1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Metabolism of the Gram-Positive Bacterial Pathogen

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: John-Demian Sauer1, Anat A. Herskovits2, Mary X.D. O’Riordan3
  • Editors: Vincent A. Fischetti4, Richard P. Novick5, Joseph J. Ferretti6, Daniel A. Portnoy7, Miriam Braunstein8, Julian I. Rood9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Medical Microbiology and Immunology, University of Wisconsin- Madison, Madison, WI 53706; 2: Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; 3: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; 4: The Rockefeller University, New York, NY; 5: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 6: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 7: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 8: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 9: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec August 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0066-2019
  • Received 15 March 2019 Accepted 27 March 2019 Published 16 August 2019
  • Mary X.D. O’Riordan, [email protected]
image of Metabolism of the Gram-Positive Bacterial Pathogen <span class="jp-italic">Listeria monocytogenes</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Metabolism of the Gram-Positive Bacterial Pathogen , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0066-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0066-2019-2.gif
  • Abstract:

    Bacterial metabolism represents the biochemical space that bacteria can manipulate to produce energy, reducing equivalents and building blocks for replication. Gram-positive pathogens, such as , show remarkable flexibility, which allows for exploitation of diverse biological niches from the soil to the intracytosolic space. Although the human host represents a potentially rich source for nutrient acquisition, competition for nutrients with the host and hostile host defenses can constrain bacterial metabolism by various mechanisms, including nutrient sequestration. Here, we review metabolism in the model Gram-positive bacterium, , and highlight pathways that enable the replication, survival, and virulence of this bacterial pathogen.

  • Citation: Sauer J, Herskovits A, O’Riordan M. 2019. Metabolism of the Gram-Positive Bacterial Pathogen . Microbiol Spectrum 7(4):GPP3-0066-2019. doi:10.1128/microbiolspec.GPP3-0066-2019.

References

1. Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Régnault B, Coppée JY, Lecuit M, Johansson J, Cossart P. 2009. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–956. [PubMed]
2. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couvé E, de Daruvar A, Dehoux P, Domann E, Domínguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, García-del Portillo F, Garrido P, Gautier L, Goebel W, Gómez-López N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Pérez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, et al. 2001. Comparative genomics of Listeria species. Science 294:849–852. [PubMed]
3. den Bakker HC, Cummings CA, Ferreira V, Vatta P, Orsi RH, Degoricija L, Barker M, Petrauskene O, Furtado MR, Wiedmann M. 2010. Comparative genomics of the bacterial genus Listeria: genome evolution is characterized by limited gene acquisition and limited gene loss. BMC Genomics 11:688.
4. Maury MM, Tsai YH, Charlier C, Touchon M, Chenal-Francisque V, Leclercq A, Criscuolo A, Gaultier C, Roussel S, Brisabois A, Disson O, Rocha EPC, Brisse S, Lecuit M. 2016. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat Genet 48:308–313. [PubMed]
5. Hain T, Chatterjee SS, Ghai R, Kuenne CT, Billion A, Steinweg C, Domann E, Kärst U, Jänsch L, Wehland J, Eisenreich W, Bacher A, Joseph B, Schär J, Kreft J, Klumpp J, Loessner MJ, Dorscht J, Neuhaus K, Fuchs TM, Scherer S, Doumith M, Jacquet C, Martin P, Cossart P, Rusniock C, Glaser P, Buchrieser C, Goebel W, Chakraborty T. 2007. Pathogenomics of Listeria spp. Int J Med Microbiol 297:541–557. [PubMed]
6. Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, Domann E, Chakraborty T, Hain T. 2006. Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 74:1323–1338. [PubMed]
7. Hain T, Ghai R, Billion A, Kuenne CT, Steinweg C, Izar B, Mohamed W, Mraheil MA, Domann E, Schaffrath S, Kärst U, Goesmann A, Oehm S, Pühler A, Merkl R, Vorwerk S, Glaser P, Garrido P, Rusniok C, Buchrieser C, Goebel W, Chakraborty T. 2012. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics 13:144. [PubMed]
8. Severino P, Dussurget O, Vêncio RZ, Dumas E, Garrido P, Padilla G, Piveteau P, Lemaître JP, Kunst F, Glaser P, Buchrieser C. 2007. Comparative transcriptome analysis of Listeria monocytogenes strains of the two major lineages reveals differences in virulence, cell wall, and stress response. Appl Environ Microbiol 73:6078–6088. [PubMed]
9. Welshimer HJ. 1963. Vitamin requirements of Listeria monocytogenes. J Bacteriol 85:1156–1159.
10. Premaratne RJ, Lin WJ, Johnson EA. 1991. Development of an improved chemically defined minimal medium for Listeria monocytogenes. Appl Environ Microbiol 57:3046–3048.
11. Phan-Thanh L, Gormon T. 1997. A chemically defined minimal medium for the optimal culture of Listeria. Int J Food Microbiol 35:91–95.
12. Tsai HN, Hodgson DA. 2003. Development of a synthetic minimal medium for Listeria monocytogenes. Appl Environ Microbiol 69:6943–6945. [PubMed]
13. Grubmüller S, Schauer K, Goebel W, Fuchs TM, Eisenreich W. 2014. Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism. Front Cell Infect Microbiol 4:156. [PubMed]
14. Eylert E, Schär J, Mertins S, Stoll R, Bacher A, Goebel W, Eisenreich W. 2008. Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol Microbiol 69:1008–1017. [PubMed]
15. Bécavin C, Koutero M, Tchitchek N, Cerutti F, Lechat P, Maillet N, Hoede C, Chiapello H, Gaspin C, Cossart P. 2017. Listeriomics: an interactive Web platform for systems biology of Listeria. mSystems 2:2. [PubMed]
16. Friedman ME, Roessler WG. 1961. Growth of Listeria monocytogenes in defined media. J Bacteriol 82:528–533.
17. Joseph B, Goebel W. 2007. Life of Listeria monocytogenes in the host cells’ cytosol. Microbes Infect 9:1188–1195. [PubMed]
18. Romick TL, Fleming HP, McFeeters RF. 1996. Aerobic and anaerobic metabolism of Listeria monocytogenes in defined glucose medium. Appl Environ Microbiol 62:304–307.
19. Wolfe AJ. 2005. The acetate switch. Microbiol Mol Biol Rev 69:12–50. [PubMed]
20. Müller-Herbst S, Wüstner S, Mühlig A, Eder D, M Fuchs T, Held C, Ehrenreich A, Scherer S. 2014. Identification of genes essential for anaerobic growth of Listeria monocytogenes. Microbiology 160:752–765. [PubMed]
21. Chen GY, McDougal CE, D’Antonio MA, Portman JL, Sauer JD. 2017. A genetic screen reveals that synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), but not full-length menaquinone, is required for Listeria monocytogenes cytosolic survival. MBio 8:e00119-17. [PubMed]
22. Feehily C, O’Byrne CP, Karatzas KA. 2013. Functional γ-aminobutyrate shunt in Listeria monocytogenes: role in acid tolerance and succinate biosynthesis. Appl Environ Microbiol 79:74–80. [PubMed]
23. Schär J, Stoll R, Schauer K, Loeffler DI, Eylert E, Joseph B, Eisenreich W, Fuchs TM, Goebel W. 2010. Pyruvate carboxylase plays a crucial role in carbon metabolism of extra- and intracellularly replicating Listeria monocytogenes. J Bacteriol 192:1774–1784. [PubMed]
24. Eisenreich W, Slaghuis J, Laupitz R, Bussemer J, Stritzker J, Schwarz C, Schwarz R, Dandekar T, Goebel W, Bacher A. 2006. 13C isotopologue perturbation studies of Listeria monocytogenes carbon metabolism and its modulation by the virulence regulator PrfA. Proc Natl Acad Sci U S A 103:2040–2045. [PubMed]
25. Welshimer HJ. 1960. Survival of Listeria monocytogenes in soil. J Bacteriol 80:316–320. [PubMed]
26. Weis J, Seeliger HP. 1975. Incidence of Listeria monocytogenes in nature. Appl Microbiol 30:29–32. [PubMed]
27. Dowe MJ, Jackson ED, Mori JG, Bell CR. 1997. Listeria monocytogenes survival in soil and incidence in agricultural soils. J Food Prot 60:1201–1207. [PubMed]
28. Fox E, O’Mahony T, Clancy M, Dempsey R, O’Brien M, Jordan K. 2009. Listeria monocytogenes in the Irish dairy farm environment. J Food Prot 72:1450–1456. [PubMed]
29. Strawn LK, Fortes ED, Bihn EA, Nightingale KK, Gröhn YT, Worobo RW, Wiedmann M, Bergholz PW. 2013. Landscape and meteorological factors affecting prevalence of three food-borne pathogens in fruit and vegetable farms. Appl Environ Microbiol 79:588–600. [PubMed]
30. Vivant AL, Garmyn D, Piveteau P. 2013. Listeria monocytogenes, a down-to-earth pathogen. Front Cell Infect Microbiol 3:87. [PubMed]
31. Locatelli A, Spor A, Jolivet C, Piveteau P, Hartmann A. 2013. Biotic and abiotic soil properties influence survival of Listeria monocytogenes in soil. PLoS One 8:e75969. [PubMed]
32. McLaughlin HP, Casey PG, Cotter J, Gahan CG, Hill C. 2011. Factors affecting survival of Listeria monocytogenes and Listeria innocua in soil samples. Arch Microbiol 193:775–785. [PubMed]
33. Stoll R, Goebel W. 2010. The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth. Microbiology 156:1069–1083. [PubMed]
34. Aké FM, Joyet P, Deutscher J, Milohanic E. 2011. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes. Mol Microbiol 81:274–293. [PubMed]
35. den Bakker HC, Desjardins CA, Griggs AD, Peters JE, Zeng Q, Young SK, Kodira CD, Yandava C, Hepburn TA, Haas BJ, Birren BW, Wiedmann M. 2013. Evolutionary dynamics of the accessory genome of Listeria monocytogenes. PLoS One 8:e67511. [PubMed]
36. den Bakker HC, Bowen BM, Rodriguez-Rivera LD, Wiedmann M. 2012. FSL J1-208, a virulent uncommon phylogenetic lineage IV Listeria monocytogenes strain with a small chromosome size and a putative virulence plasmid carrying internalin-like genes. Appl Environ Microbiol 78:1876–1889. [PubMed]
37. Piveteau P, Depret G, Pivato B, Garmyn D, Hartmann A. 2011. Changes in gene expression during adaptation of Listeria monocytogenes to the soil environment. PLoS One 6:e24881. [PubMed]
38. Vivant AL, Desneux J, Pourcher AM, Piveteau P. 2017. Transcriptomic analysis of the adaptation of Listeria monocytogenes to lagoon and soil matrices associated with a piggery environment: comparison of expression profiles. Front Microbiol 8:1811. [PubMed]
39. Mertins S, Joseph B, Goetz M, Ecke R, Seidel G, Sprehe M, Hillen W, Goebel W, Müller-Altrock S. 2007. Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes. J Bacteriol 189:473–490. [PubMed]
40. Fuchs TM, Eisenreich W, Kern T, Dandekar T. 2012. Toward a systemic understanding of Listeria monocytogenes metabolism during infection. Front Microbiol 3:23.
41. Vasanthakrishnan RB, de Las Heras A, Scortti M, Deshayes C, Colegrave N, Vázquez-Boland JA. 2015. PrfA regulation offsets the cost of Listeria virulence outside the host. Environ Microbiol 17:4566–4579. [PubMed]
42. Gahan CGM, Hill C. 2014. Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Front Cell Infect Microbiol 4:9. [PubMed]
43. Becattini S, Littmann ER, Carter RA, Kim SG, Morjaria SM, Ling L, Gyaltshen Y, Fontana E, Taur Y, Leiner IM, Pamer EG. 2017. Commensal microbes provide first line defense against Listeria monocytogenes infection. J Exp Med 214:1973–1989. [PubMed]
44. Light SH, Su L, Rivera-Lugo R, Cornejo JA, Louie A, Iavarone AT, Ajo-Franklin CM, Portnoy DA. 2018. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 562:140–144. [PubMed]
45. Sousa S, Lecuit M, Cossart P. 2005. Microbial strategies to target, cross or disrupt epithelia. Curr Opin Cell Biol 17:489–498. [PubMed]
46. Slaghuis J, Goetz M, Engelbrecht F, Goebel W. 2004. Inefficient replication of Listeria innocua in the cytosol of mammalian cells. J Infect Dis 189:393–401. [PubMed]
47. Goetz M, Bubert A, Wang G, Chico-Calero I, Vazquez-Boland JA, Beck M, Slaghuis J, Szalay AA, Goebel W. 2001. Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc Natl Acad Sci U S A 98:12221–12226. [PubMed]
48. Hwang C, Sinskey AJ, Lodish HF. 1992. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502. [PubMed]
49. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY. 1998. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 95:6803–6808. [PubMed]
50. Piez KA, Eagle H. 1958. The free amino acid pool of cultured human cells. J Biol Chem 231:533–545.
51. Ray K, Marteyn B, Sansonetti PJ, Tang CM. 2009. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol 7:333–340. [PubMed]
52. Sanman LE, Qian Y, Eisele NA, Ng TM, van der Linden WA, Monack DM, Weerapana E, Bogyo M. 2016. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife 5:e13663. [PubMed]
53. Wynosky-Dolfi MA, Snyder AG, Philip NH, Doonan PJ, Poffenberger MC, Avizonis D, Zwack EE, Riblett AM, Hu B, Strowig T, Flavell RA, Jones RG, Freedman BD, Brodsky IE. 2014. Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome. J Exp Med 211:653–668. [PubMed]
54. Joseph B, Mertins S, Stoll R, Schär J, Umesha KR, Luo Q, Müller-Altrock S, Goebel W. 2008. Glycerol metabolism and PrfA activity in Listeria monocytogenes. J Bacteriol 190:5412–5430. [PubMed]
55. Chico-Calero I, Suárez M, González-Zorn B, Scortti M, Slaghuis J, Goebel W, Vázquez-Boland JA, European Listeria Genome Consortium. 2002. Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci U S A 99:431–436. [PubMed]
56. Lobel L, Sigal N, Borovok I, Ruppin E, Herskovits AA. 2012. Integrative genomic analysis identifies isoleucine and CodY as regulators of Listeria monocytogenes virulence. PLoS Genet 8:e1002887. [PubMed]
57. Ripio MT, Brehm K, Lara M, Suárez M, Vázquez-Boland JA. 1997. Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors. J Bacteriol 179:7174–7180. [PubMed]
58. Joseph B, Przybilla K, Stühler C, Schauer K, Slaghuis J, Fuchs TM, Goebel W. 2006. Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol 188:556–568. [PubMed]
59. Tsoy O, Ravcheev D, Mushegian A. 2009. Comparative genomics of ethanolamine utilization. J Bacteriol 191:7157–7164. [PubMed]
60. Geoffroy C, Raveneau J, Beretti JL, Lecroisey A, Vazquez-Boland JA, Alouf JE, Berche P. 1991. Purification and characterization of an extracellular 29-kilodalton phospholipase C from Listeria monocytogenes. Infect Immun 59:2382–2388.
61. Schauer K, Geginat G, Liang C, Goebel W, Dandekar T, Fuchs TM. 2010. Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling. BMC Genomics 11:573. [PubMed]
62. Haber A, Friedman S, Lobel L, Burg-Golani T, Sigal N, Rose J, Livnat-Levanon N, Lewinson O, Herskovits AA. 2017. L-glutamine induces expression of Listeria monocytogenes virulence genes. PLoS Pathog 13:e1006161. [PubMed]
63. Klarsfeld AD, Goossens PL, Cossart P. 1994. Five Listeria monocytogenes genes preferentially expressed in infected mammalian cells: plcA, purH, purD, pyrE and an arginine ABC transporter gene, arpJ. Mol Microbiol 13:585–597. [PubMed]
64. Marquis H, Bouwer HG, Hinrichs DJ, Portnoy DA. 1993. Intracytoplasmic growth and virulence of Listeria monocytogenes auxotrophic mutants. Infect Immun 61:3756–3760.
65. Cheng C, Wang X, Dong Z, Shao C, Yang Y, Fang W, Fang C, Wang H, Yang M, Jiang L, Zhou X, Song H. 2015. Aminopeptidase T of M29 family acts as a novel intracellular virulence factor for Listeria monocytogenes infection. Sci Rep 5:17370. [PubMed]
66. Perry KJ, Higgins DE. 2013. A differential fluorescence-based genetic screen identifies Listeria monocytogenes determinants required for intracellular replication. J Bacteriol 195:3331–3340. [PubMed]
67. Verheul A, Rombouts FM, Beumer RR, Abee T. 1995. An ATP-dependent L-carnitine transporter in Listeria monocytogenes Scott A is involved in osmoprotection. J Bacteriol 177:3205–3212. [PubMed]
68. Verheul A, Hagting A, Amezaga MR, Booth IR, Rombouts FM, Abee T. 1995. A di- and tripeptide transport system can supply Listeria monocytogenes Scott A with amino acids essential for growth. Appl Environ Microbiol 61:226–233.
69. Xayarath B, Marquis H, Port GC, Freitag NE. 2009. Listeria monocytogenes CtaP is a multifunctional cysteine transport-associated protein required for bacterial pathogenesis. Mol Microbiol 74:956–973. [PubMed]
70. Camejo A, Buchrieser C, Couvé E, Carvalho F, Reis O, Ferreira P, Sousa S, Cossart P, Cabanes D. 2009. In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog 5:e1000449. [PubMed]
71. Borezee E, Pellegrini E, Berche P. 2000. OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect Immun 68:7069–7077. [PubMed]
72. Wouters JA, Hain T, Darji A, Hüfner E, Wemekamp-Kamphuis H, Chakraborty T, Abee T. 2005. Identification and characterization of di- and tripeptide transporter DtpT of Listeria monocytogenes EGD-e. Appl Environ Microbiol 71:5771–5778. [PubMed]
73. Gillmaier N, Götz A, Schulz A, Eisenreich W, Goebel W. 2012. Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes. PLoS One 7:e52378. [PubMed]
74. Dowd GC, Joyce SA, Hill C, Gahan CG. 2011. Investigation of the mechanisms by which Listeria monocytogenes grows in porcine gallbladder bile. Infect Immun 79:369–379. [PubMed]
75. Matern A, Pedrolli D, Großhennig S, Johansson J, Mack M. 2016. Uptake and metabolism of antibiotics roseoflavin and 8-demethyl-8-aminoriboflavin in riboflavin-auxotrophic Listeria monocytogenes. J Bacteriol 198:3233–3243. [PubMed]
76. Karpowich NK, Song JM, Cocco N, Wang DN. 2015. ATP binding drives substrate capture in an ECF transporter by a release-and-catch mechanism. Nat Struct Mol Biol 22:565–571. [PubMed]
77. Schauer K, Stolz J, Scherer S, Fuchs TM. 2009. Both thiamine uptake and biosynthesis of thiamine precursors are required for intracellular replication of Listeria monocytogenes. J Bacteriol 191:2218–2227. [PubMed]
78. Keeney KM, Stuckey JA, O’Riordan MX. 2007. LplA1-dependent utilization of host lipoyl peptides enables Listeria cytosolic growth and virulence. Mol Microbiol 66:758–770. [PubMed]
79. Christensen QH, Hagar JA, O’Riordan MX, Cronan JE. 2011. A complex lipoate utilization pathway in Listeria monocytogenes. J Biol Chem 286:31447–31456. [PubMed]
80. O’Riordan M, Moors MA, Portnoy DA. 2003. Listeria intracellular growth and virulence require host-derived lipoic acid. Science 302:462–464. [PubMed]
81. Sun Y, O’Riordan MXD. 2010. Branched-chain fatty acids promote Listeria monocytogenes intracellular infection and virulence. Infect Immun 78:4667–4673. [PubMed]
82. Chan DI, Vogel HJ. 2010. Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430:1–19. [PubMed]
83. Yao J, Rock CO. 2017. Exogenous fatty acid metabolism in bacteria. Biochimie 141:30–39. [PubMed]
84. Fujita Y, Matsuoka H, Hirooka K. 2007. Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839. [PubMed]
85. Zhang Y-M, Rock CO. 2008. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233. [PubMed]
86. Singh AK, Zhang Y-M, Zhu K, Subramanian C, Li Z, Jayaswal RK, Gatto C, Rock CO, Wilkinson BJ. 2009. FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in Listeria monocytogenes. FEMS Microbiol Lett 301:188–192. [PubMed]
87. Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ. 1997. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63:3887–3894. [PubMed]
88. Singh VK, Hattangady DS, Giotis ES, Singh AK, Chamberlain NR, Stuart MK, Wilkinson BJ. 2008. Insertional inactivation of branched-chain alpha-keto acid dehydrogenase in Staphylococcus aureus leads to decreased branched-chain membrane fatty acid content and increased susceptibility to certain stresses. Appl Environ Microbiol 74:5882–5890. [PubMed]
89. Keeney K, Colosi L, Weber W, O’Riordan M. 2009. Generation of branched-chain fatty acids through lipoate-dependent metabolism facilitates intracellular growth of Listeria monocytogenes. J Bacteriol 191:2187–2196. [PubMed]
90. Sun Y, Wilkinson BJ, Standiford TJ, Akinbi HT, O’Riordan MX. 2012. Fatty acids regulate stress resistance and virulence factor production for Listeria monocytogenes. J Bacteriol 194:5274–5284. [PubMed]
91. Milenbachs AA, Brown DP, Moors M, Youngman P. 1997. Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol Microbiol 23:1075–1085. [PubMed]
92. Deutscher J, Küster E, Bergstedt U, Charrier V, Hillen W. 1995. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol Microbiol 15:1049–1053. [PubMed]
93. Herro R, Poncet S, Cossart P, Buchrieser C, Gouin E, Glaser P, Deutscher J. 2005. How seryl-phosphorylated HPr inhibits PrfA, a transcription activator of Listeria monocytogenes virulence genes. J Mol Microbiol Biotechnol 9:224–234. [PubMed]
94. Vu-Khac H, Miller KW. 2009. Regulation of mannose phosphotransferase system permease and virulence gene expression in Listeria monocytogenes by the EII(t)Man transporter. Appl Environ Microbiol 75:6671–6678. [PubMed]
95. Portman JL, Dubensky SB, Peterson BN, Whiteley AT, Portnoy DA. 2017. Activation of the Listeria monocytogenes virulence program by a reducing environment. MBio 8:e01595-17. [PubMed]
96. Reniere ML, Whiteley AT, Portnoy DA. 2016. An in vivo selection identifies Listeria monocytogenes genes required to sense the intracellular environment and activate virulence factor expression. PLoS Pathog 12:e1005741. [PubMed]
97. Lobel L, Sigal N, Borovok I, Belitsky BR, Sonenshein AL, Herskovits AA. 2015. The metabolic regulator CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence regulatory gene prfA. Mol Microbiol 95:624–644. [PubMed]
98. Brenner M, Lobel L, Borovok I, Sigal N, Herskovits AA. 2018. Controlled branched-chain amino acids auxotrophy in Listeria monocytogenes allows isoleucine to serve as a host signal and virulence effector. PLoS Genet 14:e1007283. [PubMed]
99. Lu CD. 2006. Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechnol 70:261–272. [PubMed]
100. Ryan S, Begley M, Gahan CG, Hill C. 2009. Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. Environ Microbiol 11:432–445. [PubMed]
101. Cheng C, Dong Z, Han X, Sun J, Wang H, Jiang L, Yang Y, Ma T, Chen Z, Yu J, Fang W, Song H. 2017. Listeria monocytogenes 10403S arginine repressor ArgR finely tunes arginine metabolism regulation under acidic conditions. Front Microbiol 8:145.
102. Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J. 2009. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139:770–779. [PubMed]
103. Meister A, Anderson ME. 1983. Glutathione. Annu Rev Biochem 52:711–760. [PubMed]
104. Reniere ML, Whiteley AT, Hamilton KL, John SM, Lauer P, Brennan RG, Portnoy DA. 2015. Glutathione activates virulence gene expression of an intracellular pathogen. Nature 517:170–173. [PubMed]
105. Hall M, Grundström C, Begum A, Lindberg MJ, Sauer UH, Almqvist F, Johansson J, Sauer-Eriksson AE. 2016. Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in Listeria. Proc Natl Acad Sci U S A 113:14733–14738. [PubMed]
106. Portman JL, Huang Q, Reniere ML, Iavarone AT, Portnoy DA. 2017. Activity of the pore-forming virulence factor listeriolysin O is reversibly inhibited by naturally occurring S-glutathionylation. Infect Immun 85:85. [PubMed]
107. Stritzker J, Janda J, Schoen C, Taupp M, Pilgrim S, Gentschev I, Schreier P, Geginat G, Goebel W. 2004. Growth, virulence, and immunogenicity of Listeria monocytogenes aro mutants. Infect Immun 72:5622–5629. [PubMed]
108. Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. 2012. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 16:819–852. [PubMed]
109. Giuffrè A, Borisov VB, Arese M, Sarti P, Forte E. 2014. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta 1837:1178–1187. [PubMed]
110. Strahl H, Hamoen LW. 2010. Membrane potential is important for bacterial cell division. Proc Natl Acad Sci U S A 107:12281–12286. [PubMed]
111. Kilstrup M, Hammer K, Ruhdal Jensen P, Martinussen J. 2005. Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 29:555–590. [PubMed]
112. Meadows JA, Wargo MJ. 2015. Carnitine in bacterial physiology and metabolism. Microbiology 161:1161–1174. [PubMed]
113. Brubaker SW, Bonham KS, Zanoni I, Kagan JC. 2015. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290. [PubMed]
114. Fu T, Zhao Y, Xi J. 2016. A new second messenger: bacterial c-di-AMP. Crit Rev Eukaryot Gene Expr 26:309–316. [PubMed]
115. Woodward JJ, Iavarone AT, Portnoy DA. 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703–1705. [PubMed]
116. Witte CE, Whiteley AT, Burke TP, Sauer JD, Portnoy DA, Woodward JJ. 2013. Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. MBio 4:e00282-13. [PubMed]
117. Sauer JD, Sotelo-Troha K, von Moltke J, Monroe KM, Rae CS, Brubaker SW, Hyodo M, Hayakawa Y, Woodward JJ, Portnoy DA, Vance RE. 2011. The N-ethyl- N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect Immun 79:688–694. [PubMed]
118. Whiteley AT, Eaglesham JB, de Oliveira Mann CC, Morehouse BR, Lowey B, Nieminen EA, Danilchanka O, King DS, Lee ASY, Mekalanos JJ, Kranzusch PJ. 2019. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567:194–199. [PubMed]
119. Gaudet RG, Sintsova A, Buckwalter CM, Leung N, Cochrane A, Li J, Cox AD, Moffat J, Gray-Owen SD. 2015. Innate immunity. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity. Science 348:1251–1255. [PubMed]
120. Zhou P, She Y, Dong N, Li P, He H, Borio A, Wu Q, Lu S, Ding X, Cao Y, Xu Y, Gao W, Dong M, Ding J, Wang D-C, Zamyatina A, Shao F. 2018. Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature 561:122–126. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0066-2019
2019-08-16
2020-10-31

Abstract:

Bacterial metabolism represents the biochemical space that bacteria can manipulate to produce energy, reducing equivalents and building blocks for replication. Gram-positive pathogens, such as , show remarkable flexibility, which allows for exploitation of diverse biological niches from the soil to the intracytosolic space. Although the human host represents a potentially rich source for nutrient acquisition, competition for nutrients with the host and hostile host defenses can constrain bacterial metabolism by various mechanisms, including nutrient sequestration. Here, we review metabolism in the model Gram-positive bacterium, , and highlight pathways that enable the replication, survival, and virulence of this bacterial pathogen.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error