No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Molecular Mechanisms of Phagosome Formation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    160.07 Kb
  • XML
    162.23 Kb
  • PDF
    4.67 MB
  • Authors: Valentin Jaumouillé1, Sergio Grinstein2
  • Editor: Siamon Gordon3
    Affiliations: 1: Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada; 2: Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada; 3: Oxford University, Oxford, United Kingdom
  • Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0013-2015
  • Received 05 June 2015 Accepted 17 July 2015 Published 06 May 2016
  • Sergio Grinstein, [email protected]
image of Molecular Mechanisms of Phagosome Formation
    Preview this microbiology spectrum article:
    Zoom in

    Molecular Mechanisms of Phagosome Formation, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/3/MCHD-0013-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/3/MCHD-0013-2015-2.gif
  • Abstract:

    Phagocytosis refers to the active process that allows cells to take up large particulate material upon binding to surface receptors. The discovery of phagocytosis in 1883 by Elie Metchnikoff, leading to the concept that specialized cells are implicated in the defense against microbes, was one of the starting points of the field of immunology. After more than a century of research, phagocytosis is now appreciated to be a widely used process that enables the cellular uptake of a remarkable variety of particles, including bacteria, fungi, parasites, viruses, dead cells, and assorted debris and solid materials. Uptake of foreign particles is performed almost exclusively by specialized myeloid cells, commonly termed “professional phagocytes”: neutrophils, monocytes, macrophages, and dendritic cells. Phagocytosis of microbes not only stops or at least restricts the spread of infection but also plays an important role in regulating the innate and adaptive immune responses. Activation of the myeloid cells upon phagocytosis leads to the secretion of cytokines and chemokines that convey signals to a variety of immune cells. Moreover, foreign antigens generated by the degradation of microbes following phagocytosis are loaded onto the major histocompatibility complex for presentation to specific T lymphocytes. However, phagocytosis is not restricted to professional myeloid phagocytes; an expanding diversity of cell types appear capable of engulfing apoptotic bodies and debris, playing a critical role in tissue remodeling and in the clearance of billions of effete cells every day.

  • Citation: Jaumouillé V, Grinstein S. 2016. Molecular Mechanisms of Phagosome Formation. Microbiol Spectrum 4(3):MCHD-0013-2015. doi:10.1128/microbiolspec.MCHD-0013-2015.


1. Cannon GJ, Swanson JA. 1992. The macrophage capacity for phagocytosis. J Cell Sci 101:907–913. [PubMed]
2. Roberts J, Quastel JH. 1963. Particle uptake by polymorphonuclear leucocytes and Ehrlich ascites-carcinoma cells. Biochem J 89:150–156. [PubMed][CrossRef]
3. Champion JA, Mitragotri S. 2006. Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103:4930–4934. [PubMed][CrossRef]
4. Paul D, Achouri S, Yoon YZ, Herre J, Bryant CE, Cicuta P. 2013. Phagocytosis dynamics depends on target shape. Biophys J 105:1143–1150. [PubMed][CrossRef]
5. Griffin FM, Jr, Griffin JA, Leider JE, Silverstein SC. 1975. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med 142:1263–1282. [PubMed][CrossRef]
6. Swanson JA, Baer SC. 1995. Phagocytosis by zippers and triggers. Trends Cell Biol 5:89–93. [PubMed][CrossRef]
7. Axline SG, Reaven EP. 1974. Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B. Role of subplasmalemmal microfilaments. J Cell Biol 62:647–659. [PubMed][CrossRef]
8. Malawista SE, Gee JB, Bensch KG. 1971. Cytochalasin B reversibly inhibits phagocytosis: functional, metabolic, and ultrastructural effects in human blood leukocytes and rabbit alveolar macrophages. Yale J Biol Med 44:286–300. [PubMed]
9. Newman SL, Mikus LK, Tucci MA. 1991. Differential requirements for cellular cytoskeleton in human macrophage complement receptor- and Fc receptor-mediated phagocytosis. J Immunol 146:967–974. [PubMed]
10. Tollis S, Dart AE, Tzircotis G, Endres RG. 2010. The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape. BMC Syst Biol 4:149. doi:10.1186/1752-0509-4-149. [PubMed][CrossRef]
11. Cox D, Dale BM, Kashiwada M, Helgason CD, Greenberg S. 2001. A regulatory role for Src homology 2 domain-containing inositol 5′-phosphatase (SHIP) in phagocytosis mediated by Fcγ receptors and complement receptor 3 (α Mβ 2; CD11b/CD18). J Exp Med 193:61–71. [PubMed][CrossRef]
12. Herre J, Marshall AS, Caron E, Edwards AD, Williams DL, Schweighoffer E, Tybulewicz V, Reis e Sousa C, Gordon S, Brown GD. 2004. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104:4038–4045. [PubMed][CrossRef]
13. Leverrier Y, Ridley AJ. 2001. Requirement for Rho GTPases and PI 3-kinases during apoptotic cell phagocytosis by macrophages. Curr Biol 11:195–199. [PubMed][CrossRef]
14. Ninomiya N, Hazeki K, Fukui Y, Seya T, Okada T, Hazeki O, Ui M. 1994. Involvement of phosphatidylinositol 3-kinase in Fcγ receptor signaling. J Biol Chem 269:22732–22737. [PubMed]
15. Caron E, Self AJ, Hall A. 2000. The GTPase Rap1 controls functional activation of macrophage integrin αMβ2 by LPS and other inflammatory mediators. Curr Biol 10:974–978. [PubMed][CrossRef]
16. Griffin FM, Griffin JA. 1980. Augmentation of macrophage complement receptor function in vitro. II. Characterization of the effects of a unique lymphokine upon the phagocytic capabilities of macrophages. J Immunol 125:844–849. [PubMed]
17. Fridman WH, Gresser I, Bandu MT, Aguet M, Neauport-Sautes C. 1980. Interferon enhances the expression of Fc gamma receptors. J Immunol 124:2436–2441. [PubMed]
18. Itoh K, Inoue M, Kataoka S, Kumagai K. 1980. Differential effect of interferon expression of IgG- and IgM-Fc receptors on human lymphocytes. J Immunol 124:2589–2595. [PubMed]
19. Allen JM, Seed B. 1989. Isolation and expression of functional high-affinity Fc receptor complementary DNAs. Science 243:378–381. [PubMed][CrossRef]
20. Brown GD, Gordon S. 2001. Immune recognition. A new receptor for β-glucans. Nature 413:36–37. [PubMed][CrossRef]
21. Doyle SE, O’Connell RM, Miranda GA, Vaidya SA, Chow EK, Liu PT, Suzuki S, Suzuki N, Modlin RL, Yeh WC, Lane TF, Cheng G. 2004. Toll-like receptors induce a phagocytic gene program through p38. J Exp Med 199:81–90. [PubMed][CrossRef]
22. Ezekowitz RA, Sastry K, Bailly P, Warner A. 1990. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med 172:1785–1794. [PubMed][CrossRef]
23. van der Laan LJ, Döpp EA, Haworth R, Pikkarainen T, Kangas M, Elomaa O, Dijkstra CD, Gordon S, Tryggvason K, Kraal G. 1999. Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J Immunol 162:939–947. [PubMed]
24. Peiser L, Gough PJ, Kodama T, Gordon S. 2000. Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: role of cell heterogeneity, microbial strain, and culture conditions in vitro. Infect Immun 68:1953–1963. [PubMed][CrossRef]
25. Thomas CA, Li Y, Kodama T, Suzuki H, Silverstein SC, El Khoury J. 2000. Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 191:147–156. [PubMed][CrossRef]
26. Józefowski S, Arredouani M, Sulahian T, Kobzik L. 2005. Disparate regulation and function of the class A scavenger receptors SR-AI/II and MARCO. J Immunol 175:8032–8041. [PubMed][CrossRef]
27. Anderson CL, Shen L, Eicher DM, Wewers MD, Gill JK. 1990. Phagocytosis mediated by three distinct Fcγ receptor classes on human leukocytes. J Exp Med 171:1333–1345. [PubMed][CrossRef]
28. Nimmerjahn F, Ravetch JV. 2008. Fcγ receptors as regulators of immune responses. Nat Rev Immunol 8:34–47. [PubMed][CrossRef]
29. Blystone SD, Graham IL, Lindberg FP, Brown EJ. 1994. Integrin α vβ 3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor α 5β 1. J Cell Biol 127:1129–1137. [PubMed][CrossRef]
30. Schiff DE, Kline L, Soldau K, Lee JD, Pugin J, Tobias PS, Ulevitch RJ. 1997. Phagocytosis of Gram-negative bacteria by a unique CD14-dependent mechanism. J Leukoc Biol 62:786–794. [PubMed]
31. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. 1992. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216. [PubMed]
32. Borisenko GG, Matsura T, Liu SX, Tyurin VA, Jianfei J, Serinkan FB, Kagan VE. 2003. Macrophage recognition of externalized phosphatidylserine and phagocytosis of apoptotic Jurkat cells—existence of a threshold. Arch Biochem Biophys 413:41–52. [PubMed][CrossRef]
33. Suzuki J, Umeda M, Sims PJ, Nagata S. 2010. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838. [PubMed][CrossRef]
34. He M, Kubo H, Morimoto K, Fujino N, Suzuki T, Takahasi T, Yamada M, Yamaya M, Maekawa T, Yamamoto Y, Yamamoto H. 2011. Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep 12:358–364. [PubMed][CrossRef]
35. Kobayashi N, Karisola P, Peña-Cruz V, Dorfman DM, Jinushi M, Umetsu SE, Butte MJ, Nagumo H, Chernova I, Zhu B, Sharpe AH, Ito S, Dranoff G, Kaplan GG, Casasnovas JM, Umetsu DT, Dekruyff RH, Freeman GJ. 2007. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27:927–940. [PubMed][CrossRef]
36. Nakayama M, Akiba H, Takeda K, Kojima Y, Hashiguchi M, Azuma M, Yagita H, Okumura K. 2009. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113:3821–3830. [PubMed][CrossRef]
37. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS. 2007. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434. [PubMed][CrossRef]
38. Park SY, Jung MY, Kim HJ, Lee SJ, Kim SY, Lee BH, Kwon TH, Park RW, Kim IS. 2008. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ 15:192–201. [PubMed][CrossRef]
39. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. 2002. Identification of a factor that links apoptotic cells to phagocytes. Nature 417:182–187. [PubMed][CrossRef]
40. Anderson HA, Maylock CA, Williams JA, Paweletz CP, Shu H, Shacter E. 2003. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol 4:87–91. [PubMed][CrossRef]
41. Segawa K, Suzuki J, Nagata S. 2011. Constitutive exposure of phosphatidylserine on viable cells. Proc Natl Acad Sci U S A 108:19246–19251. [PubMed][CrossRef]
42. Arur S, Uche UE, Rezaul K, Fong M, Scranton V, Cowan AE, Mohler W, Han DK. 2003. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell 4:587–598. [PubMed][CrossRef]
43. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM. 2005. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334. [PubMed][CrossRef]
44. Tsai RK, Discher DE. 2008. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol 180:989–1003. [PubMed][CrossRef]
45. Brown S, Heinisch I, Ross E, Shaw K, Buckley CD, Savill J. 2002. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418:200–203. [PubMed][CrossRef]
46. Gibbons MM, Chou T, D’Orsogna MR. 2010. Diffusion-dependent mechanisms of receptor engagement and viral entry. J Phys Chem B 114:15403–15412. [PubMed][CrossRef]
47. Jaumouillé V, Grinstein S. 2011. Receptor mobility, the cytoskeleton, and particle binding during phagocytosis. Curr Opin Cell Biol 23:22–29. [PubMed][CrossRef]
48. Sica A, Mantovani A. 2012. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795. [PubMed][CrossRef]
49. Jaumouillé V, Farkash Y, Jaqaman K, Das R, Lowell CA, Grinstein S. 2014. Actin cytoskeleton reorganization by Syk regulates Fcγ receptor responsiveness by increasing its lateral mobility and clustering. Dev Cell 29:534–546. [PubMed][CrossRef]
50. Botelho RJ, Harrison RE, Stone JC, Hancock JF, Philips MR, Jongstra-Bilen J, Mason D, Plumb J, Gold MR, Grinstein S. 2009. Localized diacylglycerol-dependent stimulation of Ras and Rap1 during phagocytosis. J Biol Chem 284:28522–28532. [PubMed][CrossRef]
51. Kong F, García AJ, Mould AP, Humphries MJ, Zhu C. 2009. Demonstration of catch bonds between an integrin and its ligand. J Cell Biol 185:1275–1284. [PubMed][CrossRef]
52. Flannagan RS, Harrison RE, Yip CM, Jaqaman K, Grinstein S. 2010. Dynamic macrophage “probing” is required for the efficient capture of phagocytic targets. J Cell Biol 191:1205–1218. [PubMed][CrossRef]
53. Kress H, Stelzer EH, Holzer D, Buss F, Griffiths G, Rohrbach A. 2007. Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proc Natl Acad Sci U S A 104:11633–11638. [PubMed][CrossRef]
54. Patel PC, Harrison RE. 2008. Membrane ruffles capture C3bi-opsonized particles in activated macrophages. Mol Biol Cell 19:4628–4639. [PubMed][CrossRef]
55. Vonna L, Wiedemann A, Aepfelbacher M, Sackmann E. 2007. Micromechanics of filopodia mediated capture of pathogens by macrophages. Eur Biophys J 36:145–151. [PubMed][CrossRef]
56. Araki N, Johnson MT, Swanson JA. 1996. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 135:1249–1260. [PubMed][CrossRef]
57. Papakonstanti EA, Zwaenepoel O, Bilancio A, Burns E, Nock GE, Houseman B, Shokat K, Ridley AJ, Vanhaesebroeck B. 2008. Distinct roles of class IA PI3K isoforms in primary and immortalised macrophages. J Cell Sci 121:4124–4133. [PubMed][CrossRef]
58. West MA, Prescott AR, Eskelinen EL, Ridley AJ, Watts C. 2000. Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Curr Biol 10:839–848. [CrossRef]
59. Wheeler AP, Wells CM, Smith SD, Vega FM, Henderson RB, Tybulewicz VL, Ridley AJ. 2006. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J Cell Sci 119:2749–2757. [PubMed][CrossRef]
60. Bohdanowicz M, Schlam D, Hermansson M, Rizzuti D, Fairn GD, Ueyama T, Somerharju P, Du G, Grinstein S. 2013. Phosphatidic acid is required for the constitutive ruffling and macropinocytosis of phagocytes. Mol Biol Cell 24:1700–1712, S1–7.
61. Poulsen HL. 1974. Interstitial fluid concentrations of albumin and immunoglobulin G in normal men. Scand J Clin Lab Invest 34:119–122. [PubMed][CrossRef]
62. Woof JM, Burton DR. 2004. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol 4:89–99. [PubMed][CrossRef]
63. Jones DH, Nusbacher J, Anderson CL. 1985. Fc receptor-mediated binding and endocytosis by human mononuclear phagocytes: monomeric IgG is not endocytosed by U937 cells and monocytes. J Cell Biol 100:558–564. [PubMed][CrossRef]
64. Odin JA, Edberg JC, Painter CJ, Kimberly RP, Unkeless JC. 1991. Regulation of phagocytosis and [Ca 2+] i flux by distinct regions of an Fc receptor. Science 254:1785–1788. [PubMed][CrossRef]
65. Holowka D, Sil D, Torigoe C, Baird B. 2007. Insights into immunoglobulin E receptor signaling from structurally defined ligands. Immunol Rev 217:269–279. [PubMed][CrossRef]
66. Ghazizadeh S, Bolen JB, Fleit HB. 1994. Physical and functional association of Src-related protein tyrosine kinases with FcγRII in monocytic THP-1 cells. J Biol Chem 269:8878–8884. [PubMed]
67. Hamada F, Aoki M, Akiyama T, Toyoshima K. 1993. Association of immunoglobulin G Fc receptor II with Src-like protein-tyrosine kinase Fgr in neutrophils. Proc Natl Acad Sci U S A 90:6305–6309. [PubMed][CrossRef]
68. Wang AV, Scholl PR, Geha RS. 1994. Physical and functional association of the high affinity immunoglobulin G receptor (FcγRI) with the kinases Hck and Lyn. J Exp Med 180:1165–1170. [PubMed][CrossRef]
69. Fitzer-Attas CJ, Lowry M, Crowley MT, Finn AJ, Meng F, DeFranco AL, Lowell CA. 2000. Fcγ receptor-mediated phagocytosis in macrophages lacking the Src family tyrosine kinases Hck, Fgr, and Lyn. J Exp Med 191:669–682. [PubMed][CrossRef]
70. Ghazizadeh S, Bolen JB, Fleit HB. 1995. Tyrosine phosphorylation and association of Syk with FcγRII in monocytic THP-1 cells. Biochem J 305:669–674. [PubMed][CrossRef]
71. Johnson SA, Pleiman CM, Pao L, Schneringer J, Hippen K, Cambier JC. 1995. Phosphorylated immunoreceptor signaling motifs (ITAMs) exhibit unique abilities to bind and activate Lyn and Syk tyrosine kinases. J Immunol 155:4596–4603. [PubMed]
72. Kiefer F, Brumell J, Al-Alawi N, Latour S, Cheng A, Veillette A, Grinstein S, Pawson T. 1998. The Syk protein tyrosine kinase is essential for Fcγ receptor signaling in macrophages and neutrophils. Mol Cell Biol 18:4209–4220. [PubMed][CrossRef]
73. Mukherjee S, Zhu J, Zikherman J, Parameswaran R, Kadlecek TA, Wang Q, Au-Yeung B, Ploegh H, Kuriyan J, Das J, Weiss A. 2013. Monovalent and multivalent ligation of the B cell receptor exhibit differential dependence upon Syk and Src family kinases. Sci Signal 6:ra1. doi:10.1126/scisignal.2003220. [CrossRef]
74. Crowley MT, Costello PS, Fitzer-Attas CJ, Turner M, Meng F, Lowell C, Tybulewicz VL, DeFranco AL. 1997. A critical role for Syk in signal transduction and phagocytosis mediated by Fcγ receptors on macrophages. J Exp Med 186:1027–1039. [PubMed][CrossRef]
75. Kwiatkowska K, Sobota A. 2001. The clustered Fcγ receptor II is recruited to Lyn-containing membrane domains and undergoes phosphorylation in a cholesterol-dependent manner. Eur J Immunol 31:989–998. [CrossRef]
76. Rollet-Labelle E, Marois S, Barbeau K, Malawista SE, Naccache PH. 2004. Recruitment of the cross-linked opsonic receptor CD32A (FcγRIIA) to high-density detergent-resistant membrane domains in human neutrophils. Biochem J 381:919–928. [PubMed][CrossRef]
77. García-García E, Brown EJ, Rosales C. 2007. Transmembrane mutations to FcγRIIA alter its association with lipid rafts: implications for receptor signaling. J Immunol 178:3048–3058. [PubMed][CrossRef]
78. Douglass AD, Vale RD. 2005. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121:937–950. [PubMed][CrossRef]
79. Hashimoto-Tane A, Yokosuka T, Ishihara C, Sakuma M, Kobayashi W, Saito T. 2010. T-cell receptor microclusters critical for T-cell activation are formed independently of lipid raft clustering. Mol Cell Biol 30:3421–3429. [PubMed][CrossRef]
80. Kovárová M, Tolar P, Arudchandran R, Dráberová L, Rivera J, Dráber P. 2001. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcε receptor I aggregation. Mol Cell Biol 21:8318–8328. [PubMed][CrossRef]
81. Johnson KG, Bromley SK, Dustin ML, Thomas ML. 2000. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc Natl Acad Sci U S A 97:10138–10143. [PubMed][CrossRef]
82. Yamauchi S, Kawauchi K, Sawada Y. 2012. Myosin II-dependent exclusion of CD45 from the site of Fcγ receptor activation during phagocytosis. FEBS Lett 586:3229–3235. [PubMed][CrossRef]
83. Cordoba S-P, Choudhuri K, Zhang H, Bridge M, Basat AB, Dustin ML, van der Merwe PA. 2013. The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood 121:4295–4302. [PubMed][CrossRef]
84. Wright SD, Silverstein SC. 1984. Phagocytosing macrophages exclude proteins from the zones of contact with opsonized targets. Nature 309:359–361. [PubMed][CrossRef]
85. Zhu JW, Brdicka T, Katsumoto TR, Lin J, Weiss A. 2008. Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling. Immunity 28:183–196. [PubMed][CrossRef]
86. Schoenborn JR, Tan YX, Zhang C, Shokat KM, Weiss A. 2011. Feedback circuits monitor and adjust basal Lck-dependent events in T cell receptor signaling. Sci Signal 4:ra59. doi:10.1126/scisignal.2001893. [PubMed][CrossRef]
87. Coxon PY, Rane MJ, Powell DW, Klein JB, McLeish KR. 2000. Differential mitogen-activated protein kinase stimulation by Fcγ receptor IIa and Fcγ receptor IIIb determines the activation phenotype of human neutrophils. J Immunol 164:6530–6537. [PubMed][CrossRef]
88. Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O, Bruckbauer A, Batista FD. 2010. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 32:187–199. [PubMed][CrossRef]
89. Tan YX, Manz BN, Freedman TS, Zhang C, Shokat KM, Weiss A. 2014. Inhibition of the kinase Csk in thymocytes reveals a requirement for actin remodeling in the initiation of full TCR signaling. Nat Immunol 15:186–194. [PubMed][CrossRef]
90. Tridandapani S, Lyden TW, Smith JL, Carter JE, Coggeshall KM, Anderson CL. 2000. The adapter protein LAT enhances Fcγ receptor-mediated signal transduction in myeloid cells. J Biol Chem 275:20480–20487. [PubMed][CrossRef]
91. Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE. 1998. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92:83–92. [PubMed][CrossRef]
92. Gu H, Botelho RJ, Yu M, Grinstein S, Neel BG. 2003. Critical role for scaffolding adapter Gab2 in FcγR-mediated phagocytosis. J Cell Biol 161:1151–1161. [PubMed][CrossRef]
93. Moon KD, Post CB, Durden DL, Zhou Q, De P, Harrison ML, Geahlen RL. 2005. Molecular basis for a direct interaction between the Syk protein-tyrosine kinase and phosphoinositide 3-kinase. J Biol Chem 280:1543–1551. [PubMed][CrossRef]
94. Botelho RJ, Teruel M, Dierckman R, Anderson R, Wells A, York JD, Meyer T, Grinstein S. 2000. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 151:1353–1368. [PubMed][CrossRef]
95. Liao F, Shin HS, Rhee SG. 1992. Tyrosine phosphorylation of phospholipase C-γ1 induced by cross-linking of the high-affinity or low-affinity Fc receptor for IgG in U937 cells. Proc Natl Acad Sci U S A 89:3659–3663. [PubMed][CrossRef]
96. Coppolino MG, Krause M, Hagendorff P, Monner DA, Trimble W, Grinstein S, Wehland J, Sechi AS. 2001. Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcγ receptor signalling during phagocytosis. J Cell Sci 114:4307–4318. [PubMed]
97. Lee WL, Cosio G, Ireton K, Grinstein S. 2007. Role of CrkII in Fcγ receptor-mediated phagocytosis. J Biol Chem 282:11135–11143. [PubMed][CrossRef]
98. Jankowski A, Zhu P, Marshall JG. 2008. Capture of an activated receptor complex from the surface of live cells by affinity receptor chromatography. Anal Biochem 380:235–248. [PubMed][CrossRef]
99. Tzircotis G, Braga VMM, Caron E. 2011. RhoG is required for both FcγR- and CR3-mediated phagocytosis. J Cell Sci 124:2897–2902. [PubMed][CrossRef]
100. Dart AE, Donnelly SK, Holden DW, Way M, Caron E. 2012. Nck and Cdc42 co-operate to recruit N-WASP to promote FcγR-mediated phagocytosis. J Cell Sci 125:2825–2830. [PubMed][CrossRef]
101. Izadi KD, Erdreich-Epstein A, Liu Y, Durden DL. 1998. Characterization of Cbl-Nck and Nck-Pak1 interactions in myeloid FcγRII signaling. Exp Cell Res 245:330–342. [PubMed][CrossRef]
102. Coppolino MG, Dierckman R, Loijens J, Collins RF, Pouladi M, Jongstra-Bilen J, Schreiber AD, Trimble WS, Anderson R, Grinstein S. 2002. Inhibition of phosphatidylinositol-4-phosphate 5-kinase Iα impairs localized actin remodeling and suppresses phagocytosis. J Biol Chem 277:43849–43857. [PubMed][CrossRef]
103. Scott CC, Dobson W, Botelho RJ, Coady-Osberg N, Chavrier P, Knecht DA, Heath C, Stahl P, Grinstein S. 2005. Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J Cell Biol 169:139–149. [PubMed][CrossRef]
104. Marshall JG, Booth JW, Stambolic V, Mak T, Balla T, Schreiber AD, Meyer T, Grinstein S. 2001. Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fcγ receptor-mediated phagocytosis. J Cell Biol 153:1369–1380. [PubMed][CrossRef]
105. Larsen EC, Ueyama T, Brannock PM, Shirai Y, Saito N, Larsson C, Loegering D, Weber PB, Lennartz MR. 2002. A role for PKC-ε in FcγR-mediated phagocytosis by RAW 264.7 cells. J Cell Biol 159:939–944. [PubMed][CrossRef]
106. Cox D, Tseng CC, Bjekic G, Greenberg S. 1999. A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem 274:1240–1247. [PubMed][CrossRef]
107. Bohdanowicz M, Balkin DM, De Camilli P, Grinstein S. 2012. Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling. Mol Biol Cell 23:176–187. [PubMed][CrossRef]
108. Marion S, Mazzolini J, Herit F, Bourdoncle P, Kambou-Pene N, Hailfinger S, Sachse M, Ruland J, Benmerah A, Echard A, Thome M, Niedergang F. 2012. The NF-κB signaling protein Bcl10 regulates actin dynamics by controlling AP1 and OCRL-bearing vesicles. Dev Cell 23:954–967. [PubMed][CrossRef]
109. Bajno L, Peng XR, Schreiber AD, Moore HP, Trimble WS, Grinstein S. 2000. Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J Cell Biol 149:697–706. [PubMed][CrossRef]
110. Braun V, Fraisier V, Raposo G, Hurbain I, Sibarita J-B, Chavrier P, Galli T, Niedergang F. 2004. TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages. EMBO J 23:4166–4176. [PubMed][CrossRef]
111. Cox D, Lee DJ, Dale BM, Calafat J, Greenberg S. 2000. A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis. Proc Natl Acad Sci U S A 97:680–685. [PubMed][CrossRef]
112. Lee WL, Mason D, Schreiber AD, Grinstein S. 2007. Quantitative analysis of membrane remodeling at the phagocytic cup. Mol Biol Cell 18:2883–2892. [PubMed][CrossRef]
113. Beemiller P, Zhang Y, Mohan S, Levinsohn E, Gaeta I, Hoppe AD, Swanson JA. 2010. A Cdc42 activation cycle coordinated by PI 3-kinase during Fc receptor-mediated phagocytosis. Mol Biol Cell 21:470–480. [PubMed][CrossRef]
114. Iyer SS, Barton JA, Bourgoin S, Kusner DJ. 2004. Phospholipases D1 and D2 coordinately regulate macrophage phagocytosis. J Immunol 173:2615–2623. [PubMed][CrossRef]
115. May RC, Caron E, Hall A, Machesky LM. 2000. Involvement of the Arp2/3 complex in phagocytosis mediated by FcγR or CR3. Nat Cell Biol 2:246–248. [PubMed][CrossRef]
116. Kheir WA, Gevrey J-C, Yamaguchi H, Isaac B, Cox D. 2005. A WAVE2-Abi1 complex mediates CSF-1-induced F-actin-rich membrane protrusions and migration in macrophages. J Cell Sci 118:5369–5379. [PubMed][CrossRef]
117. Lorenzi R, Brickell PM, Katz DR, Kinnon C, Thrasher AJ. 2000. Wiskott-Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis. Blood 95:2943–2946. [PubMed]
118. Park H, Cox D. 2009. Cdc42 regulates Fcγ receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP. Mol Biol Cell 20:4500–4508. [PubMed][CrossRef]
119. Tsuboi S, Meerloo J. 2007. Wiskott-Aldrich syndrome protein is a key regulator of the phagocytic cup formation in macrophages. J Biol Chem 282:34194–34203. [PubMed][CrossRef]
120. Tsuboi S, Takada H, Hara T, Mochizuki N, Funyu T, Saitoh H, Terayama Y, Yamaya K, Ohyama C, Nonoyama S, Ochs HD. 2009. FBP17 mediates a common molecular step in the formation of podosomes and phagocytic cups in macrophages. J Biol Chem 284:8548–8556. [PubMed][CrossRef]
121. Hoppe AD, Swanson JA. 2004. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell 15:3509–3519. [PubMed][CrossRef]
122. Caron E, Hall A. 1998. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721. [PubMed][CrossRef]
123. Koh ALY, Sun CX, Zhu F, Glogauer M. 2005. The role of Rac1 and Rac2 in bacterial killing. Cell Immunol 235:92–97. [PubMed][CrossRef]
124. Utomo A, Cullere X, Glogauer M, Swat W, Mayadas TN. 2006. Vav proteins in neutrophils are required for FcγR-mediated signaling to Rac GTPases and nicotinamide adenine dinucleotide phosphate oxidase component p40(phox). J Immunol 177:6388–6397. [PubMed][CrossRef]
125. Niedergang F, Colucci-Guyon E, Dubois T, Raposo G, Chavrier P. 2003. ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages. J Cell Biol 161:1143–1150. [PubMed][CrossRef]
126. Hall AB, Gakidis MA, Glogauer M, Wilsbacher JL, Gao S, Swat W, Brugge JS. 2006. Requirements for Vav guanine nucleotide exchange factors and Rho GTPases in FcγR- and complement-mediated phagocytosis. Immunity 24:305–316. [PubMed][CrossRef]
127. Colucci-Guyon E, Niedergang F, Wallar BJ, Peng J, Alberts AS, Chavrier P. 2005. A role for mammalian diaphanous-related formins in complement receptor (CR3)-mediated phagocytosis in macrophages. Curr Biol 15:2007–2012. [PubMed][CrossRef]
128. Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D. 1997. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1322. [PubMed][CrossRef]
129. Witke W, Li W, Kwiatkowski DJ, Southwick FS. 2001. Comparisons of CapG and gelsolin-null macrophages: demonstration of a unique role for CapG in receptor-mediated ruffling, phagocytosis, and vesicle rocketing. J Cell Biol 154:775–784. [PubMed][CrossRef]
130. Serrander L, Skarman P, Rasmussen B, Witke W, Lew DP, Krause KH, Stendahl O, Nüsse O. 2000. Selective inhibition of IgG-mediated phagocytosis in gelsolin-deficient murine neutrophils. J Immunol 165:2451–2457. [PubMed][CrossRef]
131. Cox D, Berg JS, Cammer M, Chinegwundoh JO, Dale BM, Cheney RE, Greenberg S. 2002. Myosin X is a downstream effector of PI(3)K during phagocytosis. Nat Cell Biol 4:469–477. [PubMed][CrossRef]
132. Dart AE, Tollis S, Bright MD, Frankel G, Endres RG. 2012. The motor protein myosin 1G functions in FcγR-mediated phagocytosis. J Cell Sci 125:6020–6029. [PubMed][CrossRef]
133. Diakonova M, Bokoch G, Swanson JA. 2002. Dynamics of cytoskeletal proteins during Fcγ receptor-mediated phagocytosis in macrophages. Mol Biol Cell 13:402–411. [PubMed][CrossRef]
134. Swanson JA, Johnson MT, Beningo K, Post P, Mooseker M, Araki N. 1999. A contractile activity that closes phagosomes in macrophages. J Cell Sci 112:307–316. [PubMed]
135. Mansfield PJ, Shayman JA, Boxer LA. 2000. Regulation of polymorphonuclear leukocyte phagocytosis by myosin light chain kinase after activation of mitogen-activated protein kinase. Blood 95:2407–2412. [PubMed]
136. Olazabal IM, Caron E, May RC, Schilling K, Knecht DA, Machesky LM. 2002. Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcγR, phagocytosis. Curr Biol 12:1413–1418. [PubMed][CrossRef]
137. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reis e Sousa C. 2005. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507–517. [PubMed][CrossRef]
138. Adams EL, Rice PJ, Graves B, Ensley HE, Yu H, Brown GD, Gordon S, Monteiro MA, Papp-Szabo E, Lowman DW, Power TD, Wempe MF, Williams DL. 2008. Differential high-affinity interaction of dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching. J Pharmacol Exp Ther 325:115–123. [PubMed][CrossRef]
139. Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, Bose N, Chan AS, Magee AS, Danielson ME, Weiss A, Vasilakos JP, Underhill DM. 2011. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472:471–475. [PubMed][CrossRef]
140. Elsori DH, Yakubenko VP, Roome T, Thiagarajan PS, Bhattacharjee A, Yadav SP, Cathcart MK. 2011. Protein kinase Cδ is a critical component of Dectin-1 signaling in primary human monocytes. J Leukoc Biol 90:599–611. [PubMed][CrossRef]
141. Underhill DM, Rossnagle E, Lowell CA, Simmons RM. 2005. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106:2543–2550. [PubMed][CrossRef]
142. Strasser D, Neumann K, Bergmann H, Marakalala MJ, Guler R, Rojowska A, Hopfner KP, Brombacher F, Urlaub H, Baier G, Brown GD, Leitges M, Ruland J. 2012. Syk kinase-coupled C-type lectin receptors engage protein kinase C-σ to elicit Card9 adaptor-mediated innate immunity. Immunity 36:32–42. [PubMed][CrossRef]
143. Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, Springer TA. 2008. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell 32:849–861. [PubMed][CrossRef]
144. Lim J, Wiedemann A, Tzircotis G, Monkley SJ, Critchley DR, Caron E. 2007. An essential role for talin during α Mβ 2-mediated phagocytosis. Mol Biol Cell 18:976–985. [PubMed][CrossRef]
145. Lim J, Dupuy AG, Critchley DR, Caron E. 2010. Rap1 controls activation of the α Mβ 2 integrin in a talin-dependent manner. J Cell Biochem 111:999–1009. [PubMed][CrossRef]
146. Medraño-Fernandez I, Reyes R, Olazabal I, Rodriguez E, Sanchez-Madrid F, Boussiotis VA, Reche PA, Cabañas C, Lafuente EM. 2013. RIAM (Rap1-interacting adaptor molecule) regulates complement-dependent phagocytosis. Cell Mol Life Sci 70:2395–2410. [PubMed][CrossRef]
147. Lim J, Thompson J, May RC, Hotchin NA, Caron E. 2013. Regulator of G-protein signalling-14 (RGS14) regulates the activation of αMβ2 integrin during phagocytosis. PLoS One 8:e69163. doi:10.1371/journal.pone.0069163. [PubMed][CrossRef]
148. Allen LA, Aderem A. 1996. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J Exp Med 184:627–637. [PubMed][CrossRef]
149. Lutz MA, Correll PH. 2003. Activation of CR3-mediated phagocytosis by MSP requires the RON receptor, tyrosine kinase activity, phosphatidylinositol 3-kinase, and protein kinase C ζ. J Leukoc Biol 73:802–814. [PubMed][CrossRef]
150. Shi Y, Tohyama Y, Kadono T, He J, Miah SM, Hazama R, Tanaka C, Tohyama K, Yamamura H. 2006. Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis. Blood 107:4554–4562. [PubMed][CrossRef]
151. Wiedemann A, Patel JC, Lim J, Tsun A, van Kooyk Y, Caron E. 2006. Two distinct cytoplasmic regions of the β 2 integrin chain regulate RhoA function during phagocytosis. J Cell Biol 172:1069–1079. [PubMed][CrossRef]
152. Utomo A, Hirahashi J, Mekala D, Asano K, Glogauer M, Cullere X, Mayadas TN. 2008. Requirement for Vav proteins in post-recruitment neutrophil cytotoxicity in IgG but not complement C3-dependent injury. J Immunol 180:6279–6287. [PubMed][CrossRef]
153. Lewkowicz E, Herit F, Le Clainche C, Bourdoncle P, Perez F, Niedergang F. 2008. The microtubule-binding protein CLIP-170 coordinates mDia1 and actin reorganization during CR3-mediated phagocytosis. J Cell Biol 183:1287–1298. [PubMed][CrossRef]
154. Meller J, Vidali L, Schwartz MA. 2008. Endogenous RhoG is dispensable for integrin-mediated cell spreading but contributes to Rac-independent migration. J Cell Sci 121:1981–1989. [PubMed][CrossRef]
155. Martinez J, Almendinger J, Oberst A, Ness R, Dillon CP, Fitzgerald P, Hengartner MO, Green DR. 2011. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci U S A 108:17396–17401. [PubMed][CrossRef]
156. Park D, Hochreiter-Hufford A, Ravichandran KS. 2009. The phosphatidylserine receptor TIM-4 does not mediate direct signaling. Curr Biol 19:346–351. [PubMed][CrossRef]
157. Flannagan RS, Canton J, Furuya W, Glogauer M, Grinstein S. 2014. The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis. Mol Biol Cell 25:1511–1522. [PubMed][CrossRef]
158. Toda S, Hanayama R, Nagata S. 2012. Two-step engulfment of apoptotic cells. Mol Cell Biol 32:118–125. [PubMed][CrossRef]
159. Huveneers S, Danen EHJ. 2009. Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci 122:1059–1069. [PubMed][CrossRef]
160. Santiago C, Ballesteros A, Martínez-Muñoz L, Mellado M, Kaplan GG, Freeman GJ, Casasnovas JM. 2007. Structures of T cell immunoglobulin mucin protein 4 show a metal-ion-dependent ligand binding site where phosphatidylserine binds. Immunity 27:941–951. [PubMed][CrossRef]
161. Huang ZY, Hunter S, Chien P, Kim MK, Han-Kim TH, Indik ZK, Schreiber AD. 2011. Interaction of two phagocytic host defense systems: Fcγ receptors and complement receptor 3. J Biol Chem 286:160–168. [PubMed][CrossRef]
162. Jongstra-Bilen J, Harrison R, Grinstein S. 2003. Fcγ-receptors induce Mac-1 (CD11b/CD18) mobilization and accumulation in the phagocytic cup for optimal phagocytosis. J Biol Chem 278:45720–45729. [PubMed][CrossRef]
163. Heit B, Kim H, Cosío G, Castaño D, Collins R, Lowell CA, Kain KC, Trimble WS, Grinstein S. 2013. Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev Cell 24:372–383. [PubMed][CrossRef]
164. Wu Y, Singh S, Georgescu MM, Birge RB. 2005. A role for Mer tyrosine kinase in αvβ5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 118:539–553. [PubMed][CrossRef]
165. Bezbradica JS, Rosenstein RK, DeMarco RA, Brodsky I, Medzhitov R. 2014. A role for the ITAM signaling module in specifying cytokine-receptor functions. Nat Immunol 15:333–342. [PubMed][CrossRef]
166. Graham LM, Gupta V, Schafer G, Reid DM, Kimberg M, Dennehy KM, Hornsell WG, Guler R, Campanero-Rhodes MA, Palma AS, Feizi T, Kim SK, Sobieszczuk P, Willment JA, Brown GD. 2012. The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through Syk kinase. J Biol Chem 287:25964–25974. [PubMed][CrossRef]
167. Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW, Pravenec M, Kain KC. 2004. CD36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. J Infect Dis 189:204–213. [PubMed][CrossRef]
168. van Spriel AB, van den Herik-Oudijk IE, van Sorge NM, Vilé HA, van Strijp JA, van de Winkel JG. 1999. Effective phagocytosis and killing of Candida albicans via targeting FcγRI (CD64) or FcαRI (CD89) on neutrophils. J Infect Dis 179:661–669. [PubMed][CrossRef]
169. Daëron M, Malbec O, Bonnerot C, Latour S, Segal DM, Fridman WH. 1994. Tyrosine-containing activation motif-dependent phagocytosis in mast cells. J Immunol 152:783–792. [PubMed]
170. Ghiran I, Barbashov SF, Klickstein LB, Tas SW, Jensenius JC, Nicholson-Weller A. 2000. Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med 192:1797–1808. [PubMed][CrossRef]
171. Ross GD, Reed W, Dalzell JG, Becker SE, Hogg N. 1992. Macrophage cytoskeleton association with CR3 and CR4 regulates receptor mobility and phagocytosis of iC3b-opsonized erythrocytes. J Leukoc Biol 51:109–117. [PubMed]
172. Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV. 2008. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 118:1657–1668. [PubMed][CrossRef]
173. Choi SC, Simhadri VR, Tian L, Gil-Krzewska A, Krzewski K, Borrego F, Coligan JE. 2011. Cutting edge: mouse CD300f (CMRF-35-like molecule-1) recognizes outer membrane-exposed phosphatidylserine and can promote phagocytosis. J Immunol 187:3483–3487. [PubMed][CrossRef]
174. Nagata K, Ohashi K, Nakano T, Arita H, Zong C, Hanafusa H, Mizuno K. 1996. Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J Biol Chem 271:30022–30027. [PubMed][CrossRef]
175. Albert ML, Kim JI, Birge RB. 2000. αvβ5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2:899–905. [PubMed][CrossRef]
176. Greenberg ME, Sun M, Zhang R, Febbraio M, Silverstein R, Hazen SL. 2006. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J Exp Med 203:2613–2625. [PubMed][CrossRef]

Article metrics loading...



Phagocytosis refers to the active process that allows cells to take up large particulate material upon binding to surface receptors. The discovery of phagocytosis in 1883 by Elie Metchnikoff, leading to the concept that specialized cells are implicated in the defense against microbes, was one of the starting points of the field of immunology. After more than a century of research, phagocytosis is now appreciated to be a widely used process that enables the cellular uptake of a remarkable variety of particles, including bacteria, fungi, parasites, viruses, dead cells, and assorted debris and solid materials. Uptake of foreign particles is performed almost exclusively by specialized myeloid cells, commonly termed “professional phagocytes”: neutrophils, monocytes, macrophages, and dendritic cells. Phagocytosis of microbes not only stops or at least restricts the spread of infection but also plays an important role in regulating the innate and adaptive immune responses. Activation of the myeloid cells upon phagocytosis leads to the secretion of cytokines and chemokines that convey signals to a variety of immune cells. Moreover, foreign antigens generated by the degradation of microbes following phagocytosis are loaded onto the major histocompatibility complex for presentation to specific T lymphocytes. However, phagocytosis is not restricted to professional myeloid phagocytes; an expanding diversity of cell types appear capable of engulfing apoptotic bodies and debris, playing a critical role in tissue remodeling and in the clearance of billions of effete cells every day.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Temporal sequence of particle uptake by phagocytosis. Particle surface molecules are engaged by phagocyte receptors. Actin-driven membrane dynamics facilitate the detection of surrounding particles. Engagement and activation of the receptor lead to the induction of signaling cascades that elicit actin reorganization. Actin polymerization progresses around the particle, accompanied by further engagement of receptors. Actin clearance and focal exocytosis at the base of the cup facilitate particle engulfment. Once the particle is fully surrounded, membrane fusion at the rims of the cup seals the phagosome and separates it from the plasma membrane.

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0013-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


Signaling cascades leading to actin reorganization during FcγR-mediated phagocytosis. Engagement and aggregation of FcγRs activate tyrosine kinases (yellow), which recruit multiple adaptor proteins (green). The FcγR signaling complex activates lipid modification enzymes (orange), GEFs (pink), actin modulators (navy blue), and Rho GTPases (purple). By activating nucleation-promoting factors (brown), they stimulate the activity of the Arp2/3 complex (red), which nucleates actin polymerization into a branched network. Abbreviations: PIP, phosphatidylinositol 3,4,5-trisphosphate; PLD, phospholipase D.

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0013-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view


Molecular mechanism of fungi phagocytosis by Dectin-1. Engagement of Dectin-1 leads to the phosphorylation of its hemi-ITAM by SFKs and the recruitment of Syk. Activation of these kinases is facilitated by the exclusion of the tyrosine phosphatases CD45 and CD148 from the phagocytic cup. The combined action of SFKs, Syk, PI3K, and PKC lead to the activation of the small GTPases Rac and Cdc42, which activate Arp2/3-driven actin polymerization.

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0013-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view


Actin reorganization during complement-mediated phagocytosis by the integrin αβ (CR3). Rap-1-mediated inside-out activation of CR3 via its association with talin can be induced by various receptors, including TLRs, G protein-coupled receptors (GPCRs), and Fc receptors. Engagement of CR3 leads to the activation of PI3K and the small GTPases RhoA and RhoG. RhoA activates the actin nucleator of the formin family mDia1, which stimulates actin polymerization into a linear network, whereas the serine/threonine kinase ROCK activates myosin II, which favors the recruitment of the Arp2/3 complex, leading to the polymerization of a branched actin network.

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0013-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view


Signaling events in phagocytosis of apoptotic bodies mediated by TIM-4. TIM-4 and integrins cooperate to take up apoptotic bodies. SFK, FAK, and PI3K activities lead to the stimulation of Vav3, a GEF for RhoA and Rac, which activate the actin nucleators mDia and Arp2/3, respectively. oxPS; oxidized phosphatidylserine.

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0013-2015
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Click to view


Phagocytic receptors and their specific ligands

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0013-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error