No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Innate and Adaptive Immune Responses during Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: Sarah E. F. D’Orazio1
  • Editors: Vincent A. Fischetti2, Richard P. Novick3, Joseph J. Ferretti4, Daniel A. Portnoy5, Miriam Braunstein6, Julian I. Rood7
    Affiliations: 1: University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298; 2: The Rockefeller University, New York, NY; 3: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 4: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 5: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 6: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 7: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0065-2019
  • Received 15 March 2019 Accepted 19 April 2019 Published 24 May 2019
  • Sarah E.F. D’Orazio, [email protected]
image of Innate and Adaptive Immune Responses during <span class="jp-italic">Listeria monocytogenes</span> Infection
    Preview this microbiology spectrum article:
    Zoom in

    Innate and Adaptive Immune Responses during Infection, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0065-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0065-2019-2.gif
  • Abstract:

    It could be argued that we understand the immune response to infection with better than the immunity elicited by any other bacteria. are Gram-positive bacteria that are genetically tractable and easy to cultivate , and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: “Innate Immunity” describes how the host initially detects the presence of and characterizes the soluble and cellular responses that occur during the first few days postinfection; “Adaptive Immunity” discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; “Use of Attenuated as a Vaccine Vector” highlights the ways that investigators have exploited our extensive knowledge of anti- immunity to develop cancer therapeutics.

  • Citation: D’Orazio S. 2019. Innate and Adaptive Immune Responses during Infection. Microbiol Spectrum 7(3):GPP3-0065-2019. doi:10.1128/microbiolspec.GPP3-0065-2019.


1. Cheers C, McKenzie IF, Pavlov H, Waid C, York J. 1978. Resistance and susceptibility of mice to bacterial infection: course of listeriosis in resistant or susceptible mice. Infect Immun 19:763–770.
2. Bou Ghanem EN, Jones GS, Myers-Morales T, Patil PD, Hidayatullah AN, D’Orazio SE. 2012. InlA promotes dissemination of Listeria monocytogenes to the mesenteric lymph nodes during food borne infection of mice. PLoS Pathog 8:e1003015 http://dx.doi.org/10.1371/journal.ppat.1003015. [PubMed]
3. Regan T, MacSharry J, Brint E. 2014. Tracing innate immune defences along the path of Listeria monocytogenes infection. Immunol Cell Biol 92:563–569 http://dx.doi.org/10.1038/icb.2014.27. [PubMed]
4. Witte CE, Archer KA, Rae CS, Sauer JD, Woodward JJ, Portnoy DA. 2012. Innate immune pathways triggered by Listeria monocytogenes and their role in the induction of cell-mediated immunity. Adv Immunol 113:135–156 http://dx.doi.org/10.1016/B978-0-12-394590-7.00002-6. [PubMed]
5. Williams MA, Schmidt RL, Lenz LL. 2012. Early events regulating immunity and pathogenesis during Listeria monocytogenes infection. Trends Immunol 33:488–495 http://dx.doi.org/10.1016/j.it.2012.04.007. [PubMed]
6. Aureli P, Fiorucci GC, Caroli D, Marchiaro G, Novara O, Leone L, Salmaso S. 2000. An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N Engl J Med 342:1236–1241 http://dx.doi.org/10.1056/NEJM200004273421702. [PubMed]
7. Dalton CB, Austin CC, Sobel J, Hayes PS, Bibb WF, Graves LM, Swaminathan B, Proctor ME, Griffin PM. 1997. An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N Engl J Med 336:100–105 http://dx.doi.org/10.1056/NEJM199701093360204. [PubMed]
8. Frye DM, Zweig R, Sturgeon J, Tormey M, LeCavalier M, Lee I, Lawani L, Mascola L. 2002. An outbreak of febrile gastroenteritis associated with delicatessen meat contaminated with Listeria monocytogenes. Clin Infect Dis 35:943–949 http://dx.doi.org/10.1086/342582. [PubMed]
9. Salamina G, Dalle Donne E, Niccolini A, Poda G, Cesaroni D, Bucci M, Fini R, Maldini M, Schuchat A, Swaminathan B, Bibb W, Rocourt J, Binkin N, Salmaso S. 1996. A foodborne outbreak of gastroenteritis involving Listeria monocytogenes. Epidemiol Infect 117:429–436 http://dx.doi.org/10.1017/S0950268800059082. [PubMed]
10. D’Orazio SE. 2014. Animal models for oral transmission of Listeria monocytogenes. Front Cell Infect Microbiol 4:15 http://dx.doi.org/10.3389/fcimb.2014.00015. [PubMed]
11. Lecuit M, Vandormael-Pournin S, Lefort J, Huerre M, Gounon P, Dupuy C, Babinet C, Cossart P. 2001. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725 http://dx.doi.org/10.1126/science.1059852. [PubMed]
12. Disson O, Grayo S, Huillet E, Nikitas G, Langa-Vives F, Dussurget O, Ragon M, Le Monnier A, Babinet C, Cossart P, Lecuit M. 2008. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455:1114–1118 http://dx.doi.org/10.1038/nature07303. [PubMed]
13. Wollert T, Pasche B, Rochon M, Deppenmeier S, van den Heuvel J, Gruber AD, Heinz DW, Lengeling A, Schubert WD. 2007. Extending the host range of Listeria monocytogenes by rational protein design. Cell 129:891–902 http://dx.doi.org/10.1016/j.cell.2007.03.049. [PubMed]
14. Monk IR, Casey PG, Hill C, Gahan CG. 2010. Directed evolution and targeted mutagenesis to murinize Listeria monocytogenes internalin A for enhanced infectivity in the murine oral infection model. BMC Microbiol 10:318 http://dx.doi.org/10.1186/1471-2180-10-318. [PubMed]
15. Bou Ghanem EN, Myers-Morales T, D’Orazio SE. 2013. A mouse model of foodborne Listeria monocytogenes infection. Curr Protoc Microbiol 31:1–9, 16.
16. Pitts MG, D’Orazio SEF. 2018. A comparison of oral and intravenous mouse models of listeriosis. Pathogens 7:E13 http://dx.doi.org/10.3390/pathogens7010013. [PubMed]
17. McCaffrey RL, Fawcett P, O’Riordan M, Lee KD, Havell EA, Brown PO, Portnoy DA. 2004. A specific gene expression program triggered by Gram-positive bacteria in the cytosol. Proc Natl Acad Sci U S A 101:11386–11391 http://dx.doi.org/10.1073/pnas.0403215101. [PubMed]
18. Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M. 2011. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J Exp Med 208:2263–2277 http://dx.doi.org/10.1084/jem.20110560. [PubMed]
19. Jones GS, Bussell KM, Myers-Morales T, Fieldhouse AM, Bou Ghanem EN, D’Orazio SE. 2015. Intracellular Listeria monocytogenes comprises a minimal but vital fraction of the intestinal burden following foodborne infection. Infect Immun 83:3146–3156 http://dx.doi.org/10.1128/IAI.00503-15. [PubMed]
20. Melton-Witt JA, Rafelski SM, Portnoy DA, Bakardjiev AI. 2012. Oral infection with signature-tagged Listeria monocytogenes reveals organ-specific growth and dissemination routes in guinea pigs. Infect Immun 80:720–732 http://dx.doi.org/10.1128/IAI.05958-11. [PubMed]
21. Edelson BT, Unanue ER. 2002. MyD88-dependent but Toll-like receptor 2-independent innate immunity to Listeria: no role for either in macrophage listericidal activity. J Immunol 169:3869–3875 http://dx.doi.org/10.4049/jimmunol.169.7.3869. [PubMed]
22. Seki E, Tsutsui H, Tsuji NM, Hayashi N, Adachi K, Nakano H, Futatsugi-Yumikura S, Takeuchi O, Hoshino K, Akira S, Fujimoto J, Nakanishi K. 2002. Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice. J Immunol 169:3863–3868 http://dx.doi.org/10.4049/jimmunol.169.7.3863. [PubMed]
23. Melmed G, Thomas LS, Lee N, Tesfay SY, Lukasek K, Michelsen KS, Zhou Y, Hu B, Arditi M, Abreu MT. 2003. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host-microbial interactions in the gut. J Immunol 170:1406–1415 http://dx.doi.org/10.4049/jimmunol.170.3.1406. [PubMed]
24. Cottalorda A, Verschelde C, Marçais A, Tomkowiak M, Musette P, Uematsu S, Akira S, Marvel J, Bonnefoy-Berard N. 2006. TLR2 engagement on CD8 T cells lowers the threshold for optimal antigen-induced T cell activation. Eur J Immunol 36:1684–1693 http://dx.doi.org/10.1002/eji.200636181. [PubMed]
25. Geng D, Zheng L, Srivastava R, Asprodites N, Velasco-Gonzalez C, Davila E. 2010. When Toll-like receptor and T-cell receptor signals collide: a mechanism for enhanced CD8 T-cell effector function. Blood 116:3494–3504 http://dx.doi.org/10.1182/blood-2010-02-268169. [PubMed]
26. Ochoa MT, Legaspi AJ, Hatziris Z, Godowski PJ, Modlin RL, Sieling PA. 2003. Distribution of Toll-like receptor 1 and Toll-like receptor 2 in human lymphoid tissue. Immunology 108:10–15 http://dx.doi.org/10.1046/j.1365-2567.2003.01563.x. [PubMed]
27. Flo TH, Halaas O, Torp S, Ryan L, Lien E, Dybdahl B, Sundan A, Espevik T. 2001. Differential expression of Toll-like receptor 2 in human cells. J Leukoc Biol 69:474–481.
28. Flo TH, Halaas O, Lien E, Ryan L, Teti G, Golenbock DT, Sundan A, Espevik T. 2000. Human toll-like receptor 2 mediates monocyte activation by Listeria monocytogenes, but not by group B streptococci or lipopolysaccharide. J Immunol 164:2064–2069 http://dx.doi.org/10.4049/jimmunol.164.4.2064. [PubMed]
29. Travassos LH, Girardin SE, Philpott DJ, Blanot D, Nahori MA, Werts C, Boneca IG. 2004. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep 5:1000–1006 http://dx.doi.org/10.1038/sj.embor.7400248. [PubMed]
30. Lee CC, Avalos AM, Ploegh HL. 2012. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol 12:168–179 http://dx.doi.org/10.1038/nri3151. [PubMed]
31. Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384 http://dx.doi.org/10.1038/ni.1863. [PubMed]
32. Torres D, Barrier M, Bihl F, Quesniaux VJ, Maillet I, Akira S, Ryffel B, Erard F. 2004. Toll-like receptor 2 is required for optimal control of Listeria monocytogenes infection. Infect Immun 72:2131–2139 http://dx.doi.org/10.1128/IAI.72.4.2131-2139.2004. [PubMed]
33. Anand PK, Tait SW, Lamkanfi M, Amer AO, Nunez G, Pagès G, Pouysségur J, McGargill MA, Green DR, Kanneganti TD. 2011. TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation. J Biol Chem 286:42981–42991 http://dx.doi.org/10.1074/jbc.M111.310599. [PubMed]
34. Shen Y, Kawamura I, Nomura T, Tsuchiya K, Hara H, Dewamitta SR, Sakai S, Qu H, Daim S, Yamamoto T, Mitsuyama M. 2010. Toll-like receptor 2- and MyD88-dependent phosphatidylinositol 3-kinase and Rac1 activation facilitates the phagocytosis of Listeria monocytogenes by murine macrophages. Infect Immun 78:2857–2867 http://dx.doi.org/10.1128/IAI.01138-09. [PubMed]
35. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. 2001. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167:1882–1885 http://dx.doi.org/10.4049/jimmunol.167.4.1882. [PubMed]
36. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103 http://dx.doi.org/10.1038/35074106. [PubMed]
37. Feng T, Cong Y, Alexander K, Elson CO. 2012. Regulation of Toll-like receptor 5 gene expression and function on mucosal dendritic cells. PLoS One 7:e35918 http://dx.doi.org/10.1371/journal.pone.0035918. [PubMed]
38. Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, Sato S, Tsujimura T, Yamamoto M, Yokota Y, Kiyono H, Miyasaka M, Ishii KJ, Akira S. 2008. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 9:769–776 http://dx.doi.org/10.1038/ni.1622. [PubMed]
39. Feuillet V, Medjane S, Mondor I, Demaria O, Pagni PP, Galán JE, Flavell RA, Alexopoulou L. 2006. Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci U S A 103:12487–12492 http://dx.doi.org/10.1073/pnas.0605200103. [PubMed]
40. Uematsu S, Jang MH, Chevrier N, Guo Z, Kumagai Y, Yamamoto M, Kato H, Sougawa N, Matsui H, Kuwata H, Hemmi H, Coban C, Kawai T, Ishii KJ, Takeuchi O, Miyasaka M, Takeda K, Akira S. 2006. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat Immunol 7:868–874 http://dx.doi.org/10.1038/ni1362. [PubMed]
41. Way SS, Thompson LJ, Lopes JE, Hajjar AM, Kollmann TR, Freitag NE, Wilson CB. 2004. Characterization of flagellin expression and its role in Listeria monocytogenes infection and immunity. Cell Microbiol 6:235–242 http://dx.doi.org/10.1046/j.1462-5822.2004.00360.x. [PubMed]
42. Bergmann S, Rohde M, Schughart K, Lengeling A. 2013. The bioluminescent Listeria monocytogenes strain Xen32 is defective in flagella expression and highly attenuated in orally infected BALB/cJ mice. Gut Pathog 5:19 http://dx.doi.org/10.1186/1757-4749-5-19. [PubMed]
43. Chen ST, Li FJ, Hsu TY, Liang SM, Yeh YC, Liao WY, Chou TY, Chen NJ, Hsiao M, Yang WB, Hsieh SL. 2017. CLEC5A is a critical receptor in innate immunity against Listeria infection. Nat Commun 8:299 http://dx.doi.org/10.1038/s41467-017-00356-3. [PubMed]
44. Beauregard KE, Lee KD, Collier RJ, Swanson JA. 1997. pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J Exp Med 186:1159–1163 http://dx.doi.org/10.1084/jem.186.7.1159. [PubMed]
45. Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH. 2008. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451:350–354 http://dx.doi.org/10.1038/nature06479. [PubMed]
46. Leber JH, Crimmins GT, Raghavan S, Meyer-Morse NP, Cox JS, Portnoy DA. 2008. Distinct TLR- and NLR-mediated transcriptional responses to an intracellular pathogen. PLoS Pathog 4:e6 http://dx.doi.org/10.1371/journal.ppat.0040006. [PubMed]
47. Stockinger S, Kastner R, Kernbauer E, Pilz A, Westermayer S, Reutterer B, Soulat D, Stengl G, Vogl C, Frenz T, Waibler Z, Taniguchi T, Rülicke T, Kalinke U, Müller M, Decker T. 2009. Characterization of the interferon-producing cell in mice infected with Listeria monocytogenes. PLoS Pathog 5:e1000355 http://dx.doi.org/10.1371/journal.ppat.1000355. [PubMed]
48. Meunier E, Broz P. 2017. Evolutionary convergence and divergence in NLR function and structure. Trends Immunol 38:744–757 http://dx.doi.org/10.1016/j.it.2017.04.005. [PubMed]
49. Girardin SE, Travassos LH, Hervé M, Blanot D, Boneca IG, Philpott DJ, Sansonetti PJ, Mengin-Lecreulx D. 2003. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem 278:41702–41708 http://dx.doi.org/10.1074/jbc.M307198200. [PubMed]
50. Boneca IG, Dussurget O, Cabanes D, Nahori MA, Sousa S, Lecuit M, Psylinakis E, Bouriotis V, Hugot JP, Giovannini M, Coyle A, Bertin J, Namane A, Rousselle JC, Cayet N, Prévost MC, Balloy V, Chignard M, Philpott DJ, Cossart P, Girardin SE. 2007. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci U S A 104:997–1002 http://dx.doi.org/10.1073/pnas.0609672104. [PubMed]
51. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nuñez G, Flavell RA. 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–734 http://dx.doi.org/10.1126/science.1104911. [PubMed]
52. Lipinski S, Till A, Sina C, Arlt A, Grasberger H, Schreiber S, Rosenstiel P. 2009. DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J Cell Sci 122:3522–3530 http://dx.doi.org/10.1242/jcs.050690. [PubMed]
53. Hansen K, Prabakaran T, Laustsen A, Jørgensen SE, Rahbæk SH, Jensen SB, Nielsen R, Leber JH, Decker T, Horan KA, Jakobsen MR, Paludan SR. 2014. Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway. EMBO J 33:1654–1666 http://dx.doi.org/10.15252/embj.201488029. [PubMed]
54. Li T, Chen ZJ. 2018. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med 215:1287–1299 http://dx.doi.org/10.1084/jem.20180139. [PubMed]
55. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M,Hayakawa Y, Vance RE. 2011. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–518 http://dx.doi.org/10.1038/nature10429. [PubMed]
56. Whiteley AT, Pollock AJ, Portnoy DA. 2015. The PAMP c-di-AMP is essential for Listeria monocytogenes growth in rich but not minimal media due to a toxic Increase in (p)ppGpp [corrected]. Cell Host Microbe 17:788–798 http://dx.doi.org/10.1016/j.chom.2015.05.006. [PubMed]
57. Witte CE, Whiteley AT, Burke TP, Sauer JD, Portnoy DA, Woodward JJ. 2013. Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. MBio 4:e00282-13 http://dx.doi.org/10.1128/mBio.00282-13. [PubMed]
58. Woodward JJ, Iavarone AT, Portnoy DA. 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703–1705 http://dx.doi.org/10.1126/science.1189801. [PubMed]
59. Jin L, Getahun A, Knowles HM, Mogan J, Akerlund LJ, Packard TA, Perraud AL, Cambier JC. 2013. STING/MPYS mediates host defense against Listeria monocytogenes infection by regulating Ly6C(hi) monocyte migration. J Immunol 190:2835–2843 http://dx.doi.org/10.4049/jimmunol.1201788. [PubMed]
60. Archer KA, Durack J, Portnoy DA. 2014. STING-dependent type I IFN production inhibits cell-mediated immunity to Listeria monocytogenes. PLoS Pathog 10:e1003861 http://dx.doi.org/10.1371/journal.ppat.1003861. [PubMed]
61. Sauer JD, Sotelo-Troha K, von Moltke J, Monroe KM, Rae CS, Brubaker SW, Hyodo M, Hayakawa Y, Woodward JJ, Portnoy DA, Vance RE. 2011. The N-ethyl- N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect Immun 79:688–694 http://dx.doi.org/10.1128/IAI.00999-10. [PubMed]
62. Abdullah Z, Schlee M, Roth S, Mraheil MA, Barchet W, Böttcher J, Hain T, Geiger S, Hayakawa Y, Fritz JH, Civril F, Hopfner KP, Kurts C, Ruland J, Hartmann G, Chakraborty T, Knolle PA. 2012. RIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids. EMBO J 31:4153–4164 http://dx.doi.org/10.1038/emboj.2012.274. [PubMed]
63. Hagmann CA, Herzner AM, Abdullah Z, Zillinger T, Jakobs C, Schuberth C, Coch C, Higgins PG, Wisplinghoff H, Barchet W, Hornung V, Hartmann G, Schlee M. 2013. RIG-I detects triphosphorylated RNA of Listeria monocytogenes during infection in non-immune cells. PLoS One 8:e62872 http://dx.doi.org/10.1371/journal.pone.0062872. [PubMed]
64. Soulat D, Bauch A, Stockinger S, Superti-Furga G, Decker T. 2006. Cytoplasmic Listeria monocytogenes stimulates IFN-beta synthesis without requiring the adapter protein MAVS. FEBS Lett 580:2341–2346 http://dx.doi.org/10.1016/j.febslet.2006.03.057. [PubMed]
65. Regan T, Nally K, Carmody R, Houston A, Shanahan F, Macsharry J, Brint E. 2013. Identification of TLR10 as a key mediator of the inflammatory response to Listeria monocytogenes in intestinal epithelial cells and macrophages. J Immunol 191:6084–6092 http://dx.doi.org/10.4049/jimmunol.1203245. [PubMed]
66. Shi J, Gao W, Shao F. 2017. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254 http://dx.doi.org/10.1016/j.tibs.2016.10.004. [PubMed]
67. von Moltke J, Ayres JS, Kofoed EM, Chavarría-Smith J, Vance RE. 2013. Recognition of bacteria by inflammasomes. Annu Rev Immunol 31:73–106 http://dx.doi.org/10.1146/annurev-immunol-032712-095944. [PubMed]
68. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232 http://dx.doi.org/10.1038/nature04515. [PubMed]
69. Kim S, Bauernfeind F, Ablasser A, Hartmann G, Fitzgerald KA, Latz E, Hornung V. 2010. Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur J Immunol 40:1545–1551 http://dx.doi.org/10.1002/eji.201040425. [PubMed]
70. Meixenberger K, Pache F, Eitel J, Schmeck B, Hippenstiel S, Slevogt H, N’Guessan P, Witzenrath M, Netea MG, Chakraborty T, Suttorp N, Opitz B. 2010. Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1beta, depending on listeriolysin O and NLRP3. J Immunol 184:922–930 http://dx.doi.org/10.4049/jimmunol.0901346. [PubMed]
71. Warren SE, Mao DP, Rodriguez AE, Miao EA, Aderem A. 2008. Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection. J Immunol 180:7558–7564 http://dx.doi.org/10.4049/jimmunol.180.11.7558. [PubMed]
72. Fernandes-Alnemri T, Kang S, Anderson C, Sagara J, Fitzgerald KA, Alnemri ES. 2013. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol 191:3995–3999 http://dx.doi.org/10.4049/jimmunol.1301681. [PubMed]
73. Schmidt RL, Lenz LL. 2012. Distinct licensing of IL-18 and IL-1β secretion in response to NLRP3 inflammasome activation. PLoS One 7:e45186 http://dx.doi.org/10.1371/journal.pone.0045186. [PubMed]
74. Clark SE, Schmidt RL, McDermott DS, Lenz LL. 2018. A Batf3/Nlrp3/IL-18 axis promotes natural killer cell IL-10 production during Listeria monocytogenes infection. Cell Reports 23:2582–2594 http://dx.doi.org/10.1016/j.celrep.2018.04.106. [PubMed]
75. Sauer JD, Pereyre S, Archer KA, Burke TP, Hanson B, Lauer P, Portnoy DA. 2011. Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. Proc Natl Acad Sci U S A 108:12419–12424 http://dx.doi.org/10.1073/pnas.1019041108. [PubMed]
76. Warren SE, Duong H, Mao DP, Armstrong A, Rajan J, Miao EA, Aderem A. 2011. Generation of a Listeria vaccine strain by enhanced caspase-1 activation. Eur J Immunol 41:1934–1940 http://dx.doi.org/10.1002/eji.201041214. [PubMed]
77. Staehli F, Ludigs K, Heinz LX, Seguín-Estévez Q, Ferrero I, Braun M, Schroder K, Rebsamen M, Tardivel A, Mattmann C, MacDonald HR, Romero P, Reith W, Guarda G, Tschopp J. 2012. NLRC5 deficiency selectively impairs MHC class I-dependent lymphocyte killing by cytotoxic T cells. J Immunol 188:3820–3828 http://dx.doi.org/10.4049/jimmunol.1102671. [PubMed]
78. Biswas A, Meissner TB, Kawai T, Kobayashi KS. 2012. Cutting edge: impaired MHC class I expression in mice deficient for Nlrc5/class I transactivator. J Immunol 189:516–520 http://dx.doi.org/10.4049/jimmunol.1200064. [PubMed]
79. Yao Y, Wang Y, Chen F, Huang Y, Zhu S, Leng Q, Wang H, Shi Y, Qian Y. 2012. NLRC5 regulates MHC class I antigen presentation in host defense against intracellular pathogens. Cell Res 22:836–847 http://dx.doi.org/10.1038/cr.2012.56. [PubMed]
80. Neiman-Zenevich J, Stuart S, Abdel-Nour M, Girardin SE, Mogridge J. 2017. Listeria monocytogenes and Shigella flexneri activate the NLRP1B inflammasome. Infect Immun 85:e00338-17 http://dx.doi.org/10.1128/IAI.00338-17. [PubMed]
81. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA. 2010. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11:395–402 http://dx.doi.org/10.1038/ni.1864. [PubMed]
82. Grillot-Courvalin C, Goussard S, Courvalin P. 2002. Wild-type intracellular bacteria deliver DNA into mammalian cells. Cell Microbiol 4:177–186 http://dx.doi.org/10.1046/j.1462-5822.2002.00184.x. [PubMed]
83. Henry T, Brotcke A, Weiss DS, Thompson LJ, Monack DM. 2007. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J Exp Med 204:987–994 http://dx.doi.org/10.1084/jem.20062665. [PubMed]
84. Sauer JD, Witte CE, Zemansky J, Hanson B, Lauer P, Portnoy DA. 2010. Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 7:412–419 http://dx.doi.org/10.1016/j.chom.2010.04.004. [PubMed]
85. Wu J, Fernandes-Alnemri T, Alnemri ES. 2010. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J Clin Immunol 30:693–702 http://dx.doi.org/10.1007/s10875-010-9425-2. [PubMed]
86. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F. 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–116 http://dx.doi.org/10.1038/nature18590. [PubMed]
87. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665 http://dx.doi.org/10.1038/nature15514. [PubMed]
88. Anand PK, Malireddi RK, Lukens JR, Vogel P, Bertin J, Lamkanfi M, Kanneganti TD. 2012. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488:389–393 http://dx.doi.org/10.1038/nature11250. [PubMed]
89. O’Riordan M, Yi CH, Gonzales R, Lee KD, Portnoy DA. 2002. Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc Natl Acad Sci U S A 99:13861–13866 http://dx.doi.org/10.1073/pnas.202476699. [PubMed]
90. Xie M, Ding C, Guo L, Chen G, Zeng H, Liu Q. 2018. Evaluation of Caco-2 cells response to Listeria monocytogenes virulence factors by RT-PCR. Microb Pathog 120:79–84 http://dx.doi.org/10.1016/j.micpath.2018.04.059. [PubMed]
91. Ebe Y, Hasegawa G, Takatsuka H, Umezu H, Mitsuyama M, Arakawa M, Mukaida N, Naito M. 1999. The role of Kupffer cells and regulation of neutrophil migration into the liver by macrophage inflammatory protein-2 in primary listeriosis in mice. Pathol Int 49:519–532 http://dx.doi.org/10.1046/j.1440-1827.1999.00910.x. [PubMed]
92. Opitz B, Püschel A, Beermann W, Hocke AC, Förster S, Schmeck B, van Laak V, Chakraborty T, Suttorp N, Hippenstiel S. 2006. Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J Immunol 176:484–490 http://dx.doi.org/10.4049/jimmunol.176.1.484. [PubMed]
93. Willcocks S, Offord V, Seyfert HM, Coffey TJ, Werling D. 2013. Species-specific PAMP recognition by TLR2 and evidence for species-restricted interaction with Dectin-1. J Leukoc Biol 94:449–458 http://dx.doi.org/10.1189/jlb.0812390. [PubMed]
94. Liu Z, Simpson RJ, Cheers C. 1992. Recombinant interleukin-6 protects mice against experimental bacterial infection. Infect Immun 60:4402–4406.
95. Gregory SH, Wing EJ, Danowski KL, van Rooijen N, Dyer KF, Tweardy DJ. 1998. IL-6 produced by Kupffer cells induces STAT protein activation in hepatocytes early during the course of systemic listerial infections. J Immunol 160:6056–6061.
96. Hoge J, Yan I, Jänner N, Schumacher V, Chalaris A, Steinmetz OM, Engel DR, Scheller J, Rose-John S, Mittrücker HW. 2013. IL-6 controls the innate immune response against Listeria monocytogenes via classical IL-6 signaling. J Immunol 190:703–711 http://dx.doi.org/10.4049/jimmunol.1201044. [PubMed]
97. Tsuchiya K, Kawamura I, Takahashi A, Nomura T, Kohda C, Mitsuyama M. 2005. Listeriolysin O-induced membrane permeation mediates persistent interleukin-6 production in Caco-2 cells during Listeria monocytogenes infection in vitro. Infect Immun 73:3869–3877 http://dx.doi.org/10.1128/IAI.73.7.3869-3877.2005. [PubMed]
98. Dalrymple SA, Lucian LA, Slattery R, McNeil T, Aud DM, Fuchino S, Lee F, Murray R. 1995. Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia. Infect Immun 63:2262–2268.
99. Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, Kishimoto T, Zinkernagel R, Bluethmann H, Köhler G. 1994. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368:339–342 http://dx.doi.org/10.1038/368339a0. [PubMed]
100. Cellina M, Fetoni V, Baron P, Orsi M, Oliva G. 2015. Listeria meningoencephalitis in a patient with rheumatoid arthritis on anti-interleukin 6 receptor antibody tocilizumab. J Clin Rheumatol 21:330 http://dx.doi.org/10.1097/RHU.0000000000000287. [PubMed]
101. Lücke K, Yan I, Krohn S, Volmari A, Klinge S, Schmid J, Schumacher V, Steinmetz OM, Rose-John S, Mittrücker HW. 2018. Control of Listeria monocytogenes infection requires classical IL-6 signaling in myeloid cells. PLoS One 13:e0203395 http://dx.doi.org/10.1371/journal.pone.0203395. [PubMed]
102. Personnic N, Bruck S, Nahori MA, Toledo-Arana A, Nikitas G, Lecuit M, Dussurget O, Cossart P, Bierne H. 2010. The stress-induced virulence protein InlH controls interleukin-6 production during murine listeriosis. Infect Immun 78:1979–1989 http://dx.doi.org/10.1128/IAI.01096-09. [PubMed]
103. Barsig J, Flesch IE, Kaufmann SH. 1998. Macrophages and hepatocytic cells as chemokine producers in murine listeriosis. Immunobiology 199:87–104 http://dx.doi.org/10.1016/S0171-2985(98)80066-1.
104. Serbina NV, Kuziel W, Flavell R, Akira S, Rollins B, Pamer EG. 2003. Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19:891–901 http://dx.doi.org/10.1016/S1074-7613(03)00330-3.
105. Jia T, Serbina NV, Brandl K, Zhong MX, Leiner IM, Charo IF, Pamer EG. 2008. Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J Immunol 180:6846–6853 http://dx.doi.org/10.4049/jimmunol.180.10.6846. [PubMed]
106. Serbina NV, Pamer EG. 2006. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7:311–317 http://dx.doi.org/10.1038/ni1309. [PubMed]
107. Cook DN, Smithies O, Strieter RM, Frelinger JA, Serody JS. 1999. CD8+ T cells are a biologically relevant source of macrophage inflammatory protein-1 alpha in vivo. J Immunol 162:5423–5428.
108. Zhong MX, Kuziel WA, Pamer EG, Serbina NV. 2004. Chemokine receptor 5 is dispensable for innate and adaptive immune responses to Listeria monocytogenes infection. Infect Immun 72:1057–1064 http://dx.doi.org/10.1128/IAI.72.2.1057-1064.2004. [PubMed]
109. Narni-Mancinelli E, Campisi L, Bassand D, Cazareth J, Gounon P, Glaichenhaus N, Lauvau G. 2007. Memory CD8+ T cells mediate antibacterial immunity via CCL3 activation of TNF/ROI+ phagocytes. J Exp Med 204:2075–2087 http://dx.doi.org/10.1084/jem.20070204. [PubMed]
110. Narni-Mancinelli E, Soudja SM, Crozat K, Dalod M, Gounon P, Geissmann F, Lauvau G. 2011. Inflammatory monocytes and neutrophils are licensed to kill during memory responses in vivo. PLoS Pathog 7:e1002457 http://dx.doi.org/10.1371/journal.ppat.1002457. [PubMed]
111. Dresing P, Borkens S, Kocur M, Kropp S, Scheu S. 2010. A fluorescence reporter model defines “Tip-DCs” as the cellular source of interferon β in murine listeriosis. PLoS One 5:e15567 http://dx.doi.org/10.1371/journal.pone.0015567. [PubMed]
112. Solodova E, Jablonska J, Weiss S, Lienenklaus S. 2011. Production of IFN-β during Listeria monocytogenes infection is restricted to monocyte/macrophage lineage. PLoS One 6:e18543 http://dx.doi.org/10.1371/journal.pone.0018543. [PubMed]
113. Pitts MG, Myers-Morales T, D’Orazio SE. 2016. Type I IFN does not promote susceptibility to foodborne Listeria monocytogenes. J Immunol 196:3109–3116 http://dx.doi.org/10.4049/jimmunol.1502192. [PubMed]
114. Negishi H, Matsuki K, Endo N, Sarashina H, Miki S, Matsuda A, Fukazawa K, Taguchi-Atarashi N, Ikushima H, Yanai H, Nishio J, Honda K, Fujioka Y, Ohba Y, Noda T, Taniguchi S, Nishida E, Zhang Y, Chi H, Flavell RA, Taniguchi T. 2013. Beneficial innate signaling interference for antibacterial responses by a Toll-like receptor-mediated enhancement of the MKP-IRF3 axis. Proc Natl Acad Sci U S A 110:19884–19889 http://dx.doi.org/10.1073/pnas.1320145110. [PubMed]
115. Brzoza-Lewis KL, Hoth JJ, Hiltbold EM. 2012. Type I interferon signaling regulates the composition of inflammatory infiltrates upon infection with Listeria monocytogenes. Cell Immunol 273:41–51 http://dx.doi.org/10.1016/j.cellimm.2011.11.008. [PubMed]
116. Müller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M. 1994. Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921 http://dx.doi.org/10.1126/science.8009221. [PubMed]
117. Carrero JA, Calderon B, Unanue ER. 2004. Listeriolysin O from Listeria monocytogenes is a lymphocyte apoptogenic molecule. J Immunol 172:4866–4874 http://dx.doi.org/10.4049/jimmunol.172.8.4866. [PubMed]
118. Auerbuch V, Brockstedt DG, Meyer-Morse N, O’Riordan M, Portnoy DA. 2004. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med 200:527–533 http://dx.doi.org/10.1084/jem.20040976. [PubMed]
119. Rayamajhi M, Humann J, Penheiter K, Andreasen K, Lenz LL. 2010. Induction of IFN-alphabeta enables Listeria monocytogenes to suppress macrophage activation by IFN-gamma. J Exp Med 207:327–337 http://dx.doi.org/10.1084/jem.20091746. [PubMed]
120. Carrero JA, Calderon B, Unanue ER. 2006. Lymphocytes are detrimental during the early innate immune response against Listeria monocytogenes. J Exp Med 203:933–940 http://dx.doi.org/10.1084/jem.20060045. [PubMed]
121. McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. 2015. Type I interferons in infectious disease. Nat Rev Immunol 15:87–103 http://dx.doi.org/10.1038/nri3787. [PubMed]
122. O’Connell RM, Saha SK, Vaidya SA, Bruhn KW, Miranda GA, Zarnegar B, Perry AK, Nguyen BO, Lane TF, Taniguchi T, Miller JF, Cheng G. 2004. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med 200:437–445 http://dx.doi.org/10.1084/jem.20040712. [PubMed]
123. Kernbauer E, Maier V, Rauch I, Müller M, Decker T. 2013. Route of infection determines the impact of type I interferons on innate immunity to Listeria monocytogenes. PLoS One 8:e65007 http://dx.doi.org/10.1371/journal.pone.0065007. [PubMed]
124. Odendall C, Voak AA, Kagan JC. 2017. Type III IFNs are commonly induced by bacteria-sensing TLRs and reinforce epithelial barriers during infection. J Immunol 199:3270–3279 http://dx.doi.org/10.4049/jimmunol.1700250. [PubMed]
125. Bierne H, Travier L, Mahlakõiv T, Tailleux L, Subtil A, Lebreton A, Paliwal A, Gicquel B, Staeheli P, Lecuit M, Cossart P. 2012. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta. PLoS One 7:e39080 http://dx.doi.org/10.1371/journal.pone.0039080. [PubMed]
126. Dussurget O, Bierne H, Cossart P. 2014. The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons. Front Cell Infect Microbiol 4:50 http://dx.doi.org/10.3389/fcimb.2014.00050. [PubMed]
127. Hermant P, Demarez C, Mahlakõiv T, Staeheli P, Meuleman P, Michiels T. 2014. Human but not mouse hepatocytes respond to interferon-lambda in vivo. PLoS One 9:e87906 http://dx.doi.org/10.1371/journal.pone.0087906. [PubMed]
128. Lebreton A, Lakisic G, Job V, Fritsch L, Tham TN, Camejo A, Matteï PJ, Regnault B, Nahori MA, Cabanes D, Gautreau A, Ait-Si-Ali S, Dessen A, Cossart P, Bierne H. 2011. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science 331:1319–1321 http://dx.doi.org/10.1126/science.1200120. [PubMed]
129. Rohde JR. 2011. Listeria unwinds host DNA. Science 331:1271–1272 http://dx.doi.org/10.1126/science.1203271. [PubMed]
130. Dinarello CA, Renfer L, Wolff SM. 1977. Human leukocytic pyrogen: purification and development of a radioimmunoassay. Proc Natl Acad Sci U S A 74:4624–4627 http://dx.doi.org/10.1073/pnas.74.10.4624. [PubMed]
131. Murapa P, Ward MR, Gandhapudi SK, Woodward JG, D’Orazio SE. 2011. Heat shock factor 1 protects mice from rapid death during Listeria monocytogenes infection by regulating expression of tumor necrosis factor alpha during fever. Infect Immun 79:177–184 http://dx.doi.org/10.1128/IAI.00742-09. [PubMed]
132. Keyel PA. 2014. How is inflammation initiated? Individual influences of IL-1, IL-18 and HMGB1. Cytokine 69:136–145 http://dx.doi.org/10.1016/j.cyto.2014.03.007. [PubMed]
133. Man SM, Karki R, Briard B, Burton A, Gingras S, Pelletier S, Kanneganti TD. 2017. Differential roles of caspase-1 and caspase-11 in infection and inflammation. Sci Rep 7:45126 http://dx.doi.org/10.1038/srep45126. [PubMed]
134. Mueller NJ, Wilkinson RA, Fishman JA. 2002. Listeria monocytogenes infection in caspase-11-deficient mice. Infect Immun 70:2657–2664 http://dx.doi.org/10.1128/IAI.70.5.2657-2664.2002. [PubMed]
135. Gutierrez KD, Davis MA, Daniels BP, Olsen TM, Ralli-Jain P, Tait SW, Gale M Jr, Oberst A. 2017. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J Immunol 198:2156–2164 http://dx.doi.org/10.4049/jimmunol.1601757. [PubMed]
136. Schneider KS, Groß CJ, Dreier RF, Saller BS, Mishra R, Gorka O, Heilig R, Meunier E, Dick MS, Ćiković T, Sodenkamp J, Médard G, Naumann R, Ruland J, Kuster B, Broz P, Groß O. 2017. The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity. Cell Rep 21:3846–3859 http://dx.doi.org/10.1016/j.celrep.2017.12.018. [PubMed]
137. Havell EA, Moldawer LL, Helfgott D, Kilian PL, Sehgal PB. 1992. Type I IL-1 receptor blockade exacerbates murine listeriosis. J Immunol 148:1486–1492.
138. Glaccum MB, Stocking KL, Charrier K, Smith JL, Willis CR, Maliszewski C, Livingston DJ, Peschon JJ, Morrissey PJ. 1997. Phenotypic and functional characterization of mice that lack the type I receptor for IL-1. J Immunol 159:3364–3371.
139. Zheng H, Fletcher D, Kozak W, Jiang M, Hofmann KJ, Corn CA, Soszynski D, Grabiec C, Trumbauer ME, Shaw A, Kostura MJ, Stevens K, Rosen H, North RJ, Chen HY, Tocci MJ, Kluger MJ, Van der Ploeg LHT. 1995. Resistance to fever induction and impaired acute-phase response in interleukin-1 beta-deficient mice. Immunity 3:9–19 http://dx.doi.org/10.1016/1074-7613(95)90154-X.
140. Rogers HW, Tripp CS, Schreiber RD, Unanue ER. 1994. Endogenous IL-1 is required for neutrophil recruitment and macrophage activation during murine listeriosis. J Immunol 153:2093–2101.
141. Rogers HW, Sheehan KC, Brunt LM, Dower SK, Unanue ER, Schreiber RD. 1992. Interleukin 1 participates in the development of anti- Listeria responses in normal and SCID mice. Proc Natl Acad Sci U S A 89:1011–1015 http://dx.doi.org/10.1073/pnas.89.3.1011. [PubMed]
142. Goriely S, Neurath MF, Goldman M. 2008. How microorganisms tip the balance between interleukin-12 family members. Nat Rev Immunol 8:81–86 http://dx.doi.org/10.1038/nri2225. [PubMed]
143. Reinhardt RL, Hong S, Kang SJ, Wang ZE, Locksley RM. 2006. Visualization of IL-12/23p40 in vivo reveals immunostimulatory dendritic cell migrants that promote Th1 differentiation. J Immunol 177:1618–1627 http://dx.doi.org/10.4049/jimmunol.177.3.1618. [PubMed]
144. Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrançois L, Li Z. 2007. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26:215–226 http://dx.doi.org/10.1016/j.immuni.2006.12.005. [PubMed]
145. Zhan Y, Cheers C. 1998. Control of IL-12 and IFN-gamma production in response to live or dead bacteria by TNF and other factors. J Immunol 161:1447–1453.
146. Bou Ghanem EN, Nelson CC, D’Orazio SEF. 2011. T cell-intrinsic factors contribute to the differential ability of CD8+ T cells to rapidly secrete IFN-γ in the absence of antigen. J Immunol 186:1703–1712 http://dx.doi.org/10.4049/jimmunol.1001960. [PubMed]
147. Bou Ghanem EN, D’Orazio SEF. 2011. Human CD8+ T cells display a differential ability to undergo cytokine-driven bystander activation. Cell Immunol 272:79–86 http://dx.doi.org/10.1016/j.cellimm.2011.09.003. [PubMed]
148. Seregin SS, Chen GY, Laouar Y. 2015. Dissecting CD8+ NKT cell responses to Listeria infection reveals a component of innate resistance. J Immunol 195:1112–1120 http://dx.doi.org/10.4049/jimmunol.1500084. [PubMed]
149. Lee SH, Carrero JA, Uppaluri R, White JM, Archambault JM, Lai KS, Chan SR, Sheehan KC, Unanue ER, Schreiber RD. 2013. Identifying the initiating events of anti- Listeria responses using mice with conditional loss of IFN-γ receptor subunit 1 (IFNGR1). J Immunol 191:4223–4234 http://dx.doi.org/10.4049/jimmunol.1300910. [PubMed]
150. Chung Y, Yamazaki T, Kim BS, Zhang Y, Reynolds JM, Martinez GJ, Chang SH, Lim H, Birkenbach M, Dong C. 2013. Epstein Barr virus-induced 3 (EBI3) together with IL-12 negatively regulates T helper 17-mediated immunity to Listeria monocytogenes infection. PLoS Pathog 9:e1003628 http://dx.doi.org/10.1371/journal.ppat.1003628. [PubMed]
151. Wagner RD, Steinberg H, Brown JF, Czuprynski CJ. 1994. Recombinant interleukin-12 enhances resistance of mice to Listeria monocytogenes infection. Microb Pathog 17:175–186 http://dx.doi.org/10.1006/mpat.1994.1064. [PubMed]
152. Henry CJ, Ornelles DA, Mitchell LM, Brzoza-Lewis KL, Hiltbold EM. 2008. IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. J Immunol 181:8576–8584 http://dx.doi.org/10.4049/jimmunol.181.12.8576. [PubMed]
153. Curtis MM, Way SS, Wilson CB. 2009. IL-23 promotes the production of IL-17 by antigen-specific CD8 T cells in the absence of IL-12 and type-I interferons. J Immunol 183:381–387 http://dx.doi.org/10.4049/jimmunol.0900939. [PubMed]
154. Disson O, Blériot C, Jacob JM, Serafini N, Dulauroy S, Jouvion G, Fevre C, Gessain G, Thouvenot P, Eberl G, Di Santo JP, Peduto L, Lecuit M. 2018. Peyer’s patch myeloid cells infection by Listeria signals through gp38 + stromal cells and locks intestinal villus invasion. J Exp Med 215:2936–2954 http://dx.doi.org/10.1084/jem.20181210. [PubMed]
155. Koscsó B, Gowda K, Schell TD, Bogunovic M. 2015. Purification of dendritic cell and macrophage subsets from the normal mouse small intestine. J Immunol Methods 421:1–13 http://dx.doi.org/10.1016/j.jim.2015.02.013. [PubMed]
156. Opal SM, Keith JC, Palardy JE, Parejo N. 2000. Recombinant human interleukin-11 has anti-inflammatory actions yet does not exacerbate systemic Listeria infection. J Infect Dis 181:754–756 http://dx.doi.org/10.1086/315247. [PubMed]
157. Indramohan M, Sieve AN, Break TJ, Berg RE. 2012. Inflammatory monocyte recruitment is regulated by interleukin-23 during systemic bacterial infection. Infect Immun 80:4099–4105 http://dx.doi.org/10.1128/IAI.00589-12. [PubMed]
158. Meeks KD, Sieve AN, Kolls JK, Ghilardi N, Berg RE. 2009. IL-23 is required for protection against systemic infection with Listeria monocytogenes. J Immunol 183:8026–8034 http://dx.doi.org/10.4049/jimmunol.0901588. [PubMed]
159. Sieve AN, Meeks KD, Lee S, Berg RE. 2010. A novel immunoregulatory function for IL-23: inhibition of IL-12-dependent IFN-γ production. Eur J Immunol 40:2236–2247 http://dx.doi.org/10.1002/eji.200939759. [PubMed]
160. Endres R, Luz A, Schulze H, Neubauer H, Fütterer A, Holland SM, Wagner H, Pfeffer K. 1997. Listeriosis in p47(phox-/-) and TRp55-/- mice: protection despite absence of ROI and susceptibility despite presence of RNI. Immunity 7:419–432 http://dx.doi.org/10.1016/S1074-7613(00)80363-5.
161. Havell EA. 1989. Evidence that tumor necrosis factor has an important role in antibacterial resistance. J Immunol 143:2894–2899.
162. Peschon JJ, Torrance DS, Stocking KL, Glaccum MB, Otten C, Willis CR, Charrier K, Morrissey PJ, Ware CB, Mohler KM. 1998. TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J Immunol 160:943–952.
163. Rothe J, Lesslauer W, Lötscher H, Lang Y, Koebel P, Köntgen F, Althage A, Zinkernagel R, Steinmetz M, Bluethmann H. 1993. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364:798–802 http://dx.doi.org/10.1038/364798a0. [PubMed]
164. Xanthoulea S, Pasparakis M, Kousteni S, Brakebusch C, Wallach D, Bauer J, Lassmann H, Kollias G. 2004. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. J Exp Med 200:367–376 http://dx.doi.org/10.1084/jem.20040435. [PubMed]
165. Fontan E, Saklani-Jusforgues H, Goossens PL. 2001. Early translocation of acid-adapted Listeria monocytogenes during enteric infection in TNF/LTalpha-/- mice. FEMS Microbiol Lett 205:179–183. [PubMed]
166. Abreu C, Magro F, Vilas-Boas F, Lopes S, Macedo G, Sarmento A. 2013. Listeria infection in patients on anti-TNF treatment: report of two cases and review of the literature. J Crohns Colitis 7:175–182 http://dx.doi.org/10.1016/j.crohns.2012.04.018. [PubMed]
167. Parihar V, Maguire S, Shahin A, Ahmed Z, O’Sullivan M, Kennedy M, Smyth C, Farrell R. 2016. Listeria meningitis complicating a patient with ulcerative colitis on concomitant infliximab and hydrocortisone. Ir J Med Sci 185:965–967 http://dx.doi.org/10.1007/s11845-015-1355-9. [PubMed]
168. Stratton L, Caddy GR. 2016. Listeria rhombencephalitis complicating anti-TNF treatment during an acute flare of Crohn’s colitis. Case Rep Gastrointest Med 2016:6216128 http://dx.doi.org/10.1155/2016/6216128. [PubMed]
169. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:59–70 http://dx.doi.org/10.1016/S1074-7613(03)00171-7.
170. Liu Z, Simpson RJ, Cheers C. 1995. Interaction of interleukin-6, tumour necrosis factor and interleukin-1 during Listeria infection. Immunology 85:562–567.
171. Vazquez MA, Sicher SC, Wright WJ, Proctor ML, Schmalzried SR, Stallworth KR, Crowley JC, Lu CY. 1995. Differential regulation of TNF-alpha production by listeriolysin-producing versus nonproducing strains of Listeria monocytogenes. J Leukoc Biol 58:556–562 http://dx.doi.org/10.1002/jlb.58.5.556. [PubMed]
172. Li X, Lyons AB, Woods GM, Körner H. 2017. The absence of TNF permits myeloid arginase 1 expression in experimental L. monocytogenes infection. Immunobiology 222:913–917 http://dx.doi.org/10.1016/j.imbio.2017.05.012. [PubMed]
173. Leenen PJ, Canono BP, Drevets DA, Voerman JS, Campbell PA. 1994. TNF-alpha and IFN-gamma stimulate a macrophage precursor cell line to kill Listeria monocytogenes in a nitric oxide-independent manner. J Immunol 153:5141–5147.
174. Müller M, Althaus R, Fröhlich D, Frei K, Eugster HP. 1999. Reduced antilisterial activity of TNF-deficient bone marrow-derived macrophages is due to impaired superoxide production. Eur J Immunol 29:3089–3097 http://dx.doi.org/10.1002/(SICI)1521-4141(199910)29:10<3089::AID-IMMU3089>3.0.CO;2-D.
175. White DW, Harty JT. 1998. Perforin-deficient CD8+ T cells provide immunity to Listeria monocytogenes by a mechanism that is independent of CD95 and IFN-gamma but requires TNF-alpha. J Immunol 160:898–905.
176. Schneider WM, Chevillotte MD, Rice CM. 2014. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545 http://dx.doi.org/10.1146/annurev-immunol-032713-120231. [PubMed]
177. Badovinac VP, Tvinnereim AR, Harty JT. 2000. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma. Science 290:1354–1358 http://dx.doi.org/10.1126/science.290.5495.1354. [PubMed]
178. Harty JT, Bevan MJ. 1995. Specific immunity to Listeria monocytogenes in the absence of IFN gamma. Immunity 3:109–117 http://dx.doi.org/10.1016/1074-7613(95)90163-9.
179. Roesler J, Kofink B, Wendisch J, Heyden S, Paul D, Friedrich W, Casanova JL, Leupold W, Gahr M, Rösen-Wolff A. 1999. Listeria monocytogenes and recurrent mycobacterial infections in a child with complete interferon-gamma-receptor (IFNgammaR1) deficiency: mutational analysis and evaluation of therapeutic options. Exp Hematol 27:1368–1374 http://dx.doi.org/10.1016/S0301-472X(99)00077-6.
180. van de Vosse E, van Dissel JT, Ottenhoff TH. 2009. Genetic deficiencies of innate immune signalling in human infectious disease. Lancet Infect Dis 9:688–698 http://dx.doi.org/10.1016/S1473-3099(09)70255-5.
181. D’Orazio SEF, Troese MJ, Starnbach MN. 2006. Cytosolic localization of Listeria monocytogenes triggers an early IFN-gamma response by CD8+ T cells that correlates with innate resistance to infection. J Immunol 177:7146–7154 http://dx.doi.org/10.4049/jimmunol.177.10.7146. [PubMed]
182. Thäle C, Kiderlen AF. 2005. Sources of interferon-gamma (IFN-gamma) in early immune response to Listeria monocytogenes. Immunobiology 210:673–683 http://dx.doi.org/10.1016/j.imbio.2005.07.003. [PubMed]
183. Yin J, Ferguson TA. 2009. Identification of an IFN-gamma-producing neutrophil early in the response to Listeria monocytogenes. J Immunol 182:7069–7073 http://dx.doi.org/10.4049/jimmunol.0802410. [PubMed]
184. Berg RE, Crossley E, Murray S, Forman J. 2005. Relative contributions of NK and CD8 T cells to IFN-gamma mediated innate immune protection against Listeria monocytogenes. J Immunol 175:1751–1757 http://dx.doi.org/10.4049/jimmunol.175.3.1751. [PubMed]
185. Bajénoff M, Narni-Mancinelli E, Brau F, Lauvau G. 2010. Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse. PLoS One 5:e11524 http://dx.doi.org/10.1371/journal.pone.0011524. [PubMed]
186. Perez OA, Yeung ST, Vera-Licona P, Romagnoli PA, Samji T, Ural BB, Maher L, Tanaka M, Khanna KM. 2017. CD169 + macrophages orchestrate innate immune responses by regulating bacterial localization in the spleen. Sci Immunol 2:eaah5520 http://dx.doi.org/10.1126/sciimmunol.aah5520. [PubMed]
187. Peñaloza HF, Schultz BM, Nieto PA, Salazar GA, Suazo I, Gonzalez PA, Riedel CA, Alvarez-Lobos MM, Kalergis AM, Bueno SM. 2016. Opposing roles of IL-10 in acute bacterial infection. Cytokine Growth Factor Rev 32:17–30 http://dx.doi.org/10.1016/j.cytogfr.2016.07.003. [PubMed]
188. Rhodes KA, Andrew EM, Newton DJ, Tramonti D, Carding SR. 2008. A subset of IL-10-producing gammadelta T cells protect the liver from Listeria-elicited, CD8(+) T cell-mediated injury. Eur J Immunol 38:2274–2283 http://dx.doi.org/10.1002/eji.200838354. [PubMed]
189. Pasche B, Kalaydjiev S, Franz TJ, Kremmer E, Gailus-Durner V, Fuchs H, Hrabé de Angelis M, Lengeling A, Busch DH. 2005. Sex-dependent susceptibility to Listeria monocytogenes infection is mediated by differential interleukin-10 production. Infect Immun 73:5952–5960 http://dx.doi.org/10.1128/IAI.73.9.5952-5960.2005. [PubMed]
190. Genovese F, Mancuso G, Cuzzola M, Biondo C, Beninati C, Delfino D, Teti G. 1999. Role of IL-10 in a neonatal mouse listeriosis model. J Immunol 163:2777–2782.
191. Torres D, Köhler A, Delbauve S, Caminschi I, Lahoud MH, Shortman K, Flamand V. 2016. IL-12p40/IL-10 producing preCD8α/Clec9A+ dendritic cells are induced in neonates upon Listeria monocytogenes infection. PLoS Pathog 12:e1005561 http://dx.doi.org/10.1371/journal.ppat.1005561. [PubMed]
192. Dai WJ, Köhler G, Brombacher F. 1997. Both innate and acquired immunity to Listeria monocytogenes infection are increased in IL-10-deficient mice. J Immunol 158:2259–2267.
193. Foulds KE, Rotte MJ, Seder RA. 2006. IL-10 is required for optimal CD8 T cell memory following Listeria monocytogenes infection. J Immunol 177:2565–2574 http://dx.doi.org/10.4049/jimmunol.177.4.2565. [PubMed]
194. Lee CC, Kung JT. 2012. Marginal zone B cell is a major source of Il-10 in Listeria monocytogenes susceptibility. J Immunol 189:3319–3327 http://dx.doi.org/10.4049/jimmunol.1201247. [PubMed]
195. Horikawa M, Weimer ET, DiLillo DJ, Venturi GM, Spolski R, Leonard WJ, Heise MT, Tedder TF. 2013. Regulatory B cell (B10 Cell) expansion during Listeria infection governs innate and cellular immune responses in mice. J Immunol 190:1158–1168 http://dx.doi.org/10.4049/jimmunol.1201427. [PubMed]
196. Waite JC, Leiner I, Lauer P, Rae CS, Barbet G, Zheng H, Portnoy DA, Pamer EG, Dustin ML. 2011. Dynamic imaging of the effector immune response to listeria infection in vivo. PLoS Pathog 7:e1001326 http://dx.doi.org/10.1371/journal.ppat.1001326. [PubMed]
197. Carrero JA, Calderon B, Unanue ER. 2004. Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J Exp Med 200:535–540 http://dx.doi.org/10.1084/jem.20040769. [PubMed]
198. Carrero JA, Unanue ER. 2007. Impact of lymphocyte apoptosis on the innate immune stages of infection. Immunol Res 38:333–341 http://dx.doi.org/10.1007/s12026-007-0017-z. [PubMed]
199. Heesterbeek DAC, Angelier ML, Harrison RA, Rooijakkers SHM. 2018. Complement and bacterial infections: from molecular mechanisms to therapeutic applications. J Innate Immun 10:455–464 http://dx.doi.org/10.1159/000491439. [PubMed]
200. Berends ET, Dekkers JF, Nijland R, Kuipers A, Soppe JA, van Strijp JA, Rooijakkers SH. 2013. Distinct localization of the complement C5b-9 complex on Gram-positive bacteria. Cell Microbiol 15:1955–1968 http://dx.doi.org/10.1111/cmi.12170. [PubMed]
201. Baker LA, Campbell PA, Hollister JR. 1977. Chemotaxigenesis and complement fixation by Listeria monocytogenes cell wall fractions. J Immunol 119:1723–1726.
202. Bortolussi R, Issekutz A, Faulkner G. 1986. Opsonization of Listeria monocytogenes type 4b by human adult and newborn sera. Infect Immun 52:493–498.
203. Croize J, Arvieux J, Berche P, Colomb MG. 1993. Activation of the human complement alternative pathway by Listeria monocytogenes: evidence for direct binding and proteolysis of the C3 component on bacteria. Infect Immun 61:5134–5139.
204. van Kessel KP, Antonissen AC, van Dijk H, Rademaker PM, Willers JM. 1981. Interactions of killed Listeria monocytogenes with the mouse complement system. Infect Immun 34:16–19.
205. Drevets DA, Campbell PA. 1991. Roles of complement and complement receptor type 3 in phagocytosis of Listeria monocytogenes by inflammatory mouse peritoneal macrophages. Infect Immun 59:2645–2652.
206. Drevets DA, Canono BP, Campbell PA. 1992. Listericidal and nonlistericidal mouse macrophages differ in complement receptor type 3-mediated phagocytosis of L. monocytogenes and in preventing escape of the bacteria into the cytoplasm. J Leukoc Biol 52:70–79 http://dx.doi.org/10.1002/jlb.52.1.70. [PubMed]
207. Rosen H, Gordon S, North RJ. 1989. Exacerbation of murine listeriosis by a monoclonal antibody specific for the type 3 complement receptor of myelomonocytic cells. Absence of monocytes at infective foci allows Listeria to multiply in nonphagocytic cells. J Exp Med 170:27–37 http://dx.doi.org/10.1084/jem.170.1.27. [PubMed]
208. Helmy KY, Katschke KJ Jr, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren Campagne M. 2006. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124:915–927 http://dx.doi.org/10.1016/j.cell.2005.12.039. [PubMed]
209. Kim KH, Choi BK, Kim YH, Han C, Oh HS, Lee DG, Kwon BS. 2016. Extracellular stimulation of VSIG4/complement receptor Ig suppresses intracellular bacterial infection by inducing autophagy. Autophagy 12:1647–1659 http://dx.doi.org/10.1080/15548627.2016.1196314. [PubMed]
210. Calame DG, Mueller-Ortiz SL, Morales JE, Wetsel RA. 2014. The C5a anaphylatoxin receptor (C5aR1) protects against Listeria monocytogenes infection by inhibiting type 1 IFN expression. J Immunol 193:5099–5107 http://dx.doi.org/10.4049/jimmunol.1401750. [PubMed]
211. Mueller-Ortiz SL, Morales JE, Wetsel RA. 2014. The receptor for the complement C3a anaphylatoxin (C3aR) provides host protection against Listeria monocytogenes-induced apoptosis. J Immunol 193:1278–1289 http://dx.doi.org/10.4049/jimmunol.1302787. [PubMed]
212. Czuprynski CJ, Canono BP, Henson PM, Campbell PA. 1985. Genetically determined resistance to listeriosis is associated with increased accumulation of inflammatory neutrophils and macrophages which have enhanced listericidal activity. Immunology 55:511–518.
213. Gervais F, Stevenson M, Skamene E. 1984. Genetic control of resistance to Listeria monocytogenes: regulation of leukocyte inflammatory responses by the Hc locus. J Immunol 132:2078–2083.
214. Verschoor A, Neuenhahn M, Navarini AA, Graef P, Plaumann A, Seidlmeier A, Nieswandt B, Massberg S, Zinkernagel RM, Hengartner H, Busch DH. 2011. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 12:1194–1201 http://dx.doi.org/10.1038/ni.2140. [PubMed]
215. Broadley SP, Plaumann A, Coletti R, Lehmann C, Wanisch A, Seidlmeier A, Esser K, Luo S, Rämer PC, Massberg S, Busch DH, van Lookeren Campagne M, Verschoor A. 2016. Dual-track clearance of circulating bacteria balances rapid restoration of blood sterility with induction of adaptive immunity. Cell Host Microbe 20:36–48 http://dx.doi.org/10.1016/j.chom.2016.05.023. [PubMed]
216. Nakayama Y, Kim SI, Kim EH, Lambris JD, Sandor M, Suresh M. 2009. C3 promotes expansion of CD8+ and CD4+ T cells in a Listeria monocytogenes infection. J Immunol 183:2921–2931 http://dx.doi.org/10.4049/jimmunol.0801191. [PubMed]
217. Tan Y, Li Y, Fu X, Yang F, Zheng P, Zhang J, Guo B, Wu Y. 2014. Systemic C3 modulates CD8+ T cell contraction after Listeria monocytogenes infection. J Immunol 193:3426–3435 http://dx.doi.org/10.4049/jimmunol.1302763. [PubMed]
218. Murray E, Webb R, Swann M. 1926. A disease of rabbits characterized by large mononuclear leucocytosis, aused by a hitherto undescribed bacillus Bacterium monocytogenes. J Pathol Bacteriol 29:407–439 http://dx.doi.org/10.1002/path.1700290409.
219. Serbina NV, Cherny M, Shi C, Bleau SA, Collins NH, Young JW, Pamer EG. 2009. Distinct responses of human monocyte subsets to Aspergillus fumigatus conidia. J Immunol 183:2678–2687 http://dx.doi.org/10.4049/jimmunol.0803398. [PubMed]
220. Jones GS, D’Orazio SE. 2017. Monocytes are the predominant cell type associated with Listeria monocytogenes in the gut, but they do not serve as an intracellular growth niche. J Immunol 198:2796–2804 http://dx.doi.org/10.4049/jimmunol.1602076.
221. Eash KJ, Means JM, White DW, Link DC. 2009. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 113:4711–4719 http://dx.doi.org/10.1182/blood-2008-09-177287. [PubMed]
222. Witter AR, Okunnu BM, Berg RE. 2016. The essential role of neutrophils during infection with the intracellular bacterial pathogen Listeria monocytogenes. J Immunol 197:1557–1565 http://dx.doi.org/10.4049/jimmunol.1600599. [PubMed]
223. Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Wang A, Gao JL, Murphy PM, Wang JM. 2012. Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Sci Rep 2:786 http://dx.doi.org/10.1038/srep00786. [PubMed]
224. Southgate EL, He RL, Gao JL, Murphy PM, Nanamori M, Ye RD. 2008. Identification of formyl peptides from Listeria monocytogenes and Staphylococcus aureus as potent chemoattractants for mouse neutrophils. J Immunol 181:1429–1437 http://dx.doi.org/10.4049/jimmunol.181.2.1429. [PubMed]
225. Navarini AA, Lang KS, Verschoor A, Recher M, Zinkernagel AS, Nizet V, Odermatt B, Hengartner H, Zinkernagel RM. 2009. Innate immune-induced depletion of bone marrow neutrophils aggravates systemic bacterial infections. Proc Natl Acad Sci U S A 106:7107–7112 http://dx.doi.org/10.1073/pnas.0901162106. [PubMed]
226. Zhan Y, Lieschke GJ, Grail D, Dunn AR, Cheers C. 1998. Essential roles for granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF in the sustained hematopoietic response of Listeria monocytogenes-infected mice. Blood 91:863–869.
227. Conlan JW. 1997. Critical roles of neutrophils in host defense against experimental systemic infections of mice by Listeria monocytogenes, Salmonella typhimurium, and Yersinia enterocolitica. Infect Immun 65:630–635.
228. Czuprynski CJ, Brown JF, Maroushek N, Wagner RD, Steinberg H. 1994. Administration of anti-granulocyte mAb RB6-8C5 impairs the resistance of mice to Listeria monocytogenes infection. J Immunol 152:1836–1846.
229. Czuprynski CJ, Theisen C, Brown JF. 1996. Treatment with the antigranulocyte monoclonal antibody RB6-8C5 impairs resistance of mice to gastrointestinal infection with Listeria monocytogenes. Infect Immun 64:3946–3949.
230. López S, Marco AJ, Prats N, Czuprynski CJ. 2000. Critical role of neutrophils in eliminating Listeria monocytogenes from the central nervous system during experimental murine listeriosis. Infect Immun 68:4789–4791 http://dx.doi.org/10.1128/IAI.68.8.4789-4791.2000. [PubMed]
231. Rakhmilevich AL. 1995. Neutrophils are essential for resolution of primary and secondary infection with Listeria monocytogenes. J Leukoc Biol 57:827–831 http://dx.doi.org/10.1002/jlb.57.6.827. [PubMed]
232. Rogers HW, Unanue ER. 1993. Neutrophils are involved in acute, nonspecific resistance to Listeria monocytogenes in mice. Infect Immun 61:5090–5096.
233. Carr KD, Sieve AN, Indramohan M, Break TJ, Lee S, Berg RE. 2011. Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection. Eur J Immunol 41:2666–2676 http://dx.doi.org/10.1002/eji.201041363. [PubMed]
234. Edelson BT, Bradstreet TR, Hildner K, Carrero JA, Frederick KE, Kc W, Belizaire R, Aoshi T, Schreiber RD, Miller MJ, Murphy TL, Unanue ER, Murphy KM. 2011. CD8α(+) dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 35:236–248 http://dx.doi.org/10.1016/j.immuni.2011.06.012. [PubMed]
235. Shi C, Hohl TM, Leiner I, Equinda MJ, Fan X, Pamer EG. 2011. Ly6G+ neutrophils are dispensable for defense against systemic Listeria monocytogenes infection. J Immunol 187:5293–5298 http://dx.doi.org/10.4049/jimmunol.1101721. [PubMed]
236. Doeing DC, Borowicz JL, Crockett ET. 2003. Gender dimorphism in differential peripheral blood leukocyte counts in mice using cardiac, tail, foot, and saphenous vein puncture methods. BMC Clin Pathol 3:3 http://dx.doi.org/10.1186/1472-6890-3-3. [PubMed]
237. Furze RC, Rankin SM. 2008. Neutrophil mobilization and clearance in the bone marrow. Immunology 125:281–288 http://dx.doi.org/10.1111/j.1365-2567.2008.02950.x. [PubMed]
238. Boxio R, Bossenmeyer-Pourié C, Steinckwich N, Dournon C, Nüsse O. 2004. Mouse bone marrow contains large numbers of functionally competent neutrophils. J Leukoc Biol 75:604–611 http://dx.doi.org/10.1189/jlb.0703340. [PubMed]
239. Swamydas M, Lionakis MS. 2013. Isolation, purification and labeling of mouse bone marrow neutrophils for functional studies and adoptive transfer experiments. J Vis Exp (77) :e50586. [PubMed]
240. Sibelius U, Schulz EC, Rose F, Hattar K, Jacobs T, Weiss S, Chakraborty T, Seeger W, Grimminger F. 1999. Role of Listeria monocytogenes exotoxins listeriolysin and phosphatidylinositol-specific phospholipase C in activation of human neutrophils. Infect Immun 67:1125–1130.
241. Arnett E, Vadia S, Nackerman CC, Oghumu S, Satoskar AR, McLeish KR, Uriarte SM, Seveau S. 2014. The pore-forming toxin listeriolysin O is degraded by neutrophil metalloproteinase-8 and fails to mediate Listeria monocytogenes intracellular survival in neutrophils. J Immunol 192:234–244 http://dx.doi.org/10.4049/jimmunol.1301302. [PubMed]
242. Pitts MG, Combs TA, D’Orazio SEF. 2018. Neutrophils from both susceptible and resistant mice efficiently kill opsonized Listeria monocytogenes. Infect Immun 86:e00085-18 http://dx.doi.org/10.1128/IAI.00085-18. [PubMed]
243. Break TJ, Jun S, Indramohan M, Carr KD, Sieve AN, Dory L, Berg RE. 2012. Extracellular superoxide dismutase inhibits innate immune responses and clearance of an intracellular bacterial infection. J Immunol 188:3342–3350 http://dx.doi.org/10.4049/jimmunol.1102341. [PubMed]
244. Break TJ, Witter AR, Indramohan M, Mummert ME, Dory L, Berg RE. 2016. Extracellular superoxide dismutase enhances recruitment of immature neutrophils to the liver. Infect Immun 84:3302–3312 http://dx.doi.org/10.1128/IAI.00603-16. [PubMed]
245. Tvinnereim AR, Hamilton SE, Harty JT. 2004. Neutrophil involvement in cross-priming CD8+ T cell responses to bacterial antigens. J Immunol 173:1994–2002 http://dx.doi.org/10.4049/jimmunol.173.3.1994. [PubMed]
246. Christoffersson G, Phillipson M. 2018. The neutrophil: one cell on many missions or many cells with different agendas? Cell Tissue Res 371:415–423 http://dx.doi.org/10.1007/s00441-017-2780-z. [PubMed]
247. Lauvau G, Chorro L, Spaulding E, Soudja SM. 2014. Inflammatory monocyte effector mechanisms. Cell Immunol 291:32–40 http://dx.doi.org/10.1016/j.cellimm.2014.07.007. [PubMed]
248. Lauvau G, Loke P, Hohl TM. 2015. Monocyte-mediated defense against bacteria, fungi, and parasites. Semin Immunol 27:397–409 http://dx.doi.org/10.1016/j.smim.2016.03.014. [PubMed]
249. Boyartchuk VL, Broman KW, Mosher RE, D’Orazio SE, Starnbach MN, Dietrich WF. 2001. Multigenic control of Listeria monocytogenes susceptibility in mice. Nat Genet 27:259–260 http://dx.doi.org/10.1038/85812. [PubMed]
250. Velázquez P, Williams C, Leiner I, Pamer EG, Dustin ML. 2018. Distinct behavior of myelomonocytic cells and CD8 T cells underlies the hepatic response to Listeria monocytogenes. Wellcome Open Res 3:48 http://dx.doi.org/10.12688/wellcomeopenres.12941.1. [PubMed]
251. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F. 2007. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670 http://dx.doi.org/10.1126/science.1142883. [PubMed]
252. Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, Lang R, Haniffa M, Collin M, Tacke F, Habenicht AJ, Ziegler-Heitbrock L, Randolph GJ. 2010. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115:e10–e19 http://dx.doi.org/10.1182/blood-2009-07-235028. [PubMed]
253. Shi C, Velázquez P, Hohl TM, Leiner I, Dustin ML, Pamer EG. 2010. Monocyte trafficking to hepatic sites of bacterial infection is chemokine independent and directed by focal intercellular adhesion molecule-1 expression. J Immunol 184:6266–6274 http://dx.doi.org/10.4049/jimmunol.0904160. [PubMed]
254. Auffray C, Fogg DK, Narni-Mancinelli E, Senechal B, Trouillet C, Saederup N, Leemput J, Bigot K, Campisi L, Abitbol M, Molina T, Charo I, Hume DA, Cumano A, Lauvau G, Geissmann F. 2009. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med 206:595–606 http://dx.doi.org/10.1084/jem.20081385. [PubMed]
255. Clark SE, Filak HC, Guthrie BS, Schmidt RL, Jamieson A, Merkel P, Knight V, Cole CM, Raulet DH, Lenz LL. 2016. Bacterial manipulation of NK cell regulatory activity increases susceptibility to Listeria monocytogenes infection. PLoS Pathog 12:e1005708 http://dx.doi.org/10.1371/journal.ppat.1005708. [PubMed]
256. Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ. 2010. Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10:453–460 http://dx.doi.org/10.1038/nri2784. [PubMed]
257. Mildner A, Yona S, Jung S. 2013. A close encounter of the third kind: monocyte-derived cells. Adv Immunol 120:69–103 http://dx.doi.org/10.1016/B978-0-12-417028-5.00003-X. [PubMed]
258. Menezes S, Melandri D, Anselmi G, Perchet T, Loschko J, Dubrot J, Patel R, Gautier EL, Hugues S, Longhi MP, Henry JY, Quezada SA, Lauvau G, Lennon-Duménil AM, Gutiérrez-Martínez E, Bessis A, Gomez-Perdiguero E, Jacome-Galarza CE, Garner H, Geissmann F, Golub R, Nussenzweig MC, Guermonprez P. 2016. The heterogeneity of Ly6C hi monocytes controls their differentiation into iNOS + macrophages or monocyte-derived dendritic cells. Immunity 45:1205–1218 http://dx.doi.org/10.1016/j.immuni.2016.12.001. [PubMed]
259. Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, Johnson TE, Ivanov S, Duan Q, Bala S, Condon T, van Rooijen N, Grainger JR, Belkaid Y, Ma’ayan A, Riches DW, Yokoyama WM, Ginhoux F, Henson PM, Randolph GJ. 2013. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39:599–610 http://dx.doi.org/10.1016/j.immuni.2013.08.007. [PubMed]
260. Rodero MP, Poupel L, Loyher PL, Hamon P, Licata F, Pessel C, Hume DA, Combadière C, Boissonnas A. 2015. Immune surveillance of the lung by migrating tissue monocytes. eLife 4:e07847 http://dx.doi.org/10.7554/eLife.07847. [PubMed]
261. Drevets DA, Schawang JE, Dillon MJ, Lerner MR, Bronze MS, Brackett DJ. 2008. Innate responses to systemic infection by intracellular bacteria trigger recruitment of Ly-6Chigh monocytes to the brain. J Immunol 181:529–536 http://dx.doi.org/10.4049/jimmunol.181.1.529. [PubMed]
262. Drevets DA, Dillon MJ, Schawang JE, Stoner JA, Leenen PJ. 2010. IFN-gamma triggers CCR2-independent monocyte entry into the brain during systemic infection by virulent Listeria monocytogenes. Brain Behav Immun 24:919–929 http://dx.doi.org/10.1016/j.bbi.2010.02.011. [PubMed]
263. Hume DA, Irvine KM, Pridans C. 2019. The mononuclear phagocyte system: the relationship between monocytes and macrophages. Trends Immunol 40:98–112 http://dx.doi.org/10.1016/j.it.2018.11.007. [PubMed]
264. Portnoy DA, Jacks PS, Hinrichs DJ. 1988. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167:1459–1471 http://dx.doi.org/10.1084/jem.167.4.1459. [PubMed]
265. Portnoy DA, Schreiber RD, Connelly P, Tilney LG. 1989. Gamma interferon limits access of Listeria monocytogenes to the macrophage cytoplasm. J Exp Med 170:2141–2146 http://dx.doi.org/10.1084/jem.170.6.2141. [PubMed]
266. Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, Nathan C. 1999. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10:29–38 http://dx.doi.org/10.1016/S1074-7613(00)80004-7.
267. Samsom JN, Langermans JA, Groeneveld PH, van Furth R. 1996. Acquired resistance against a secondary infection with Listeria monocytogenes in mice is not dependent on reactive nitrogen intermediates. Infect Immun 64:1197–1202.
268. Arnett E, Lehrer RI, Pratikhya P, Lu W, Seveau S. 2011. Defensins enable macrophages to inhibit the intracellular proliferation of Listeria monocytogenes. Cell Microbiol 13:635–651 http://dx.doi.org/10.1111/j.1462-5822.2010.01563.x. [PubMed]
269. Aichele P, Zinke J, Grode L, Schwendener RA, Kaufmann SH, Seiler P. 2003. Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J Immunol 171:1148–1155 http://dx.doi.org/10.4049/jimmunol.171.3.1148. [PubMed]
270. Aoshi T, Carrero JA, Konjufca V, Koide Y, Unanue ER, Miller MJ. 2009. The cellular niche of Listeria monocytogenes infection changes rapidly in the spleen. Eur J Immunol 39:417–425 http://dx.doi.org/10.1002/eji.200838718. [PubMed]
271. Gregory SH, Sagnimeni AJ, Wing EJ. 1996. Bacteria in the bloodstream are trapped in the liver and killed by immigrating neutrophils. J Immunol 157:2514–2520.
272. Blériot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M. 2015. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42:145–158 http://dx.doi.org/10.1016/j.immuni.2014.12.020. [PubMed]
273. Sierro F, Evrard M, Rizzetto S, Melino M, Mitchell AJ, Florido M, Beattie L, Walters SB, Tay SS, Lu B, Holz LE, Roediger B, Wong YC, Warren A, Ritchie W, McGuffog C, Weninger W, Le Couteur DG, Ginhoux F, Britton WJ, Heath WR, Saunders BM, McCaughan GW, Luciani F, MacDonald KPA, Ng LG, Bowen DG, Bertolino P. 2017. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity 47:374–388.e6 http://dx.doi.org/10.1016/j.immuni.2017.07.018. [PubMed]
274. Koscsó B, Bogunovic M. 2016. Analysis and purification of mouse intestinal dendritic cell and macrophage subsets by flow cytometry. Curr Protoc Immunol 114:1–14, 14 http://dx.doi.org/10.1002/cpim.11. [PubMed]
275. Frande-Cabanes E, Fernandez-Prieto L, Calderon-Gonzalez R, Rodríguez-Del Río E, Yañez-Diaz S, López-Fanarraga M, Alvarez-Domínguez C. 2014. Dissociation of innate immune responses in microglia infected with Listeria monocytogenes. Glia 62:233–246 http://dx.doi.org/10.1002/glia.22602. [PubMed]
276. Guilliams M, van de Laar L. 2015. A hitchhiker’s guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system. Front Immunol 6:406 http://dx.doi.org/10.3389/fimmu.2015.00406. [PubMed]
277. Helft J, Böttcher J, Chakravarty P, Zelenay S, Huotari J, Schraml BU, Goubau D, Reis e Sousa C. 2015. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c(+)MHCII(+) macrophages and dendritic cells. Immunity 42:1197–1211 http://dx.doi.org/10.1016/j.immuni.2015.05.018. [PubMed]
278. Jones GS, Smith VC, D’Orazio SEF. 2017. Listeria monocytogenes replicate in bone marrow-derived CD11c+ cells, but not in dendritic cells isolated from the murine gastrointestinal tract. J Immunol 199:3789–3797 http://dx.doi.org/10.4049/jimmunol.1700970. [PubMed]
279. Aoshi T, Zinselmeyer BH, Konjufca V, Lynch JN, Zhang X, Koide Y, Miller MJ. 2008. Bacterial entry to the splenic white pulp initiates antigen presentation to CD8+ T cells. Immunity 29:476–486 http://dx.doi.org/10.1016/j.immuni.2008.06.013. [PubMed]
280. Neuenhahn M, Kerksiek KM, Nauerth M, Suhre MH, Schiemann M, Gebhardt FE, Stemberger C, Panthel K, Schröder S, Chakraborty T, Jung S, Hochrein H, Rüssmann H, Brocker T, Busch DH. 2006. CD8alpha+ dendritic cells are required for efficient entry of Listeria monocytogenes into the spleen. Immunity 25:619–630 http://dx.doi.org/10.1016/j.immuni.2006.07.017. [PubMed]
281. Khanna KM, McNamara JT, Lefrançois L. 2007. In situ imaging of the endogenous CD8 T cell response to infection. Science 318:116–120 http://dx.doi.org/10.1126/science.1146291. [PubMed]
282. Muraille E, Giannino R, Guirnalda P, Leiner I, Jung S, Pamer EG, Lauvau G. 2005. Distinct in vivo dendritic cell activation by live versus killed Listeria monocytogenes. Eur J Immunol 35:1463–1471 http://dx.doi.org/10.1002/eji.200526024. [PubMed]
283. Campisi L, Soudja SM, Cazareth J, Bassand D, Lazzari A, Brau F, Narni-Mancinelli E, Glaichenhaus N, Geissmann F, Lauvau G. 2011. Splenic CD8α + dendritic cells undergo rapid programming by cytosolic bacteria and inflammation to induce protective CD8 + T-cell memory. Eur J Immunol 41:1594–1605 http://dx.doi.org/10.1002/eji.201041036. [PubMed]
284. Kapadia D, Sadikovic A, Vanloubbeeck Y, Brockstedt D, Fong L. 2011. Interplay between CD8α+ dendritic cells and monocytes in response to Listeria monocytogenes infection attenuates T cell responses. PLoS One 6:e19376 http://dx.doi.org/10.1371/journal.pone.0019376. [PubMed]
285. Mitchell LM, Brzoza-Lewis KL, Henry CJ, Grayson JM, Westcott MM, Hiltbold EM. 2011. Distinct responses of splenic dendritic cell subsets to infection with Listeria monocytogenes: maturation phenotype, level of infection, and T cell priming capacity ex vivo. Cell Immunol 268:79–86 http://dx.doi.org/10.1016/j.cellimm.2011.03.001. [PubMed]
286. Westcott MM, Henry CJ, Cook AS, Grant KW, Hiltbold EM. 2007. Differential susceptibility of bone marrow-derived dendritic cells and macrophages to productive infection with Listeria monocytogenes. Cell Microbiol 9:1397–1411 http://dx.doi.org/10.1111/j.1462-5822.2006.00880.x. [PubMed]
287. Westcott MM, Henry CJ, Amis JE, Hiltbold EM. 2010. Dendritic cells inhibit the progression of Listeria monocytogenes intracellular infection by retaining bacteria in major histocompatibility complex class II-rich phagosomes and by limiting cytosolic growth. Infect Immun 78:2956–2965 http://dx.doi.org/10.1128/IAI.01027-09. [PubMed]
288. den Haan JM, Bevan MJ. 2001. Antigen presentation to CD8+ T cells: cross-priming in infectious diseases. Curr Opin Immunol 13:437–441 http://dx.doi.org/10.1016/S0952-7915(00)00238-7.
289. Shen H, Miller JF, Fan X, Kolwyck D, Ahmed R, Harty JT. 1998. Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell 92:535–545 http://dx.doi.org/10.1016/S0092-8674(00)80946-0.
290. Shedlock DJ, Whitmire JK, Tan J, MacDonald AS, Ahmed R, Shen H. 2003. Role of CD4 T cell help and costimulation in CD8 T cell responses during Listeria monocytogenes infection. J Immunol 170:2053–2063 http://dx.doi.org/10.4049/jimmunol.170.4.2053. [PubMed]
291. Horowitz A, Stegmann KA, Riley EM. 2012. Activation of natural killer cells during microbial infections. Front Immunol 2:88 http://dx.doi.org/10.3389/fimmu.2011.00088.
292. Humann J, Bjordahl R, Andreasen K, Lenz LL. 2007. Expression of the p60 autolysin enhances NK cell activation and is required for listeria monocytogenes expansion in IFN-gamma-responsive mice. J Immunol 178:2407–2414 http://dx.doi.org/10.4049/jimmunol.178.4.2407. [PubMed]
293. Humann J, Lenz LL. 2010. Activation of naive NK cells in response to Listeria monocytogenes requires IL-18 and contact with infected dendritic cells. J Immunol 184:5172–5178 http://dx.doi.org/10.4049/jimmunol.0903759. [PubMed]
294. Berg RE, Cordes CJ, Forman J. 2002. Contribution of CD8+ T cells to innate immunity: IFN-gamma secretion induced by IL-12 and IL-18. Eur J Immunol 32:2807–2816 http://dx.doi.org/10.1002/1521-4141(2002010)32:10<2807::AID-IMMU2807>3.0.CO;2-0.
295. Dunn PL, North RJ. 1991. Limitations of the adoptive immunity assay for analyzing anti- Listeria immunity. J Infect Dis 164:878–882 http://dx.doi.org/10.1093/infdis/164.5.878. [PubMed]
296. Guo Y, Niesel DW, Ziegler HK, Klimpel GR. 1992. Listeria monocytogenes activation of human peripheral blood lymphocytes: induction of non-major histocompatibility complex-restricted cytotoxic activity and cytokine production. Infect Immun 60:1813–1819.
297. Andersson A, Dai WJ, Di Santo JP, Brombacher F. 1998. Early IFN-gamma production and innate immunity during Listeria monocytogenes infection in the absence of NK cells. J Immunol 161:5600–5606.
298. Takada H, Matsuzaki G, Hiromatsu K, Nomoto K. 1994. Analysis of the role of natural killer cells in Listeria monocytogenes infection: relation between natural killer cells and T-cell receptor gamma delta T cells in the host defence mechanism at the early stage of infection. Immunology 82:106–112.
299. Teixeira HC, Kaufmann SH. 1994. Role of NK1.1+ cells in experimental listeriosis. NK1+ cells are early IFN-gamma producers but impair resistance to Listeria monocytogenes infection. J Immunol 152:1873–1882.
300. Perona-Wright G, Mohrs K, Szaba FM, Kummer LW, Madan R, Karp CL, Johnson LL, Smiley ST, Mohrs M. 2009. Systemic but not local infections elicit immunosuppressive IL-10 production by natural killer cells. Cell Host Microbe 6:503–512 http://dx.doi.org/10.1016/j.chom.2009.11.003. [PubMed]
301. Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY. 2015. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350:981–985 http://dx.doi.org/10.1126/science.aac9593. [PubMed]
302. Haluszczak C, Akue AD, Hamilton SE, Johnson LD, Pujanauski L, Teodorovic L, Jameson SC, Kedl RM. 2009. The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J Exp Med 206:435–448 http://dx.doi.org/10.1084/jem.20081829. [PubMed]
303. Hamilton SE, Jameson SC. 2008. The nature of the lymphopenic environment dictates protective function of homeostatic-memory CD8+ T cells. Proc Natl Acad Sci U S A 105:18484–18489 http://dx.doi.org/10.1073/pnas.0806487105. [PubMed]
304. Lee JY, Hamilton SE, Akue AD, Hogquist KA, Jameson SC. 2013. Virtual memory CD8 T cells display unique functional properties. Proc Natl Acad Sci U S A 110:13498–13503 http://dx.doi.org/10.1073/pnas.1307572110. [PubMed]
305. Berg RE, Crossley E, Murray S, Forman J. 2003. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J Exp Med 198:1583–1593 http://dx.doi.org/10.1084/jem.20031051. [PubMed]
306. Bou Ghanem EN, McElroy DS, D’Orazio SEF. 2009. Multiple pathways contribute the robust rapid IFNg response by CD8 + T cells during Listeria monocytogenes infection. Infect Immun 77:1492–1501 http://dx.doi.org/10.1128/IAI.01207-08. [PubMed]
307. Kambayashi T, Assarsson E, Lukacher AE, Ljunggren HG, Jensen PE. 2003. Memory CD8+ T cells provide an early source of IFN-gamma. J Immunol 170:2399–2408 http://dx.doi.org/10.4049/jimmunol.170.5.2399. [PubMed]
308. Lertmemongkolchai G, Cai G, Hunter CA, Bancroft GJ. 2001. Bystander activation of CD8+ T cells contributes to the rapid production of IFN-gamma in response to bacterial pathogens. J Immunol 166:1097–1105 http://dx.doi.org/10.4049/jimmunol.166.2.1097. [PubMed]
309. Oghumu S, Terrazas CA, Varikuti S, Kimble J, Vadia S, Yu L, Seveau S, Satoskar AR. 2015. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15. FASEB J 29:1019–1028 http://dx.doi.org/10.1096/fj.14-264507. [PubMed]
310. Rowe JH, Ertelt JM, Way SS. 2012. Innate IFN-γ is essential for programmed death ligand-1-mediated T cell stimulation following Listeria monocytogenes infection. J Immunol 189:876–884 http://dx.doi.org/10.4049/jimmunol.1103227. [PubMed]
311. Soudja SM, Ruiz AL, Marie JC, Lauvau G. 2012. Inflammatory monocytes activate memory CD8(+) T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 37:549–562 http://dx.doi.org/10.1016/j.immuni.2012.05.029. [PubMed]
312. Eberl G, Colonna M, Di Santo JP, McKenzie AN. 2015. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348:aaa6566 http://dx.doi.org/10.1126/science.aaa6566. [PubMed]
313. Rodewald HR, Feyerabend TB. 2012. Widespread immunological functions of mast cells: fact or fiction? Immunity 37:13–24 http://dx.doi.org/10.1016/j.immuni.2012.07.007. [PubMed]
314. Gekara NO, Weiss S. 2008. Mast cells initiate early anti- Listeria host defences. Cell Microbiol 10:225–236.
315. McCall-Culbreath KD, Li Z, Zhang Z, Lu LX, Orear L, Zutter MM. 2011. Selective, α2β1 integrin-dependent secretion of il-6 by connective tissue mast cells. J Innate Immun 3:459–470 http://dx.doi.org/10.1159/000324832. [PubMed]
316. Stelekati E, Bahri R, D’Orlando O, Orinska Z, Mittrücker HW, Langenhaun R, Glatzel M, Bollinger A, Paus R, Bulfone-Paus S. 2009. Mast cell-mediated antigen presentation regulates CD8+ T cell effector functions. Immunity 31:665–676 http://dx.doi.org/10.1016/j.immuni.2009.08.022. [PubMed]
317. Jobbings CE, Sandig H, Whittingham-Dowd JK, Roberts IS, Bulfone-Paus S. 2013. Listeria monocytogenes alters mast cell phenotype, mediator and osteopontin secretion in a listeriolysin-dependent manner. PLoS One 8:e57102 http://dx.doi.org/10.1371/journal.pone.0057102. [PubMed]
318. Campillo-Navarro M, Leyva-Paredes K, Donis-Maturano L, González-Jiménez M, Paredes-Vivas Y, Cerbulo-Vázquez A, Serafín-López J, García-Pérez B, Ullrich SE, Flores-Romo L, Pérez-Tapia SM, Estrada-Parra S, Estrada-García I, Chacón-Salinas R. 2017. Listeria monocytogenes induces mast cell extracellular traps. Immunobiology 222:432–439 http://dx.doi.org/10.1016/j.imbio.2016.08.006. [PubMed]
319. Bancroft GJ, Bosma MJ, Bosma GC, Unanue ER. 1986. Regulation of macrophage Ia expression in mice with severe combined immunodeficiency: induction of Ia expression by a T cell-independent mechanism. J Immunol 137:4–9.
320. Kaufmann SH, Ladel CH. 1994. Role of T cell subsets in immunity against intracellular bacteria: experimental infections of knock-out mice with Listeria monocytogenes and Mycobacterium bovis BCG. Immunobiology 191:509–519 http://dx.doi.org/10.1016/S0171-2985(11)80457-2.
321. Charlier C, Perrodeau É, Leclercq A, Cazenave B, Pilmis B, Henry B, Lopes A, Maury MM, Moura A, Goffinet F, Dieye HB, Thouvenot P, Ungeheuer MN, Tourdjman M, Goulet V, de Valk H, Lortholary O, Ravaud P, Lecuit M; MONALISA Study Group. 2017. Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect Dis 17:510–519 http://dx.doi.org/10.1016/S1473-3099(16)30521-7.
322. Hernandez-Milian A, Payeras-Cifre A. 2014. What is new in listeriosis? BioMed Res Int 2014:358051 http://dx.doi.org/10.1155/2014/358051. [PubMed]
323. Ladel CH, Flesch IE, Arnoldi J, Kaufmann SH. 1994. Studies with MHC-deficient knock-out mice reveal impact of both MHC I- and MHC II-dependent T cell responses on Listeria monocytogenes infection. J Immunol 153:3116–3122.
324. Roberts AD, Ordway DJ, Orme IM. 1993. Listeria monocytogenes infection in beta 2 microglobulin-deficient mice. Infect Immun 61:1113–1116.
325. Khan SH, Badovinac VP. 2015. Listeria monocytogenes: a model pathogen to study antigen-specific memory CD8 T cell responses. Semin Immunopathol 37:301–310 http://dx.doi.org/10.1007/s00281-015-0477-5. [PubMed]
326. Qiu Z, Khairallah C, Sheridan BS. 2018. Listeria Monocytogenes: a model pathogen continues to refine our knowledge of the CD8 T cell response. Pathogens 7:E55 http://dx.doi.org/10.3390/pathogens7020055. [PubMed]
327. Mittrücker HW, Kursar M, Köhler A, Hurwitz R, Kaufmann SH. 2001. Role of CD28 for the generation and expansion of antigen-specific CD8(+) T lymphocytes during infection with Listeria monocytogenes. J Immunol 167:5620–5627 http://dx.doi.org/10.4049/jimmunol.167.10.5620. [PubMed]
328. Chen L, Flies DB. 2013. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13:227–242 http://dx.doi.org/10.1038/nri3405. [PubMed]
329. Keppler SJ, Rosenits K, Koegl T, Vucikuja S, Aichele P. 2012. Signal 3 cytokines as modulators of primary immune responses during infections: the interplay of type I IFN and IL-12 in CD8 T cell responses. PLoS One 7:e40865 http://dx.doi.org/10.1371/journal.pone.0040865. [PubMed]
330. Badovinac VP, Porter BB, Harty JT. 2002. Programmed contraction of CD8(+) T cells after infection. Nat Immunol 3:619–626 http://dx.doi.org/10.1038/ni804. [PubMed]
331. Pamer EG, Harty JT, Bevan MJ. 1991. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature 353:852–855 http://dx.doi.org/10.1038/353852a0. [PubMed]
332. Skoberne M, Holtappels R, Hof H, Geginat G. 2001. Dynamic antigen presentation patterns of Listeria monocytogenes-derived CD8 T cell epitopes in vivo. J Immunol 167:2209–2218 http://dx.doi.org/10.4049/jimmunol.167.4.2209. [PubMed]
333. Pamer EG. 1994. Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope. J Immunol 152:686–694.
334. Sijts AJ, Neisig A, Neefjes J, Pamer EG. 1996. Two Listeria monocytogenes CTL epitopes are processed from the same antigen with different efficiencies. J Immunol 156:683–692.
335. Geginat G, Schenk S, Skoberne M, Goebel W, Hof H. 2001. A novel approach of direct ex vivo epitope mapping identifies dominant and subdominant CD4 and CD8 T cell epitopes from Listeria monocytogenes. J Immunol 166:1877–1884 http://dx.doi.org/10.4049/jimmunol.166.3.1877. [PubMed]
336. Busch DH, Bouwer HG, Hinrichs D, Pamer EG. 1997. A nonamer peptide derived from Listeria monocytogenes metalloprotease is presented to cytolytic T lymphocytes. Infect Immun 65:5326–5329. [PubMed]
337. Wolf BJ, Princiotta MF. 2013. Processing of recombinant Listeria monocytogenes proteins for MHC class I presentation follows a dedicated, high-efficiency pathway. J Immunol 190:2501–2509 http://dx.doi.org/10.4049/jimmunol.1201660.
338. Busch DH, Pamer EG. 1998. MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J Immunol 160:4441–4448.
339. Grauling-Halama S, Schenk S, Bubert A, Geginat G. 2012. Linkage of bacterial protein synthesis and presentation of MHC class I-restricted Listeria monocytogenes-derived antigenic peptides. PLoS One 7:e33335 http://dx.doi.org/10.1371/journal.pone.0033335. [PubMed]
340. Pamer EG, Sijts AJ, Villanueva MS, Busch DH, Vijh S. 1997. MHC class I antigen processing of Listeria monocytogenes proteins: implications for dominant and subdominant CTL responses. Immunol Rev 158:129–136 http://dx.doi.org/10.1111/j.1600-065X.1997.tb00999.x. [PubMed]
341. Villanueva MS, Fischer P, Feen K, Pamer EG. 1994. Efficiency of MHC class I antigen processing: a quantitative analysis. Immunity 1:479–489 http://dx.doi.org/10.1016/1074-7613(94)90090-6.
342. Villanueva MS, Sijts AJ, Pamer EG. 1995. Listeriolysin is processed efficiently into an MHC class I-associated epitope in Listeria monocytogenes-infected cells. J Immunol 155:5227–5233.
343. D’Orazio SEF, Halme DG, Ploegh HL, Starnbach MN. 2003. Class Ia MHC-deficient BALB/c mice generate CD8+ T cell-mediated protective immunity against Listeria monocytogenes infection. J Immunol 171:291–298 http://dx.doi.org/10.4049/jimmunol.171.1.291. [PubMed]
344. Shawar SM, Vyas JM, Rodgers JR, Rich RR. 1994. Antigen presentation by major histocompatibility complex class I-B molecules. Annu Rev Immunol 12:839–880 http://dx.doi.org/10.1146/annurev.iy.12.040194.004203. [PubMed]
345. Anderson CK, Brossay L. 2016. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 68:677–691 http://dx.doi.org/10.1007/s00251-016-0932-z. [PubMed]
346. Lindahl KF, Byers DE, Dabhi VM, Hovik R, Jones EP, Smith GP, Wang CR, Xiao H, Yoshino M. 1997. H2-M3, a full-service class Ib histocompatibility antigen. Annu Rev Immunol 15:851–879 http://dx.doi.org/10.1146/annurev.immunol.15.1.851. [PubMed]
347. Lenz LL, Dere B, Bevan MJ. 1996. Identification of an H2-M3-restricted Listeria epitope: implications for antigen presentation by M3. Immunity 5:63–72 http://dx.doi.org/10.1016/S1074-7613(00)80310-6.
348. Kerksiek KM, Busch DH, Pamer EG. 2001. Variable immunodominance hierarchies for H2-M3-restricted N-formyl peptides following bacterial infection. J Immunol 166:1132–1140 http://dx.doi.org/10.4049/jimmunol.166.2.1132. [PubMed]
349. Princiotta MF, Lenz LL, Bevan MJ, Staerz UD. 1998. H2-M3 restricted presentation of a Listeria-derived leader peptide. J Exp Med 187:1711–1719 http://dx.doi.org/10.1084/jem.187.10.1711. [PubMed]
350. D’Orazio SEF, Shaw CA, Starnbach MN. 2006. H2-M3-restricted CD8+ T cells are not required for MHC class Ib-restricted immunity against Listeria monocytogenes. J Exp Med 203:383–391 http://dx.doi.org/10.1084/jem.20052256. [PubMed]
351. Cho H, Choi HJ, Xu H, Felio K, Wang CR. 2011. Nonconventional CD8+ T cell responses to Listeria infection in mice lacking MHC class Ia and H2-M3. J Immunol 186:489–498 http://dx.doi.org/10.4049/jimmunol.1002639. [PubMed]
352. Bouwer HGA, Seaman MS, Forman J, Hinrichs DJ. 1997. MHC class Ib-restricted cells contribute to antilisterial immunity: evidence for Qa-1b as a key restricting element for Listeria-specific CTLs. J Immunol 159:2795–2801.
353. Layre E, de Jong A, Moody DB. 2014. Human T cells use CD1 and MR1 to recognize lipids and small molecules. Curr Opin Chem Biol 23:31–38 http://dx.doi.org/10.1016/j.cbpa.2014.09.007. [PubMed]
354. Safley SA, Jensen PE, Reay PA, Ziegler HK. 1995. Mechanisms of T cell epitope immunodominance analyzed in murine listeriosis. J Immunol 155:4355–4366.
355. Geginat G, Lalic M, Kretschmar M, Goebel W, Hof H, Palm D, Bubert A. 1998. Th1 cells specific for a secreted protein of Listeria monocytogenes are protective in vivo. J Immunol 160:6046–6055.
356. Carrero JA, Vivanco-Cid H, Unanue ER. 2012. Listeriolysin O is strongly immunogenic independently of its cytotoxic activity. PLoS One 7:e32310 http://dx.doi.org/10.1371/journal.pone.0032310. [PubMed]
357. Graham DB, Luo C, O’Connell DJ, Lefkovith A, Brown EM, Yassour M, Varma M, Abelin JG, Conway KL, Jasso GJ, Matar CG, Carr SA, Xavier RJ. 2018. Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes. Nat Med 24:1762–1772 http://dx.doi.org/10.1038/s41591-018-0203-7. [PubMed]
358. Mercado R, Vijh S, Allen SE, Kerksiek K, Pilip IM, Pamer EG. 2000. Early programming of T cell populations responding to bacterial infection. J Immunol 165:6833–6839 http://dx.doi.org/10.4049/jimmunol.165.12.6833. [PubMed]
359. Zehn D, Lee SY, Bevan MJ. 2009. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458:211–214 http://dx.doi.org/10.1038/nature07657. [PubMed]
360. Busch DH, Pamer EG. 1999. T lymphocyte dynamics during Listeria monocytogenes infection. Immunol Lett 65:93–98 http://dx.doi.org/10.1016/S0165-2478(98)00130-8.
361. Rai D, Pham NL, Harty JT, Badovinac VP. 2009. Tracking the total CD8 T cell response to infection reveals substantial discordance in magnitude and kinetics between inbred and outbred hosts. J Immunol 183:7672–7681 http://dx.doi.org/10.4049/jimmunol.0902874. [PubMed]
362. Bose TO, Pham QM, Jellison ER, Mouries J, Ballantyne CM, Lefrançois L. 2013. CD11a regulates effector CD8 T cell differentiation and central memory development in response to infection with Listeria monocytogenes. Infect Immun 81:1140–1151 http://dx.doi.org/10.1128/IAI.00749-12. [PubMed]
363. Zaiss DM, Sijts AJ, Mosmann TR. 2008. Enumeration of cytotoxic CD8 T cells ex vivo during the response to Listeria monocytogenes infection. Infect Immun 76:4609–4614 http://dx.doi.org/10.1128/IAI.00563-08. [PubMed]
364. Kerksiek KM, Busch DH, Pilip IM, Allen SE, Pamer EG. 1999. H2-M3-restricted T cells in bacterial infection: rapid primary but diminished memory responses. J Exp Med 190:195–204 http://dx.doi.org/10.1084/jem.190.2.195. [PubMed]
365. Urdahl KB, Sun JC, Bevan MJ. 2002. Positive selection of MHC class Ib-restricted CD8(+) T cells on hematopoietic cells. Nat Immunol 3:772–779 http://dx.doi.org/10.1038/ni814. [PubMed]
366. Xu H, Chun T, Choi HJ, Wang B, Wang CR. 2006. Impaired response to Listeria in H2-M3-deficient mice reveals a nonredundant role of MHC class Ib-specific T cells in host defense. J Exp Med 203:449–459 http://dx.doi.org/10.1084/jem.20051866. [PubMed]
367. Chow MT, Teh HS. 2010. H2-M3-restricted CD8+ T cells augment CD4+ T-cell responses by promoting DC maturation. Eur J Immunol 40:1408–1417 http://dx.doi.org/10.1002/eji.200939934. [PubMed]
368. Pope C, Kim SK, Marzo A, Masopust D, Williams K, Jiang J, Shen H, Lefrançois L. 2001. Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J Immunol 166:3402–3409 http://dx.doi.org/10.4049/jimmunol.166.5.3402. [PubMed]
369. Sheridan BS, Pham QM, Lee YT, Cauley LS, Puddington L, Lefrançois L. 2014. Oral infection drives a distinct population of intestinal resident memory CD8(+) T cells with enhanced protective function. Immunity 40:747–757 http://dx.doi.org/10.1016/j.immuni.2014.03.007. [PubMed]
370. Porter BB, Harty JT. 2006. The onset of CD8+-T-cell contraction is influenced by the peak of Listeria monocytogenes infection and antigen display. Infect Immun 74:1528–1536 http://dx.doi.org/10.1128/IAI.74.3.1528-1536.2006. [PubMed]
371. Badovinac VP, Porter BB, Harty JT. 2004. CD8+ T cell contraction is controlled by early inflammation. Nat Immunol 5:809–817 http://dx.doi.org/10.1038/ni1098. [PubMed]
372. Shen H, Whitmire JK, Fan X, Shedlock DJ, Kaech SM, Ahmed R. 2003. A specific role for B cells in the generation of CD8 T cell memory by recombinant Listeria monocytogenes. J Immunol 170:1443–1451 http://dx.doi.org/10.4049/jimmunol.170.3.1443. [PubMed]
373. Corbin GA, Harty JT. 2004. Duration of infection and antigen display have minimal influence on the kinetics of the CD4+ T cell response to Listeria monocytogenes infection. J Immunol 173:5679–5687 http://dx.doi.org/10.4049/jimmunol.173.9.5679. [PubMed]
374. Haring JS, Harty JT. 2006. Aberrant contraction of antigen-specific CD4 T cells after infection in the absence of gamma interferon or its receptor. Infect Immun 74:6252–6263 http://dx.doi.org/10.1128/IAI.00847-06. [PubMed]
375. Weber KS, Li QJ, Persaud SP, Campbell JD, Davis MM, Allen PM. 2012. Distinct CD4+ helper T cells involved in primary and secondary responses to infection. Proc Natl Acad Sci U S A 109:9511–9516 http://dx.doi.org/10.1073/pnas.1202408109. [PubMed]
376. Graw F, Weber KS, Allen PM, Perelson AS. 2012. Dynamics of CD4(+) T cell responses against Listeria monocytogenes. J Immunol 189:5250–5256 http://dx.doi.org/10.4049/jimmunol.1200666. [PubMed]
377. Jiang J, Zenewicz LA, San Mateo LR, Lau LL, Shen H. 2003. Activation of antigen-specific CD8 T cells results in minimal killing of bystander bacteria. J Immunol 171:6032–6038 http://dx.doi.org/10.4049/jimmunol.171.11.6032. [PubMed]
378. Jensen ER, Glass AA, Clark WR, Wing EJ, Miller JF, Gregory SH. 1998. Fas (CD95)-dependent cell-mediated immunity to Listeria monocytogenes. Infect Immun 66:4143–4150.
379. Kägi D, Ledermann B, Bürki K, Hengartner H, Zinkernagel RM. 1994. CD8+ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity. Eur J Immunol 24:3068–3072 http://dx.doi.org/10.1002/eji.1830241223. [PubMed]
380. White DW, MacNeil A, Busch DH, Pilip IM, Pamer EG, Harty JT. 1999. Perforin-deficient CD8+ T cells: in vivo priming and antigen-specific immunity against Listeria monocytogenes. J Immunol 162:980–988.
381. Badovinac VP, Harty JT. 2000. Adaptive immunity and enhanced CD8+ T cell response to Listeria monocytogenes in the absence of perforin and IFN-gamma. J Immunol 164:6444–6452 http://dx.doi.org/10.4049/jimmunol.164.12.6444. [PubMed]
382. Kotov DI, Kotov JA, Goldberg MF, Jenkins MK. 2018. Many Th cell subsets have Fas ligand-dependent cytotoxic potential. J Immunol 200:2004–2012 http://dx.doi.org/10.4049/jimmunol.1700420. [PubMed]
383. Serody JS, Poston RM, Weinstock D, Kurlander RJ, Frelinger JA. 1996. CD4+ cytolytic effectors are inefficient in the clearance of Listeria monocytogenes. Immunology 88:544–550 http://dx.doi.org/10.1046/j.1365-2567.1996.d01-698.x. [PubMed]
384. Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melián A, Bogdan C, Porcelli SA, Bloom BR, Krensky AM, Modlin RL. 1998. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282:121–125 http://dx.doi.org/10.1126/science.282.5386.121. [PubMed]
385. Walch M, Dotiwala F, Mulik S, Thiery J, Kirchhausen T, Clayberger C, Krensky AM, Martinvalet D, Lieberman J. 2014. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell 157:1309–1323 http://dx.doi.org/10.1016/j.cell.2014.03.062. [PubMed]
386. Badovinac VP, Harty JT. 2000. Intracellular staining for TNF and IFN-gamma detects different frequencies of antigen-specific CD8(+) T cells. J Immunol Methods 238:107–117 http://dx.doi.org/10.1016/S0022-1759(00)00153-8.
387. Way SS, Havenar-Daughton C, Kolumam GA, Orgun NN, Murali-Krishna K. 2007. IL-12 and type-I IFN synergize for IFN-gamma production by CD4 T cells, whereas neither are required for IFN-gamma production by CD8 T cells after Listeria monocytogenes infection. J Immunol 178:4498–4505 http://dx.doi.org/10.4049/jimmunol.178.7.4498. [PubMed]
388. Theisen E, McDougal CE, Nakanishi M, Stevenson DM, Amador-Noguez D, Rosenberg DW, Knoll LJ, Sauer JD. 2018. Cyclooxygenase-1 and -2 play contrasting roles in Listeria-stimulated immunity. J Immunol 200:3729–3738 http://dx.doi.org/10.4049/jimmunol.1700701. [PubMed]
389. Romagnoli PA, Fu HH, Qiu Z, Khairallah C, Pham QM, Puddington L, Khanna KM, Lefrançois L, Sheridan BS. 2017. Differentiation of distinct long-lived memory CD4 T cells in intestinal tissues after oral Listeria monocytogenes infection. Mucosal Immunol 10:520–530 http://dx.doi.org/10.1038/mi.2016.66. [PubMed]
390. Pepper M, Linehan JL, Pagán AJ, Zell T, Dileepan T, Cleary PP, Jenkins MK. 2010. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat Immunol 11:83–89 http://dx.doi.org/10.1038/ni.1826. [PubMed]
391. Uchiyama R, Yonehara S, Taniguchi S, Ishido S, Ishii KJ, Tsutsui H. 2017. Inflammasome and Fas-mediated IL-1β contributes to Th17/Th1 cell induction in pathogenic bacterial infection in vivo. J Immunol 199:1122–1130 http://dx.doi.org/10.4049/jimmunol.1601373. [PubMed]
392. Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, Begum MD, Oshiro K, Okamoto Y, Watanabe H, Kawakami K, Roark C, Born WK, O’Brien R, Ikuta K, Ishikawa H, Nakae S, Iwakura Y, Ohta T, Matsuzaki G. 2008. IL-17A produced by gammadelta T cells plays a critical role in innate immunity against Listeria monocytogenes infection in the liver. J Immunol 181:3456–3463 http://dx.doi.org/10.4049/jimmunol.181.5.3456. [PubMed]
393. Xu S, Han Y, Xu X, Bao Y, Zhang M, Cao X. 2010. IL-17A-producing gammadeltaT cells promote CTL responses against Listeria monocytogenes infection by enhancing dendritic cell cross-presentation. J Immunol 185:5879–5887 http://dx.doi.org/10.4049/jimmunol.1001763. [PubMed]
394. Hiromatsu K, Yoshikai Y, Matsuzaki G, Ohga S, Muramori K, Matsumoto K, Bluestone JA, Nomoto K. 1992. A protective role of gamma/delta T cells in primary infection with Listeria monocytogenes in mice. J Exp Med 175:49–56 http://dx.doi.org/10.1084/jem.175.1.49. [PubMed]
395. Ladel CH, Blum C, Kaufmann SH. 1996. Control of natural killer cell-mediated innate resistance against the intracellular pathogen Listeria monocytogenes by gamma/delta T lymphocytes. Infect Immun 64:1744–1749.
396. Matsuzaki G, Yamada H, Kishihara K, Yoshikai Y, Nomoto K. 2002. Mechanism of murine Vgamma1+ gamma delta T cell-mediated innate immune response against Listeria monocytogenes infection. Eur J Immunol 32:928–935 http://dx.doi.org/10.1002/1521-4141(200204)32:4<928::AID-IMMU928>3.0.CO;2-I.
397. Sabbagh P, Karkhah A, Nouri HR, Javanian M, Ebrahimpour S. 2018. The significance role of regulatory T cells in the persistence of infections by intracellular bacteria. Infect Genet Evol 62:270–274 http://dx.doi.org/10.1016/j.meegid.2018.05.001. [PubMed]
398. Ertelt JM, Rowe JH, Johanns TM, Lai JC, McLachlan JB, Way SS. 2009. Selective priming and expansion of antigen-specific Foxp3- CD4+ T cells during Listeria monocytogenes infection. J Immunol 182:3032–3038 http://dx.doi.org/10.4049/jimmunol.0803402. [PubMed]
399. Benson A, Murray S, Divakar P, Burnaevskiy N, Pifer R, Forman J, Yarovinsky F. 2012. Microbial infection-induced expansion of effector T cells overcomes the suppressive effects of regulatory T cells via an IL-2 deprivation mechanism. J Immunol 188:800–810 http://dx.doi.org/10.4049/jimmunol.1100769. [PubMed]
400. Rowe JH, Ertelt JM, Xin L, Way SS. 2012. Listeria monocytogenes cytoplasmic entry induces fetal wastage by disrupting maternal Foxp3+ regulatory T cell-sustained fetal tolerance. PLoS Pathog 8:e1002873 http://dx.doi.org/10.1371/journal.ppat.1002873. [PubMed]
401. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, Gapin L, Kaech SM. 2007. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27:281–295 http://dx.doi.org/10.1016/j.immuni.2007.07.010. [PubMed]
402. Dispirito JR, Shen H. 2010. Histone acetylation at the single-cell level: a marker of memory CD8+ T cell differentiation and functionality. J Immunol 184:4631–4636 http://dx.doi.org/10.4049/jimmunol.0903830. [PubMed]
403. Henry CJ, Grayson JM, Brzoza-Lewis KL, Mitchell LM, Westcott MM, Cook AS, Hiltbold EM. 2010. The roles of IL-12 and IL-23 in CD8+ T cell-mediated immunity against Listeria monocytogenes: insights from a DC vaccination model. Cell Immunol 264:23–31 http://dx.doi.org/10.1016/j.cellimm.2010.04.007. [PubMed]
404. Chandrabos C, M’Homa Soudja S, Weinrick B, Gros M, Frangaj A, Rahmoun M, Jacobs WR Jr, Lauvau G. 2015. The p60 and NamA autolysins from Listeria monocytogenes contribute to host colonization and induction of protective memory. Cell Microbiol 17:147–163 http://dx.doi.org/10.1111/cmi.12362. [PubMed]
405. Williams MA, Tyznik AJ, Bevan MJ. 2006. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441:890–893 http://dx.doi.org/10.1038/nature04790. [PubMed]
406. Sun JC, Williams MA, Bevan MJ. 2004. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5:927–933 http://dx.doi.org/10.1038/ni1105. [PubMed]
407. Mittrücker HW, Köhler A, Kaufmann SH. 2000. Substantial in vivo proliferation of CD4(+) and CD8(+) T lymphocytes during secondary Listeria monocytogenes infection. Eur J Immunol 30:1053–1059 http://dx.doi.org/10.1002/(SICI)1521-4141(200004)30:4<1053::AID-IMMU1053>3.0.CO;2-N.
408. Kerksiek KM, Ploss A, Leiner I, Busch DH, Pamer EG. 2003. H2-M3-restricted memory T cells: persistence and activation without expansion. J Immunol 170:1862–1869 http://dx.doi.org/10.4049/jimmunol.170.4.1862. [PubMed]
409. Schiemann M, Busch V, Linkemann K, Huster KM, Busch DH. 2003. Differences in maintenance of CD8+ and CD4+ bacteria-specific effector-memory T cell populations. Eur J Immunol 33:2875–2885 http://dx.doi.org/10.1002/eji.200324224. [PubMed]
410. Blair DA, Turner DL, Bose TO, Pham QM, Bouchard KR, Williams KJ, McAleer JP, Cauley LS, Vella AT, Lefrançois L. 2011. Duration of antigen availability influences the expansion and memory differentiation of T cells. J Immunol 187:2310–2321 http://dx.doi.org/10.4049/jimmunol.1100363. [PubMed]
411. Ravkov EV, Williams MA. 2009. The magnitude of CD4+ T cell recall responses is controlled by the duration of the secondary stimulus. J Immunol 183:2382–2389 http://dx.doi.org/10.4049/jimmunol.0900319. [PubMed]
412. Soudja SM, Chandrabos C, Yakob E, Veenstra M, Palliser D, Lauvau G. 2014. Memory-T-cell-derived interferon-γ instructs potent innate cell activation for protective immunity. Immunity 40:974–988 http://dx.doi.org/10.1016/j.immuni.2014.05.005. [PubMed]
413. Meek SM, Williams MA. 2018. IFN-gamma-dependent and independent mechanisms of CD4 + memory T cell-mediated protection from Listeria infection. Pathogens 7:E22 http://dx.doi.org/10.3390/pathogens7010022. [PubMed]
414. Olson JA, McDonald-Hyman C, Jameson SC, Hamilton SE. 2013. Effector-like CD8 + T cells in the memory population mediate potent protective immunity. Immunity 38:1250–1260 http://dx.doi.org/10.1016/j.immuni.2013.05.009. [PubMed]
415. Sheridan BS, Romagnoli PA, Pham QM, Fu HH, Alonzo F III, Schubert WD, Freitag NE, Lefrançois L. 2013. γδ T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39:184–195 http://dx.doi.org/10.1016/j.immuni.2013.06.015. [PubMed]
416. Kim C, Jay DC, Williams MA. 2014. Dynamic functional modulation of CD4+ T cell recall responses is dependent on the inflammatory environment of the secondary stimulus. PLoS Pathog 10:e1004137 http://dx.doi.org/10.1371/journal.ppat.1004137. [PubMed]
417. Casadevall A. 1998. Antibody-mediated protection against intracellular pathogens. Trends Microbiol 6:102–107 http://dx.doi.org/10.1016/S0966-842X(98)01208-6.
418. MacKaness GB. 1962. Cellular resistance to infection. J Exp Med 116:381–406 http://dx.doi.org/10.1084/jem.116.3.381. [PubMed]
419. Miller DC, Czuprynski CJ. 2002. Passive immunization with convalescent serum, or oral immunization with formalin-killed organisms, does not protect mice against gastrointestinal challenge with Listeria monocytogenes. Comp Immunol Microbiol Infect Dis 25:69–75 http://dx.doi.org/10.1016/S0147-9571(01)00023-6.
420. Edelson BT, Cossart P, Unanue ER. 1999. Cutting edge: paradigm revisited: antibody provides resistance to Listeria infection. J Immunol 163:4087–4090.
421. Hage-Chahine CM, Del Giudice G, Lambert PH, Pechere JC. 1992. Hemolysin-producing Listeria monocytogenes affects the immune response to T-cell-dependent and T-cell-independent antigens. Infect Immun 60:1415–1421.
422. Leong ML, Hampl J, Liu W, Mathur S, Bahjat KS, Luckett W, Dubensky TW Jr, Brockstedt DG. 2009. Impact of preexisting vector-specific immunity on vaccine potency: characterization of Listeria monocytogenes-specific humoral and cellular immunity in humans and modeling studies using recombinant vaccines in mice. Infect Immun 77:3958–3968 http://dx.doi.org/10.1128/IAI.01274-08. [PubMed]
423. Mohamed W, Sethi S, Darji A, Mraheil MA, Hain T, Chakraborty T. 2010. Antibody targeting the ferritin-like protein controls Listeria infection. Infect Immun 78:3306–3314 http://dx.doi.org/10.1128/IAI.00210-10. [PubMed]
424. Gentschev I, Sokolovic Z, Köhler S, Krohne GF, Hof H, Wagner J, Goebel W. 1992. Identification of p60 antibodies in human sera and presentation of this listerial antigen on the surface of attenuated salmonellae by the HlyB-HlyD secretion system. Infect Immun 60:5091–5098.
425. Hardy J, Francis KP, DeBoer M, Chu P, Gibbs K, Contag CH. 2004. Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303:851–853 http://dx.doi.org/10.1126/science.1092712. [PubMed]
426. Manohar M, Baumann DO, Bos NA, Cebra JJ. 2001. Gut colonization of mice with actA-negative mutant of Listeria monocytogenes can stimulate a humoral mucosal immune response. Infect Immun 69:3542–3549 http://dx.doi.org/10.1128/IAI.69.6.3542-3549.2001. [PubMed]
427. Yu WL, Dan H, Lin M. 2008. InlA and InlC2 of Listeria monocytogenes serotype 4b are two internalin proteins eliciting humoral immune responses common to listerial infection of various host species. Curr Microbiol 56:505–509 http://dx.doi.org/10.1007/s00284-008-9101-4. [PubMed]
428. Goossens PL, Milon G, Bevan M. 1992. Induction of protective CD8+T lymphocytes by an attenuated Listeria monocytogenes actA mutant. Int Immunol 4:1413–1418 http://dx.doi.org/10.1093/intimm/4.12.1413. [PubMed]
429. Thompson RJ, Bouwer HG, Portnoy DA, Frankel FR. 1998. Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires d-alanine for growth. Infect Immun 66:3552–3561.
430. Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, Liu W, Cook DN, Portnoy DA, Dubensky TW Jr. 2004. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A 101:13832–13837 http://dx.doi.org/10.1073/pnas.0406035101. [PubMed]
431. Angelakopoulos H, Loock K, Sisul DM, Jensen ER, Miller JF, Hohmann EL. 2002. Safety and shedding of an attenuated strain of Listeria monocytogenes with a deletion of actA/plcB in adult volunteers: a dose escalation study of oral inoculation. Infect Immun 70:3592–3601 http://dx.doi.org/10.1128/IAI.70.7.3592-3601.2002. [PubMed]
432. Johnson PV, Blair BM, Zeller S, Kotton CN, Hohmann EL. 2011. Attenuated Listeria monocytogenes vaccine vectors expressing influenza A nucleoprotein: preclinical evaluation and oral inoculation of volunteers. Microbiol Immunol 55:304–317 http://dx.doi.org/10.1111/j.1348-0421.2011.00322.x. [PubMed]
433. Le DT, Brockstedt DG, Nir-Paz R, Hampl J, Mathur S, Nemunaitis J, Sterman DH, Hassan R, Lutz E, Moyer B, Giedlin M, Louis JL, Sugar EA, Pons A, Cox AL, Levine J, Murphy AL, Illei P, Dubensky TW Jr, Eiden JE, Jaffee EM, Laheru DA. 2012. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res 18:858–868 http://dx.doi.org/10.1158/1078-0432.CCR-11-2121. [PubMed]
434. Maciag PC, Radulovic S, Rothman J. 2009. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 27:3975–3983 http://dx.doi.org/10.1016/j.vaccine.2009.04.041. [PubMed]
435. Starks H, Bruhn KW, Shen H, Barry RA, Dubensky TW, Brockstedt D, Hinrichs DJ, Higgins DE, Miller JF, Giedlin M, Bouwer HG. 2004. Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J Immunol 173:420–427 http://dx.doi.org/10.4049/jimmunol.173.1.420. [PubMed]
436. Whitney JB, Mirshahidi S, Lim SY, Goins L, Ibegbu CC, Anderson DC, Raybourne RB, Frankel FR, Lieberman J, Ruprecht RM. 2011. Prior exposure to an attenuated Listeria vaccine does not reduce immunogenicity: pre-clinical assessment of the efficacy of a Listeria vaccine in the induction of immune responses against HIV. J Immune Based Ther Vaccines 9:2 http://dx.doi.org/10.1186/1476-8518-9-2. [PubMed]
437. Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y. 2001. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol 167:6471–6479 http://dx.doi.org/10.4049/jimmunol.167.11.6471. [PubMed]
438. Sewell DA, Shahabi V, Gunn GR III, Pan ZK, Dominiecki ME, Paterson Y. 2004. Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res 64:8821–8825 http://dx.doi.org/10.1158/0008-5472.CAN-04-1958. [PubMed]
439. Park JM, Ng VH, Maeda S, Rest RF, Karin M. 2004. Anthrolysin O and other Gram-positive cytolysins are toll-like receptor 4 agonists. J Exp Med 200:1647–1655 http://dx.doi.org/10.1084/jem.20041215. [PubMed]
440. Chen Z, Ozbun L, Chong N, Wallecha A, Berzofsky JA, Khleif SN. 2014. Episomal expression of truncated listeriolysin O in LmddA-LLO-E7 vaccine enhances antitumor efficacy by preferentially inducing expansions of CD4+FoxP3- and CD8+ T cells. Cancer Immunol Res 2:911–922 http://dx.doi.org/10.1158/2326-6066.CIR-13-0197. [PubMed]
441. Souders NC, Sewell DA, Pan ZK, Hussain SF, Rodriguez A, Wallecha A, Paterson Y. 2007. Listeria-based vaccines can overcome tolerance by expanding low avidity CD8+ T cells capable of eradicating a solid tumor in a transgenic mouse model of cancer. Cancer Immun 7:2.
442. Wood LM, Pan ZK, Shahabi V, Paterson Y. 2010. Listeria-derived ActA is an effective adjuvant for primary and metastatic tumor immunotherapy. Cancer Immunol Immunother 59:1049–1058 http://dx.doi.org/10.1007/s00262-010-0830-4. [PubMed]
443. Jia Q, Lee BY, Clemens DL, Bowen RA, Horwitz MA. 2009. Recombinant attenuated Listeria monocytogenes vaccine expressing Francisella tularensis IglC induces protection in mice against aerosolized Type A F. tularensis. Vaccine 27:1216–1229 http://dx.doi.org/10.1016/j.vaccine.2008.12.014. [PubMed]
444. Jia Q, Bowen R, Sahakian J, Dillon BJ, Horwitz MA. 2013. A heterologous prime-boost vaccination strategy comprising the Francisella tularensis live vaccine strain capB mutant and recombinant attenuated Listeria monocytogenes expressing F. tularensis IglC induces potent protective immunity in mice against virulent F. tularensis aerosol challenge. Infect Immun 81:1550–1561 http://dx.doi.org/10.1128/IAI.01013-12. [PubMed]
445. Jia Q, Dillon BJ, Masleša-Galić S, Horwitz MA. 2017. Listeria-vectored vaccine expressing the Mycobacterium tuberculosis 30 kDa major secretory protein via the constitutively active prfA* regulon boosts BCG efficacy against tuberculosis. Infect Immun http://dx.doi.org/10.1128/IAI.00245-17. [PubMed]
446. Mata M, Yao ZJ, Zubair A, Syres K, Paterson Y. 2001. Evaluation of a recombinant Listeria monocytogenes expressing an HIV protein that protects mice against viral challenge. Vaccine 19:1435–1445 http://dx.doi.org/10.1016/S0264-410X(00)00379-0.
447. Yin Y, Lian K, Zhao D, Tao C, Chen X, Tan W, Wang X, Xu Z, Hu M, Rao Y, Zhou X, Pan Z, Zhang X, Jiao X. 2017. A promising Listeria-vectored vaccine induces Th1-type immune responses and confers protection against tuberculosis. Front Cell Infect Microbiol 7:407 http://dx.doi.org/10.3389/fcimb.2017.00407. [PubMed]
448. Liang ZZ, Sherrid AM, Wallecha A, Kollmann TR. 2014. Listeria monocytogenes: a promising vehicle for neonatal vaccination. Hum Vaccin Immunother 10:1036–1046 http://dx.doi.org/10.4161/hv.27999. [PubMed]
449. Kollmann TR, Reikie B, Blimkie D, Way SS, Hajjar AM, Arispe K, Shaulov A, Wilson CB. 2007. Induction of protective immunity to Listeria monocytogenes in neonates. J Immunol 178:3695–3701 http://dx.doi.org/10.4049/jimmunol.178.6.3695. [PubMed]
450. Smolen KK, Loeffler DI, Reikie BA, Aplin L, Cai B, Fortuno ES III, Kollmann TR. 2009. Neonatal immunization with Listeria monocytogenes induces T cells with an adult-like avidity, sensitivity, and TCR-Vbeta repertoire, and does not adversely impact the response to boosting. Vaccine 28:235–242 http://dx.doi.org/10.1016/j.vaccine.2009.09.091. [PubMed]
451. Brockstedt DG, Bahjat KS, Giedlin MA, Liu W, Leong M, Luckett W, Gao Y, Schnupf P, Kapadia D, Castro G, Lim JY, Sampson-Johannes A, Herskovits AA, Stassinopoulos A, Bouwer HG, Hearst JE, Portnoy DA, Cook DN, Dubensky TW Jr. 2005. Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat Med 11:853–860 http://dx.doi.org/10.1038/nm1276. [PubMed]
452. Lauer P, Hanson B, Lemmens EE, Liu W, Luckett WS, Leong ML, Allen HE, Skoble J, Bahjat KS, Freitag NE, Brockstedt DG, Dubensky TW Jr. 2008. Constitutive activation of the PrfA regulon enhances the potency of vaccines based on live-attenuated and killed but metabolically active Listeria monocytogenes strains. Infect Immun 76:3742–3753 http://dx.doi.org/10.1128/IAI.00390-08. [PubMed]
453. Wood LM, Paterson Y. 2014. Attenuated Listeria monocytogenes: a powerful and versatile vector for the future of tumor immunotherapy. Front Cell Infect Microbiol 4:51 http://dx.doi.org/10.3389/fcimb.2014.00051. [PubMed]
454. Sewell DA, Pan ZK, Paterson Y. 2008. Listeria-based HPV-16 E7 vaccines limit autochthonous tumor growth in a transgenic mouse model for HPV-16 transformed tumors. Vaccine 26:5315–5320 http://dx.doi.org/10.1016/j.vaccine.2008.07.036. [PubMed]
455. Maciag PC, Seavey MM, Pan ZK, Ferrone S, Paterson Y. 2008. Cancer immunotherapy targeting the high molecular weight melanoma-associated antigen protein results in a broad antitumor response and reduction of pericytes in the tumor vasculature. Cancer Res 68:8066–8075 http://dx.doi.org/10.1158/0008-5472.CAN-08-0287. [PubMed]
456. Chen Y, Yang D, Li S, Gao Y, Jiang R, Deng L, Frankel FR, Sun B. 2012. Development of a Listeria monocytogenes-based vaccine against hepatocellular carcinoma. Oncogene 31:2140–2152 http://dx.doi.org/10.1038/onc.2011.395. [PubMed]
457. Shahabi V, Reyes-Reyes M, Wallecha A, Rivera S, Paterson Y, Maciag P. 2008. Development of a Listeria monocytogenes based vaccine against prostate cancer. Cancer Immunol Immunother 57:1301–1313 http://dx.doi.org/10.1007/s00262-008-0463-z. [PubMed]
458. Keenan BP, Saenger Y, Kafrouni MI, Leubner A, Lauer P, Maitra A, Rucki AA, Gunderson AJ, Coussens LM, Brockstedt DG, Dubensky TW Jr, Hassan R, Armstrong TD, Jaffee EM. 2014. A Listeria vaccine and depletion of T-regulatory cells activate immunity against early stage pancreatic intraepithelial neoplasms and prolong survival of mice. Gastroenterology 146:1784–94.e6 http://dx.doi.org/10.1053/j.gastro.2014.02.055. [PubMed]
459. Shahabi V, Seavey MM, Maciag PC, Rivera S, Wallecha A. 2011. Development of a live and highly attenuated Listeria monocytogenes-based vaccine for the treatment of Her2/neu-overexpressing cancers in human. Cancer Gene Ther 18:53–62 http://dx.doi.org/10.1038/cgt.2010.48. [PubMed]
460. Safran H, Leonard KL, Perez K, Vrees M, Klipfel A, Schechter S, Oldenburg N, Roth L, Shah N, Rosati K, Rajdev L, Mantripragada K, Sheng IY, Barth P, DiPetrillo TA. 2018. Tolerability of ADXS11-001 Lm-LLO Listeria-based immunotherapy with mitomycin, fluorouracil, and radiation for anal cancer. Int J Radiat Oncol Biol Phys 100:1175–1178 http://dx.doi.org/10.1016/j.ijrobp.2018.01.004. [PubMed]
461. Mason NJ, Gnanandarajah JS, Engiles JB, Gray F, Laughlin D, Gaurnier-Hausser A, Wallecha A, Huebner M, Paterson Y. 2016. Immunotherapy with a HER2-targeting Listeria induces HER2-specific immunity and demonstrates potential therapeutic effects in a phase I trial in canine osteosarcoma. Clin Cancer Res 22:4380–4390 http://dx.doi.org/10.1158/1078-0432.CCR-16-0088. [PubMed]
462. Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, Morse M, Zeh H, Cohen D, Fine RL, Onners B, Uram JN, Laheru DA, Lutz ER, Solt S, Murphy AL, Skoble J, Lemmens E, Grous J, Dubensky T Jr, Brockstedt DG, Jaffee EM. 2015. Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol 33:1325–1333 http://dx.doi.org/10.1200/JCO.2014.57.4244. [PubMed]
463. Flickinger JC Jr, Rodeck U, Snook AE. 2018. Listeria monocytogenes as a vector for cancer immunotherapy: current understanding and progress. Vaccines (Basel) 6:E48 http://dx.doi.org/10.3390/vaccines6030048. [PubMed]
464. Sherrid AM, Kollmann TR. 2013. Age-dependent differences in systemic and cell-autonomous immunity to L. monocytogenes. Clin Dev Immunol 2013:917198 http://dx.doi.org/10.1155/2013/917198. [PubMed]

Article metrics loading...



It could be argued that we understand the immune response to infection with better than the immunity elicited by any other bacteria. are Gram-positive bacteria that are genetically tractable and easy to cultivate , and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: “Innate Immunity” describes how the host initially detects the presence of and characterizes the soluble and cellular responses that occur during the first few days postinfection; “Adaptive Immunity” discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; “Use of Attenuated as a Vaccine Vector” highlights the ways that investigators have exploited our extensive knowledge of anti- immunity to develop cancer therapeutics.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error