids. Blackwell Science Ltd., Oxford, UK. http://dx.doi.org/10.1002/9781444313741.
4. Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschäpe H, Hacker J. 1994. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62:606–614.
5. Damle PK, Wall EA, Spilman MS, Dearborn AD, Ram G, Novick RP, Dokland T, Christie GE. 2012. The roles of SaPI1 proteins gp7 (CpmA) and gp6 (CpmB) in capsid size determination and helper phage interference. Virology 432:277–282 http://dx.doi.org/10.1016/j.virol.2012.05.026. [PubMed]
6. Vernikos GS, Parkhill J. 2008. Resolving the structural features of genomic islands: a machine learning approach. Genome Res 18:331–342 http://dx.doi.org/10.1101/gr.7004508. [PubMed]
7. Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29:527–543 http://dx.doi.org/10.1046/j.1365-2958.1998.00947.x. [PubMed]
8. Fitzgerald JR, Monday SR, Foster TJ, Bohach GA, Hartigan PJ, Meaney WJ, Smyth CJ. 2001. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J Bacteriol 183:63–70 http://dx.doi.org/10.1128/JB.183.1.63-70.2001. [PubMed]
9. Quiles-Puchalt N, Carpena N, Alonso JC, Novick RP, Marina A, Penadés JR. 2014. Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proc Natl Acad Sci U S A 111:6016–6021 http://dx.doi.org/10.1073/pnas.1320538111. [PubMed]
10. Novick RP, Ram G. 2016. The floating (pathogenicity) island: a genomic dessert. Trends Genet 32:114–126 http://dx.doi.org/10.1016/j.tig.2015.11.005. [PubMed]
11. Martínez-Rubio R, Quiles-Puchalt N, Martí M, Humphrey S, Ram G, Smyth D, Chen J, Novick RP, Penadés JR. 2017. Phage-inducible islands in the Gram-positive cocci. ISME J 11:1029–1042 http://dx.doi.org/10.1038/ismej.2016.163. [PubMed]
12. Novick RP, Christie GE, Penadés JR. 2010. The phage-related chromosomal islands of Gram-positive bacteria. Nat Rev Microbiol 8:541–551 http://dx.doi.org/10.1038/nrmicro2393. [PubMed]
13. Wu H, Sampson L, Parr R, Casjens S. 2002. The DNA site utilized by bacteriophage P22 for initiation of DNA packaging. Mol Microbiol 45:1631–1646 http://dx.doi.org/10.1046/j.1365-2958.2002.03114.x. [PubMed]
14. Bento JC, Lane KD, Read EK, Cerca N, Christie GE. 2014. Sequence determinants for DNA packaging specificity in the S. aureus pathogenicity island SaPI1. Plasmid 71:8–15 http://dx.doi.org/10.1016/j.plasmid.2013.12.001. [PubMed]
15. Chen J, Carpena N, Quiles-Puchalt N, Ram G, Novick RP, Penadés JR. 2015. Intra- and inter-generic transfer of pathogenicity island-encoded virulence genes by cos phages. ISME J 9:1260–1263 http://dx.doi.org/10.1038/ismej.2014.187. [PubMed]
16. Ubeda C, Barry P, Novick RP, Penades JR. 2008. Characterization of mutations defining SaPI functions and enabling autonomous replication in the absence of helper phage. Mol Microbiol 67:493–503 http://dx.doi.org/10.1111/j.1365-2958.2007.06027.x. [PubMed]
17. Tormo-Más MA, Mir I, Shrestha A, Tallent SM, Campoy S, Lasa I, Barbé J, Novick RP, Christie GE, Penadés JR. 2010. Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature 465:779–782 http://dx.doi.org/10.1038/nature09065. [PubMed]
18. Lemire S, Figueroa-Bossi N, Bossi L. 2011. Bacteriophage crosstalk: coordination of prophage induction by trans-acting antirepressors. PLoS Genet 7:e1002149 http://dx.doi.org/10.1371/journal.pgen.1002149. [PubMed]
19. Tormo-Más MA, Donderis J, García-Caballer M, Alt A, Mir-Sanchis I, Marina A, Penadés JR. 2013. Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism. Mol Cell 49:947–958 http://dx.doi.org/10.1016/j.molcel.2012.12.013. [PubMed]
20. Penadés JR, Donderis J, García-Caballer M, Tormo-Más MA, Marina A. 2013. dUTPases, the unexplored family of signalling molecules. Curr Opin Microbiol 16:163–170 http://dx.doi.org/10.1016/j.mib.2013.02.005. [PubMed]
21. Christie GE, Dokland T. 2012. Pirates of the Caudovirales. Virology 434:210–221 http://dx.doi.org/10.1016/j.virol.2012.10.028. [PubMed]
22. Bowring J, Neamah MM, Donderis J, Mir-Sanchis I, Alite C, Ciges-Tomas JR, Maiques E, Medmedov I, Marina A, Penadés JR. 2017. Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer. eLife 6:e26487 http://dx.doi.org/10.7554/eLife.26487. [PubMed]
23. Frígols B, Quiles-Puchalt N, Mir-Sanchis I, Donderis J, Elena SF, Buckling A, Novick RP, Marina A, Penadés JR. 2015. Virus satellites drive viral evolution and ecology. PLoS Genet 11:e1005609 http://dx.doi.org/10.1371/journal.pgen.1005609. [PubMed]
24. Chen J, Novick RP. 2009. Phage-mediated intergeneric transfer of toxin genes. Science 323:139–141 http://dx.doi.org/10.1126/science.1164783. [PubMed]
25. Ruzin A, Lindsay J, Novick RP. 2001. Molecular genetics of SaPI1: a mobile pathogenicity island in Staphylococcus aureus. Mol Microbiol 41:365–377 http://dx.doi.org/10.1046/j.1365-2958.2001.02488.x. [PubMed]
26. Subedi A, Ubeda C, Adhikari RP, Penadés JR, Novick RP. 2007. Sequence analysis reveals genetic exchanges and intraspecific spread of SaPI2, a pathogenicity island involved in menstrual toxic shock. Microbiology 153:3235–3245 http://dx.doi.org/10.1099/mic.0.2007/006932-0. [PubMed]
27. Ubeda C, Tormo-Más MA, Penadés JR, Novick RP. 2012. Structure-function analysis of the SaPIbov1 replication origin in Staphylococcus aureus. Plasmid 67:183–190 http://dx.doi.org/10.1016/j.plasmid.2012.01.006. [PubMed]
28. Kim KJ, Sunshine MG, Lindqvist BH, Six EW. 2001. Capsid size determination in the P2-P4 bacteriophage system: suppression of sir mutations in P2’s capsid gene N by Supersid mutations in P4’s external scaffold gene sid. Virology 283:49–58 http://dx.doi.org/10.1006/viro.2001.0853. [PubMed]
29. Diana C, Dehò G, Geisselsoder J, Tinelli L, Goldstein R. 1978. Viral interference at the level of capsid size determination by satellite phage P4. J Mol Biol 126:433–445 http://dx.doi.org/10.1016/0022-2836(78)90050-5.
30. Carpena N, Manning KA, Dokland T, Marina A, Penadés JR. 2016. Convergent evolution of pathogenicity islands in helper cos phage interference. Philos Trans R Soc Lond B Biol Sci 371:371 http://dx.doi.org/10.1098/rstb.2015.0505. [PubMed]
31. Ubeda C, Olivarez NP, Barry P, Wang H, Kong X, Matthews A, Tallent SM, Christie GE, Novick RP. 2009. Specificity of staphylococcal phage and SaPI DNA packaging as revealed by integrase and terminase mutations. Mol Microbiol 72:98–108 http://dx.doi.org/10.1111/j.1365-2958.2009.06634.x. [PubMed]
32. Maiques E, Ubeda C, Tormo MA, Ferrer MD, Lasa I, Novick RP, Penadés JR. 2007. Role of staphylococcal phage and SaPI integrase in intra- and interspecies SaPI transfer. J Bacteriol 189:5608–5616 http://dx.doi.org/10.1128/JB.00619-07. [PubMed]
33. Poliakov A, Chang JR, Spilman MS, Damle PK, Christie GE, Mobley JA, Dokland T. 2008. Capsid size determination by Staphylococcus aureus pathogenicity island SaPI1 involves specific incorporation of SaPI1 proteins into procapsids. J Mol Biol 380:465–475 http://dx.doi.org/10.1016/j.jmb.2008.04.065. [PubMed]
34. Tormo MA, Ferrer MD, Maiques E, Ubeda C, Selva L, Lasa I, Calvete JJ, Novick RP, Penadés JR. 2008. Staphylococcus aureus pathogenicity island DNA is packaged in particles composed of phage proteins. J Bacteriol 190:2434–2440 http://dx.doi.org/10.1128/JB.01349-07. [PubMed]
35. Ram G, Chen J, Kumar K, Ross HF, Ubeda C, Damle PK, Lane KD, Penadés JR, Christie GE, Novick RP. 2012. Staphylococcal pathogenicity island interference with helper phage reproduction is a paradigm of molecular parasitism. Proc Natl Acad Sci U S A 109:16300–16305 http://dx.doi.org/10.1073/pnas.1204615109. [PubMed]
36. Ram G, Ross HF, Novick RP. 2014. Precisely modulated SaPI interference with late phage gene transcription. Proc Natl Acad Sci U S A 111:4536–4541 http://dx.doi.org/10.1073/pnas.1406749111. [PubMed]
37. Radman M. 1975. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci 5A:355–367. [PubMed]
38. Ubeda C, Maiques E, Tormo MA, Campoy S, Lasa I, Barbé J, Novick RP, Penadés JR. 2007. SaPI operon I is required for SaPI packaging and is controlled by LexA. Mol Microbiol 65:41–50 http://dx.doi.org/10.1111/j.1365-2958.2007.05758.x. [PubMed]
39. Chen J, Ram G, Penades JR, Brown S, Novick RP. 2014. Pathogenicity island-directed transfer of unlinked chromosomal virulence genes. Mol Cell 57:138–149. [PubMed]
40. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, Nagai Y, Iwama N, Asano K, Naimi T, Kuroda H, Cui L, Yamamoto K, Hiramatsu K. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819–1827 http://dx.doi.org/10.1016/S0140-6736(02)08713-5.
41. Viana D, Blanco J, Tormo-Más MA, Selva L, Guinane CM, Baselga R, Corpa J, Lasa I, Novick RP, Fitzgerald JR, Penadés JR. 2010. Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI-carried variants of von Willebrand factor-binding protein. Mol Microbiol 77:1583–1594 http://dx.doi.org/10.1111/j.1365-2958.2010.07312.x. [PubMed]
42. Rooijakkers SH, Ruyken M, van Roon J, van Kessel KP, van Strijp JA, van Wamel WJ. 2006. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell Microbiol 8:1282–1293 http://dx.doi.org/10.1111/j.1462-5822.2006.00709.x. [PubMed]
43. Murray DL, Prasad GS, Earhart CA, Leonard BAB, Kreiswirth BN, Novick RP, Ohlendorf DH, Schlievert PM. 1994. Immunobiologic and biochemical properties of mutants of toxic shock syndrome toxin-1. J Immunol 152:87–95.
44. Moon BY, Park JY, Hwang SY, Robinson DA, Thomas JC, Fitzgerald JR, Park YH, Seo KS. 2015. Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island. Sci Rep 5:9784 http://dx.doi.org/10.1038/srep09784. [PubMed]
45. Ram G, Ross HR, Novick RP, Rodriguez-Pagan I, Jiang D. 2018. Conversion of staphylococcal pathogenicity islands into CRISPR-carrying antibacterials. Nat Biotechnol 36:971–976. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0062-2019
2019-06-07
2019-08-18

Abstract:

Pathogenicity islands are members of a vast collection of genomic islands that encode important virulence, antibiotic resistance and other accessory functions and have a critical role in bacterial gene transfer. is host to a large family of such islands, known as SaPIs, which encode super antigen and other virulence determinants, are mobilized by helper phages and transferred at extremely high frequencies. They benefit their host cells by interfering with phage predation and enhancing horizontal gene transfer. This chapter describes their life cycle, the bases of their phage interference mechanisms, their transfer system and their conversion to antibacterial agents for treatment ofstaphylococcal infections.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The SaPI genome and its putative origin. Block diagrams. At the top is a typical prophage genome, and below that is the putative SaPI precursor, presumably the result of a major deletion. Next are two extant SaPI genomes. Genetic maps of SaPI1 and SaPIbov5. Colors: red, interference genes; aqua, ; orange, accessory genes; blue, regulatory genes; yellow, /; gray, hypotheticals; purple, replication.

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0062-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

SaPI genomic pattern. At the top is the region of strain mu50, with a classical SaPI inserted at the 3′ end of . The basic SaPI genes are in gray, and accessory genes at the left end are in green. Note the typical transcriptional divergence. Below is shown the corresponding region of strain JH9, in which the SaPI site at is empty.

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0062-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The SaPI life cycle.

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0062-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Induction, maturation, release, and cell killing by a CRISPR/cas9 ABD.

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0062-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Diagrammatic representation of the ABD backbone.

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0062-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

GIs in staphylococci

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0062-2019
Generic image for table
TABLE 2

Features of two SaPI types

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0062-2019
Generic image for table
TABLE 3

De-repressor proteins and their targets

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0062-2019
Generic image for table
TABLE 4

Mechanisms of SaPI-mediated phage interference

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0062-2019
Generic image for table
TABLE 5

Existing and proposed ABDs based on SaPI2

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0062-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error