No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Biofilm Matrix Proteins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    152.91 Kb
  • HTML
    159.46 Kb
  • PDF
    464.88 Kb
  • Authors: Jiunn N. C. Fong1, Fitnat H. Yildiz2
  • Editors: Mahmoud Ghannoum3, Matthew Parsek4, Marvin Whiteley5, Pranab Mukherjee6
    Affiliations: 1: Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064; 2: Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064; 3: Case Western Reserve University, Cleveland, OH; 4: University of Washington, Seattle, WA; 5: University of Texas at Austin, Austin, TX; 6: Case Western Reserve University, Cleveland, OH
  • Source: microbiolspec April 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MB-0004-2014
  • Received 09 September 2014 Accepted 19 November 2014 Published 03 April 2015
  • Jiunn N. C. Fong, [email protected]
image of Biofilm Matrix Proteins
    Preview this microbiology spectrum article:
    Zoom in

    Biofilm Matrix Proteins, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/2/MB-0004-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/2/MB-0004-2014-2.gif
  • Abstract:

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of and , and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.

  • Citation: Fong J, Yildiz F. 2015. Biofilm Matrix Proteins. Microbiol Spectrum 3(2):MB-0004-2014. doi:10.1128/microbiolspec.MB-0004-2014.


1. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol 49:711–745. [PubMed][CrossRef]
2. O'Toole G, Kaplan HB, Kolter R. 2000. Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79. [PubMed][CrossRef]
3. Branda SS, Vik S, Friedman L, Kolter R. 2005. Biofilms: the matrix revisited. Trends Microbiol 13:20–26. [PubMed][CrossRef]
4. Flemming HC, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol 8:623–633. [PubMed][CrossRef]
5. Fong JC, Karplus K, Schoolnik GK, Yildiz FH. 2006. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J Bacteriol 188:1049–1059. [PubMed][CrossRef]
6. Fong JC, Yildiz FH. 2007. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol 189:2319–2330. [PubMed][CrossRef]
7. Diggle SP, Stacey RE, Dodd C, Camara M, Williams P, Winzer K. 2006. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8:1095–1104. [PubMed][CrossRef]
8. Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, Rosenau F, Jaeger KE. 2005. Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151:1313–1323. [PubMed][CrossRef]
9. Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, Penades JR, Lasa I. 2005. BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 58:1322–1339. [PubMed][CrossRef]
10. Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, Amorena B, Leiva J, Penades JR, Lasa I. 2001. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67:4538–4545. [PubMed][CrossRef]
11. Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR. 2001. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896. [PubMed][CrossRef]
12. Ostrowski A, Mehert A, Prescott A, Kiley TB, Stanley-Wall NR. 2011. YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis. J Bacteriol 193:4821–4831. [PubMed][CrossRef]
13. Kobayashi K, Iwano M. 2012. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol 85:51–66. [PubMed][CrossRef]
14. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. 2010. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842. [PubMed][CrossRef]
15. Kaplan JB, Ragunath C, Ramasubbu N, Fine DH. 2003. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J Bacteriol 185:4693–4698. [PubMed][CrossRef]
16. Marti M, Trotonda MP, Tormo-Mas MA, Vergara-Irigaray M, Cheung AL, Lasa I, Penades JR. 2010. Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes Infect 12:55–64. [PubMed][CrossRef]
17. Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, Tsang LH, Smeltzer MS, Horswill AR, Bayles KW. 2009. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4:e5822. doi:10.1371/journal.pone.0005822. [PubMed]
18. Nijland R, Hall MJ, Burgess JG. 2010. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One 5:e15668. doi:10.1371/journal.pone.0015668. [PubMed][CrossRef]
19. Absalon C, Van Dellen K, Watnick PI. 2011. A communal bacterial adhesin anchors biofilm and bystander cells to surfaces. PLoS Pathog 7:e1002210. doi:10.1371/journal.ppat.1002210. [PubMed][CrossRef]
20. Toyofuku M, Roschitzki B, Riedel K, Eberl L. 2012. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res 11:4906–4915. [PubMed][CrossRef]
21. Curtis PD, Atwood J, 3rd, Orlando R, Shimkets LJ. 2007. Proteins associated with the Myxococcus xanthus extracellular matrix. J Bacteriol 189:7634–7642. [PubMed][CrossRef]
22. Jiao Y, D'Haeseleer P, Dill BD, Shah M, Verberkmoes NC, Hettich RL, Banfield JF, Thelen MP. 2011. Identification of biofilm matrix-associated proteins from an acid mine drainage microbial community. Appl Environ Microbiol 77:5230–5237. [PubMed][CrossRef]
23. Yildiz FH, Schoolnik GK. 1999. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96:4028–4033. [PubMed][CrossRef]
24. Fong JC, Syed KA, Klose KE, Yildiz FH. 2010. Role of Vibrio polysaccharide ( vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology 156:2757–2769. [PubMed][CrossRef]
25. Yildiz F, Fong J, Sadovskaya I, Grard T, Vinogradov E. 2014. Structural Characterization of the extracellular polysaccharide from Vibrio cholerae O1 El-Tor. PLoS One 9:e86751. doi:10.1371/journal.pone.0086751. [PubMed][CrossRef]
26. Kirn TJ, Jude BA, Taylor RK. 2005. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438:863–866. [PubMed][CrossRef]
27. Berk V, Fong JC, Dempsey GT, Develioglu ON, Zhuang X, Liphardt J, Yildiz FH, Chu S. 2012. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337:236–239. [PubMed][CrossRef]
28. Giglio KM, Fong JC, Yildiz FH, Sondermann H. 2013. Structural basis for biofilm formation via the Vibrio cholerae matrix protein RbmA. J Bacteriol 195:3277–3286. [PubMed][CrossRef]
29. Bork P, Doolittle RF. 1992. Proposed acquisition of an animal protein domain by bacteria. Proc Natl Acad Sci USA 89:8990–8994. [PubMed][CrossRef]
30. Maestre-Reyna M, Wu WJ, Wang AH. 2013. Structural insights into RbmA, a biofilm scaffolding protein of Vibrio cholerae. PLoS One 8:e82458. doi:10.1371/journal.pone.0082458. [PubMed][CrossRef]
31. Oberhauser AF, Marszalek PE, Erickson HP, Fernandez JM. 1998. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393:181–185. [PubMed][CrossRef]
32. Craig D, Gao M, Schulten K, Vogel V. 2004. Tuning the mechanical stability of fibronectin type III modules through sequence variations. Structure 12:21–30. [PubMed][CrossRef]
33. Moorthy S, Watnick PI. 2005. Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol Microbiol 57:1623–1635. [PubMed][CrossRef]
34. Baneres JL, Roquet F, Martin A, Parello J. 2000. A minimized human integrin alpha(5)beta(1) that retains ligand recognition. J Biol Chem 275:5888–5903. [PubMed][CrossRef]
35. Hynes RO. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687. [PubMed][CrossRef]
36. Hynes RO. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25. [PubMed][CrossRef]
37. Raval S, Gowda SB, Singh DD, Chandra NR. 2004. A database analysis of jacalin-like lectins: sequence-structure-function relationships. Glycobiology 14:1247–1263. [PubMed][CrossRef]
38. Sankaranarayanan R, Sekar K, Banerjee R, Sharma V, Surolia A, Vijayan M. 1996. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a beta-prism fold. Nat Struct Biol 3:596–603. [PubMed][CrossRef]
39. Sikora AE, Zielke RA, Lawrence DA, Andrews PC, Sandkvist M. 2011. Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases. J Biol Chem 286:16555–16566. [PubMed][CrossRef]
40. Duperthuy M, Sjostrom AE, Sabharwal D, Damghani F, Uhlin BE, Wai SN. 2013. Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides. PLoS Pathog 9:e1003620. doi:10.1371/journal.ppat.1003620. [PubMed][CrossRef]
41. Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. 1983. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283. [PubMed]
42. Chowdhury MA, Huq A, Xu B, Madeira FJ, Colwell RR. 1997. Effect of alum on free-living and copepod-associated Vibrio cholerae O1 and O139. Appl Environ Microbiol 63:3323–3326. [PubMed]
43. Hunt DE, Gevers D, Vahora NM, Polz MF. 2008. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol 74:44–51. [PubMed][CrossRef]
44. Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK. 2004. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 101:2524–2529. [PubMed][CrossRef]
45. Stauder M, Huq A, Pezzati E, Grim CJ, Ramoino P, Pane L, Colwell RR, Pruzzo C, Vezzulli L. 2012. Role of GbpA protein, an important virulence-related colonization factor, for Vibrio cholerae's survival in the aquatic environment. Environ Microbiol Rep 4:439–445. [PubMed][CrossRef]
46. Stauder M, Vezzulli L, Pezzati E, Repetto B, Pruzzo C. 2010. Temperature affects Vibrio cholerae O1 El Tor persistence in the aquatic environment via an enhanced expression of GbpA and MSHA adhesins. Environ Microbiol Rep 2:140–144. [PubMed][CrossRef]
47. Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, Nandy RK, Bhadra RK, Chatterjee NS. 2008. Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun 76:4968–4977. [PubMed][CrossRef]
48. Wong E, Vaaje-Kolstad G, Ghosh A, Hurtado-Guerrero R, Konarev PV, Ibrahim AF, Svergun DI, Eijsink VG, Chatterjee NS, van Aalten DM. 2012. The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog 8:e1002373. doi:10.1371/journal.ppat.1002373. [PubMed][CrossRef]
49. Maruyama Y, Momma M, Mikami B, Hashimoto W, Murata K. 2008. Crystal structure of a novel bacterial cell-surface flagellin binding to a polysaccharide. Biochemistry 47:1393–1402. [PubMed][CrossRef]
50. Hashimoto W, He J, Wada Y, Nankai H, Mikami B, Murata K. 2005. Proteomics-based identification of outer-membrane proteins responsible for import of macromolecules in Sphingomonas sp. A1: alginate-binding flagellin on the cell surface. Biochemistry 44:13783–13794. [PubMed][CrossRef]
51. Callebaut I, Gilges D, Vigon I, Mornon JP. 2000. HYR, an extracellular module involved in cellular adhesion and related to the immunoglobulin-like fold. Protein Sci 9:1382–1390. [PubMed][CrossRef]
52. Kelly G, Prasannan S, Daniell S, Fleming K, Frankel G, Dougan G, Connerton I, Matthews S. 1999. Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nat Struct Biol 6:313–318. [PubMed][CrossRef]
53. Chiavelli DA, Marsh JW, Taylor RK. 2001. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl Environ Microbiol 67:3220–3225. [PubMed][CrossRef]
54. Watnick PI, Fullner KJ, Kolter R. 1999. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181:3606–3609. [PubMed]
55. Evans LR, Linker A. 1973. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol 116:915–924. [PubMed]
56. Friedman L, Kolter R. 2004. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465. [PubMed][CrossRef]
57. Friedman L, Kolter R. 2004. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690. [PubMed][CrossRef]
58. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487. [PubMed][CrossRef]
59. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128. [PubMed][CrossRef]
60. Garber N, Guempel U, Belz A, Gilboa-Garber N, Doyle RJ. 1992. On the specificity of the D-galactose-binding lectin (PA-I) of Pseudomonas aeruginosa and its strong binding to hydrophobic derivatives of D-galactose and thiogalactose. Biochim Biophys Acta 1116:331–333. [PubMed][CrossRef]
61. Schurks N, Wingender J, Flemming HC, Mayer C. 2002. Monomer composition and sequence of alginates from Pseudomonas aeruginosa. Int J Biol Macromol 30:105–111. [PubMed][CrossRef]
62. Nivens DE, Ohman DE, Williams J, Franklin MJ. 2001. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183:1047–1057. [PubMed][CrossRef]
63. Stapper AP, Narasimhan G, Ohman DE, Barakat J, Hentzer M, Molin S, Kharazmi A, Hoiby N, Mathee K. 2004. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 53:679–690. [PubMed][CrossRef]
64. Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O'Toole GA, Parsek MR. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 100:7907–7912. [PubMed][CrossRef]
65. Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR. 2001. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401. [PubMed][CrossRef]
66. Ma L, Lu H, Sprinkle A, Parsek MR, Wozniak DJ. 2007. Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J Bacteriol 189:8353–8356. [PubMed][CrossRef]
67. Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GC, Parsek MR. 2011. The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7:e1001264. doi:10.1371/journal.ppat.1001264. [PubMed][CrossRef]
68. Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ. 2004. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466–4475. [PubMed][CrossRef]
69. Ma L, Jackson KD, Landry RM, Parsek MR, Wozniak DJ. 2006. Analysis of Pseudomonas aeruginosa conditional Psl variants reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 188:8213–8221. [PubMed][CrossRef]
70. Gilboa-Garber N. 1972. Purification and properties of hemagglutinin from Pseudomonas aeruginosa and its reaction with human blood cells. Biochim Biophys Acta 273:165–173. [PubMed][CrossRef]
71. Gilboa-Garber N, Mizrahi L, Garber N. 1977. Mannose-binding hemagglutinins in extracts of Pseudomonas aeruginosa. Can J Biochem 55:975–981. [PubMed][CrossRef]
72. Gilboa-Garber N. 1982. Pseudomonas aeruginosa lectins. Methods Enzymol 83:378–385. [PubMed][CrossRef]
73. Adam EC, Mitchell BS, Schumacher DU, Grant G, Schumacher U. 1997. Pseudomonas aeruginosa PA-II lectin stops human ciliary beating: therapeutic implications of fucose. Am J Respir Crit Care Med 155:2102–2104. [PubMed][CrossRef]
74. Avichezer D, Gilboa-Garber N. 1991. Antitumoral effects of Pseudomonas aeruginosa lectins on Lewis lung carcinoma cells cultured in vitro without and with murine splenocytes. Toxicon 29:1305–1313. [PubMed][CrossRef]
75. Bajolet-Laudinat O, Girod-de Bentzmann S, Tournier JM, Madoulet C, Plotkowski MC, Chippaux C, Puchelle E. 1994. Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture. Infect Immun 62:4481–4487. [PubMed]
76. Gabius HJ, Andre S, Kaltner H, Siebert HC. 2002. The sugar code: functional lectinomics. Biochim Biophys Acta 1572:165–177. [PubMed][CrossRef]
77. Barondes SH, Gitt MA, Leffler H, Cooper DN. 1988. Multiple soluble vertebrate galactoside-binding lectins. Biochimie 70:1627–1632. [PubMed][CrossRef]
78. Blanchard B, Imberty A, Varrot A. 2013. Secondary sugar binding site identified for LecA lectin from Pseudomonas aeruginosa. Proteins 82:1060–1065. [PubMed][CrossRef]
79. Imberty A, Wimmerova M, Mitchell EP, Gilboa-Garber N. 2004. Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition. Microbes Infect 6:221–228. [PubMed][CrossRef]
80. Sudakevitz D, Kostlanova N, Blatman-Jan G, Mitchell EP, Lerrer B, Wimmerova M, Katcoff DJ, Imberty A, Gilboa-Garber N. 2004. A new Ralstonia solanacearum high-affinity mannose-binding lectin RS-IIL structurally resembling the Pseudomonas aeruginosa fucose-specific lectin PA-IIL. Mol Microbiol 52:691–700. [PubMed][CrossRef]
81. Zinger-Yosovich K, Sudakevitz D, Imberty A, Garber NC, Gilboa-Garber N. 2006. Production and properties of the native Chromobacterium violaceum fucose-binding lectin (CV-IIL) compared to homologous lectins of Pseudomonas aeruginosa (PA-IIL) and Ralstonia solanacearum (RS-IIL). Microbiology 152:457–463. [PubMed][CrossRef]
82. Lameignere E, Malinovska L, Slavikova M, Duchaud E, Mitchell EP, Varrot A, Sedo O, Imberty A, Wimmerova M. 2008. Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia. Biochem J 411:307–318. [PubMed][CrossRef]
83. Pokorna M, Cioci G, Perret S, Rebuffet E, Kostlanova N, Adam J, Gilboa-Garber N, Mitchell EP, Imberty A, Wimmerova M. 2006. Unusual entropy-driven affinity of Chromobacterium violaceum lectin CV-IIL toward fucose and mannose. Biochemistry 45:7501–7510. [PubMed][CrossRef]
84. Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Perez S, Wu AM, Gilboa-Garber N, Imberty A. 2002. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat Struct Biol 9:918–921. [PubMed][CrossRef]
85. Cioci G, Mitchell EP, Gautier C, Wimmerova M, Sudakevitz D, Perez S, Gilboa-Garber N, Imberty A. 2003. Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett 555:297–301. [PubMed][CrossRef]
86. Loris R, Tielker D, Jaeger KE, Wyns L. 2003. Structural basis of carbohydrate recognition by the lectin LecB from Pseudomonas aeruginosa. J Mol Biol 331:861–870. [PubMed][CrossRef]
87. Avichezer D, Katcoff DJ, Garber NC, Gilboa-Garber N. 1992. Analysis of the amino acid sequence of the Pseudomonas aeruginosa galactophilic PA-I lectin. J Biol Chem 267:23023–23027. [PubMed]
88. Gilboa-Garber N, Katcoff DJ, Garber NC. 2000. Identification and characterization of Pseudomonas aeruginosa PA-IIL lectin gene and protein compared to PA-IL. FEMS Immunol Med Microbiol 29:53–57. [PubMed][CrossRef]
89. Funken H, Bartels KM, Wilhelm S, Brocker M, Bott M, Bains M, Hancock RE, Rosenau F, Jaeger KE. 2012. Specific association of lectin LecB with the surface of Pseudomonas aeruginosa: role of outer membrane protein OprF. PLoS One 7:e46857. doi:10.1371/journal.pone.0046857. [PubMed][CrossRef]
90. Lembre P, Vendrely C, Martino PD. 2014. Identification of an amyloidogenic peptide from the Bap protein of Staphylococcus epidermidis. Protein Pept Lett 21:75–79. [PubMed][CrossRef]
91. Tormo MA, Knecht E, Gotz F, Lasa I, Penades JR. 2005. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151:2465–2475. [PubMed][CrossRef]
92. Cucarella C, Tormo MA, Ubeda C, Trotonda MP, Monzon M, Peris C, Amorena B, Lasa I, Penades JR. 2004. Role of biofilm-associated protein Bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun 72:2177–2185. [PubMed][CrossRef]
93. Valle J, Latasa C, Gil C, Toledo-Arana A, Solano C, Penades JR, Lasa I. 2012. Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor. PLoS Pathog 8:e1002843. doi:10.1371/journal.ppat.1002843. [PubMed][CrossRef]
94. Cucarella C, Tormo MA, Knecht E, Amorena B, Lasa I, Foster TJ, Penades JR. 2002. Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun 70:3180–3186. [PubMed][CrossRef]
95. Tendolkar PM, Baghdayan AS, Shankar N. 2005. The N-terminal domain of enterococcal surface protein, Esp, is sufficient for Esp-mediated biofilm enhancement in Enterococcus faecalis. J Bacteriol 187:6213–6222. [PubMed][CrossRef]
96. Arrizubieta MJ, Toledo-Arana A, Amorena B, Penades JR, Lasa I. 2004. Calcium inhibits bap-dependent multicellular behavior in Staphylococcus aureus. J Bacteriol 186:7490–7498. [PubMed][CrossRef]
97. Shukla SK, Rao TS. 2013. Effect of calcium on Staphylococcus aureus biofilm architecture: a confocal laser scanning microscopic study. Colloids Surf B Biointerfaces 103:448–454. [PubMed][CrossRef]
98. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. [PubMed][CrossRef]
99. Romero D, Aguilar C, Losick R, Kolter R. 2010. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci USA 107:2230–2234. [PubMed][CrossRef]
100. Verhamme DT, Murray EJ, Stanley-Wall NR. 2009. DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J Bacteriol 191:100–108. [PubMed][CrossRef]
101. Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR, MacPhee CE, van Aalten DM, Stanley-Wall NR. 2013. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci USA 110:13600–13605. [PubMed][CrossRef]
102. Voigt B, Antelmann H, Albrecht D, Ehrenreich A, Maurer KH, Evers S, Gottschalk G, van Dijl JM, Schweder T, Hecker M. 2009. Cell physiology and protein secretion of Bacillus licheniformis compared to Bacillus subtilis. J Mol Microbiol Biotechnol 16:53–68. [PubMed][CrossRef]
103. Beveridge TJ. 1999. Structures of Gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733. [PubMed]
104. Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184. [PubMed][CrossRef]
105. Bielig H, Dongre M, Zurek B, Wai SN, Kufer TA. 2011. A role for quorum sensing in regulating innate immune responses mediated by Vibrio cholerae outer membrane vesicles (OMVs). Gut Microbes 2:274–279. [PubMed][CrossRef]
106. Schooling SR, Beveridge TJ. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5957. [PubMed][CrossRef]
107. Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H, Ochiai K, Hanawa T, Kamiya S. 2009. Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol 9:197. [PubMed][CrossRef]
108. Kondo K, Takade A, Amako K. 1993. Release of the outer membrane vesicles from Vibrio cholerae and Vibrio parahaemolyticus. Microbiol Immunol 37:149–152. [PubMed][CrossRef]
109. Shibata S, Visick KL. 2012. Sensor kinase RscS induces the production of antigenically distinct outer membrane vesicles that depend on the symbiosis polysaccharide locus in Vibrio fischeri. J Bacteriol 194:185–194. [PubMed][CrossRef]
110. Schooling SR, Hubley A, Beveridge TJ. 2009. Interactions of DNA with biofilm-derived membrane vesicles. J Bacteriol 191:4097–4102. [PubMed][CrossRef]
111. Renelli M, Matias V, Lo RY, Beveridge TJ. 2004. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150:2161–2169. [PubMed][CrossRef]
112. Yonezawa H, Osaki T, Woo T, Kurata S, Zaman C, Hojo F, Hanawa T, Kato S, Kamiya S. 2011. Analysis of outer membrane vesicle protein involved in biofilm formation of Helicobacter pylori. Anaerobe 17:388–390. [PubMed][CrossRef]
113. Goodman SD, Obergfell KP, Jurcisek JA, Novotny LA, Downey JS, Ayala EA, Tjokro N, Li B, Justice SS, Bakaletz LO. 2011. Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins. Mucosal Immunol 4:625–637. [PubMed][CrossRef]
114. Novotny LA, Amer AO, Brockson ME, Goodman SD, Bakaletz LO. 2013. Structural stability of Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein. PLoS One 8:e67629. doi:10.1371/journal.pone.0067629 [PubMed][CrossRef]
115. Gustave JE, Jurcisek JA, McCoy KS, Goodman SD, Bakaletz LO. 2013. Targeting bacterial integration host factor to disrupt biofilms associated with cystic fibrosis. J Cyst Fibros 12:384–389. [PubMed][CrossRef]
116. Swinger KK, Rice PA. 2004. IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 14:28–35. [PubMed][CrossRef]
117. Yildiz FH, Liu XS, Heydorn A, Schoolnik GK. 2004. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53:497–515. [PubMed][CrossRef]
118. Beyhan S, Bilecen K, Salama SR, Casper-Lindley C, Yildiz FH. 2007. Regulation of rugosity and biofilm formation in Vibrio cholerae: comparison of VpsT and VpsR regulons and epistasis analysis of vpsT, vpsR, and hapR. J Bacteriol 189:388–402. [PubMed][CrossRef]
119. Fong JC, Yildiz FH. 2008. Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J Bacteriol 190:6646–6659. [PubMed][CrossRef]
120. Kovacs AT, Kuipers OP. 2011. Rok regulates yuaB expression during architecturally complex colony development of Bacillus subtilis 168. J Bacteriol 193:998–1002. [PubMed][CrossRef]
121. Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S. 2004. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7:745–754. [PubMed][CrossRef]
122. Jones CJ, Newsom D, Kelly B, Irie Y, Jennings LK, Xu B, Limoli DH, Harrison JJ, Parsek MR, White P, Wozniak DJ. 2014. ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa. PLoS Pathog 10:e1003984. doi:10.1371/journal.ppat.1003984. [PubMed][CrossRef]
123. Irie Y, Starkey M, Edwards AN, Wozniak DJ, Romeo T, Parsek MR. 2010. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol Microbiol 78:158–172. [PubMed][CrossRef]
124. Burrowes E, Baysse C, Adams C, O'Gara F. 2006. Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152:405–418. [PubMed][CrossRef]
125. Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A. 2011. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol 13:3128–3138. [PubMed][CrossRef]

Article metrics loading...



Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of and , and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Colony morphology of rugose variant and mutant strains unable to produce RbmA, RbmC, and Bap1 matrix proteins. Bar = 0.5 mm.

Source: microbiolspec April 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MB-0004-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


Domain organization of RbmA, Bap1, and RbmC. FnIII, fibronectin type III; VCBS, repeat; FG-GAP, phenyl-alanyl-glycyl (FG) and glycyl-alanyl-prolyl (GAP).

Source: microbiolspec April 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MB-0004-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view


Domain organization of Bap and BapA. EF-hand calcium-binding motifs EF1 to 4 in Bap are indicated. LPxTG is the cell-wall anchoring motif. The repeats in the core regions of BapA share 29% identity with the C repeats of Bap.

Source: microbiolspec April 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MB-0004-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Click to view


Members of the Bap family

Source: microbiolspec April 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MB-0004-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error