1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Staphylococcal Cell Wall

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Rita Sobral1, Alexander Tomasz2
  • Editors: Vincent A. Fischetti3, Richard P. Novick4, Joseph J. Ferretti5, Daniel A. Portnoy6, Miriam Braunstein7, Julian I. Rood8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal; 2: The Rockefeller University, New York, NY 10065; 3: The Rockefeller University, New York, NY; 4: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 5: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 6: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 7: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 8: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0068-2019
  • Received 11 April 2019 Accepted 19 April 2019 Published 19 July 2019
  • Alexander Tomasz, [email protected]
image of The Staphylococcal Cell Wall
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Staphylococcal Cell Wall, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0068-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0068-2019-2.gif
  • Abstract:

    Dating back to the 1960s, initial studies on the staphylococcal cell wall were driven by the need to clarify the mode of action of the first antibiotics and the resistance mechanisms developed by the bacteria. During the following decades, the elucidation of the biosynthetic path and primary composition of staphylococcal cell walls was propelled by advances in microbial cell biology, specifically, the introduction of high-resolution analytical techniques and molecular genetic approaches. The field of staphylococcal cell wall gradually gained its own significance as the complexity of its chemical structure and involvement in numerous cellular processes became evident, namely its versatile role in host interactions, coordination of cell division and environmental stress signaling.

    This chapter includes an updated description of the anatomy of staphylococcal cell walls, paying particular attention to information from the last decade, under four headings: high-resolution analysis of the peptidoglycan; variations in peptidoglycan composition; genetic determinants and enzymes in cell wall synthesis; and complex functions of cell walls. The latest contributions to a more precise picture of the staphylococcal cell envelope were possible due to recently developed state-of-the-art microscopy and spectroscopy techniques and to a wide combination of -omics approaches, that are allowing to obtain a more integrative view of this highly dynamic structure.

  • Citation: Sobral R, Tomasz A. 2019. The Staphylococcal Cell Wall. Microbiol Spectrum 7(4):GPP3-0068-2019. doi:10.1128/microbiolspec.GPP3-0068-2019.

References

1. Ghuysen JMRH. 1994. Bacterial Cell Wall. Elsevier Science, Amsterdam, The Netherlands.
2. Hakenbeck R, Haltje JV, Labischinski H. 1983. The Target of Penicillin. Walter de Gruyter, Berlin, Germany.
3. Moreau M, Richards JC, Fournier JM, Byrd RA, Karakawa WW, Vann WF. 1990. Structure of the type 5 capsular polysaccharide of Staphylococcus aureus. Carbohydr Res 201:285–297 http://dx.doi.org/10.1016/0008-6215(90)84244-O.
4. von Eiff C, Taylor KL, Mellmann A, Fattom AI, Friedrich AW, Peters G, Becker K. 2007. Distribution of capsular and surface polysaccharide serotypes of Staphylococcus aureus. Diagn Microbiol Infect Dis 58:297–302 http://dx.doi.org/10.1016/j.diagmicrobio.2007.01.016. [PubMed]
5. Sau S, Bhasin N, Wann ER, Lee JC, Foster TJ, Lee CY. 1997. The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology 143:2395–2405 http://dx.doi.org/10.1099/00221287-143-7-2395. [PubMed]
6. Sieradzki K, Leski T, Dick J, Borio L, Tomasz A. 2003. Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. J Clin Microbiol 41:1687–1693 http://dx.doi.org/10.1128/JCM.41.4.1687-1693.2003. [PubMed]
7. Cui L, Ma X, Sato K, Okuma K, Tenover FC, Mamizuka EM, Gemmell CG, Kim MN, Ploy MC, El-Solh N, Ferraz V, Hiramatsu K. 2003. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol 41:5–14 http://dx.doi.org/10.1128/JCM.41.1.5-14.2003. [PubMed]
8. Archibald AR. 1972. The chemistry of staphylococcal cell walls, p 75–109. In Cohen J (ed), The Staphylococci. Wiley Interscience, New York, NY.
9. Kojima N, Araki Y, Ito E. 1985. Structure of the linkage units between ribitol teichoic acids and peptidoglycan. J Bacteriol 161:299–306.
10. Boneca IG, Huang ZH, Gage DA, Tomasz A. 2000. Characterization of Staphylococcus aureus cell wall glycan strands, evidence for a new beta- N-acetylglucosaminidase activity. J Biol Chem 275:9910–9918 http://dx.doi.org/10.1074/jbc.275.14.9910. [PubMed]
11. de Jonge BL, Chang YS, Gage D, Tomasz A. 1992. Peptidoglycan composition in heterogeneous Tn 551 mutants of a methicillin-resistant Staphylococcus aureus strain. J Biol Chem 267:11255–11259.
12. Kern T, Giffard M, Hediger S, Amoroso A, Giustini C, Bui NK, Joris B, Bougault C, Vollmer W, Simorre JP. 2010. Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions. J Am Chem Soc 132:10911–10919 http://dx.doi.org/10.1021/ja104533w. [PubMed]
13. Xu N, Huang ZH, de Jonge BL, Gage DA. 1997. Structural characterization of peptidoglycan muropeptides by matrix-assisted laser desorption ionization mass spectrometry and postsource decay analysis. Anal Biochem 248:7–14 http://dx.doi.org/10.1006/abio.1997.2073. [PubMed]
14. Snowden MA, Perkins HR. 1990. Peptidoglycan cross-linking in Staphylococcus aureus. An apparent random polymerisation process. Eur J Biochem 191:373–377 http://dx.doi.org/10.1111/j.1432-1033.1990.tb19132.x. [PubMed]
15. de Jonge BL, Chang YS, Gage D, Tomasz A. 1992. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J Biol Chem 267:11248–11254.
16. Matias VR, Beveridge TJ. 2006. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J Bacteriol 188:1011–1021 http://dx.doi.org/10.1128/JB.188.3.1011-1021.2006. [PubMed]
17. Matias VR, Beveridge TJ. 2007. Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls. Mol Microbiol 64:195–206 http://dx.doi.org/10.1111/j.1365-2958.2007.05634.x. [PubMed]
18. Sharif S, Kim SJ, Labischinski H, Schaefer J. 2009. Characterization of peptidoglycan in fem-deletion mutants of methicillin-resistant Staphylococcus aureus by solid-state NMR. Biochemistry 48:3100–3108 http://dx.doi.org/10.1021/bi801750u. [PubMed]
19. Singh M, Chang J, Coffman L, Kim SJ. 2017. Hidden mode of action of glycopeptide antibiotics: inhibition of wall teichoic acid biosynthesis. J Phys Chem B 121:3925–3932 http://dx.doi.org/10.1021/acs.jpcb.7b00324. [PubMed]
20. Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC, Ferreira MT, Pereira PM, Veiga H, Kuru E, VanNieuwenhze MS, Brun YV, Filipe SR, Pinho MG. 2015. Cell shape dynamics during the staphylococcal cell cycle. Nat Commun 6:8055 http://dx.doi.org/10.1038/ncomms9055. [PubMed]
21. Turner RD, Ratcliffe EC, Wheeler R, Golestanian R, Hobbs JK, Foster SJ. 2010. Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nat Commun 1:26 http://dx.doi.org/10.1038/ncomms1025. [PubMed]
22. Wheeler R, Mesnage S, Boneca IG, Hobbs JK, Foster SJ. 2011. Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria. Mol Microbiol 82:1096–1109 http://dx.doi.org/10.1111/j.1365-2958.2011.07871.x. [PubMed]
23. Wheeler R, Turner RD, Bailey RG, Salamaga B, Mesnage S, Mohamad SA, Hayhurst EJ, Horsburgh M, Hobbs JK, Foster SJ. 2015. Bacterial cell enlargement requires control of cell wall stiffness mediated by peptidoglycan hydrolases. MBio 6:e00660 http://dx.doi.org/10.1128/mBio.00660-15. [PubMed]
24. Bischoff M, Roos M, Putnik J, Wada A, Glanzmann P, Giachino P, Vaudaux P, Berger-Bächi B. 2001. Involvement of multiple genetic loci in Staphylococcus aureus teicoplanin resistance. FEMS Microbiol Lett 194:77–82 http://dx.doi.org/10.1111/j.1574-6968.2001.tb09449.x. [PubMed]
25. Pfeltz RF, Singh VK, Schmidt JL, Batten MA, Baranyk CS, Nadakavukaren MJ, Jayaswal RK, Wilkinson BJ. 2000. Characterization of passage-selected vancomycin-resistant Staphylococcus aureus strains of diverse parental backgrounds. Antimicrob Agents Chemother 44:294–303 http://dx.doi.org/10.1128/AAC.44.2.294-303.2000. [PubMed]
26. Sieradzki K, Tomasz A. 1997. Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus. J Bacteriol 179:2557–2566 http://dx.doi.org/10.1128/jb.179.8.2557-2566.1997. [PubMed]
27. Sieradzki K, Tomasz A. 1999. Gradual alterations in cell wall structure and metabolism in vancomycin-resistant mutants of Staphylococcus aureus. J Bacteriol 181:7566–7570.
28. Sieradzki K, Pinho MG, Tomasz A. 1999. Inactivated pbp4 in highly glycopeptide-resistant laboratory mutants of Staphylococcus aureus. J Biol Chem 274:18942–18946 http://dx.doi.org/10.1074/jbc.274.27.18942. [PubMed]
29. Komatsuzawa H, Ohta K, Yamada S, Ehlert K, Labischinski H, Kajimura J, Fujiwara T, Sugai M. 2002. Increased glycan chain length distribution and decreased susceptibility to moenomycin in a vancomycin-resistant Staphylococcus aureus mutant. Antimicrob Agents Chemother 46:75–81 http://dx.doi.org/10.1128/AAC.46.1.75-81.2002. [PubMed]
30. Boyle-Vavra S, Carey RB, Daum RS. 2001. Development of vancomycin and lysostaphin resistance in a methicillin-resistant Staphylococcus aureus isolate. J Antimicrob Chemother 48:617–625 http://dx.doi.org/10.1093/jac/48.5.617. [PubMed]
31. Boyle-Vavra S, Labischinski H, Ebert CC, Ehlert K, Daum RS. 2001. A spectrum of changes occurs in peptidoglycan composition of glycopeptide-intermediate clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 45:280–287 http://dx.doi.org/10.1128/AAC.45.1.280-287.2001. [PubMed]
32. Sieradzki K, Tomasz A. 2003. Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J Bacteriol 185:7103–7110 http://dx.doi.org/10.1128/JB.185.24.7103-7110.2003. [PubMed]
33. Chen CJ, Lin MH, Shu JC, Lu JJ. 2014. Reduced susceptibility to vancomycin in isogenic Staphylococcus aureus strains of sequence type 59: tracking evolution and identifying mutations by whole-genome sequencing. J Antimicrob Chemother 69:349–354 http://dx.doi.org/10.1093/jac/dkt395. [PubMed]
34. Gardete S, Kim C, Hartmann BM, Mwangi M, Roux CM, Dunman PM, Chambers HF, Tomasz A. 2012. Genetic pathway in acquisition and loss of vancomycin resistance in a methicillin resistant Staphylococcus aureus (MRSA) strain of clonal type USA300. PLoS Pathog 8:e1002505 http://dx.doi.org/10.1371/journal.ppat.1002505. [PubMed]
35. Howden BP, McEvoy CR, Allen DL, Chua K, Gao W, Harrison PF, Bell J, Coombs G, Bennett-Wood V, Porter JL, Robins-Browne R, Davies JK, Seemann T, Stinear TP. 2011. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog 7:e1002359 http://dx.doi.org/10.1371/journal.ppat.1002359. [PubMed]
36. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, Bruce D, Rubin E, Myers E, Siggia ED, Tomasz A. 2007. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A 104:9451–9456 http://dx.doi.org/10.1073/pnas.0609839104. [PubMed]
37. Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K. 2003. Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49:807–821 http://dx.doi.org/10.1046/j.1365-2958.2003.03599.x. [PubMed]
38. Howden BP, Stinear TP, Allen DL, Johnson PD, Ward PB, Davies JK. 2008. Genomic analysis reveals a point mutation in the two-component sensor gene graS that leads to intermediate vancomycin resistance in clinical Staphylococcus aureus. Antimicrob Agents Chemother 52:3755–3762 http://dx.doi.org/10.1128/AAC.01613-07. [PubMed]
39. Neoh HM, Cui L, Yuzawa H, Takeuchi F, Matsuo M, Hiramatsu K. 2008. Mutated response regulator graR is responsible for phenotypic conversion of Staphylococcus aureus from heterogeneous vancomycin-intermediate resistance to vancomycin-intermediate resistance. Antimicrob Agents Chemother 52:45–53 http://dx.doi.org/10.1128/AAC.00534-07. [PubMed]
40. Shoji M, Cui L, Iizuka R, Komoto A, Neoh HM, Watanabe Y, Hishinuma T, Hiramatsu K. 2011. walK and clpP mutations confer reduced vancomycin susceptibility in Staphylococcus aureus. Antimicrob Agents Chemother 55:3870–3881 http://dx.doi.org/10.1128/AAC.01563-10. [PubMed]
41. Watanabe Y, Cui L, Katayama Y, Kozue K, Hiramatsu K. 2011. Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. J Clin Microbiol 49:2680–2684 http://dx.doi.org/10.1128/JCM.02144-10. [PubMed]
42. Vidaillac C, Gardete S, Tewhey R, Sakoulas G, Kaatz GW, Rose WE, Tomasz A, Rybak MJ. 2013. Alternative mutational pathways to intermediate resistance to vancomycin in methicillin-resistant Staphylococcus aureus. J Infect Dis 208:67–74 http://dx.doi.org/10.1093/infdis/jit127. [PubMed]
43. Gardete S, Tomasz A. 2014. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest 124:2836–2840 http://dx.doi.org/10.1172/JCI68834. [PubMed]
44. McGuinness WA, Malachowa N, DeLeo FR. 2017. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med 90:269–281.
45. Severin A, Tabei K, Tenover F, Chung M, Clarke N, Tomasz A. 2004. High level oxacillin and vancomycin resistance and altered cell wall composition in Staphylococcus aureus carrying the staphylococcal mecA and the enterococcal vanA gene complex. J Biol Chem 279:3398–3407 http://dx.doi.org/10.1074/jbc.M309593200. [PubMed]
46. Severin A, Wu SW, Tabei K, Tomasz A. 2004. Penicillin-binding protein 2 is essential for expression of high-level vancomycin resistance and cell wall synthesis in vancomycin-resistant Staphylococcus aureus carrying the enterococcal vanA gene complex. Antimicrob Agents Chemother 48:4566–4573 http://dx.doi.org/10.1128/AAC.48.12.4566-4573.2004. [PubMed]
47. Walters MS, Eggers P, Albrecht V, Travis T, Lonsway D, Hovan G, Taylor D, Rasheed K, Limbago B, Kallen A. 2015. Vancomycin-resistant Staphylococcus aureus - Delaware, 2015. MMWR Morb Mortal Wkly Rep 64:1056 http://dx.doi.org/10.15585/mmwr.mm6437a6. [PubMed]
48. Matsuo M, Cui L, Kim J, Hiramatsu K. 2013. Comprehensive identification of mutations responsible for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)-to-VISA conversion in laboratory-generated VISA strains derived from hVISA clinical strain Mu3. Antimicrob Agents Chemother 57:5843–5853 http://dx.doi.org/10.1128/AAC.00425-13. [PubMed]
49. Yoo JI, Kim JW, Kang GS, Kim HS, Yoo JS, Lee YS. 2013. Prevalence of amino acid changes in the yvqF, vraSR, graSR, and tcaRAB genes from vancomycin intermediate resistant Staphylococcus aureus. J Microbiol 51:160–165 http://dx.doi.org/10.1007/s12275-013-3088-7. [PubMed]
50. Georgopapadakou NH, Dix BA, Mauriz YR. 1986. Possible physiological functions of penicillin-binding proteins in Staphylococcus aureus. Antimicrob Agents Chemother 29:333–336 http://dx.doi.org/10.1128/AAC.29.2.333. [PubMed]
51. Reed P, Atilano ML, Alves R, Hoiczyk E, Sher X, Reichmann NT, Pereira PM, Roemer T, Filipe SR, Pereira-Leal JB, Ligoxygakis P, Pinho MG. 2015. Staphylococcus aureus survives with a minimal peptidoglycan synthesis machine but sacrifices virulence and antibiotic resistance. PLoS Pathog 11:e1004891 http://dx.doi.org/10.1371/journal.ppat.1004891. [PubMed]
52. Wada A, Watanabe H. 1998. Penicillin-binding protein 1 of Staphylococcus aureus is essential for growth. J Bacteriol 180:2759–2765.
53. Pereira SF, Henriques AO, Pinho MG, de Lencastre H, Tomasz A. 2007. Role of PBP1 in cell division of Staphylococcus aureus. J Bacteriol 189:3525–3531 http://dx.doi.org/10.1128/JB.00044-07. [PubMed]
54. Pereira SF, Henriques AO, Pinho MG, de Lencastre H, Tomasz A. 2009. Evidence for a dual role of PBP1 in the cell division and cell separation of Staphylococcus aureus. Mol Microbiol 72:895–904 http://dx.doi.org/10.1111/j.1365-2958.2009.06687.x. [PubMed]
55. Łeski TA, Tomasz A. 2005. Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus: evidence for the cooperative functioning of PBP2, PBP4, and PBP2A. J Bacteriol 187:1815–1824 http://dx.doi.org/10.1128/JB.187.5.1815-1824.2005. [PubMed]
56. Pinho MG, Filipe SR, de Lencastre H, Tomasz A. 2001. Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus. J Bacteriol 183:6525–6531 http://dx.doi.org/10.1128/JB.183.22.6525-6531.2001. [PubMed]
57. Pinho MG, de Lencastre H, Tomasz A. 2001. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc Natl Acad Sci U S A 98:10886–10891 http://dx.doi.org/10.1073/pnas.191260798. [PubMed]
58. Tomasz A, Drugeon HB, de Lencastre HM, Jabes D, McDougall L, Bille J. 1989. New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob Agents Chemother 33:1869–1874 http://dx.doi.org/10.1128/AAC.33.11.1869. [PubMed]
59. Srisuknimit V, Qiao Y, Schaefer K, Kahne D, Walker S. 2017. Peptidoglycan cross-linking preferences of Staphylococcus aureus penicillin-binding proteins have implications for treating MRSA infections. J Am Chem Soc 139:9791–9794 http://dx.doi.org/10.1021/jacs.7b04881. [PubMed]
60. Pinho MG, de Lencastre H, Tomasz A. 2000. Cloning, characterization, and inactivation of the gene pbpC, encoding penicillin-binding protein 3 of Staphylococcus aureus. J Bacteriol 182:1074–1079 http://dx.doi.org/10.1128/JB.182.4.1074-1079.2000. [PubMed]
61. Henze UU, Berger-Bächi B. 1996. Penicillin-binding protein 4 overproduction increases beta-lactam resistance in Staphylococcus aureus. Antimicrob Agents Chemother 40:2121–2125 http://dx.doi.org/10.1128/AAC.40.9.2121. [PubMed]
62. Qiao Y, Lebar MD, Schirner K, Schaefer K, Tsukamoto H, Kahne D, Walker S. 2014. Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. J Am Chem Soc 136:14678–14681 http://dx.doi.org/10.1021/ja508147s. [PubMed]
63. Memmi G, Filipe SR, Pinho MG, Fu Z, Cheung A. 2008. Staphylococcus aureus PBP4 is essential for beta-lactam resistance in community-acquired methicillin-resistant strains. Antimicrob Agents Chemother 52:3955–3966 http://dx.doi.org/10.1128/AAC.00049-08. [PubMed]
64. Loskill P, Pereira PM, Jung P, Bischoff M, Herrmann M, Pinho MG, Jacobs K. 2014. Reduction of the peptidoglycan crosslinking causes a decrease in stiffness of the Staphylococcus aureus cell envelope. Biophys J 107:1082–1089 http://dx.doi.org/10.1016/j.bpj.2014.07.029. [PubMed]
65. Lim D, Strynadka NC. 2002. Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol 9:870–876. [PubMed]
66. Fuda C, Hesek D, Lee M, Morio K, Nowak T, Mobashery S. 2005. Activation for catalysis of penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus by bacterial cell wall. J Am Chem Soc 127:2056–2057 http://dx.doi.org/10.1021/ja0434376. [PubMed]
67. Mahasenan KV, Molina R, Bouley R, Batuecas MT, Fisher JF, Hermoso JA, Chang M, Mobashery S. 2017. Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, allosteric communication network and enablement of catalysis. J Am Chem Soc 139:2102–2110 http://dx.doi.org/10.1021/jacs.6b12565. [PubMed]
68. Otero LH, Rojas-Altuve A, Llarrull LI, Carrasco-López C, Kumarasiri M, Lastochkin E, Fishovitz J, Dawley M, Hesek D, Lee M, Johnson JW, Fisher JF, Chang M, Mobashery S, Hermoso JA. 2013. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc Natl Acad Sci U S A 110:16808–16813 http://dx.doi.org/10.1073/pnas.1300118110. [PubMed]
69. Antignac A, Tomasz A. 2009. Reconstruction of the phenotypes of methicillin-resistant Staphylococcus aureus by replacement of the staphylococcal cassette chromosome mec with a plasmid-borne copy of Staphylococcus sciuri pbpD gene. Antimicrob Agents Chemother 53:435–441 http://dx.doi.org/10.1128/AAC.01099-08. [PubMed]
70. Couto I, Wu SW, Tomasz A, de Lencastre H. 2003. Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to the species. J Bacteriol 185:645–653 http://dx.doi.org/10.1128/JB.185.2.645-653.2003. [PubMed]
71. Rolo J, Worning P, Nielsen JB, Bowden R, Bouchami O, Damborg P, Guardabassi L, Perreten V, Tomasz A, Westh H, de Lencastre H, Miragaia M. 2017. Evolutionary origin of the staphylococcal cassette chromosome mec (SCC mec). Antimicrob Agents Chemother 61:e02302-16 http://dx.doi.org/10.1128/AAC.02302-16. [PubMed]
72. Wu SW, de Lencastre H, Tomasz A. 2001. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J Bacteriol 183:2417–2424 http://dx.doi.org/10.1128/JB.183.8.2417-2424.2001. [PubMed]
73. Rolo J, Worning P, Boye Nielsen J, Sobral R, Bowden R, Bouchami O, Damborg P, Guardabassi L, Perreten V, Westh H, Tomasz A, de Lencastre H, Miragaia M. 2017. Evidence for the evolutionary steps leading to mecA-mediated β-lactam resistance in staphylococci. PLoS Genet 13:e1006674 http://dx.doi.org/10.1371/journal.pgen.1006674. [PubMed]
74. de Lencastre H, de Jonge BL, Matthews PR, Tomasz A. 1994. Molecular aspects of methicillin resistance in Staphylococcus aureus. J Antimicrob Chemother 33:7–24 http://dx.doi.org/10.1093/jac/33.1.7. [PubMed]
75. de Lencastre H, Tomasz A. 1994. Reassessment of the number of auxiliary genes essential for expression of high-level methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 38:2590–2598 http://dx.doi.org/10.1128/AAC.38.11.2590. [PubMed]
76. De Lencastre H, Wu SW, Pinho MG, Ludovice AM, Filipe S, Gardete S, Sobral R, Gill S, Chung M, Tomasz A. 1999. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb Drug Resist 5:163–175 http://dx.doi.org/10.1089/mdr.1999.5.163. [PubMed]
77. Roemer T, Schneider T, Pinho MG. 2013. Auxiliary factors: a chink in the armor of MRSA resistance to β-lactam antibiotics. Curr Opin Microbiol 16:538–548 http://dx.doi.org/10.1016/j.mib.2013.06.012. [PubMed]
78. Berger-Bächi B. 1983. Insertional inactivation of staphylococcal methicillin resistance by Tn 551. J Bacteriol 154:479–487.
79. Figueiredo TA, Sobral RG, Ludovice AM, Almeida JM, Bui NK, Vollmer W, de Lencastre H, Tomasz A. 2012. Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus. PLoS Pathog 8:e1002508 http://dx.doi.org/10.1371/journal.ppat.1002508. [PubMed]
80. Jolly L, Wu S, van Heijenoort J, de Lencastre H, Mengin-Lecreulx D, Tomasz A. 1997. The femR315 gene from Staphylococcus aureus, the interruption of which results in reduced methicillin resistance, encodes a phosphoglucosamine mutase. J Bacteriol 179:5321–5325 http://dx.doi.org/10.1128/jb.179.17.5321-5325.1997. [PubMed]
81. Komatsuzawa H, Fujiwara T, Nishi H, Yamada S, Ohara M, McCallum N, Berger-Bächi B, Sugai M. 2004. The gate controlling cell wall synthesis in Staphylococcus aureus. Mol Microbiol 53:1221–1231 http://dx.doi.org/10.1111/j.1365-2958.2004.04200.x. [PubMed]
82. Ludovice AM, Wu SW, de Lencastre H. 1998. Molecular cloning and DNA sequencing of the Staphylococcus aureus UDP- N-acetylmuramyl tripeptide synthetase ( murE) gene, essential for the optimal expression of methicillin resistance. Microb Drug Resist 4:85–90 http://dx.doi.org/10.1089/mdr.1998.4.85. [PubMed]
83. Rohrer S, Berger-Bächi B. 2003. FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and beta-lactam resistance in Gram-positive cocci. Antimicrob Agents Chemother 47:837–846 http://dx.doi.org/10.1128/AAC.47.3.837-846.2003. [PubMed]
84. Sobral RG, Ludovice AM, Gardete S, Tabei K, De Lencastre H, Tomasz A. 2003. Normally functioning murF is essential for the optimal expression of methicillin resistance in Staphylococcus aureus. Microb Drug Resist 9:231–241 http://dx.doi.org/10.1089/107662903322286436. [PubMed]
85. Wu S, de Lencastre H, Sali A, Tomasz A. 1996. A phosphoglucomutase-like gene essential for the optimal expression of methicillin resistance in Staphylococcus aureus: molecular cloning and DNA sequencing. Microb Drug Resist 2:277–286 http://dx.doi.org/10.1089/mdr.1996.2.277. [PubMed]
86. Lee SH, Jarantow LW, Wang H, Sillaots S, Cheng H, Meredith TC, Thompson J, Roemer T. 2011. Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics. Chem Biol 18:1379–1389 http://dx.doi.org/10.1016/j.chembiol.2011.08.015. [PubMed]
87. Aedo S, Tomasz A. 2016. Role of the stringent stress response in the antibiotic resistance phenotype of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 60:2311–2317 http://dx.doi.org/10.1128/AAC.02697-15. [PubMed]
88. Kim C, Mwangi M, Chung M, Milheiriço C, de Lencastre H, Tomasz A. 2013. The mechanism of heterogeneous beta-lactam resistance in MRSA: key role of the stringent stress response. PLoS One 8:e82814 http://dx.doi.org/10.1371/journal.pone.0082814. [PubMed]
89. Mwangi MM, Kim C, Chung M, Tsai J, Vijayadamodar G, Benitez M, Jarvie TP, Du L, Tomasz A. 2013. Whole-genome sequencing reveals a link between β-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. Microb Drug Resist 19:153–159 http://dx.doi.org/10.1089/mdr.2013.0053. [PubMed]
90. Srivatsan A, Wang JD. 2008. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol 11:100–105 http://dx.doi.org/10.1016/j.mib.2008.02.001. [PubMed]
91. Dordel J, Kim C, Chung M, Pardos de la Gándara M, Holden MT, Parkhill J, de Lencastre H, Bentley SD, Tomasz A. 2014. Novel determinants of antibiotic resistance: identification of mutated loci in highly methicillin-resistant subpopulations of methicillin-resistant Staphylococcus aureus. MBio 5:e01000 http://dx.doi.org/10.1128/mBio.01000-13. [PubMed]
92. Kim CK, Milheiriço C, de Lencastre H, Tomasz A. 2017. Antibiotic resistance as a stress response: recovery of high-level oxacillin resistance in methicillin-resistant Staphylococcus aureus “auxiliary” ( fem) mutants by induction of the stringent stress response. Antimicrob Agents Chemother 61:e00313-17 http://dx.doi.org/10.1128/AAC.00313-17. [PubMed]
93. Rohrer S, Ehlert K, Tschierske M, Labischinski H, Berger-Bächi B. 1999. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Proc Natl Acad Sci U S A 96:9351–9356 http://dx.doi.org/10.1073/pnas.96.16.9351. [PubMed]
94. Rohrer S, Berger-Bächi B. 2003. Application of a bacterial two-hybrid system for the analysis of protein-protein interactions between FemABX family proteins. Microbiology 149:2733–2738 http://dx.doi.org/10.1099/mic.0.26315-0. [PubMed]
95. Schneider T, Senn MM, Berger-Bächi B, Tossi A, Sahl HG, Wiedemann I. 2004. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Mol Microbiol 53:675–685 http://dx.doi.org/10.1111/j.1365-2958.2004.04149.x. [PubMed]
96. VanNieuwenhze MS, Mauldin SC, Zia-Ebrahimi M, Winger BE, Hornback WJ, Saha SL, Aikins JA, Blaszczak LC. 2002. The first total synthesis of lipid II: the final monomeric intermediate in bacterial cell wall biosynthesis. J Am Chem Soc 124:3656–3660 http://dx.doi.org/10.1021/ja017386d. [PubMed]
97. Hübscher J, Jansen A, Kotte O, Schäfer J, Majcherczyk PA, Harris LG, Bierbaum G, Heinemann M, Berger-Bächi B. 2007. Living with an imperfect cell wall: compensation of femAB inactivation in Staphylococcus aureus. BMC Genomics 8:307 http://dx.doi.org/10.1186/1471-2164-8-307. [PubMed]
98. Bera A, Biswas R, Herbert S, Götz F. 2006. The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect Immun 74:4598–4604 http://dx.doi.org/10.1128/IAI.00301-06. [PubMed]
99. Bera A, Biswas R, Herbert S, Kulauzovic E, Weidenmaier C, Peschel A, Götz F. 2007. Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus. J Bacteriol 189:280–283 http://dx.doi.org/10.1128/JB.01221-06. [PubMed]
100. Bera A, Herbert S, Jakob A, Vollmer W, Götz F. 2005. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55:778–787 http://dx.doi.org/10.1111/j.1365-2958.2004.04446.x. [PubMed]
101. Pushkaran AC, Nataraj N, Nair N, Götz F, Biswas R, Mohan CG. 2015. Understanding the structure-function relationship of lysozyme resistance in Staphylococcus aureus by peptidoglycan O-acetylation using molecular docking, dynamics, and lysis assay. J Chem Inf Model 55:760–770 http://dx.doi.org/10.1021/ci500734k. [PubMed]
102. Münch D, Roemer T, Lee SH, Engeser M, Sahl HG, Schneider T. 2012. Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog 8:e1002509 http://dx.doi.org/10.1371/journal.ppat.1002509. [PubMed]
103. Figueiredo TA, Ludovice AM, Sobral RG. 2014. Contribution of peptidoglycan amidation to beta-lactam and lysozyme resistance in different genetic lineages of Staphylococcus aureus. Microb Drug Resist 20:238–249 http://dx.doi.org/10.1089/mdr.2014.0042. [PubMed]
104. Sugai M, Fujiwara T, Ohta K, Komatsuzawa H, Ohara M, Suginaka H. 1997. epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus. J Bacteriol 179:4311–4318 http://dx.doi.org/10.1128/jb.179.13.4311-4318.1997. [PubMed]
105. Boyle-Vavra S, Yin S, Challapalli M, Daum RS. 2003. Transcriptional induction of the penicillin-binding protein 2 gene in Staphylococcus aureus by cell wall-active antibiotics oxacillin and vancomycin. Antimicrob Agents Chemother 47:1028–1036 http://dx.doi.org/10.1128/AAC.47.3.1028-1036.2003. [PubMed]
106. Muthaiyan A, Silverman JA, Jayaswal RK, Wilkinson BJ. 2008. Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrob Agents Chemother 52:980–990 http://dx.doi.org/10.1128/AAC.01121-07. [PubMed]
107. O’Neill AJ, Lindsay JA, Gould K, Hinds J, Chopra I. 2009. Transcriptional signature following inhibition of early-stage cell wall biosynthesis in Staphylococcus aureus. Antimicrob Agents Chemother 53:1701–1704 http://dx.doi.org/10.1128/AAC.01309-08. [PubMed]
108. Petek M, Baebler S, Kuzman D, Rotter A, Podlesek Z, Gruden K, Ravnikar M, Urleb U. 2010. Revealing fosfomycin primary effect on Staphylococcus aureus transcriptome: modulation of cell envelope biosynthesis and phosphoenolpyruvate induced starvation. BMC Microbiol 10:159 http://dx.doi.org/10.1186/1471-2180-10-159. [PubMed]
109. Pietiäinen M, François P, Hyyryläinen HL, Tangomo M, Sass V, Sahl HG, Schrenzel J, Kontinen VP. 2009. Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance. BMC Genomics 10:429 http://dx.doi.org/10.1186/1471-2164-10-429. [PubMed]
110. Utaida S, Dunman PM, Macapagal D, Murphy E, Projan SJ, Singh VK, Jayaswal RK, Wilkinson BJ. 2003. Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology 149:2719–2732 http://dx.doi.org/10.1099/mic.0.26426-0. [PubMed]
111. Delauné A, Dubrac S, Blanchet C, Poupel O, Mäder U, Hiron A, Leduc A, Fitting C, Nicolas P, Cavaillon JM, Adib-Conquy M, Msadek T. 2012. The WalKR system controls major staphylococcal virulence genes and is involved in triggering the host inflammatory response. Infect Immun 80:3438–3453 http://dx.doi.org/10.1128/IAI.00195-12. [PubMed]
112. Falord M, Mäder U, Hiron A, Débarbouillé M, Msadek T. 2011. Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS One 6:e21323 http://dx.doi.org/10.1371/journal.pone.0021323. [PubMed]
113. Gardete S, Wu SW, Gill S, Tomasz A. 2006. Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus. Antimicrob Agents Chemother 50:3424–3434 http://dx.doi.org/10.1128/AAC.00356-06. [PubMed]
114. Sobral RG, Jones AE, Des Etages SG, Dougherty TJ, Peitzsch RM, Gaasterland T, Ludovice AM, de Lencastre H, Tomasz A. 2007. Extensive and genome-wide changes in the transcription profile of Staphylococcus aureus induced by modulating the transcription of the cell wall synthesis gene murF. J Bacteriol 189:2376–2391 http://dx.doi.org/10.1128/JB.01439-06. [PubMed]
115. Dengler V, Meier PS, Heusser R, Berger-Bächi B, McCallum N. 2011. Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics. BMC Microbiol 11:16 http://dx.doi.org/10.1186/1471-2180-11-16. [PubMed]
116. Boyle-Vavra S, Yin S, Jo DS, Montgomery CP, Daum RS. 2013. VraT/YvqF is required for methicillin resistance and activation of the VraSR regulon in Staphylococcus aureus. Antimicrob Agents Chemother 57:83–95 http://dx.doi.org/10.1128/AAC.01651-12. [PubMed]
117. Cui L, Neoh HM, Shoji M, Hiramatsu K. 2009. Contribution of vraSR and graSR point mutations to vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 53:1231–1234 http://dx.doi.org/10.1128/AAC.01173-08. [PubMed]
118. Hu J, Zhang X, Liu X, Chen C, Sun B. 2015. Mechanism of reduced vancomycin susceptibility conferred by walK mutation in community-acquired methicillin-resistant Staphylococcus aureus strain MW2. Antimicrob Agents Chemother 59:1352–1355 http://dx.doi.org/10.1128/AAC.04290-14. [PubMed]
119. Yin S, Daum RS, Boyle-Vavra S. 2006. VraSR two-component regulatory system and its role in induction of pbp2 and vraSR expression by cell wall antimicrobials in Staphylococcus aureus. Antimicrob Agents Chemother 50:336–343 http://dx.doi.org/10.1128/AAC.50.1.336-343.2006. [PubMed]
120. Belcheva A, Golemi-Kotra D. 2008. A close-up view of the VraSR two-component system. A mediator of Staphylococcus aureus response to cell wall damage. J Biol Chem 283:12354–12364 http://dx.doi.org/10.1074/jbc.M710010200. [PubMed]
121. Belcheva A, Verma V, Korenevsky A, Fridman M, Kumar K, Golemi-Kotra D. 2012. Roles of DNA sequence and sigma A factor in transcription of the vraSR operon. J Bacteriol 194:61–71 http://dx.doi.org/10.1128/JB.06143-11. [PubMed]
122. Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Götz F. 2007. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog 3:e102 http://dx.doi.org/10.1371/journal.ppat.0030102. [PubMed]
123. Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M. 2007. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66:1136–1147 http://dx.doi.org/10.1111/j.1365-2958.2007.05986.x. [PubMed]
124. Falord M, Karimova G, Hiron A, Msadek T. 2012. GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob Agents Chemother 56:1047–1058 http://dx.doi.org/10.1128/AAC.05054-11. [PubMed]
125. Dubrac S, Boneca IG, Poupel O, Msadek T. 2007. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol 189:8257–8269 http://dx.doi.org/10.1128/JB.00645-07. [PubMed]
126. Delaune A, Poupel O, Mallet A, Coic YM, Msadek T, Dubrac S. 2011. Peptidoglycan crosslinking relaxation plays an important role in Staphylococcus aureus WalKR-dependent cell viability. PLoS One 6:e17054 http://dx.doi.org/10.1371/journal.pone.0017054. [PubMed]
127. Reed P, Veiga H, Jorge AM, Terrak M, Pinho MG. 2011. Monofunctional transglycosylases are not essential for Staphylococcus aureus cell wall synthesis. J Bacteriol 193:2549–2556 http://dx.doi.org/10.1128/JB.01474-10. [PubMed]
128. Wang QM, Peery RB, Johnson RB, Alborn WE, Yeh WK, Skatrud PL. 2001. Identification and characterization of a monofunctional glycosyltransferase from Staphylococcus aureus. J Bacteriol 183:4779–4785 http://dx.doi.org/10.1128/JB.183.16.4779-4785.2001. [PubMed]
129. Terrak M, Nguyen-Distèche M. 2006. Kinetic characterization of the monofunctional glycosyltransferase from Staphylococcus aureus. J Bacteriol 188:2528–2532 http://dx.doi.org/10.1128/JB.188.7.2528-2532.2006. [PubMed]
130. Becker S, Frankel MB, Schneewind O, Missiakas D. 2014. Release of protein A from the cell wall of Staphylococcus aureus. Proc Natl Acad Sci U S A 111:1574–1579 http://dx.doi.org/10.1073/pnas.1317181111. [PubMed]
131. Dijkstra AJ, Keck W. 1996. Peptidoglycan as a barrier to transenvelope transport. J Bacteriol 178:5555–5562 http://dx.doi.org/10.1128/jb.178.19.5555-5562.1996. [PubMed]
132. Sieradzki K, Tomasz A. 1998. Suppression of glycopeptide resistance in a highly teicoplanin-resistant mutant of Staphylococcus aureus by transposon inactivation of genes involved in cell wall synthesis. Microb Drug Resist 4:159–168 http://dx.doi.org/10.1089/mdr.1998.4.159. [PubMed]
133. Biswas R, Voggu L, Simon UK, Hentschel P, Thumm G, Götz F. 2006. Activity of the major staphylococcal autolysin Atl. FEMS Microbiol Lett 259:260–268 http://dx.doi.org/10.1111/j.1574-6968.2006.00281.x. [PubMed]
134. Oshida T, Sugai M, Komatsuzawa H, Hong YM, Suginaka H, Tomasz A. 1995. A Staphylococcus aureus autolysin that has an N-acetylmuramoyl- l-alanine amidase domain and an endo-beta- N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci U S A 92:285–289 http://dx.doi.org/10.1073/pnas.92.1.285. [PubMed]
135. Yamada S, Sugai M, Komatsuzawa H, Nakashima S, Oshida T, Matsumoto A, Suginaka H. 1996. An autolysin ring associated with cell separation of Staphylococcus aureus. J Bacteriol 178:1565–1571 http://dx.doi.org/10.1128/jb.178.6.1565-1571.1996. [PubMed]
136. Baba T, Schneewind O. 1998. Targeting of muralytic enzymes to the cell division site of Gram-positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus. EMBO J 17:4639–4646 http://dx.doi.org/10.1093/emboj/17.16.4639. [PubMed]
137. Zoll S, Schlag M, Shkumatov AV, Rautenberg M, Svergun DI, Götz F, Stehle T. 2012. Ligand-binding properties and conformational dynamics of autolysin repeat domains in staphylococcal cell wall recognition. J Bacteriol 194:3789–3802 http://dx.doi.org/10.1128/JB.00331-12. [PubMed]
138. Schlag M, Biswas R, Krismer B, Kohler T, Zoll S, Yu W, Schwarz H, Peschel A, Götz F. 2010. Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol Microbiol 75:864–873 http://dx.doi.org/10.1111/j.1365-2958.2009.07007.x. [PubMed]
139. Sugai M, Komatsuzawa H, Akiyama T, Hong YM, Oshida T, Miyake Y, Yamaguchi T, Suginaka H. 1995. Identification of endo-beta- N-acetylglucosaminidase and N-acetylmuramyl- l-alanine amidase as cluster-dispersing enzymes in Staphylococcus aureus. J Bacteriol 177:1491–1496 http://dx.doi.org/10.1128/jb.177.6.1491-1496.1995. [PubMed]
140. Sugai M, Yamada S, Nakashima S, Komatsuzawa H, Matsumoto A, Oshida T, Suginaka H. 1997. Localized perforation of the cell wall by a major autolysin: atl gene products and the onset of penicillin-induced lysis of Staphylococcus aureus. J Bacteriol 179:2958–2962 http://dx.doi.org/10.1128/jb.179.9.2958-2962.1997. [PubMed]
141. Kajimura J, Fujiwara T, Yamada S, Suzawa Y, Nishida T, Oyamada Y, Hayashi I, Yamagishi J, Komatsuzawa H, Sugai M. 2005. Identification and molecular characterization of an N-acetylmuramyl- l-alanine amidase Sle1 involved in cell separation of Staphylococcus aureus. Mol Microbiol 58:1087–1101 http://dx.doi.org/10.1111/j.1365-2958.2005.04881.x. [PubMed]
142. Boneca IG, Xu N, Gage DA, de Jonge BL, Tomasz A. 1997. Structural characterization of an abnormally cross-linked muropeptide dimer that is accumulated in the peptidoglycan of methicillin- and cefotaxime-resistant mutants of Staphylococcus aureus. J Biol Chem 272:29053–29059 http://dx.doi.org/10.1074/jbc.272.46.29053. [PubMed]
143. Antignac A, Sieradzki K, Tomasz A. 2007. Perturbation of cell wall synthesis suppresses autolysis in Staphylococcus aureus: evidence for coregulation of cell wall synthetic and hydrolytic enzymes. J Bacteriol 189:7573–7580 http://dx.doi.org/10.1128/JB.01048-07. [PubMed]
144. Pinho MG, Errington J. 2003. Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Mol Microbiol 50:871–881 http://dx.doi.org/10.1046/j.1365-2958.2003.03719.x. [PubMed]
145. Pinho MG, Errington J. 2005. Recruitment of penicillin-binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates. Mol Microbiol 55:799–807 http://dx.doi.org/10.1111/j.1365-2958.2004.04420.x. [PubMed]
146. Atilano ML, Pereira PM, Yates J, Reed P, Veiga H, Pinho MG, Filipe SR. 2010. Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus. Proc Natl Acad Sci U S A 107:18991–18996 http://dx.doi.org/10.1073/pnas.1004304107. [PubMed]
147. Tzagoloff H, Novick R. 1977. Geometry of cell division in Staphylococcus aureus. J Bacteriol 129:343–350.
148. Turner RD, Vollmer W, Foster SJ. 2014. Different walls for rods and balls: the diversity of peptidoglycan. Mol Microbiol 91:862–874 http://dx.doi.org/10.1111/mmi.12513. [PubMed]
149. Liu ZQ, Deng GM, Foster S, Tarkowski A. 2001. Staphylococcal peptidoglycans induce arthritis. Arthritis Res 3:375–380 http://dx.doi.org/10.1186/ar330. [PubMed]
150. Shimada T, Park BG, Wolf AJ, Brikos C, Goodridge HS, Becker CA, Reyes CN, Miao EA, Aderem A, Götz F, Liu GY, Underhill DM. 2010. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. Cell Host Microbe 7:38–49 http://dx.doi.org/10.1016/j.chom.2009.12.008. [PubMed]
151. Callewaert L, Michiels CW. 2010. Lysozymes in the animal kingdom. J Biosci 35:127–160 http://dx.doi.org/10.1007/s12038-010-0015-5. [PubMed]
152. Baranwal G, Mohammad M, Jarneborn A, Reddy BR, Golla A, Chakravarty S, Biswas L, Götz F, Shankarappa S, Jin T, Biswas R. 2017. Impact of cell wall peptidoglycan O-acetylation on the pathogenesis of Staphylococcus aureus in septic arthritis. Int J Med Microbiol 307:388–397 http://dx.doi.org/10.1016/j.ijmm.2017.08.002. [PubMed]
153. Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KP, van Strijp JA. 2001. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193:1067–1076 http://dx.doi.org/10.1084/jem.193.9.1067. [PubMed]
154. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F. 1999. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410 http://dx.doi.org/10.1074/jbc.274.13.8405. [PubMed]
155. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872 http://dx.doi.org/10.1074/jbc.C200651200. [PubMed]
156. Müller-Anstett MA, Müller P, Albrecht T, Nega M, Wagener J, Gao Q, Kaesler S, Schaller M, Biedermann T, Götz F. 2010. Staphylococcal peptidoglycan co-localizes with Nod2 and TLR2 and activates innate immune response via both receptors in primary murine keratinocytes. PLoS One 5:e13153 http://dx.doi.org/10.1371/journal.pone.0013153. [PubMed]
157. Guan R, Mariuzza RA. 2007. Peptidoglycan recognition proteins of the innate immune system. Trends Microbiol 15:127–134 http://dx.doi.org/10.1016/j.tim.2007.01.006. [PubMed]
158. Atilano ML, Pereira PM, Vaz F, Catalão MJ, Reed P, Grilo IR, Sobral RG, Ligoxygakis P, Pinho MG, Filipe SR. 2014. Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system. eLife 3:e02277 http://dx.doi.org/10.7554/eLife.02277. [PubMed]
159. Fournier B, Philpott DJ. 2005. Recognition of Staphylococcus aureus by the innate immune system. Clin Microbiol Rev 18:521–540 http://dx.doi.org/10.1128/CMR.18.3.521-540.2005. [PubMed]
160. Borisova M, Gaupp R, Duckworth A, Schneider A, Dalügge D, Mühleck M, Deubel D, Unsleber S, Yu W, Muth G, Bischoff M, Götz F, Mayer C. 2016. Peptidoglycan recycling in Gram-positive bacteria is crucial for survival in stationary phase. MBio 7:e00923-16 http://dx.doi.org/10.1128/mBio.00923-16. [PubMed]
161. Alvarez L, Espaillat A, Hermoso JA, de Pedro MA, Cava F. 2014. Peptidoglycan remodeling by the coordinated action of multispecific enzymes. Microb Drug Resist 20:190–198 http://dx.doi.org/10.1089/mdr.2014.0047. [PubMed]
162. de Jonge BL, Chang YS, Xu N, Gage D. 1996. Effect of exogenous glycine on peptidoglycan composition and resistance in a methicillin-resistant Staphylococcus aureus strain. Antimicrob Agents Chemother 40:1498–1503 http://dx.doi.org/10.1128/AAC.40.6.1498. [PubMed]
163. Pidgeon SE, Pires MM. 2017. Cell wall remodeling of Staphylococcus aureus in live Caenorhabditis elegans. Bioconjug Chem 28:2310–2315 http://dx.doi.org/10.1021/acs.bioconjchem.7b00363. [PubMed]
164. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948 http://dx.doi.org/10.1093/bioinformatics/btm404. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0068-2019
2019-07-19
2020-07-05

Abstract:

Dating back to the 1960s, initial studies on the staphylococcal cell wall were driven by the need to clarify the mode of action of the first antibiotics and the resistance mechanisms developed by the bacteria. During the following decades, the elucidation of the biosynthetic path and primary composition of staphylococcal cell walls was propelled by advances in microbial cell biology, specifically, the introduction of high-resolution analytical techniques and molecular genetic approaches. The field of staphylococcal cell wall gradually gained its own significance as the complexity of its chemical structure and involvement in numerous cellular processes became evident, namely its versatile role in host interactions, coordination of cell division and environmental stress signaling.

This chapter includes an updated description of the anatomy of staphylococcal cell walls, paying particular attention to information from the last decade, under four headings: high-resolution analysis of the peptidoglycan; variations in peptidoglycan composition; genetic determinants and enzymes in cell wall synthesis; and complex functions of cell walls. The latest contributions to a more precise picture of the staphylococcal cell envelope were possible due to recently developed state-of-the-art microscopy and spectroscopy techniques and to a wide combination of -omics approaches, that are allowing to obtain a more integrative view of this highly dynamic structure.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The anatomy of cell walls in normal and vancomycin-resistant . Reproduced with permission from reference 32 .

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0068-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Three-dimensional structure of staphylococcal peptidoglycan. Straight lines of large globes represent sugar moieties of the peptidoglycan. Each globe in these lines symbolizes an amino sugar, -acetylglucosamine (black globe), or -acetylmuramic acid (white globe). Stem peptides, branching from -acetylmuramic acid, are characterized by small dark globes with a white center. The connecting interpeptide bridges (pentaglycines) between the stempeptides are shown as small black globes. Schematic drawing by Peter Giesbrecht, Thomas Kersten, Heiner Maidhof, and Jorg Wecke; Robert-Koch Institute, Berlin, Germany. Reproduced with permission.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0068-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Variation of peptidoglycan global structural parameters between (blue), (red), and (black) ( 164 ). Chain length, peptidoglycan thickness, percentage of peptidoglycan cross-linking, and relaxation time-constants, with shorter values indicating a higher peptidoglycan flexibility. Hence, the peptidoglycan of is the most rigid of the three bacterial species. Reproduced with permission from reference 12 .

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0068-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Analysis of the peptidoglycan of methicillin-susceptible strain 27s and its isogenic derivatives ZOX3 (PBP2 TPase point mutant), 27s (PBP4 deletion mutant), and ZOX3 double mutant. Numbers above the HPLC peaks identify the structure of the respective muropeptides. Peaks 5, 11, 15, 16, and 17 represent the monomeric muropeptide and its di-, tri-, tetra-, and pentameric derivatives, respectively. The poorly resolved part (“hump”) of the HPLC profile eluting after peak 18 contains highly cross-linked oligomeric components. Model for the cooperative functioning of PBP2 and PBP4 for the cross-linking of the peptidoglycan. Muropeptides are identified by the respective peak numbers in the above HPLC chromatograms. Monomers are indicated by solid circles, and the bead diagram symbolizes the number of monomeric units cross-linked. The primary TPase activity of PBP2 is suggested to involve the cross-linking of muropeptides of lower oligomerization degree (up to pentamers), and PBP4 is suggested to catalyze the cross-linking of higher multimers. Reproduced with permission from reference 55 .

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0068-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Localization of gene products on the cell surface of during the division cycle as determined by scanning electron microscopy. The gold labeling patterns on cells at different stages of the cell cycle. Bar, 100 nm. Reproduced with permission from reference 135 .

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0068-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

AFM height (H) and phase (P) images of purified sacculi from exponential phase and key architectural details of the piecrust, division rings, and knobbles ( 21 ). (Top panel) Sacculus showing apparent incomplete septum parallel to the plane of the image, encircled by a piecrust feature associated with the initiation of septum formation; inset shows detail of piecrust features. (Middle panel) Sacculus showing ring texture associated with nascent peptidoglycan and knobble texture associated with older peptidoglycan; insets show details of rings and knobbles. (Bottom panel) Interpretive diagram drawn from the yellow rectangle in the middle panel. Reproduced with permission from reference 148 . SEM images of strain COL showing an asymmetric scar (blue line) corresponding to the previous division site and a fissure located in the middle of the cell (red line), presumably corresponding to the next division site. The new cell wall (light brown), resulting from septal material from the mother cell, which has a smooth surface immediately after division (first panel), occupies less than half of the total surface. Scale bars, 600 nm. Comparison of two models for growth and division. (a) An earlier model which assumed that cells remained approximately spherical over the cell cycle and that, on division, the cell wall material from the septum of the mother cell increased in cell surface area to constitute half (one hemisphere made of new cell wall) of the cell surface of each daughter cell. As a consequence, “scars” of previous divisions were proposed to encode epigenetic information that could be used to determine orthogonal placement of division septum. (b) In the other model proposed, cells are approximately spherical at the beginning of the cell cycle and elongate as the cell cycle progresses. On division, there is no increase in the surface area of the previous septum, which becomes ∼33% of the surface area of each daughter cell. This asymmetry in the regions composed of new and old cell wall results in scars of previous divisions that do not divide cells in quadrants. Consequently, T-junctions of scars of two previous divisions are not located at the cell poles. Two consecutive divisions in orthogonal planes are depicted in panels a and b. Reproduced with permission from reference 20 .

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0068-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error