No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Respiration and Small Colony Variants of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: Richard Proctor1
  • Editors: Vincent A. Fischetti2, Richard P. Novick3, Joseph J. Ferretti4, Daniel A. Portnoy5, Miriam Braunstein6, Julian I. Rood7
    Affiliations: 1: Department of Medical Microbiology and Immunology University of Wisconsin School of Medicine and Public Health Madison, WI 53705; 2: The Rockefeller University, New York, NY; 3: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 4: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 5: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 6: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 7: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0069-2019
  • Received 10 March 2018 Accepted 10 May 2019 Published 14 June 2019
  • Richard Proctor, [email protected]
image of Respiration and Small Colony Variants of <span class="jp-italic">Staphylococcus aureus</span>
    Preview this microbiology spectrum article:
    Zoom in

    Respiration and Small Colony Variants of , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0069-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0069-2019-2.gif
  • Abstract:

    Respiratory mutants, both naturally occurring and genetically constructed, have taught us about the importance of metabolism in influencing virulence factor production, persistence, and antibiotic resistance. As we learn more about small colony variants, we find that has many pathways to produce small colony variants, although the respiratory variants are the best described clinically and in the laboratory.

  • Citation: Proctor R. 2019. Respiration and Small Colony Variants of . Microbiol Spectrum 7(3):GPP3-0069-2019. doi:10.1128/microbiolspec.GPP3-0069-2019.


1. Smith CA. 2006. Structure, function and dynamics in the mur family of bacterial cell wall ligases. J Mol Biol 362:640–655 http://dx.doi.org/10.1016/j.jmb.2006.07.066. [PubMed]
2. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G. 2006. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305 http://dx.doi.org/10.1038/nrmicro1384. [PubMed]
3. Somerville GA, Proctor RA. 2009. At the crossroads of bacterial metabolism and virulence factor synthesis in staphylococci. Microbiol Mol Biol Rev 73:233–248 http://dx.doi.org/10.1128/MMBR.00005-09. [PubMed]
4. Somerville GA, Chaussee MS, Morgan CI, Fitzgerald JR, Dorward DW, Reitzer LJ, Musser JM. 2002. Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival. Infect Immun 70:6373–6382 http://dx.doi.org/10.1128/IAI.70.11.6373-6382.2002. [PubMed]
5. Hammer ND, Reniere ML, Cassat JE, Zhang Y, Hirsch AO, Indriati Hood M, Skaar EP. 2013. Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host. MBio 4:e00241-e13 http://dx.doi.org/10.1128/mBio.00241-13. [PubMed]
6. Voggu L, Schlag S, Biswas R, Rosenstein R, Rausch C, Götz F. 2006. Microevolution of cytochrome bd oxidase in staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas. J Bacteriol 188:8079–8086 http://dx.doi.org/10.1128/JB.00858-06. [PubMed]
7. Krute CN, Carroll RK, Rivera FE, Weiss A, Young RM, Shilling A, Botlani M, Varma S, Baker BJ, Shaw LN. 2015. The disruption of prenylation leads to pleiotropic rearrangements in cellular behavior in Staphylococcus aureus. Mol Microbiol 95:819–832 http://dx.doi.org/10.1111/mmi.12900. [PubMed]
8. Schlag S, Fuchs S, Nerz C, Gaupp R, Engelmann S, Liebeke M, Lalk M, Hecker M, Götz F. 2008. Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus. J Bacteriol 190:7847–7858 http://dx.doi.org/10.1128/JB.00905-08. [PubMed]
9. Spahich NA, Vitko NP, Thurlow LR, Temple B, Richardson AR. 2016. Staphylococcus aureus lactate- and malate-quinone oxidoreductases contribute to nitric oxide resistance and virulence. Mol Microbiol 100:759–773 http://dx.doi.org/10.1111/mmi.13347. [PubMed]
10. Niemann V, Koch-Singenstreu M, Neu A, Nilkens S, Götz F, Unden G, Stehle T. 2014. The NreA protein functions as a nitrate receptor in the staphylococcal nitrate regulation system. J Mol Biol 426:1539–1553 http://dx.doi.org/10.1016/j.jmb.2013.12.026. [PubMed]
11. Fillingame RH. 1997. Coupling H + transport and ATP synthesis in F 1F 0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine. J Exp Biol 200:217–224.
12. Reizer J, Saier MH, Jr, Deutscher J, Grenier F, Thompson J, Hengstenberg W, Dills SS. 1988. The phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: properties, mechanism, and regulation. Crit Rev Microbiol 15:297–338 http://dx.doi.org/10.3109/10408418809104461. [PubMed]
13. Frees D, Gerth U, Ingmer H. 2014. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int J Med Microbiol 304:142–149 http://dx.doi.org/10.1016/j.ijmm.2013.11.009. [PubMed]
14. Graham JW, Lei MG, Lee CY. 2013. Trapping and identification of cellular substrates of the Staphylococcus aureus ClpC chaperone. J Bacteriol 195:4506–4516 http://dx.doi.org/10.1128/JB.00758-13. [PubMed]
15. Chatterjee I, Becker P, Grundmeier M, Bischoff M, Somerville GA, Peters G, Sinha B, Harraghy N, Proctor RA, Herrmann M. 2005. Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery, and death. J Bacteriol 187:4488–4496 http://dx.doi.org/10.1128/JB.187.13.4488-4496.2005. [PubMed]
16. Chatterjee I, Herrmann M, Proctor RA, Peters G, Kahl BC. 2007. Enhanced post-stationary-phase survival of a clinical thymidine-dependent small-colony variant of Staphylococcus aureus results from lack of a functional tricarboxylic acid cycle. J Bacteriol 189:2936–2940 http://dx.doi.org/10.1128/JB.01444-06. [PubMed]
17. Chatterjee I, Kriegeskorte A, Fischer A, Deiwick S, Theimann N, Proctor RA, Peters G, Herrmann M, Kahl BC. 2008. In vivo mutations of thymidylate synthase (encoded by thyA) are responsible for thymidine dependency in clinical small-colony variants of Staphylococcus aureus. J Bacteriol 190:834–842 http://dx.doi.org/10.1128/JB.00912-07. [PubMed]
18. Kriegeskorte A, Block D, Drescher M, Windmüller N, Mellmann A, Baum C, Neumann C, Lorè NI, Bragonzi A, Liebau E, Hertel P, Seggewiss J, Becker K, Proctor RA, Peters G, Kahl BC. 2014. Inactivation of thyA in Staphylococcus aureus attenuates virulence and has a strong impact on metabolism and virulence gene expression. MBio 5:e01447-e14 http://dx.doi.org/10.1128/mBio.01447-14. [PubMed]
19. Proctor RA, Kriegeskorte A, Kahl BC, Becker K, Löffler B, Peters G. 2014. Staphylococcus aureus small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol 4:99 http://dx.doi.org/10.3389/fcimb.2014.00099.
20. Taber HW. 1993. Respiratory chains, p 199–212. In Sonenshein AL, Hoch JA, Losic R (ed), Bacillus subtilis and Other Gram-Positive Bacteria. ASM Press, Washington, DC.
21. von Eiff C, McNamara P, Becker K, Bates D, Lei XH, Ziman M, Bochner BR, Peters G, Proctor RA. 2006. Phenotype microarray profiling of Staphylococcus aureus menD and hemB mutants with the small-colony-variant phenotype. J Bacteriol 188:687–693 http://dx.doi.org/10.1128/JB.188.2.687-693.2006. [PubMed]
22. Kahl BC, Becker K, Löffler B. 2016. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin Microbiol Rev 29:401–427 http://dx.doi.org/10.1128/CMR.00069-15. [PubMed]
23. Fuller JR, Vitko NP, Perkowski EF, Scott E, Khatri D, Spontak JS, Thurlow LR, Richardson AR. 2011. Identification of a lactate-quinone oxidoreductase in Staphylococcus aureus that is essential for virulence. Front Cell Infect Microbiol 1:19 http://dx.doi.org/10.3389/fcimb.2011.00019. [PubMed]
24. Kinkel TL, Ramos-Montañez S, Pando JM, Tadeo DV, Strom EN, Libby SJ, Fang FC. 2016. An essential role for bacterial nitric oxide synthase in Staphylococcus aureus electron transfer and colonization. Nat Microbiol 2:16224 http://dx.doi.org/10.1038/nmicrobiol.2016.224. [PubMed]
25. Richardson AR, Dunman PM, Fang FC. 2006. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 61:927–939 http://dx.doi.org/10.1111/j.1365-2958.2006.05290.x. [PubMed]
26. Richardson AR, Libby SJ, Fang FC. 2008. A nitric oxide-inducible lactate dehydrogenase enables S taphylococcus aureus to resist innate immunity. Science 319:1672–1676 http://dx.doi.org/10.1126/science.1155207. [PubMed]
27. Vitko NP, Grosser MR, Khatri D, Lance TR, Richardson AR. 2016. Expanded glucose import capability affords Staphylococcus aureus optimized glycolytic flux during infection. MBio 7:e00296-e16 http://dx.doi.org/10.1128/mBio.00296-16. [PubMed]
28. Vitko NP, Spahich NA, Richardson AR. 2015. Glycolytic dependency of high-level nitric oxide resistance and virulence in Staphylococcus aureus. MBio 6:e00045-e15 http://dx.doi.org/10.1128/mBio.00045-15. [PubMed]
29. Grosser MR, Weiss A, Shaw LN, Richardson AR. 2016. Regulatory requirements for Staphylococcus aureus nitric oxide resistance. J Bacteriol 198:2043–2055 http://dx.doi.org/10.1128/JB.00229-16. [PubMed]
30. Kinkel TL, Roux CM, Dunman PM, Fang FC. 2013. The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia. MBio 4:e00696-e13 http://dx.doi.org/10.1128/mBio.00696-13. [PubMed]
31. Mogen AB, Carroll RK, James KL, Lima G, Silva D, Culver JA, Petucci C, Shaw LN, Rice KC. 2017. Staphylococcus aureus nitric oxide synthase (saNOS) modulates aerobic respiratory metabolism and cell physiology. Mol Microbiol 105:139–157 http://dx.doi.org/10.1111/mmi.13693. [PubMed]
32. Gaupp R, Schlag S, Liebeke M, Lalk M, Götz F. 2010. Advantage of upregulation of succinate dehydrogenase in Staphylococcus aureus biofilms. J Bacteriol 192:2385–2394 http://dx.doi.org/10.1128/JB.01472-09. [PubMed]
33. Mayer S, Steffen W, Steuber J, Götz F. 2015. The Staphylococcus aureus NuoL-like protein MpsA contributes to the generation of membrane potential. J Bacteriol 197:794–806 http://dx.doi.org/10.1128/JB.02127-14. [PubMed]
34. Schurig-Briccio LA, Yano T, Rubin H, Gennis RB. 2014. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines. Biochim Biophys Acta 1837:954–963 http://dx.doi.org/10.1016/j.bbabio.2014.03.017. [PubMed]
35. Dean MA, Olsen RJ, Long SW, Rosato AE, Musser JM. 2014. Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione. Infect Immun 82:1600–1605 http://dx.doi.org/10.1128/IAI.01487-13. [PubMed]
36. Lannergård J, von Eiff C, Sander G, Cordes T, Seggewiss J, Peters G, Proctor RA, Becker K, Hughes D. 2008. Identification of the genetic basis for clinical menadione-auxotrophic small-colony variant isolates of Staphylococcus aureus. Antimicrob Agents Chemother 52:4017–4022 http://dx.doi.org/10.1128/AAC.00668-08. [PubMed]
37. Brandis G, Cao S, Huseby DL, Hughes D. 2017. Having your cake and eating it: Staphylococcus aureus small colony variants can evolve faster growth rate without losing their antibiotic resistance. Microb Cell 4:275–277 http://dx.doi.org/10.15698/mic2017.08.587. [PubMed]
38. Matsumoto Y, Yasukawa J, Ishii M, Hayashi Y, Miyazaki S, Sekimizu K. 2016. A critical role of mevalonate for peptidoglycan synthesis in Staphylococcus aureus. Sci Rep 6:22894 http://dx.doi.org/10.1038/srep22894. [PubMed]
39. Noto MJ, Burns WJ, Beavers WN, Skaar EP. 2017. Selection on pyocyanin yielded a menadione auxotrophic SCV capable of growth on high concentrations of pyocyanin. J Bacteriol 199:e00221-17. [PubMed]
40. Yu W, Leibig M, Schäfer T, Bertram R, Ohlsen K, Götz F. 2013. The mevalonate auxotrophic mutant of Staphylococcus aureus can adapt to mevalonate depletion. Antimicrob Agents Chemother 57:5710–5713 http://dx.doi.org/10.1128/AAC.00726-13. [PubMed]
41. Zhang P, Wright JA, Osman AA, Nair SP. 2017. An aroD ochre mutation results in a Staphylococcus aureus small colony variant that can undergo phenotypic switching via two alternative mechanisms. Front Microbiol 8:1001 http://dx.doi.org/10.3389/fmicb.2017.01001. [PubMed]
42. Cao S, Huseby DL, Brandis G, Hughes D. 2017. Alternative evolutionary pathways for drug-resistant small colony variant mutants in Staphylococcus aureus. MBio 8:e00358-e17 http://dx.doi.org/10.1128/mBio.00358-17. [PubMed]
43. Proctor RA, Dalal SC, Kahl B, Brar D, Peters G, Nichols WW. 2002. Two diarylurea electron transport inhibitors reduce Staphylococcus aureus hemolytic activity and protect cultured endothelial cells from lysis. Antimicrob Agents Chemother 46:2333–2336 http://dx.doi.org/10.1128/AAC.46.8.2333-2336.2002. [PubMed]
44. Jensen J, Thofern E. 1953. Chlorhämin (Ferriporphyrinchlorid) als Bakterienwuchsstoff I. Zur Synthese der Hämatinfermente. Z Naturforsch B 8b:599–603 http://dx.doi.org/10.1515/znb-1953-1009.
45. Köser CU, Holden MT, Ellington MJ, Cartwright EJ, Brown NM, Ogilvy-Stuart AL, Hsu LY, Chewapreecha C, Croucher NJ, Harris SR, Sanders M, Enright MC, Dougan G, Bentley SD, Parkhill J, Fraser LJ, Betley JR, Schulz-Trieglaff OB, Smith GP, Peacock SJ. 2012. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 366:2267–2275 http://dx.doi.org/10.1056/NEJMoa1109910. [PubMed]
46. Mayfield JA, Hammer ND, Kurker RC, Chen TK, Ojha S, Skaar EP, DuBois JL. 2013. The chlorite dismutase (HemQ) from Staphylococcus aureus has a redox-sensitive heme and is associated with the small colony variant phenotype. J Biol Chem 288:23488–23504 http://dx.doi.org/10.1074/jbc.M112.442335. [PubMed]
47. Schaaff F, Bierbaum G, Baumert N, Bartmann P, Sahl HG. 2003. Mutations are involved in emergence of aminoglycoside-induced small colony variants of Staphylococcus aureus. Int J Med Microbiol 293:427–435 http://dx.doi.org/10.1078/1438-4221-00282. [PubMed]
48. Clements MO, Watson SP, Poole RK, Foster SJ. 1999. CtaA of Staphylococcus aureus is required for starvation survival, recovery, and cytochrome biosynthesis. J Bacteriol 181:501–507.
49. Götz F, Mayer S. 2013. Both terminal oxidases contribute to fitness and virulence during organ-specific Staphylococcus aureus colonization. MBio 4:e00976-e13 http://dx.doi.org/10.1128/mBio.00976-13. [PubMed]
50. Vestergaard M, Leng B, Haaber J, Bojer MS, Vegge CS, Ingmer H. 2016. Genome-wide identification of antimicrobial intrinsic resistance determinants in Staphylococcus aureus. Front Microbiol 7:2018–2035 http://dx.doi.org/10.3389/fmicb.2016.02018.
51. Lobritz MA, Belenky P, Porter CB, Gutierrez A, Yang JH, Schwarz EG, Dwyer DJ, Khalil AS, Collins JJ. 2015. Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci USA 112:8173–8180 http://dx.doi.org/10.1073/pnas.1509743112. [PubMed]
52. Balemans W, Vranckx L, Lounis N, Pop O, Guillemont J, Vergauwen K, Mol S, Gilissen R, Motte M, Lançois D, De Bolle M, Bonroy K, Lill H, Andries K, Bald D, Koul A. 2012. Novel antibiotics targeting respiratory ATP synthesis in Gram-positive pathogenic bacteria. Antimicrob Agents Chemother 56:4131–4139 http://dx.doi.org/10.1128/AAC.00273-12. [PubMed]
53. Kohler C, von Eiff C, Peters G, Proctor RA, Hecker M, Engelmann S. 2003. Physiological characterization of a heme-deficient mutant of Staphylococcus aureus by a proteomic approach. J Bacteriol 185:6928–6937 http://dx.doi.org/10.1128/JB.185.23.6928-6937.2003. [PubMed]
54. Kohler C, von Eiff C, Liebeke M, McNamara PJ, Lalk M, Proctor RA, Hecker M, Engelmann S. 2008. A defect in menadione biosynthesis induces global changes in gene expression in Staphylococcus aureus. J Bacteriol 190:6351–6364 http://dx.doi.org/10.1128/JB.00505-08. [PubMed]
55. Kriegeskorte A, Grubmüller S, Huber C, Kahl BC, von Eiff C, Proctor RA, Peters G, Eisenreich W, Becker K. 2014. Staphylococcus aureus small colony variants show common metabolic features in central metabolism irrespective of the underlying auxotrophism. Front Cell Infect Microbiol 4:141 http://dx.doi.org/10.3389/fcimb.2014.00141.
56. Kriegeskorte A, König S, Sander G, Pirkl A, Mahabir E, Proctor RA, von Eiff C, Peters G, Becker K. 2011. Small colony variants of Staphylococcus aureus reveal distinct protein profiles. Proteomics 11:2476–2490 http://dx.doi.org/10.1002/pmic.201000796. [PubMed]
57. Seggewiss J, Becker K, Kotte O, Eisenacher M, Yazdi MR, Fischer A, McNamara P, Al Laham N, Proctor R, Peters G, Heinemann M, von Eiff C. 2006. Reporter metabolite analysis of transcriptional profiles of a Staphylococcus aureus strain with normal phenotype and its isogenic hemB mutant displaying the small-colony-variant phenotype. J Bacteriol 188:7765–7777 http://dx.doi.org/10.1128/JB.00774-06. [PubMed]
58. Murphey WH, Rosenblum ED. 1964. Mannitol catabolism by Staphylococcus aureus. Arch Biochem Biophys 107:292–297 http://dx.doi.org/10.1016/0003-9861(64)90332-7.
59. Fuchs S, Pané-Farré J, Kohler C, Hecker M, Engelmann S. 2007. Anaerobic gene expression in Staphylococcus aureus. J Bacteriol 189:4275–4289 http://dx.doi.org/10.1128/JB.00081-07. [PubMed]
60. Becker K, Bierbaum G, von Eiff C, Engelmann S, Götz F, Hacker J, Hecker M, Peters G, Rosenstein R, Ziebuhr W. 2007. Understanding the physiology and adaptation of staphylococci: a post-genomic approach. Int J Med Microbiol 297:483–501 http://dx.doi.org/10.1016/j.ijmm.2007.04.004. [PubMed]
61. Coleman G. 1985. A comparison of the patterns of extracellular proteins produced by the high alpha-toxin-secreting organism Staphylococcus aureus (Wood 46) during aerobic and anaerobic growth. J Gen Microbiol 131:405–408. [PubMed]
62. Sarafian SK, Morse SA. 1987. Environmental factors affecting toxic shock syndrome toxin-1 (TSST-1) synthesis. J Med Microbiol 24:75–81 http://dx.doi.org/10.1099/00222615-24-1-75. [PubMed]
63. Novick RP. 2019. Pathogenicity islands and their role in staphylococcal biology. Microbiol Spec. In press. [PubMed]
64. Yarwood JM, McCormick JK, Schlievert PM. 2001. Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. J Bacteriol 183:1113–1123 http://dx.doi.org/10.1128/JB.183.4.1113-1123.2001. [PubMed]
65. Sendi P, Proctor RA. 2009. Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol 17:54–58 http://dx.doi.org/10.1016/j.tim.2008.11.004. [PubMed]
66. Tuchscherr L, Medina E, Hussain M, Völker W, Heitmann V, Niemann S, Holzinger D, Roth J, Proctor RA, Becker K, Peters G, Löffler B. 2011. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med 3:129–141 http://dx.doi.org/10.1002/emmm.201000115. [PubMed]
67. Goerke C, Wolz C. 2004. Regulatory and genomic plasticity of Staphylococcus aureus during persistent colonization and infection. Int J Med Microbiol 294:195–202 http://dx.doi.org/10.1016/j.ijmm.2004.06.013. [PubMed]
68. Kahl BC, Belling G, Becker P, Chatterjee I, Wardecki K, Hilgert K, Cheung AL, Peters G, Herrmann M. 2005. Thymidine-dependent Staphylococcus aureus small-colony variants are associated with extensive alterations in regulator and virulence gene expression profiles. Infect Immun 73:4119–4126 http://dx.doi.org/10.1128/IAI.73.7.4119-4126.2005. [PubMed]
69. Vann JM, Proctor RA. 1988. Cytotoxic effects of ingested Staphylococcus aureus on bovine endothelial cells: role of S. aureus alpha-hemolysin. Microb Pathog 4:443–453 http://dx.doi.org/10.1016/0882-4010(88)90029-0.
70. Balwit JM, van Langevelde P, Vann JM, Proctor RA. 1994. Gentamicin-resistant menadione and hemin auxotrophic Staphylococcus aureus persist within cultured endothelial cells. J Infect Dis 170:1033–1037 http://dx.doi.org/10.1093/infdis/170.4.1033. [PubMed]
71. Haslinger-Löffler B, Wagner B, Brück M, Strangfeld K, Grundmeier M, Fischer U, Völker W, Peters G, Schulze-Osthoff K, Sinha B. 2006. Staphylococcus aureus induces caspase-independent cell death in human peritoneal mesothelial cells. Kidney Int 70:1089–1098 http://dx.doi.org/10.1038/sj.ki.5001710. [PubMed]
72. Vesga O, Groeschel MC, Otten MF, Brar DW, Vann JM, Proctor RA. 1996. Staphylococcus aureus small colony variants are induced by the endothelial cell intracellular milieu. J Infect Dis 173:739–742 http://dx.doi.org/10.1093/infdis/173.3.739. [PubMed]
73. Veh KA, Klein RC, Ster C, Keefe G, Lacasse P, Scholl D, Roy JP, Haine D, Dufour S, Talbot BG, Ribon AO, Malouin F. 2015. Genotypic and phenotypic characterization of Staphylococcus aureus causing persistent and nonpersistent subclinical bovine intramammary infections during lactation or the dry period. J Dairy Sci 98:155–168 http://dx.doi.org/10.3168/jds.2014-8044. [PubMed]
74. Otto M. 2014. Phenol-soluble modulins. Int J Med Microbiol 304:164–169 http://dx.doi.org/10.1016/j.ijmm.2013.11.019. [PubMed]
75. Xu T, Wang XY, Cui P, Zhang YM, Zhang WH, Zhang Y. 2017. The Agr quorum sensing system represses persister formation through regulation of phenol soluble modulins in Staphylococcus aureus. Front Microbiol 8:2189 http://dx.doi.org/10.3389/fmicb.2017.02189. [PubMed]
76. Olson ME, King JM, Yahr TL, Horswill AR. 2013. Sialic acid catabolism in Staphylococcus aureus. J Bacteriol 195:1779–1788 http://dx.doi.org/10.1128/JB.02294-12. [PubMed]
77. Hendrix AS, Spoonmore TJ, Wilde AD, Putnam NE, Hammer ND, Snyder DJ, Guelcher SA, Skaar EP, Cassat JE. 2016. Repurposing the nonsteroidal anti-inflammatory drug diflunisal as an osteoprotective, antivirulence therapy for Staphylococcus aureus osteomyelitis. Antimicrob Agents Chemother 60:5322–5330 http://dx.doi.org/10.1128/AAC.00834-16. [PubMed]
78. Khodaverdian V, Pesho M, Truitt B, Bollinger L, Patel P, Nithianantham S, Yu G, Delaney E, Jankowsky E, Shoham M. 2013. Discovery of antivirulence agents against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:3645–3652 http://dx.doi.org/10.1128/AAC.00269-13. [PubMed]
79. Kalinka J, Hachmeister M, Geraci J, Sordelli D, Hansen U, Niemann S, Oetermann S, Peters G, Löffler B, Tuchscherr L. 2014. Staphylococcus aureus isolates from chronic osteomyelitis are characterized by high host cell invasion and intracellular adaptation, but still induce inflammation. Int J Med Microbiol 304:1038–1049 http://dx.doi.org/10.1016/j.ijmm.2014.07.013. [PubMed]
80. Tuchscherr L, Bischoff M, Lattar SM, Noto Llana M, Pförtner H, Niemann S, Geraci J, Van de Vyver H, Fraunholz MJ, Cheung AL, Herrmann M, Völker U, Sordelli DO, Peters G, Löffler B. 2015. Sigma factor SigB is crucial to mediate Staphylococcus aureus adaptation during chronic infections. PLoS Pathog 11:e1004870 http://dx.doi.org/10.1371/journal.ppat.1004870. [PubMed]
81. Tuchscherr L, Geraci J, Löffler B. 2017. Staphylococcus aureus regulator sigma B is important to develop chronic infections in hematogenous murine osteomyelitis model. Pathogens 6:E31 http://dx.doi.org/10.3390/pathogens6030031. [PubMed]
82. Moisan H, Brouillette E, Jacob CL, Langlois-Bégin P, Michaud S, Malouin F. 2006. Transcription of virulence factors in Staphylococcus aureus small-colony variants isolated from cystic fibrosis patients is influenced by SigB. J Bacteriol 188:64–76 http://dx.doi.org/10.1128/JB.188.1.64-76.2006. [PubMed]
83. Mitchell G, Séguin DL, Asselin AE, Déziel E, Cantin AM, Frost EH, Michaud S, Malouin F. 2010. Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide. BMC Microbiol 10:33 http://dx.doi.org/10.1186/1471-2180-10-33. [PubMed]
84. Werth N, Beerlage C, Rosenberger C, Yazdi AS, Edelmann M, Amr A, Bernhardt W, von Eiff C, Becker K, Schäfer A, Peschel A, Kempf VA. 2010. Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens. PLoS One 5:e11576 http://dx.doi.org/10.1371/journal.pone.0011576. [PubMed]
85. McNamara PJ, Proctor RA. 2000. Staphylococcus aureus small colony variants, electron transport and persistent infections. Int J Antimicrob Agents 14:117–122 http://dx.doi.org/10.1016/S0924-8579(99)00170-3.
86. Gläser R, Becker K, von Eiff C, Meyer-Hoffert U, Harder J. 2014. Decreased susceptibility of Staphylococcus aureus small-colony variants toward human antimicrobial peptides. J Invest Dermatol 134:2347–2350 http://dx.doi.org/10.1038/jid.2014.176. [PubMed]
87. Jones T, Yeaman MR, Sakoulas G, Yang SJ, Proctor RA, Sahl HG, Schrenzel J, Xiong YQ, Bayer AS. 2008. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother 52:269–278 http://dx.doi.org/10.1128/AAC.00719-07. [PubMed]
88. Joshi GS, Spontak JS, Klapper DG, Richardson AR. 2011. Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines. Mol Microbiol 82:9–20 http://dx.doi.org/10.1111/j.1365-2958.2011.07809.x. [PubMed]
89. Koo SP, Bayer AS, Sahl HG, Proctor RA, Yeaman MR. 1996. Staphylocidal action of thrombin-induced platelet microbicidal protein is not solely dependent on transmembrane potential. Infect Immun 64:1070–1074.
90. Mishra NN, Bayer AS, Moise PA, Yeaman MR, Sakoulas G. 2012. Reduced susceptibility to host-defense cationic peptides and daptomycin coemerge in methicillin-resistant Staphylococcus aureus from daptomycin-naive bacteremic patients. J Infect Dis 206:1160–1167 http://dx.doi.org/10.1093/infdis/jis482. [PubMed]
91. Sadowska B, Bonar A, von Eiff C, Proctor RA, Chmiela M, Rudnicka W, Róźalska B. 2002. Characteristics of Staphylococcus aureus, isolated from airways of cystic fibrosis patients, and their small colony variants. FEMS Immunol Med Microbiol 32:191–197 http://dx.doi.org/10.1111/j.1574-695X.2002.tb00553.x. [PubMed]
92. Samuelsen O, Haukland HH, Kahl BC, von Eiff C, Proctor RA, Ulvatne H, Sandvik K, Vorland LH. 2005. Staphylococcus aureus small colony variants are resistant to the antimicrobial peptide lactoferricin B. J Antimicrob Chemother 56:1126–1129 http://dx.doi.org/10.1093/jac/dki385. [PubMed]
93. Yao X, Lu CD. 2014. Characterization of Staphylococcus aureus responses to spermine stress. Curr Microbiol 69:394–403 http://dx.doi.org/10.1007/s00284-014-0603-y. [PubMed]
94. Zhang P, Wright JA, Tymon A, Nair SP. 2018. Bicarbonate induces high-level resistance to the human antimicrobial peptide LL-37 in Staphylococcus aureus small colony variants. J Antimicrob Chemother 73:615–619 http://dx.doi.org/10.1093/jac/dkx433. [PubMed]
95. Chagnon F, Guay I, Bonin MA, Mitchell G, Bouarab K, Malouin F, Marsault É. 2014. Unraveling the structure-activity relationship of tomatidine, a steroid alkaloid with unique antibiotic properties against persistent forms of Staphylococcus aureus. Eur J Med Chem 80:605–620 http://dx.doi.org/10.1016/j.ejmech.2013.11.019. [PubMed]
96. Mitchell G, Gattuso M, Grondin G, Marsault É, Bouarab K, Malouin F. 2011. Tomatidine inhibits replication of Staphylococcus aureus small-colony variants in cystic fibrosis airway epithelial cells. Antimicrob Agents Chemother 55:1937–1945 http://dx.doi.org/10.1128/AAC.01468-10. [PubMed]
97. Mitchell G, Lafrance M, Boulanger S, Séguin DL, Guay I, Gattuso M, Marsault E, Bouarab K, Malouin F. 2012. Tomatidine acts in synergy with aminoglycoside antibiotics against multiresistant Staphylococcus aureus and prevents virulence gene expression. J Antimicrob Chemother 67:559–568 http://dx.doi.org/10.1093/jac/dkr510. [PubMed]
98. Boulanger S, Mitchell G, Bouarab K, Marsault É, Cantin A, Frost EH, Déziel E, Malouin F. 2015. Bactericidal effect of tomatidine-tobramycin combination against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa is enhanced by interspecific small-molecule interactions. Antimicrob Agents Chemother 59:7458–7464 http://dx.doi.org/10.1128/AAC.01711-15. [PubMed]
99. Kahl BC. 2014. Small colony variants (SCVs) of Staphylococcus aureus: a bacterial survival strategy. Infect Genet Evol 21:515–522 http://dx.doi.org/10.1016/j.meegid.2013.05.016. [PubMed]
100. Richter K, Thomas N, Zhang G, Prestidge CA, Coenye T, Wormald PJ, Vreugde S. 2017. Deferiprone and gallium-protoporphyrin have the capacity to potentiate the activity of antibiotics in Staphylococcus aureus small colony variants. Front Cell Infect Microbiol 7:280 http://dx.doi.org/10.3389/fcimb.2017.00280. [PubMed]
101. Mercer DK, Katvars LK, Hewitt F, Smith DW, Robertson J, O’Neil DA. 2017. NP108, an antimicrobial polymer with activity against methicillin- and mupirocin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 61:e00502–e00517 http://dx.doi.org/10.1128/AAC.00502-17. [PubMed]
102. Brauner A, Fridman O, Gefen O, Balaban NQ. 2016. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330 http://dx.doi.org/10.1038/nrmicro.2016.34. [PubMed]
103. Proctor RA, van Langevelde P, Kristjansson M, Maslow JN, Arbeit RD. 1995. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin Infect Dis 20:95–102 http://dx.doi.org/10.1093/clinids/20.1.95. [PubMed]
104. Hoffman LR, Déziel E, D’Argenio DA, Lépine F, Emerson J, McNamara S, Gibson RL, Ramsey BW, Miller SI. 2006. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 103:19890–19895 http://dx.doi.org/10.1073/pnas.0606756104. [PubMed]
105. McNamara PJ, Proctor RA. 2006. Bacterial interactions and the microevolution of cytochrome bd: implications for pathogenesis. J Bacteriol 188:7997–7998 http://dx.doi.org/10.1128/JB.01364-06. [PubMed]
106. Biswas L, Biswas R, Schlag M, Bertram R, Götz F. 2009. Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa. Appl Environ Microbiol 75:6910–6912 http://dx.doi.org/10.1128/AEM.01211-09. [PubMed]
107. Radlinski L, Rowe SE, Kartchner LB, Maile R, Cairns BA, Vitko NP, Gode CJ, Lachiewicz AM, Wolfgang MC, Conlon BP. 2017. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biol 15:e2003981 http://dx.doi.org/10.1371/journal.pbio.2003981. [PubMed]
108. Fugère A, Lalonde Séguin D, Mitchell G, Déziel E, Dekimpe V, Cantin AM, Frost E, Malouin F. 2014. Interspecific small molecule interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients. PLoS One 9:e86705 http://dx.doi.org/10.1371/journal.pone.0086705. [PubMed]
109. Wolter DJ, Emerson JC, McNamara S, Buccat AM, Qin X, Cochrane E, Houston LS, Rogers GB, Marsh P, Prehar K, Pope CE, Blackledge M, Déziel E, Bruce KD, Ramsey BW, Gibson RL, Burns JL, Hoffman LR. 2013. Staphylococcus aureus small-colony variants are independently associated with worse lung disease in children with cystic fibrosis. Clin Infect Dis 57:384–391 http://dx.doi.org/10.1093/cid/cit270. [PubMed]
110. Mashburn LM, Jett AM, Akins DR, Whiteley M. 2005. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol 187:554–566 http://dx.doi.org/10.1128/JB.187.2.554-566.2005. [PubMed]
111. Goldenbaum PE, White DC. 1974. Role of lipid in the formation and function of the respiratory system of Staphylococcus aureus. Ann N Y Acad Sci 236:115–123 http://dx.doi.org/10.1111/j.1749-6632.1974.tb41486.x. [PubMed]
112. Lascelles J. 1978. sn-Glycerol-3-phosphate dehydrogenase and its interaction with nitrate reductase in wild-type and hem mutant strains of Staphylococcus aureus. J Bacteriol 133:621–625.
113. Lewis LA, Li K, Bharosay M, Cannella M, Jorgenson V, Thomas R, Pena D, Velez M, Pereira B, Sassine A. 1990. Characterization of gentamicin-resistant respiratory-deficient (res-) variant strains of Staphylococcus aureus. Microbiol Immunol 34:587–605 http://dx.doi.org/10.1111/j.1348-0421.1990.tb01035.x. [PubMed]
114. Ray PH, Lillich TT, White DC. 1972. Consequences of glycerol deprivation on the synthesis of membrane components in a glycerol auxotroph of Staphylococcus aureus. J Bacteriol 112:413–420.
115. Hale JH. 1947. Studies on Staphylococcus mutation; characteristics of the G (gonidial) variant and factors concerned in its production. Br J Exp Pathol 28:202–210.
116. Massey RC, Buckling A, Peacock SJ. 2001. Phenotypic switching of antibiotic resistance circumvents permanent costs in Staphylococcus aureus. Curr Biol 11:1810–1814 http://dx.doi.org/10.1016/S0960-9822(01)00507-3.
117. Massey RC, Peacock SJ. 2002. Antibiotic-resistant sub-populations of the pathogenic bacterium Staphylococcus aureus confer population-wide resistance. Curr Biol 12:R686–R687 http://dx.doi.org/10.1016/S0960-9822(02)01205-8.
118. Hammond RK, White DC. 1970. Inhibition of carotenoid hydroxylation in Staphylococcus aureus by mixed-function oxidase inhibitors. J Bacteriol 103:607–610.
119. Joyce GH, White DC. 1971. Effect of benzo(a) pyrene and piperonyl butoxide on formation of respiratory system, phospholipids, and carotenoids of Staphylococcus aureus. J Bacteriol 106:403–411.
120. Bigger JW. 1944. Treatment of staphylococcal infections with penicillin. Lancet 244:497–500 http://dx.doi.org/10.1016/S0140-6736(00)74210-3.
121. Lechner S, Lewis K, Bertram R. 2012. Staphylococcus aureus persisters tolerant to bactericidal antibiotics. J Mol Microbiol Biotechnol 22:235–244 http://dx.doi.org/10.1159/000342449. [PubMed]
122. Bui LM, Conlon BP, Kidd SP. 2017. Antibiotic tolerance and the alternative lifestyles of Staphylococcus aureus. Essays Biochem 61:71–79 http://dx.doi.org/10.1042/EBC20160061. [PubMed]
123. Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, Clair G, Adkins JN, Cheung AL, Lewis K. 2016. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 1:16051 http://dx.doi.org/10.1038/nmicrobiol.2016.51.
124. Eng RH, Padberg FT, Smith SM, Tan EN, Cherubin CE. 1991. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother 35:1824–1828 http://dx.doi.org/10.1128/AAC.35.9.1824. [PubMed]
125. Schnitzer RJ, Camagni LJ, Buck M. 1943. Resistance of small colony variants (G forms) of a staphylococcus toward the bacteriostatic activity of penicillin. Proc Soc Exp Biol Med 53:75–89 http://dx.doi.org/10.3181/00379727-53-14192.
126. Proctor RA, Bates DM, McNamara PJ. 2001. Electron transport-deficient Staphylocoocus aureus small-colony variants as emerging pathogens, p 95–100. In Craig W (ed), Emerging Infections, vol 5. ASM Press, Washington, DC. http://dx.doi.org/10.1128/9781555816988.ch6 [PubMed]
127. Lin YT, Tsai JC, Yamamoto T, Chen HJ, Hung WC, Hsueh PR, Teng LJ. 2016. Emergence of a small colony variant of vancomycin-intermediate Staphylococcus aureus in a patient with septic arthritis during long-term treatment with daptomycin. J Antimicrob Chemother 71:1807–1814 http://dx.doi.org/10.1093/jac/dkw060. [PubMed]
128. Mishra NN, Bayer AS. 2013. Correlation of cell membrane lipid profiles with daptomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:1082–1085 http://dx.doi.org/10.1128/AAC.02182-12. [PubMed]
129. Lee AM, Wigle TJ, Singleton SF. 2007. A complementary pair of rapid molecular screening assays for RecA activities. Anal Biochem 367:247–258 http://dx.doi.org/10.1016/j.ab.2007.04.021. [PubMed]
130. Cirz RT, Jones MB, Gingles NA, Minogue TD, Jarrahi B, Peterson SN, Romesberg FE. 2007. Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. J Bacteriol 189:531–539 http://dx.doi.org/10.1128/JB.01464-06. [PubMed]
131. Pan XS, Hamlyn PJ, Talens-Visconti R, Alovero FL, Manzo RH, Fisher LM. 2002. Small-colony mutants of Staphylococcus aureus allow selection of gyrase-mediated resistance to dual-target fluoroquinolones. Antimicrob Agents Chemother 46:2498–2506 http://dx.doi.org/10.1128/AAC.46.8.2498-2506.2002. [PubMed]
132. Vestergaard M, Paulander W, Ingmer H. 2015. Activation of the SOS response increases the frequency of small colony variants. BMC Res Notes 8:749–754 http://dx.doi.org/10.1186/s13104-015-1735-2. [PubMed]
133. Garcia LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Denis O, Tulkens PM, Van Bambeke F. 2012. Pharmacodynamic evaluation of the activity of antibiotics against hemin- and menadione-dependent small-colony variants of Staphylococcus aureus in models of extracellular (broth) and intracellular (THP-1 monocytes) infections. Antimicrob Agents Chemother 56:3700–3711 http://dx.doi.org/10.1128/AAC.00285-12. [PubMed]
134. Garcia LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Denis O, Tulkens PM, Van Bambeke F. 2013. Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. J Antimicrob Chemother 68:1455–1464 http://dx.doi.org/10.1093/jac/dkt072. [PubMed]
135. Garcia LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Tulkens PM, Van Bambeke F. 2012. Intracellular forms of menadione-dependent small-colony variants of methicillin-resistant Staphylococcus aureus are hypersusceptible to β-lactams in a THP-1 cell model due to cooperation between vacuolar acidic pH and oxidant species. J Antimicrob Chemother 67:2873–2881 http://dx.doi.org/10.1093/jac/dks325. [PubMed]
136. Baumert N, von Eiff C, Schaaff F, Peters G, Proctor RA, Sahl HG. 2002. Physiology and antibiotic susceptibility of Staphylococcus aureus small colony variants. Microb Drug Resist 8:253–260 http://dx.doi.org/10.1089/10766290260469507. [PubMed]
137. Idelevich EA, Kriegeskorte A, Stubbings W, Kahl BC, Peters G, Becker K. 2011. Comparative in vitro activity of finafloxacin against staphylococci displaying normal and small colony variant phenotypes. J Antimicrob Chemother 66:2809–2813 http://dx.doi.org/10.1093/jac/dkr393. [PubMed]
138. Belley A, Neesham-Grenon E, McKay G, Arhin FF, Harris R, Beveridge T, Parr TR Jr, Moeck G. 2009. Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob Agents Chemother 53:918–925 http://dx.doi.org/10.1128/AAC.00766-08. [PubMed]
139. Tuchscherr L, Kreis CA, Hoerr V, Flint L, Hachmeister M, Geraci J, Bremer-Streck S, Kiehntopf M, Medina E, Kribus M, Raschke M, Pletz M, Peters G, Löffler B. 2016. Staphylococcus aureus develops increased resistance to antibiotics by forming dynamic small colony variants during chronic osteomyelitis. J Antimicrob Chemother 71:438–448 http://dx.doi.org/10.1093/jac/dkv371. [PubMed]
140. Côté-Gravel J, Brouillette E, Obradović N, Ster C, Talbot BG, Malouin F. 2016. Characterization of a vraG mutant in a genetically stable Staphylococcus aureus small-colony variant and preliminary assessment for use as a live-attenuated vaccine against intrammamary infections. PLoS One 11:e0166621 http://dx.doi.org/10.1371/journal.pone.0166621. [PubMed]
141. Garcia LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Denis O, Tulkens PM, Van Bambeke F. 2012. Pharmacodynamic evaluation of the activity of antibiotics against hemin- and menadione-dependent small-colony variants of Staphylococcus aureus in models of extracellular (broth) and intracellular (THP-1 monocytes) infections. Antimicrob Agents Chemother 56:3700–3711 http://dx.doi.org/10.1128/AAC.00285-12. [PubMed]
142. Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR, Bhuju S, O’Toole GA. 2015. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J Bacteriol 197:2252–2264 http://dx.doi.org/10.1128/JB.00059-15. [PubMed]
143. Grassi L, Di Luca M, Maisetta G, Rinaldi AC, Esin S, Trampuz A, Batoni G. 2017. Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents. Front Microbiol 8:1917 http://dx.doi.org/10.3389/fmicb.2017.01917. [PubMed]
144. Kahl BC. 2010. Impact of Staphylococcus aureus on the pathogenesis of chronic cystic fibrosis lung disease. Int J Med Microbiol 300:514–519 http://dx.doi.org/10.1016/j.ijmm.2010.08.002. [PubMed]
145. Li W, Li Y, Wu Y, Cui Y, Liu Y, Shi X, Zhang Q, Chen Q, Sun Q, Hu Q. 2016. Phenotypic and genetic changes in the life cycle of small colony variants of Salmonella enterica serotype Typhimurium induced by streptomycin. Ann Clin Microbiol Antimicrob 15:37–48 http://dx.doi.org/10.1186/s12941-016-0151-3. [PubMed]
146. Patel MS, Roche TE. 1990. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J 4:3224–3233 http://dx.doi.org/10.1096/fasebj.4.14.2227213. [PubMed]
147. Roggenkamp A, Sing A, Hornef M, Brunner U, Autenrieth IB, Heesemann J. 1998. Chronic prosthetic hip infection caused by a small-colony variant of Escherichia coli. J Clin Microbiol 36:2530–2534.
148. Somerville GA, Beres SB, Fitzgerald JR, DeLeo FR, Cole RL, Hoff JS, Musser JM. 2002. In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence. J Bacteriol 184:1430–1437 http://dx.doi.org/10.1128/JB.184.5.1430-1437.2002. [PubMed]
149. Somerville GA, Cockayne A, Dürr M, Peschel A, Otto M, Musser JM. 2003. Synthesis and deformylation of Staphylococcus aureus delta-toxin are linked to tricarboxylic acid cycle activity. J Bacteriol 185:6686–6694 http://dx.doi.org/10.1128/JB.185.22.6686-6694.2003. [PubMed]
150. Somerville GA, Saïd-Salim B, Wickman JM, Raffel SJ, Kreiswirth BN, Musser JM. 2003. Correlation of acetate catabolism and growth yield in Staphylococcus aureus: implications for host-pathogen interactions. Infect Immun 71:4724–4732 http://dx.doi.org/10.1128/IAI.71.8.4724-4732.2003. [PubMed]
151. Sousa FM, Sena FV, Batista AP, Athayde D, Brito JA, Archer M, Oliveira ASF, Soares CM, Catarino T, Pereira MM. 2017. The key role of glutamate 172 in the mechanism of type II NADH:quinone oxidoreductase of Staphylococcus aureus. Biochim Biophys Acta Bioenerg 1858:823–832 http://dx.doi.org/10.1016/j.bbabio.2017.08.002. [PubMed]
152. Tuchscherr L, Löffler B. 2016. Staphylococcus aureus dynamically adapts global regulators and virulence factor expression in the course from acute to chronic infection. Curr Genet 62:15–17 http://dx.doi.org/10.1007/s00294-015-0503-0. [PubMed]

Article metrics loading...



Respiratory mutants, both naturally occurring and genetically constructed, have taught us about the importance of metabolism in influencing virulence factor production, persistence, and antibiotic resistance. As we learn more about small colony variants, we find that has many pathways to produce small colony variants, although the respiratory variants are the best described clinically and in the laboratory.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Electron Transport in .

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0069-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Relationship between electron transport and the small colony variant phenotype in .

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0069-2019
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Metabolic pathways and mutations found in SCVs with reduced ATP

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0069-2019
Generic image for table

Compensatory changes in redox and ATP-producing reactions in SCVs

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0069-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error