1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

: Diphtheria Toxin, the Operon, and Its Regulation by Fe2 Activation of apo-DtxR

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Sadiya Parveen1, William R. Bishai2, John R. Murphy3
  • Editors: Vincent A. Fischetti4, Richard P. Novick5, Joseph J. Ferretti6, Daniel A. Portnoy7, Miriam Braunstein8, Julian I. Rood9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231; 2: Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231; 3: Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231; 4: The Rockefeller University, New York, NY; 5: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 6: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 7: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 8: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 9: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0063-2019
  • Received 25 April 2019 Accepted 01 May 2018 Published 05 July 2019
  • John R. Murphy, [email protected]
image of <span class="jp-italic">Corynebacterium diphtheriae</span>: Diphtheria Toxin, the <span class="jp-italic">tox</span> Operon, and Its Regulation by Fe2<span class="jp-sup">+</span> Activation of apo-DtxR
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    : Diphtheria Toxin, the Operon, and Its Regulation by Fe2 Activation of apo-DtxR, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0063-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0063-2019-2.gif
  • Abstract:

    Diphtheria is one of the most well studied of all the bacterial infectious diseases. These milestone studies of toxigenic along with its primary virulence determinant, diphtheria toxin, have established the paradigm for the study of other related bacterial protein toxins. This review highlights those studies that have contributed to our current understanding of the structure-function relationships of diphtheria toxin, the molecular mechanism of its entry into the eukaryotic cell cytosol, the regulation of diphtheria expression by holo-DtxR, and the molecular basis of transition metal ion activation of apo-DtxR itself. These seminal studies have laid the foundation for the protein engineering of diphtheria toxin and the development of highly potent eukaryotic cell-surface receptor-targeted fusion protein toxins for the treatment of human diseases that range from T cell malignancies to steroid-resistant graft-versus-host disease to metastatic melanoma. This deeper scientific understanding of diphtheria toxin and the regulation of its expression have metamorphosed the third-most-potent bacterial toxin known into a life-saving targeted protein therapeutic, thereby at least partially fulfilling Paul Erlich’s concept of a magic bullet—“a chemical that binds to and specifically kills microbes or tumor cells.”

  • Citation: Parveen S, Bishai W, Murphy J. 2019. : Diphtheria Toxin, the Operon, and Its Regulation by Fe2 Activation of apo-DtxR. Microbiol Spectrum 7(4):GPP3-0063-2019. doi:10.1128/microbiolspec.GPP3-0063-2019.

References

1. Pappenheimer AM, Jr. 1977. Diphtheria toxin. Annu Rev Biochem 46:69–94 http://dx.doi.org/10.1146/annurev.bi.46.070177.000441. [PubMed]
2. Pappenheimer AM, Jr. 1993. The story of a toxic protein, 1888-1992. Protein Sci 2:292–298 http://dx.doi.org/10.1002/pro.5560020218. [PubMed]
3. Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, vanderSpek JC, Murphy JR. 2003. The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160:1139–1150 http://dx.doi.org/10.1083/jcb.200210028. [PubMed]
4. Barksdale L, Garmise L, Horibata K. 1960. Virulence, toxinogeny, and lysogeny in Corynebacterium diphtheriae. Ann N Y Acad Sci 88:1093–1108 http://dx.doi.org/10.1111/j.1749-6632.1960.tb20099.x. [PubMed]
5. Kurokawa M, Murata R. 1961. On the toxicity of the “toxoid” preparation responsible for the Kyoto catastrophe in 1948. Jpn J Med Sci Biol 14:249–256 http://dx.doi.org/10.7883/yoken1952.14.249. [PubMed]
6. Pappenheimer AM, Jr, Johnson S. 1936. Studies in diphtheria toxin production. I. The effect of iron and copper. Br J Exp Pathol 17:335–341.
7. Freeman VJ. 1951. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol 61:675–688.
8. Uchida T, Gill DM, Pappenheimer, AM Jr. 1971. Mutation in the structural gene for diphtheria toxin carried by temperate phage. Nat New Biol 233:8–11 http://dx.doi.org/10.1038/newbio233008a0. [PubMed]
9. Buck GA, Groman NB. 1981. Physical mapping of beta-converting and gamma-nonconverting corynebacteriophage genomes. J Bacteriol 148:131–142.
10. Laird W, Groman N. 1976. Prophage map of converting corynebacteriophage beta. J Virol 19:208–219.
11. Michel JL, Rappuoli R, Murphy JR, Pappenheimer AM Jr. 1982. Restriction endonuclease map of the nontoxigenic corynephage gamma c and its relationship to the toxigenic corynephage beta c. J Virol 42:510–518.
12. Rappuoli R, Michel JL, Murphy JR. 1983. Integration of corynebacteriophages beta tox+, omega tox+, and gamma tox- into two attachment sites on the Corynebacterium diphtheriae chromosome. J Bacteriol 153:1202–1210.
13. Murphy JR, Pappenheimer AM, Jr, de Borms ST. 1974. Synthesis of diphtheria tox-gene products in Escherichia coli extracts. Proc Natl Acad Sci USA 71:11–15 http://dx.doi.org/10.1073/pnas.71.1.11. [PubMed]
14. Kanei C, Uchida T, Yoneda M. 1977. Isolation from Corynebacterium diphtheriae C7(beta) of bacterial mutants that produce toxin in medium with excess iron. Infect Immun 18:203–209.
15. Murphy JR, Skiver J, McBride G. 1976. Isolation and partial characterization of a corynebacteriophage beta, tox operator constitutive-like mutant lysogen of Corynebacterium diphtheriae. J Virol 18:235–244.
16. Welkos SL, Holmes RK. 1981. Regulation of toxinogenesis in Corynebacterium diphtheriae. I. Mutations in bacteriophage beta that alter the effects of iron on toxin production. J Virol 37:936–945.
17. Boyd J, Murphy JR. 1988. Analysis of the diphtheria tox promoter by site-directed mutagenesis. J Bacteriol 170:5949–5952 http://dx.doi.org/10.1128/jb.170.12.5949-5952.1988. [PubMed]
18. Greenfield L, Bjorn MJ, Horn G, Fong D, Buck GA, Collier RJ, Kaplan DA. 1983. Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc Natl Acad Sci USA 80:6853–6857 http://dx.doi.org/10.1073/pnas.80.22.6853. [PubMed]
19. Kaczorek M, Delpeyroux F, Chenciner N, Streeck RE, Murphy JR, Boquet P, Tiollais P. 1983. Nucleotide sequence and expression of the diphtheria tox228 gene in Escherichia coli. Science 221:855–858 http://dx.doi.org/10.1126/science.6348945. [PubMed]
20. Ratti G, Rappuoli R, Giannini G. 1983. The complete nucleotide sequence of the gene coding for diphtheria toxin in the corynephage omega (tox+) genome. Nucleic Acids Res 11:6589–6595 http://dx.doi.org/10.1093/nar/11.19.6589. [PubMed]
21. Fourel G, Phalipon A, Kaczorek M. 1989. Evidence for direct regulation of diphtheria toxin gene transcription by an Fe2+-dependent DNA-binding repressor, DtoxR, in Corynebacterium diphtheriae. Infect Immun 57:3221–3225.
22. Krafft AE, Tai SP, Coker C, Holmes RK. 1992. Transcription analysis and nucleotide sequence of tox promoter/operator mutants of corynebacteriophage beta. Microb Pathog 13:85–92 http://dx.doi.org/10.1016/0882-4010(92)90069-Z.
23. Schmitt MP, Holmes RK. 1991. Characterization of a defective diphtheria toxin repressor ( dtxR) allele and analysis of dtxR transcription in wild-type and mutant strains of Corynebacterium diphtheriae. Infect Immun 59:3903–3908.
24. Wang Z, Schmitt MP, Holmes RK. 1994. Characterization of mutations that inactivate the diphtheria toxin repressor gene ( dtxR). Infect Immun 62:1600–1608.
25. Boyd J, Oza MN, Murphy JR. 1990. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element ( dtxR) from Corynebacterium diphtheriae. Proc Natl Acad Sci USA 87:5968–5972 http://dx.doi.org/10.1073/pnas.87.15.5968. [PubMed]
26. Tao X, Boyd J, Murphy JR. 1992. Specific binding of the diphtheria tox regulatory element DtxR to the tox operator requires divalent heavy metal ions and a 9-base-pair interrupted palindromic sequence. Proc Natl Acad Sci USA 89:5897–5901 http://dx.doi.org/10.1073/pnas.89.13.5897. [PubMed]
27. Tao X, Murphy JR. 1992. Binding of the metalloregulatory protein DtxR to the diphtheria tox operator requires a divalent heavy metal ion and protects the palindromic sequence from DNase I digestion. J Biol Chem 267:21761–21764.
28. Schmitt MP, Holmes RK. 1994. Cloning, sequence, and footprint analysis of two promoter/operators from Corynebacterium diphtheriae that are regulated by the diphtheria toxin repressor (DtxR) and iron. J Bacteriol 176:1141–1149 http://dx.doi.org/10.1128/jb.176.4.1141-1149.1994. [PubMed]
29. Tao X, Murphy JR. 1994. Determination of the minimal essential nucleotide sequence for diphtheria tox repressor binding by in vitro affinity selection. Proc Natl Acad Sci USA 91:9646–9650 http://dx.doi.org/10.1073/pnas.91.20.9646. [PubMed]
30. Doukhan L, Predich M, Nair G, Dussurget O, Mandic-Mulec I, Cole ST, Smith DR, Smith I. 1995. Genomic organization of the mycobacterial sigma gene cluster. Gene 165:67–70 http://dx.doi.org/10.1016/0378-1119(95)00427-8.
31. Ando M, Manabe YC, Converse PJ, Miyazaki E, Harrison R, Murphy JR, Bishai WR. 2003. Characterization of the role of the divalent metal ion-dependent transcriptional repressor MntR in the virulence of Staphylococcus aureus. Infect Immun 71:2584–2590 http://dx.doi.org/10.1128/IAI.71.5.2584-2590.2003. [PubMed]
32. Manabe YC, Saviola BJ, Sun L, Murphy JR, Bishai WR. 1999. Attenuation of virulence in Mycobacterium tuberculosis expressing a constitutively active iron repressor. Proc Natl Acad Sci USA 96:12844–12848 http://dx.doi.org/10.1073/pnas.96.22.12844. [PubMed]
33. Manabe YC, Hatem CL, Kesavan AK, Durack J, Murphy JR. 2005. Both Corynebacterium diphtheriae DtxR(E175K) and Mycobacterium tuberculosis IdeR(D177K) are dominant positive repressors of IdeR-regulated genes in M. tuberculosis. Infect Immun 73:5988–5994 http://dx.doi.org/10.1128/IAI.73.9.5988-5994.2005. [PubMed]
34. Low YL, Jakubovics NS, Flatman JC, Jenkinson HF, Smith AW. 2003. Manganese-dependent regulation of the endocarditis-associated virulence factor EfaA of Enterococcus faecalis. J Med Microbiol 52:113–119 http://dx.doi.org/10.1099/jmm.0.05039-0. [PubMed]
35. Kitten T, Munro CL, Michalek SM, Macrina FL. 2000. Genetic characterization of a Streptococcus mutans LraI family operon and role in virulence. Infect Immun 68:4441–4451 http://dx.doi.org/10.1128/IAI.68.8.4441-4451.2000. [PubMed]
36. Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ. 2002. MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44:1269–1286 http://dx.doi.org/10.1046/j.1365-2958.2002.02944.x. [PubMed]
37. Günter-Seeboth K, Schupp T. 1995. Cloning and sequence analysis of the Corynebacterium diphtheriae dtxR homologue from Streptomyces lividans and S. pilosus encoding a putative iron repressor protein. Gene 166:117–119 http://dx.doi.org/10.1016/0378-1119(95)00628-7.
38. Boland CA, Meijer WG. 2000. The iron dependent regulatory protein IdeR (DtxR) of Rhodococcus equi. FEMS Microbiol Lett 191:1–5 http://dx.doi.org/10.1111/j.1574-6968.2000.tb09310.x.
39. Schmitt MP, Predich M, Doukhan L, Smith I, Holmes RK. 1995. Characterization of an iron-dependent regulatory protein (IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae. Infect Immun 63:4284–4289.
40. Tao X, Murphy JR. 1993. Cysteine-102 is positioned in the metal binding activation site of the Corynebacterium diphtheriae regulatory element DtxR. Proc Natl Acad Sci USA 90:8524–8528 http://dx.doi.org/10.1073/pnas.90.18.8524. [PubMed]
41. Qiu X, Verlinde CL, Zhang S, Schmitt MP, Holmes RK, Hol WG. 1995. Three-dimensional structure of the diphtheria toxin repressor in complex with divalent cation co-repressors. Structure 3:87–100 http://dx.doi.org/10.1016/S0969-2126(01)00137-X.
42. Schiering N, Tao X, Murphy JR, Petsko GA, Ringe D. 1994. Crystallization and preliminary X-ray studies of the diphtheria Tox repressor from Corynebacterium diphtheriae. J Mol Biol 244:654–656 http://dx.doi.org/10.1006/jmbi.1994.1760. [PubMed]
43. Schiering N, Tao X, Zeng H, Murphy JR, Petsko GA, Ringe D. 1995. Structures of the apo- and the metal ion-activated forms of the diphtheria tox repressor from Corynebacterium diphtheriae. Proc Natl Acad Sci USA 92:9843–9850 http://dx.doi.org/10.1073/pnas.92.21.9843. [PubMed]
44. White A, Ding X, vanderSpek JC, Murphy JR, Ringe D. 1998. Structure of the metal-ion-activated diphtheria toxin repressor/ tox operator complex. Nature 394:502–506 http://dx.doi.org/10.1038/28893. [PubMed]
45. Pohl E, Holmes RK, Hol WG. 1999. Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals a metal-binding SH3-like domain. J Mol Biol 292:653–667 http://dx.doi.org/10.1006/jmbi.1999.3073. [PubMed]
46. Tao X, Zeng HY, Murphy JR. 1995. Transition metal ion activation of DNA binding by the diphtheria tox repressor requires the formation of stable homodimers. Proc Natl Acad Sci USA 92:6803–6807 http://dx.doi.org/10.1073/pnas.92.15.6803. [PubMed]
47. Chen CS, White A, Love J, Murphy JR, Ringe D. 2000. Methyl groups of thymine bases are important for nucleic acid recognition by DtxR. Biochemistry 39:10397–10407 http://dx.doi.org/10.1021/bi0009284. [PubMed]
48. Ding X, Zeng H, Schiering N, Ringe D, Murphy JR. 1996. Identification of the primary metal ion-activation sites of the diphtheria tox repressor by X-ray crystallography and site-directed mutational analysis. Nat Struct Biol 3:382–387 http://dx.doi.org/10.1038/nsb0496-382.
49. Qiu X, Pohl E, Holmes RK, Hol WG. 1996. High-resolution structure of the diphtheria toxin repressor complexed with cobalt and manganese reveals an SH3-like third domain and suggests a possible role of phosphate as co-corepressor. Biochemistry 35:12292–12302 http://dx.doi.org/10.1021/bi960861d. [PubMed]
50. Gilliland DG, Steplewski Z, Collier RJ, Mitchell KF, Chang TH, Koprowski H. 1980. Antibody-directed cytotoxic agents: use of monoclonal antibody to direct the action of toxin A chains to colorectal carcinoma cells. Proc Natl Acad Sci USA 77:4539–4543 http://dx.doi.org/10.1073/pnas.77.8.4539. [PubMed]
51. Love JF, vanderSpek JC, Marin V, Guerrero L, Logan TM, Murphy JR. 2004. Genetic and biophysical studies of diphtheria toxin repressor (DtxR) and the hyperactive mutant DtxR(E175K) support a multistep model of activation. Proc Natl Acad Sci USA 101:2506–2511 http://dx.doi.org/10.1073/pnas.0303794101. [PubMed]
52. Rangachari V, Marin V, Bienkiewicz EA, Semavina M, Guerrero L, Love JF, Murphy JR, Logan TM. 2005. Sequence of ligand binding and structure change in the diphtheria toxin repressor upon activation by divalent transition metals. Biochemistry 44:5672–5682 http://dx.doi.org/10.1021/bi047825w. [PubMed]
53. Love JF, VanderSpek JC, Murphy JR. 2003. The src homology 3-like domain of the diphtheria toxin repressor (DtxR) modulates repressor activation through interaction with the ancillary metal ion-binding site. J Bacteriol 185:2251–2258 http://dx.doi.org/10.1128/JB.185.7.2251-2258.2003. [PubMed]
54. Collier RJ, Kandel J. 1971. Structure and activity of diphtheria toxin. I. Thiol-dependent dissociation of a fraction of toxin into enzymically active and inactive fragments. J Biol Chem 246:1496–1503.
55. Gill DM, Pappenheimer AM, Jr. 1971. Structure-activity relationships in diphtheria toxin. J Biol Chem 246:1492–1495.
56. Honjo T, Nishizuka Y, Hayaishi O. 1968. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 243:3553–3555.
57. Gill DM, Pappenheimer AM, Jr, Brown R, Kurnick JT. 1969. Studies on the mode of action of diphtheria toxin. VII. Toxin-stimulated hydrolysis of nicotinamide adenine dinucleotide in mammalian cell extracts. J Exp Med 129:1–21 http://dx.doi.org/10.1084/jem.129.1.1. [PubMed]
58. Yamaizumi M, Mekada E, Uchida T, Okada Y. 1978. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15:245–250 http://dx.doi.org/10.1016/0092-8674(78)90099-5.
59. Boquet P, Silverman MS, Pappenheimer AM, Jr, Vernon WB. 1976. Binding of triton X-100 to diphtheria toxin, crossreacting material 45, and their fragments. Proc Natl Acad Sci USA 73:4449–4453 http://dx.doi.org/10.1073/pnas.73.12.4449. [PubMed]
60. Bennett MJ, Choe S, Eisenberg D. 1994. Domain swapping: entangling alliances between proteins. Proc Natl Acad Sci USA 91:3127–3131 http://dx.doi.org/10.1073/pnas.91.8.3127. [PubMed]
61. Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D. 1992. The crystal structure of diphtheria toxin. Nature 357:216–222 http://dx.doi.org/10.1038/357216a0. [PubMed]
62. Williams DP, Wen Z, Watson RS, Boyd J, Strom TB, Murphy JR. 1990. Cellular processing of the interleukin-2 fusion toxin DAB486-IL-2 and efficient delivery of diphtheria fragment A to the cytosol of target cells requires Arg194. J Biol Chem 265:20673–20677.
63. Ratts R, Trujillo C, Bharti A, vanderSpek J, Harrison R, Murphy JR. 2005. A conserved motif in transmembrane helix 1 of diphtheria toxin mediates catalytic domain delivery to the cytosol. Proc Natl Acad Sci USA 102:15635–15640 http://dx.doi.org/10.1073/pnas.0504937102. [PubMed]
64. Trujillo C, Taylor-Parker J, Harrison R, Murphy JR. 2010. Essential lysine residues within transmembrane helix 1 of diphtheria toxin facilitate COPI binding and catalytic domain entry. Mol Microbiol 76:1010–1019 http://dx.doi.org/10.1111/j.1365-2958.2010.07159.x. [PubMed]
65. Kochi SK, Collier RJ. 1993. DNA fragmentation and cytolysis in U937 cells treated with diphtheria toxin or other inhibitors of protein synthesis. Exp Cell Res 208:296–302 http://dx.doi.org/10.1006/excr.1993.1249. [PubMed]
66. Pappenheimer AM, Jr, Murphy JR. 1983. Studies on the molecular epidemiology of diphtheria. Lancet 2:923–926 http://dx.doi.org/10.1016/S0140-6736(83)90449-X.
67. Pappenheimer AM, Jr. 1980. Diphtheria: studies on the biology of an infectious disease. Harvey Lect 76:45–73.
68. Zucker DR, Murphy JR. 1984. Monoclonal antibody analysis of diphtheria toxin. I. Localization of epitopes and neutralization of cytotoxicity. Mol Immunol 21:785–793 http://dx.doi.org/10.1016/0161-5890(84)90165-2.
69. Dixon JMS. 1984. Diphtheria in North America. J Hyg (Lond) 93:419–432 http://dx.doi.org/10.1017/S0022172400065013. [PubMed]
70. Saragea A, Maximescu P, Meitert E. 1979. Corynebacterium diphtheriae: microbiological methods used in clinical and epidemiological investigations. Methods Microbiol 13:161–176 http://dx.doi.org/10.1016/S0580-9517(08)70374-X.
71. Maurice J. 1995. Russian chaos breeds diphtheria outbreak. Science 267:1416–1417 http://dx.doi.org/10.1126/science.7878458. [PubMed]
72. Kolodkina VL, Titov LP, Sharapa TN, Drozhzhina ON. 2007. Point mutations in tox promoter/operator and diphtheria toxin repressor (DTXR) gene associated with the level of toxin production by Corynebacterium diphtheriae strains isolated in Belarus. Mol Gen Mikrobiol Virusol 1:22–29. (In Russian.)
73. Kombarova S, Borisova O, Melnikov VG, Gubina NI, Loseva LV, Mazurova IK. 2009. Polymorphism of tox and dtxR gene in circulating strains of Corynebacterium diphtheriae. Zh Mikrobiol Epidemiol Immunobiol 1:7–11.
74. Park WH, Williams AW. 1896. The production of diphtheria toxin. J Exp Med 1:164–185 http://dx.doi.org/10.1084/jem.1.1.164. [PubMed]
75. Nakao H, Mazurova IK, Glushkevich T, Popovic T. 1997. Analysis of heterogeneity of Corynebacterium diphtheriae toxin gene, tox, and its regulatory element, dtxR, by direct sequencing. Res Microbiol 148:45–54 http://dx.doi.org/10.1016/S0923-2508(97)81899-2.
76. Nakao H, Pruckler JM, Mazurova IK, Narvskaia OV, Glushkevich T, Marijevski VF, Kravetz AN, Fields BS, Wachsmuth IK, Popovic T. 1996. Heterogeneity of diphtheria toxin gene, tox, and its regulatory element, dtxR, in Corynebacterium diphtheriae strains causing epidemic diphtheria in Russia and Ukraine. J Clin Microbiol 34:1711–1716.
77. Love JF, Murphy JR. 2002. Design and development of a novel genetic probe for the analysis of repressor-operator interactions. J Microbiol Methods 51:63–72 http://dx.doi.org/10.1016/S0167-7012(02)00058-1.
78. Köhler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497 http://dx.doi.org/10.1038/256495a0. [PubMed]
79. Schwartz RS. 2004. Paul Ehrlich’s magic bullets. N Engl J Med 350:1079–1080 http://dx.doi.org/10.1056/NEJMp048021. [PubMed]
80. Bacha P, Murphy JR, Reichlin S. 1983. Thyrotropin-releasing hormone-diphtheria toxin-related polypeptide conjugates. Potential role of the hydrophobic domain in toxin entry. J Biol Chem 258:1565–1570.
81. Murphy JR, Bishai W, Borowski M, Miyanohara A, Boyd J, Nagle S. 1986. Genetic construction, expression, and melanoma-selective cytotoxicity of a diphtheria toxin-related alpha-melanocyte-stimulating hormone fusion protein. Proc Natl Acad Sci USA 83:8258–8262 http://dx.doi.org/10.1073/pnas.83.21.8258. [PubMed]
82. Leong D, Coleman KD, Murphy JR. 1983a. Cloned fragment A of diphtheria toxin is expressed and secreted into the periplasmic space of Escherichia coli K12. Science 220:515–517 http://dx.doi.org/10.1126/science.6403984. [PubMed]
83. Leong D, Coleman KD, Murphy JR. 1983. Cloned diphtheria toxin fragment A is expressed from the tox promoter and exported to the periplasm by the SecA apparatus of Escherichia coli K12. J Biol Chem 258:15016–15020.
84. Williams DP, Parker K, Bacha P, Bishai W, Borowski M, Genbauffe F, Strom TB, Murphy JR. 1987. Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Eng 1:493–498 http://dx.doi.org/10.1093/protein/1.6.493.
85. Williams DP, Snider CE, Strom TB, Murphy JR. 1990. Structure/function analysis of interleukin-2-toxin (DAB486-IL-2). Fragment B sequences required for the delivery of fragment A to the cytosol of target cells. J Biol Chem 265:11885–11889.
86. Duvic M, Kuzel TM, Olsen EA, Martin AG, Foss FM, Kim YH, Heald PW, Bacha P, Nichols J, Liepa A. 2002. Quality-of-life improvements in cutaneous T-cell lymphoma patients treated with denileukin diftitox (ONTAK). Clin Lymphoma 2:222–228 http://dx.doi.org/10.3816/CLM.2002.n.003. [PubMed]
87. Foss F. 2006. Clinical experience with denileukin diftitox (ONTAK). Semin Oncol 33(Suppl 3) :S11–S16 http://dx.doi.org/10.1053/j.seminoncol.2005.12.017. [PubMed]
88. Foss FM, Sjak-Shie N, Goy A, Jacobsen E, Advani R, Smith MR, Komrokji R, Pendergrass K, Bolejack V. 2013. A multicenter phase II trial to determine the safety and efficacy of combination therapy with denileukin diftitox and cyclophosphamide, doxorubicin, vincristine and prednisone in untreated peripheral T-cell lymphoma: the CONCEPT study. Leuk Lymphoma 54:1373–1379 http://dx.doi.org/10.3109/10428194.2012.742521. [PubMed]
89. Fuentes AC, Szwed E, Spears CD, Thaper S, Dang LH, Dang NH. 2015. Denileukin diftitox (Ontak) as maintenance therapy for peripheral T-cell lymphomas: three cases with sustained remissions. Case Rep Oncol Med 2015:123756 http://dx.doi.org/10.1155/2015/123756. [PubMed]
90. Wong BY, Ma Y, Fitzwilson R, Dang NH. 2008. De novo maintenance therapy with denileukin diftitox (Ontak) in a patient with peripheral T-cell lymphoma is associated with prolonged remission. Am J Hematol 83:596–598 http://dx.doi.org/10.1002/ajh.21177. [PubMed]
91. Ho VT, Zahrieh D, Hochberg E, Micale E, Levin J, Reynolds C, Steckel S, Cutler C, Fisher DC, Lee SJ, Alyea EP, Ritz J, Soiffer RJ, Antin JH. 2004. Safety and efficacy of denileukin diftitox in patients with steroid-refractory acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood 104:1224–1226 http://dx.doi.org/10.1182/blood-2004-01-0028. [PubMed]
92. Rasku MA, Clem AL, Telang S, Taft B, Gettings K, Gragg H, Cramer D, Lear SC, McMasters KM, Miller DM, Chesney J. 2008. Transient T cell depletion causes regression of melanoma metastases. J Transl Med 6:12 http://dx.doi.org/10.1186/1479-5876-6-12. [PubMed]
93. Telang S, Rasku MA, Clem AL, Carter K, Klarer AC, Badger WR, Milam RA, Rai SN, Pan J, Gragg H, Clem BF, McMasters KM, Miller DM, Chesney J. 2011. Phase II trial of the regulatory T cell-depleting agent, denileukin diftitox, in patients with unresectable stage IV melanoma. BMC Cancer 11:515 http://dx.doi.org/10.1186/1471-2407-11-515. [PubMed]
94. Cheung LS, Fu J, Kumar P, Kumar A, Urbanowski ME, Ihms EA, Parveen S, Bullen CK, Patrick GJ, Harrison R, Murphy JR, Pardoll DM, Bishai WR. 2019. Second-generation IL-2 receptor-targeted diphtheria fusion toxin exhibits antitumor activity and synergy with anti-PD-1 in melanoma. Proc Natl Acad Sci USA 116:3100–3105 http://dx.doi.org/10.1073/pnas.1815087116. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0063-2019
2019-07-05
2019-10-15

Abstract:

Diphtheria is one of the most well studied of all the bacterial infectious diseases. These milestone studies of toxigenic along with its primary virulence determinant, diphtheria toxin, have established the paradigm for the study of other related bacterial protein toxins. This review highlights those studies that have contributed to our current understanding of the structure-function relationships of diphtheria toxin, the molecular mechanism of its entry into the eukaryotic cell cytosol, the regulation of diphtheria expression by holo-DtxR, and the molecular basis of transition metal ion activation of apo-DtxR itself. These seminal studies have laid the foundation for the protein engineering of diphtheria toxin and the development of highly potent eukaryotic cell-surface receptor-targeted fusion protein toxins for the treatment of human diseases that range from T cell malignancies to steroid-resistant graft-versus-host disease to metastatic melanoma. This deeper scientific understanding of diphtheria toxin and the regulation of its expression have metamorphosed the third-most-potent bacterial toxin known into a life-saving targeted protein therapeutic, thereby at least partially fulfilling Paul Erlich’s concept of a magic bullet—“a chemical that binds to and specifically kills microbes or tumor cells.”

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Electron micrograph of corynebacteriophage β, which has a polyhedral head ∼52 nm in diameter and a 270 nm long tail. Genetic map of β-phage in its (i) vegetative phase, (ii) circularized form, and (iii) prophage state. (Modified from reference 9 .)

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0063-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of Fe activation of apo-DtxR and the binding of two dimers to the operator, thereby repressing expression of the diphtheria toxin structural gene, .

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0063-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

X-ray crystal structure of Co-activated DtxR showing its N-terminal metal ion and DNA-binding domain and the C-terminal SH3-like domain. (Modified from reference 45 [Protein Data Bank ID 1C0W].)

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0063-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

X-ray crystal structure of Ni-activated DtxR(C102D) bound to the operator. Due to high thermal values, the C-terminal SH3-like domain is not shown in this Ni activated structure. (Modified from reference 44 [Protein Data Bank ID 1DDN].)

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0063-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

DtxR is a two-domain protein that is composed of the N-terminal [blue] and C-terminal SH3-like [green] regions and functionally distinct transition metal ion-binding sites (primary and ancillary). An activating transition metal ion first binds to the primary site. This binding event orients the DNA-binding helices and begins to induce the folding of the disordered N-terminal domain. Subsequent binding of a second metal ion to the ancillary site disassociates and reorients the SH3-like domain away from the poly-proline region of the repressor and completes the folding of the N-terminal domain, resulting in the formation of the dimer interface of the active holo-repressor. (Modified from reference 52 .)

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0063-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

X-ray structure of native diphtheria toxin showing its catalytic, translocation, and receptor-binding domains.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0063-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Molecular model of denileukin diftitox (Ontak, DAB389IL-2). The catalytic and translocation domains are composed of amino acids Gly1 through Thr387 of native diphtheria toxin, to which the 133-amino acid polypeptide of human IL-2 is genetically fused. The additional two amino acids in the construct are the result of the introduction of a unique restriction endonuclease site at the fusion junction between diphtheria toxin and human (h)IL-2 sequences.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0063-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error