No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

G Protein-Coupled Receptors in Macrophages

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    218.86 Kb
  • XML
    190.38 Kb
  • PDF
    662.74 Kb
  • Authors: Hsi-Hsien Lin1,2, Martin Stacey3
  • Editor: Siamon Gordon4
    Affiliations: 1: Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; 2: Chang Gung Immunology Consortium and Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, 333 Tao-Yuan, Taiwan; 3: School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom; 4: Oxford University, Oxford, United Kingdom
  • Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.MCHD-0028-2016
  • Received 01 February 2016 Accepted 08 February 2016 Published 29 July 2016
  • Hsi-Hsien Lin, [email protected] and Martin Stacey, [email protected]
image of G Protein-Coupled Receptors in Macrophages
    Preview this microbiology spectrum article:
    Zoom in

    G Protein-Coupled Receptors in Macrophages, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/MCHD-0028-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/4/MCHD-0028-2016-2.gif
  • Abstract:

    As the largest receptor gene family in the human genome, with >800 members, the signal-transducing G protein-coupled receptors (GPCRs) play critical roles in nearly all conceivable physiological processes, ranging from the sensing of photons and odorants to metabolic homeostasis and migration of leukocytes. Unfortunately, an exhaustive review of the several hundred GPCRs expressed by myeloid cells/macrophages (P.J. Groot-Kormelink, L .Fawcett, P.D. Wright, M. Gosling, and T.C. Kent, 12:57, 2012, doi:10.1186/1471-2172-13-57) is beyond the scope of this chapter; however, we will endeavor to cover the GPCRs that contribute to the major facets of macrophage biology, i.e., those whose expression is restricted to macrophages and the GPCRs involved in macrophage differentiation/polarization, microbial elimination, inflammation and resolution, and macrophage-mediated pathology. The chemokine receptors, a major group of myeloid GPCRs, will not be extensively covered as they are comprehensively reviewed elsewhere.

  • Citation: Lin H, Stacey M. 2016. G Protein-Coupled Receptors in Macrophages. Microbiol Spectrum 4(4):MCHD-0028-2016. doi:10.1128/microbiolspec.MCHD-0028-2016.


1. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM. 2013. Molecular signatures of G-protein-coupled receptors. Nature 494:185–194. [PubMed][CrossRef]
2. Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB. 2003. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272. [PubMed][CrossRef]
3. Groot-Kormelink PJ, Fawcett L, Wright PD, Gosling M, Kent TC. 2012. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates. BMC Immunol 13:57. doi:10.1186/1471-2172-13-57. [PubMed][CrossRef]
4. Austyn JM, Gordon S. 1981. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11:805–815. [PubMed][CrossRef]
5. Gordon S, Taylor PR. 2005. Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964. [PubMed][CrossRef]
6. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. 2005. Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944. [PubMed][CrossRef]
7. Gordon S, Hamann J, Lin HH, Stacey M. 2011. F4/80 and the related adhesion-GPCRs. Eur J Immunol 41:2472–2476. [PubMed][CrossRef]
8. McKnight AJ, Gordon S. 1998. The EGF-TM7 family: unusual structures at the leukocyte surface. J Leukoc Biol 63:271–280. [PubMed]
9. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555. [PubMed][CrossRef]
10. Qian BZ, Pollard JW. 2010. Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51. [PubMed][CrossRef]
11. Rabinovich GA, Gabrilovich D, Sotomayor EM. 2007. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296. [PubMed][CrossRef]
12. Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K, Ouyang GF, Okada M, Balazs M, Adany R, Shibata T, Takami T. 2008. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 83:1136–1144. [PubMed][CrossRef]
13. Gordon S, Martinez FO. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604. [PubMed][CrossRef]
14. Martinez FO, Helming L, Gordon S. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483. [PubMed][CrossRef]
15. Sinha P, Clements VK, Ostrand-Rosenberg S. 2005. Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174:636–645. [PubMed][CrossRef]
16. Lin HH, Faunce DE, Stacey M, Terajewicz A, Nakamura T, Zhang-Hoover J, Kerley M, Mucenski ML, Gordon S, Stein-Streilein J. 2005. The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med 201:1615–1625. [PubMed][CrossRef]
17. Warschkau H, Kiderlen AF. 1999. A monoclonal antibody directed against the murine macrophage surface molecule F4/80 modulates natural immune response to Listeria monocytogenes. J Immunol 163:3409–3416. [PubMed]
18. van den Berg TK, Kraal G. 2005. A function for the macrophage F4/80 molecule in tolerance induction. Trends Immunol 26:506–509. [PubMed][CrossRef]
19. Legrand F, Tomasevic N, Simakova O, Lee CC, Wang Z, Raffeld M, Makiya MA, Palath V, Leung J, Baer M, Yarranton G, Maric I, Bebbington C, Klion AD. 2014. The eosinophil surface receptor epidermal growth factor-like module containing mucin-like hormone receptor 1 (EMR1): a novel therapeutic target for eosinophilic disorders. J Allergy Clin Immunol 133:1439–1447. [PubMed][CrossRef]
20. Hamann J, Koning N, Pouwels W, Ulfman LH, van Eijk M, Stacey M, Lin HH, Gordon S, Kwakkenbos MJ. 2007. EMR1, the human homolog of F4/80, is an eosinophil-specific receptor. Eur J Immunol 37:2797–2802. [PubMed][CrossRef]
21. Lattin JE, Schroder K, Su AI, Walker JR, Zhang J, Wiltshire T, Saijo K, Glass CK, Hume DA, Kellie S, Sweet MJ. 2008. Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Res 4:5. doi:10.1186/1745-7580-4-5. [CrossRef]
22. Suzuki M, Takaishi S, Nagasaki M, Onozawa Y, Iino I, Maeda H, Komai T, Oda T. 2013. Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor. J Biol Chem 288:10684–10691. [PubMed][CrossRef]
23. Wang J, Wu X, Simonavicius N, Tian H, Ling L. 2006. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 281:34457–34464. [PubMed][CrossRef]
24. Maslowski KM, Mackay CR. 2011. Diet, gut microbiota and immune responses. Nat Immunol 12:5–9. [PubMed][CrossRef]
25. Ben Yebdri F, Kukulski F, Tremblay A, Sévigny J. 2009. Concomitant activation of P2Y 2 and P2Y 6 receptors on monocytes is required for TLR1/2-induced neutrophil migration by regulating IL-8 secretion. Eur J Immunol 39:2885–2894. [PubMed][CrossRef]
26. Kim B, Jeong HK, Kim JH, Lee SY, Jou I, Joe EH. 2011. Uridine 5′-diphosphate induces chemokine expression in microglia and astrocytes through activation of the P2Y6 receptor. J Immunol 186:3701–3709. [PubMed][CrossRef]
27. Li R, Tan B, Yan Y, Ma X, Zhang N, Zhang Z, Liu M, Qian M, Du B. 2014. Extracellular UDP and P2Y 6 function as a danger signal to protect mice from vesicular stomatitis virus infection through an increase in IFN-β production. J Immunol 193:4515–4526. [PubMed][CrossRef]
28. Martinez FO, Gordon S, Locati M, Mantovani A. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311. [PubMed][CrossRef]
29. Welihinda AA, Amento EP. 2014. Positive allosteric modulation of the adenosine A 2a receptor attenuates inflammation. J Inflamm (Lond) 11:37. doi:10.1186/s12950-014-0037-0. [PubMed][CrossRef]
30. Dubois-Colas N, Petit-Jentreau L, Barreiro LB, Durand S, Soubigou G, Lecointe C, Klibi J, Rezaï K, Lokiec F, Coppée JY, Gicquel B, Tailleux L. 2014. Extracellular adenosine triphosphate affects the response of human macrophages infected with Mycobacterium tuberculosis. J Infect Dis 210:824–833. [PubMed][CrossRef]
31. Cekic C, Day YJ, Sag D, Linden J. 2014. Myeloid expression of adenosine A 2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res 74:7250–7259. [PubMed][CrossRef]
32. Csóka B, Selmeczy Z, Koscsó B, Németh ZH, Pacher P, Murray PJ, Kepka-Lenhart D, Morris SM, Jr, Gause WC, Leibovich SJ, Haskó G. 2012. Adenosine promotes alternative macrophage activation via A 2A and A 2B receptors. FASEB J 26:376–386. [PubMed][CrossRef]
33. Hohenhaus DM, Schaale K, Le Cao KA, Seow V, Iyer A, Fairlie DP, Sweet MJ. 2013. An mRNA atlas of G protein-coupled receptor expression during primary human monocyte/macrophage differentiation and lipopolysaccharide-mediated activation identifies targetable candidate regulators of inflammation. Immunobiology 218:1345–1353. [PubMed][CrossRef]
34. Mills E, O’Neill LA. 2014. Succinate: a metabolic signal in inflammation. Trends Cell Biol 24:313–320. [PubMed][CrossRef]
35. Du B, Luo W, Li R, Tan B, Han H, Lu X, Li D, Qian M, Zhang D, Zhao Y, Liu M. 2013. Lgr4/Gpr48 negatively regulates TLR2/4-associated pattern recognition and innate immunity by targeting CD14 expression. J Biol Chem 288:15131–15141. [PubMed][CrossRef]
36. Liu Y, Chen K, Wang C, Gong W, Yoshimura T, Liu M, Wang JM. 2013. Cell surface receptor FPR2 promotes antitumor host defense by limiting M2 polarization of macrophages. Cancer Res 73:550–560. [PubMed][CrossRef]
37. Oghumu S, Varikuti S, Terrazas C, Kotov D, Nasser MW, Powell CA, Ganju RK, Satoskar AR. 2014. CXCR3 deficiency enhances tumor progression by promoting macrophage M2 polarization in a murine breast cancer model. Immunology 143:109–119. [PubMed][CrossRef]
38. Eruslanov E, Daurkin I, Ortiz J, Vieweg J, Kusmartsev S. 2010. Pivotal advance: tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE 2 catabolism in myeloid cells. J Leukoc Biol 88:839–848. [PubMed][CrossRef]
39. Heusinkveld M, de Vos van Steenwijk PJ, Goedemans R, Ramwadhdoebe TH, Gorter A, Welters MJ, van Hall T, van der Burg SH. 2011. M2 macrophages induced by prostaglandin E 2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4 + Th1 cells. J Immunol 187:1157–1165. [PubMed][CrossRef]
40. MacKenzie KF, Clark K, Naqvi S, McGuire VA, Nöehren G, Kristariyanto Y, van den Bosch M, Mudaliar M, McCarthy PC, Pattison MJ, Pedrioli PG, Barton GJ, Toth R, Prescott A, Arthur JS. 2013. PGE 2 induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway. J Immunol 190:565–577. [PubMed][CrossRef]
41. Bordon-Graciani AP, Dias-Melicio LA, Acorci-Valério MJ, Araujo JP, Jr, de Campos Soares AM. 2012. Inhibitory effect of PGE 2 on the killing of Paracoccidioides brasiliensis by human monocytes can be reversed by cellular activation with cytokines. Med Mycol 50:726–734. [PubMed][CrossRef]
42. Park SJ, Lee KP, Kang S, Lee J, Sato K, Chung HY, Okajima F, Im DS. 2014. Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4. Cell Signal 26:2249–2258. [PubMed][CrossRef]
43. Koizumi S, Ohsawa K, Inoue K, Kohsaka S. 2013. Purinergic receptors in microglia: functional modal shifts of microglia mediated by P2 and P1 receptors. Glia 61:47–54. [PubMed][CrossRef]
44. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326. [PubMed][CrossRef]
45. Klos A, Wende E, Wareham KJ, Monk PN. 2013. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 65:500–543. [PubMed][CrossRef]
46. Rabiet MJ, Huet E, Boulay F. 2007. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 89:1089–1106. [PubMed][CrossRef]
47. Li R, Coulthard LG, Wu MC, Taylor SM, Woodruff TM. 2013. C5L2: a controversial receptor of complement anaphylatoxin, C5a. FASEB J 27:855–864. [PubMed][CrossRef]
48. Guo Q, Subramanian H, Gupta K, Ali H. 2011. Regulation of C3a receptor signaling in human mast cells by G protein coupled receptor kinases. PLoS One 6:e22559. doi:10.1371/journal.pone.0022559. [CrossRef]
49. Vibhuti A, Gupta K, Subramanian H, Guo Q, Ali H. 2011. Distinct and shared roles of β-arrestin-1 and β-arrestin-2 on the regulation of C3a receptor signaling in human mast cells. PLoS One 6:e19585. doi:10.1371/journal.pone.0019585. [PubMed][CrossRef]
50. Subramanian H, Gupta K, Ali H. 2012. Roles for NHERF1 and NHERF2 on the regulation of C3a receptor signaling in human mast cells. PLoS One 7:e51355. doi:10.1371/journal.pone.0051355. [PubMed][CrossRef]
51. Karsten CM, Köhl J. 2012. The immunoglobulin, IgG Fc receptor and complement triangle in autoimmune diseases. Immunobiology 217:1067–1079. [PubMed][CrossRef]
52. Monk PN, Scola AM, Madala P, Fairlie DP. 2007. Function, structure and therapeutic potential of complement C5a receptors. Br J Pharmacol 152:429–448. [PubMed][CrossRef]
53. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. 2009. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 61:119–161. [PubMed][CrossRef]
54. Migeotte I, Communi D, Parmentier M. 2006. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev 17:501–519. [PubMed][CrossRef]
55. Bloes DA, Kretschmer D, Peschel A. 2015. Enemy attraction: bacterial agonists for leukocyte chemotaxis receptors. Nat Rev Microbiol 13:95–104. [PubMed][CrossRef]
56. Lattin J, Zidar DA, Schroder K, Kellie S, Hume DA, Sweet MJ. 2007. G-protein-coupled receptor expression, function, and signaling in macrophages. J Leukoc Biol 82:16–32. [PubMed][CrossRef]
57. Samuelsson B. 1983. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220:568–575. [PubMed][CrossRef]
58. Yokomizo T. 2011. Leukotriene B 4 receptors: novel roles in immunological regulations. Adv Enzyme Regul 51:59–64. [PubMed][CrossRef]
59. Tager AM, Luster AD. 2003. BLT1 and BLT2: the leukotriene B 4 receptors. Prostaglandins Leukot Essent Fatty Acids 69:123–134. [PubMed][CrossRef]
60. van Pelt JP, de Jong EM, van Erp PE, Mitchell MI, Marder P, Spaethe SM, van Hooijdonk CA, Kuijpers AL, van de Kerkhof PC. 1997. The regulation of CD11b integrin levels on human blood leukocytes and leukotriene B 4-stimulated skin by a specific leukotriene B 4 receptor antagonist (LY293111). Biochem Pharmacol 53:1005–1012. [PubMed][CrossRef]
61. Dahlén SE, Björk J, Hedqvist P, Arfors KE, Hammarström S, Lindgren JA, Samuelsson B. 1981. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci U S A 78:3887–3891. [PubMed][CrossRef]
62. Lundeen KA, Sun B, Karlsson L, Fourie AM. 2006. Leukotriene B 4 receptors BLT1 and BLT2: expression and function in human and murine mast cells. J Immunol 177:3439–3447. [PubMed][CrossRef]
63. Flynn MA, Qiao M, Garcia C, Dallas M, Bonewald LF. 1999. Avian osteoclast cells are stimulated to resorb calcified matrices by and possess receptors for leukotriene B 4. Calcif Tissue Int 64:154–159. [PubMed][CrossRef]
64. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T. 1997. A G-protein-coupled receptor for leukotriene B 4 that mediates chemotaxis. Nature 387:620–624. [PubMed][CrossRef]
65. Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T. 2000. A second leukotriene B 4 receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 192:421–432. [PubMed][CrossRef]
66. Gaudreau R, Le Gouill C, Métaoui S, Lemire S, Stankovà J, Rola-Pleszczynski M. 1998. Signalling through the leukotriene B 4 receptor involves both α i and α 16, but not α q or α 11 G-protein subunits. Biochem J 335:15–18. [PubMed][CrossRef]
67. Serezani CH, Lewis C, Jancar S, Peters-Golden M. 2011. Leukotriene B 4 amplifies NF-κB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression. J Clin Invest 121:671–682. [PubMed][CrossRef]
68. Serezani CH, Kane S, Collins L, Morato-Marques M, Osterholzer JJ, Peters-Golden M. 2012. Macrophage dectin-1 expression is controlled by leukotriene B 4 via a GM-CSF/PU.1 axis. J Immunol 189:906–915. [PubMed][CrossRef]
69. Serezani CH, Aronoff DM, Sitrin RG, Peters-Golden M. 2009. FcγRI ligation leads to a complex with BLT1 in lipid rafts that enhances rat lung macrophage antimicrobial functions. Blood 114:3316–3324. [PubMed][CrossRef]
70. Shpacovitch V, Feld M, Hollenberg MD, Luger TA, Steinhoff M. 2008. Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity. J Leukoc Biol 83:1309–1322. [PubMed][CrossRef]
71. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R. 2001. Proteinase-activated receptors. Pharmacol Rev 53:245–282. [PubMed]
72. Suo Z, Wu M, Ameenuddin S, Anderson HE, Zoloty JE, Citron BA, Andrade-Gordon P, Festoff BW. 2002. Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J Neurochem 80:655–666. [PubMed][CrossRef]
73. Colognato R, Slupsky JR, Jendrach M, Burysek L, Syrovets T, Simmet T. 2003. Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood 102:2645–2652. [PubMed][CrossRef]
74. Johansson U, Lawson C, Dabare M, Syndercombe-Court D, Newland AC, Howells GL, Macey MG. 2005. Human peripheral blood monocytes express protease receptor-2 and respond to receptor activation by production of IL-6, IL-8, and IL-1β. J Leukoc Biol 78:967–975. [PubMed][CrossRef]
75. Steven R, Crilly A, Lockhart JC, Ferrell WR, McInnes IB. 2013. Proteinase-activated receptor-2 modulates human macrophage differentiation and effector function. Innate Immun 19:663–672. [PubMed][CrossRef]
76. Headland SE, Norling LV. 2015. The resolution of inflammation: principles and challenges. Semin Immunol 27:149–160. [PubMed][CrossRef]
77. Serhan CN, Chiang N, Van Dyke TE. 2008. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361. [PubMed][CrossRef]
78. Serhan CN. 2014. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101. [PubMed][CrossRef]
79. Boring L, Gosling J, Cleary M, Charo IF. 1998. Decreased lesion formation in CCR2 –/– mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897. [PubMed][CrossRef]
80. Yan Q, Sun L, Zhu Z, Wang L, Li S, Ye RD. 2014. Jmjd3-mediated epigenetic regulation of inflammatory cytokine gene expression in serum amyloid A-stimulated macrophages. Cell Signal 26:1783–1791. [PubMed][CrossRef]
81. Noy R, Pollard JW. 2014. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61. [PubMed][CrossRef]
82. Sodhi A, Montaner S, Gutkind JS. 2004. Viral hijacking of G-protein-coupled-receptor signalling networks. Nat Rev Mol Cell Biol 5:998–1012. [PubMed][CrossRef]
83. Wu MC, Brennan FH, Lynch JP, Mantovani S, Phipps S, Wetsel RA, Ruitenberg MJ, Taylor SM, Woodruff TM. 2013. The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization. Proc Natl Acad Sci U S A 110:9439–9444. [PubMed][CrossRef]
84. Grant EP, Picarella D, Burwell T, Delaney T, Croci A, Avitahl N, Humbles AA, Gutierrez-Ramos JC, Briskin M, Gerard C, Coyle AJ. 2002. Essential role for the C5a receptor in regulating the effector phase of synovial infiltration and joint destruction in experimental arthritis. J Exp Med 196:1461–1471. [PubMed][CrossRef]
85. Banda NK, Hyatt S, Antonioli AH, White JT, Glogowska M, Takahashi K, Merkel TJ, Stahl GL, Mueller-Ortiz S, Wetsel R, Arend WP, Holers VM. 2012. Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. J Immunol 188:1469–1478. [PubMed][CrossRef]
86. Drouin SM, Corry DB, Hollman TJ, Kildsgaard J, Wetsel RA. 2002. Absence of the complement anaphylatoxin C3a receptor suppresses Th2 effector functions in a murine model of pulmonary allergy. J Immunol 169:5926–5933. [PubMed][CrossRef]
87. Kim AH, Dimitriou ID, Holland MC, Mastellos D, Mueller YM, Altman JD, Lambris JD, Katsikis PD. 2004. Complement C5a receptor is essential for the optimal generation of antiviral CD8 + T cell responses. J Immunol 173:2524–2529. [PubMed][CrossRef]
88. Girardi G, Berman J, Redecha P, Spruce L, Thurman JM, Kraus D, Hollmann TJ, Casali P, Caroll MC, Wetsel RA, Lambris JD, Holers VM, Salmon JE. 2003. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 112:1644–1654. [PubMed][CrossRef]
89. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, van Strijp JA. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695. [PubMed][CrossRef]
90. McCoy JM, Wicks JR, Audoly LP. 2002. The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J Clin Invest 110:651–658. [PubMed][CrossRef]
91. Foudi N, Gomez I, Benyahia C, Longrois D, Norel X. 2012. Prostaglandin E 2 receptor subtypes in human blood and vascular cells. Eur J Pharmacol 695:1–6. [PubMed][CrossRef]
92. Kambayashi T, Alexander HR, Fong M, Strassmann G. 1995. Potential involvement of IL-10 in suppressing tumor-associated macrophages. Colon-26-derived prostaglandin E 2 inhibits TNF-α release via a mechanism involving IL-10. J Immunol 154:3383–3390. [PubMed]
93. Shao WH, Del Prete A, Bock CB, Haribabu B. 2006. Targeted disruption of leukotriene B 4 receptors BLT1 and BLT2: a critical role for BLT1 in collagen-induced arthritis in mice. J Immunol 176:6254–6261. [PubMed][CrossRef]
94. Saiwai H, Ohkawa Y, Yamada H, Kumamaru H, Harada A, Okano H, Yokomizo T, Iwamoto Y, Okada S. 2010. The LTB4-BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury. Am J Pathol 176:2352–2366. [PubMed][CrossRef]
95. Fink MP, O’Sullivan BP, Menconi MJ, Wollert PS, Wang H, Youssef ME, Fleisch JH. 1993. A novel leukotriene B4-receptor antagonist in endotoxin shock: a prospective, controlled trial in a porcine model. Crit Care Med 21:1825–1837. [PubMed][CrossRef]
96. Weringer EJ, Perry BD, Sawyer PS, Gilman SC, Showell HJ. 1999. Antagonizing leukotriene B4 receptors delays cardiac allograft rejection in mice. Transplantation 67:808–815. [PubMed][CrossRef]
97. Ii T, Izumi R, Shimizu K. 1996. The immunosuppressive effects of a leukotriene B4 receptor antagonist on liver allotransplantation in rats. Surg Today 26:419–426. [PubMed][CrossRef]
98. Vance RE, Hong S, Gronert K, Serhan CN, Mekalanos JJ. 2004. The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proc Natl Acad Sci U S A 101:2135–2139. [PubMed][CrossRef]
99. Bannenberg GL, Aliberti J, Hong S, Sher A, Serhan C. 2004. Exogenous pathogen and plant 15-lipoxygenase initiate endogenous lipoxin A 4 biosynthesis. J Exp Med 199:515–523. [PubMed][CrossRef]
100. Iovino F, Brouwer MC, van de Beek D, Molema G, Bijlsma JJ. 2013. Signalling or binding: the role of the platelet-activating factor receptor in invasive pneumococcal disease. Cell Microbiol 15:870–881. [PubMed][CrossRef]
101. Hornuss C, Hammermann R, Fuhrmann M, Juergens UR, Racké K. 2001. Human and rat alveolar macrophages express multiple EDG receptors. Eur J Pharmacol 429:303–308. [PubMed][CrossRef]
102. Blaho VA, Hla T. 2011. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev 111:6299–6320. [PubMed][CrossRef]
103. Cirino G, Napoli C, Bucci M, Cicala C. 2000. Inflammation-coagulation network: are serine protease receptors the knot? Trends Pharmacol Sci 21:170–172. [PubMed][CrossRef]
104. Yang YH, Hall P, Little CB, Fosang AJ, Milenkovski G, Santos L, Xue J, Tipping P, Morand EF. 2005. Reduction of arthritis severity in protease-activated receptor-deficient mice. Arthritis Rheum 52:1325–1332. [PubMed][CrossRef]
105. Lindner JR, Kahn ML, Coughlin SR, Sambrano GR, Schauble E, Bernstein D, Foy D, Hafezi-Moghadam A, Ley K. 2000. Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J Immunol 165:6504–6510. [PubMed][CrossRef]
106. Ferrell WR, Lockhart JC, Kelso EB, Dunning L, Plevin R, Meek SE, Smith AJ, Hunter GD, McLean JS, McGarry F, Ramage R, Jiang L, Kanke T, Kawagoe J. 2003. Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest 111:35–41. [PubMed][CrossRef]
107. Seeliger S, Derian CK, Vergnolle N, Bunnett NW, Nawroth R, Schmelz M, Von Der Weid PY, Buddenkotte J, Sunderkötter C, Metze D, Andrade-Gordon P, Harms E, Vestweber D, Luger TA, Steinhoff M. 2003. Proinflammatory role of proteinase-activated receptor-2 in humans and mice during cutaneous inflammation in vivo. FASEB J 17:1871–1885. [PubMed][CrossRef]
108. Reed CE, Kita H. 2004. The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol 114:997–1008, quiz 1009. [PubMed][CrossRef]
109. Lan RS, Stewart GA, Henry PJ. 2002. Role of protease-activated receptors in airway function: a target for therapeutic intervention? Pharmacol Ther 95:239–257. [CrossRef]
110. Hansen KK, Sherman PM, Cellars L, Andrade-Gordon P, Pan Z, Baruch A, Wallace JL, Hollenberg MD, Vergnolle N. 2005. A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc Natl Acad Sci U S A 102:8363–8368. [PubMed][CrossRef]
111. Vergnolle N, Cellars L, Mencarelli A, Rizzo G, Swaminathan S, Beck P, Steinhoff M, Andrade-Gordon P, Bunnett NW, Hollenberg MD, Wallace JL, Cirino G, Fiorucci S. 2004. A role for proteinase-activated receptor-1 in inflammatory bowel diseases. J Clin Invest 114:1444–1456. [PubMed][CrossRef]
112. Pawlinski R, Pedersen B, Schabbauer G, Tencati M, Holscher T, Boisvert W, Andrade-Gordon P, Frank RD, Mackman N. 2004. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia. Blood 103:1342–1347. [PubMed][CrossRef]
113. Hamann J, Aust G, Araç D, Engel FB, Formstone C, Fredriksson R, Hall RA, Harty BL, Kirchhoff C, Knapp B, Krishnan A, Liebscher I, Lin HH, Martinelli DC, Monk KR, Peeters MC, Piao X, Prömel S, Schöneberg T, Schwartz TW, Singer K, Stacey M, Ushkaryov YA, Vallon M, Wolfrum U, Wright MW, Xu L, Langenhan T, Schiöth HB. 2015. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol Rev 67:338–367. [PubMed][CrossRef]
114. Yona S, Lin HH, Siu WO, Gordon S, Stacey M. 2008. Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem Sci 33:491–500. [PubMed][CrossRef]
115. Lin HH, Stacey M, Yona S, Chang GW. 2010. GPS proteolytic cleavage of adhesion-GPCRs. Adv Exp Med Biol 706:49–58. [PubMed][CrossRef]
116. Prömel S, Langenhan T, Araç D. 2013. Matching structure with function: the GAIN domain of adhesion-GPCR and PKD1-like proteins. Trends Pharmacol Sci 34:470–478. [PubMed][CrossRef]
117. McKnight AJ, Gordon S. 1996. EGF-TM7: a novel subfamily of seven-transmembrane-region leukocyte cell-surface molecules. Immunol Today 17:283–287. [PubMed][CrossRef]
118. Stacey M, Lin HH, Gordon S, McKnight AJ. 2000. LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci 25:284–289. [PubMed][CrossRef]
119. Kwakkenbos MJ, Matmati M, Madsen O, Pouwels W, Wang Y, Bontrop RE, Heidt PJ, Hoek RM, Hamann J. 2006. An unusual mode of concerted evolution of the EGF-TM7 receptor chimera EMR2. FASEB J 20:2582–2584. [PubMed][CrossRef]
120. Kwakkenbos MJ, Kop EN, Stacey M, Matmati M, Gordon S, Lin HH, Hamann J. 2004. The EGF-TM7 family: a postgenomic view. Immunogenetics 55:655–666. [PubMed][CrossRef]
121. Chang GW, Davies JQ, Stacey M, Yona S, Bowdish DM, Hamann J, Chen TC, Lin CY, Gordon S, Lin HH. 2007. CD312, the human adhesion-GPCR EMR2, is differentially expressed during differentiation, maturation, and activation of myeloid cells. Biochem Biophys Res Commun 353:133–138. [PubMed][CrossRef]
122. van Eijk M, Aust G, Brouwer MS, van Meurs M, Voerman JS, Dijke IE, Pouwels W, Sändig I, Wandel E, Aerts JM, Boot RG, Laman JD, Hamann J. 2010. Differential expression of the EGF-TM7 family members CD97 and EMR2 in lipid-laden macrophages in atherosclerosis, multiple sclerosis and Gaucher disease. Immunol Lett 129:64–71. [PubMed][CrossRef]
123. Davies JQ, Lin HH, Stacey M, Yona S, Chang GW, Gordon S, Hamann J, Campo L, Han C, Chan P, Fox SB. 2011. Leukocyte adhesion-GPCR EMR2 is aberrantly expressed in human breast carcinomas and is associated with patient survival. Oncol Rep 25:619–627. [PubMed]
124. Yona S, Lin HH, Dri P, Davies JQ, Hayhoe RP, Lewis SM, Heinsbroek SE, Brown KA, Perretti M, Hamann J, Treacher DF, Gordon S, Stacey M. 2008. Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. FASEB J 22:741–751. [PubMed][CrossRef]
125. Huang YS, Chiang NY, Hu CH, Hsiao CC, Cheng KF, Tsai WP, Yona S, Stacey M, Gordon S, Chang GW, Lin HH. 2012. Activation of myeloid cell-specific adhesion class G protein-coupled receptor EMR2 via ligation-induced translocation and interaction of receptor subunits in lipid raft microdomains. Mol Cell Biol 32:1408–1420. [PubMed][CrossRef]
126. Stacey M, Chang GW, Davies JQ, Kwakkenbos MJ, Sanderson RD, Hamann J, Gordon S, Lin HH. 2003. The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102:2916–2924. [PubMed][CrossRef]
127. Stacey M, Lin HH, Hilyard KL, Gordon S, McKnight AJ. 2001. Human epidermal growth factor (EGF) module-containing mucin-like hormone receptor 3 is a new member of the EGF-TM7 family that recognizes a ligand on human macrophages and activated neutrophils. J Biol Chem 276:18863–18870. [PubMed][CrossRef]
128. Stacey M, Chang GW, Sanos SL, Chittenden LR, Stubbs L, Gordon S, Lin HH. 2002. EMR4, a novel epidermal growth factor (EGF)-TM7 molecule up-regulated in activated mouse macrophages, binds to a putative cellular ligand on B lymphoma cell line A20. J Biol Chem 277:29283–29293. [PubMed][CrossRef]
129. Matmati M, Pouwels W, van Bruggen R, Jansen M, Hoek RM, Verhoeven AJ, Hamann J. 2007. The human EGF-TM7 receptor EMR3 is a marker for mature granulocytes. J Leukoc Biol 81:440–448. [PubMed][CrossRef]
130. Hamann J, Kwakkenbos MJ, de Jong EC, Heus H, Olsen AS, van Lier RA. 2003. Inactivation of the EGF-TM7 receptor EMR4 after the Pan-Homo divergence. Eur J Immunol 33:1365–1371. [PubMed][CrossRef]
131. Caminschi I, Lucas KM, O’Keeffe MA, Hochrein H, Laâbi Y, Köntgen F, Lew AM, Shortman K, Wright MD. 2001. Molecular cloning of F4/80-like-receptor, a seven-span membrane protein expressed differentially by dendritic cell and monocyte-macrophage subpopulations. J Immunol 167:3570–3576. [PubMed][CrossRef]
132. Corbett AJ, Caminschi I, McKenzie BS, Brady JL, Wright MD, Mottram PL, Hogarth PM, Hodder AN, Zhan Y, Tarlinton DM, Shortman K, Lew AM. 2005. Antigen delivery via two molecules on the CD8 dendritic cell subset induces humoral immunity in the absence of conventional “danger.” Eur J Immunol 35:2815–2825. [PubMed][CrossRef]
133. Gray JX, Haino M, Roth MJ, Maguire JE, Jensen PN, Yarme A, Stetler-Stevenson MA, Siebenlist U, Kelly K. 1996. CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J Immunol 157:5438–5447. [PubMed]
134. Hamann J, Eichler W, Hamann D, Kerstens HM, Poddighe PJ, Hoovers JM, Hartmann E, Strauss M, van Lier RA. 1995. Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven-span transmembrane molecule of the secretion receptor superfamily with an unusual extracellular domain. J Immunol 155:1942–1950. [PubMed]
135. Kwakkenbos MJ, Pouwels W, Matmati M, Stacey M, Lin HH, Gordon S, van Lier RA, Hamann J. 2005. Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells. J Leukoc Biol 77:112–119. [PubMed]
136. Wang T, Ward Y, Tian L, Lake R, Guedez L, Stetler-Stevenson WG, Kelly K. 2005. CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood 105:2836–2844. [PubMed][CrossRef]
137. Wandel E, Saalbach A, Sittig D, Gebhardt C, Aust G. 2012. Thy-1 (CD90) is an interacting partner for CD97 on activated endothelial cells. J Immunol 188:1442–1450. [PubMed][CrossRef]
138. Aust G, Steinert M, Schütz A, Boltze C, Wahlbuhl M, Hamann J, Wobus M. 2002. CD97, but not its closely related EGF-TM7 family member EMR2, is expressed on gastric, pancreatic, and esophageal carcinomas. Am J Clin Pathol 118:699–707. [PubMed][CrossRef]
139. Jaspars LH, Vos W, Aust G, Van Lier RA, Hamann J. 2001. Tissue distribution of the human CD97 EGF-TM7 receptor. Tissue Antigens 57:325–331. [PubMed][CrossRef]
140. Veninga H, Becker S, Hoek RM, Wobus M, Wandel E, van der Kaa J, van der Valk M, de Vos AF, Haase H, Owens B, van der Poll T, van Lier RA, Verbeek JS, Aust G, Hamann J. 2008. Analysis of CD97 expression and manipulation: antibody treatment but not gene targeting curtails granulocyte migration. J Immunol 181:6574–6583. [PubMed][CrossRef]
141. Veninga H, de Groot DM, McCloskey N, Owens BM, Dessing MC, Verbeek JS, Nourshargh S, van Eenennaam H, Boots AM, Hamann J. 2011. CD97 antibody depletes granulocytes in mice under conditions of acute inflammation via a Fc receptor-dependent mechanism. J Leukoc Biol 89:413–421. [PubMed][CrossRef]
142. Leemans JC, te Velde AA, Florquin S, Bennink RJ, de Bruin K, van Lier RA, van der Poll T, Hamann J. 2004. The epidermal growth factor-seven transmembrane (EGF-TM7) receptor CD97 is required for neutrophil migration and host defense. J Immunol 172:1125–1131. [PubMed][CrossRef]
143. Hamann J, Veninga H, de Groot DM, Visser L, Hofstra CL, Tak PP, Laman JD, Boots AM, van Eenennaam H. 2010. CD97 in leukocyte trafficking. Adv Exp Med Biol 706:128–137. [PubMed][CrossRef]
144. Abbott RJ, Spendlove I, Roversi P, Fitzgibbon H, Knott V, Teriete P, McDonnell JM, Handford PA, Lea SM. 2007. Structural and functional characterization of a novel T cell receptor co-regulatory protein complex, CD97-CD55. J Biol Chem 282:22023–22032. [PubMed][CrossRef]
145. Capasso M, Durrant LG, Stacey M, Gordon S, Ramage J, Spendlove I. 2006. Costimulation via CD55 on human CD4 + T cells mediated by CD97. J Immunol 177:1070–1077. [PubMed][CrossRef]
146. Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, Tatsumi K, Yoshida S, Ono M, Kuwano M, Nakamura Y, Tokino T. 1997. A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15:2145–2150. [PubMed][CrossRef]
147. Shiratsuchi T, Futamura M, Oda K, Nishimori H, Nakamura Y, Tokino T. 1998. Cloning and characterization of BAI-associated protein 1: a PDZ domain-containing protein that interacts with BAI1. Biochem Biophys Res Commun 247:597–604. [PubMed][CrossRef]
148. Das S, Sarkar A, Ryan KA, Fox S, Berger AH, Juncadella IJ, Bimczok D, Smythies LE, Harris PR, Ravichandran KS, Crowe SE, Smith PD, Ernst PB. 2014. Brain angiogenesis inhibitor 1 is expressed by gastric phagocytes during infection with Helicobacter pylori and mediates the recognition and engulfment of human apoptotic gastric epithelial cells. FASEB J 28:2214–2224. [PubMed][CrossRef]
149. Harre U, Keppeler H, Ipseiz N, Derer A, Poller K, Aigner M, Schett G, Herrmann M, Lauber K. 2012. Moonlighting osteoclasts as undertakers of apoptotic cells. Autoimmunity 45:612–619. [PubMed][CrossRef]
150. Das S, Owen KA, Ly KT, Park D, Black SG, Wilson JM, Sifri CD, Ravichandran KS, Ernst PB, Casanova JE. 2011. Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc Natl Acad Sci U S A 108:2136–2141. [PubMed][CrossRef]
151. Mazaheri F, Breus O, Durdu S, Haas P, Wittbrodt J, Gilmour D, Peri F. 2014. Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia. Nat Commun 5:4046. doi:10.1038/ncomms5046. [PubMed][CrossRef]
152. Koh JT, Kook H, Kee HJ, Seo YW, Jeong BC, Lee JH, Kim MY, Yoon KC, Jung S, Kim KK. 2004. Extracellular fragment of brain-specific angiogenesis inhibitor 1 suppresses endothelial cell proliferation by blocking alphavbeta5 integrin. Exp Cell Res 294:172–184. [PubMed][CrossRef]
153. Kaur B, Brat DJ, Devi NS, Van Meir EG. 2005. Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24:3632–3642. [PubMed][CrossRef]
154. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS. 2007. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434. [PubMed][CrossRef]
155. Hochreiter-Hufford AE, Lee CS, Kinchen JM, Sokolowski JD, Arandjelovic S, Call JA, Klibanov AL, Yan Z, Mandell JW, Ravichandran KS. 2013. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497:263–267. [PubMed][CrossRef]
156. Fukuzawa T, Hirose S. 2006. Multiple processing of Ig-Hepta/GPR116, a G protein-coupled receptor with immunoglobulin (Ig)-like repeats, and generation of EGF2-like fragment. J Biochem 140:445–452. [PubMed][CrossRef]
157. Bridges JP, Ludwig MG, Mueller M, Kinzel B, Sato A, Xu Y, Whitsett JA, Ikegami M. 2013. Orphan G protein-coupled receptor GPR116 regulates pulmonary surfactant pool size. Am J Respir Cell Mol Biol 49:348–357. [PubMed][CrossRef]
158. Yang MY, Hilton MB, Seaman S, Haines DC, Nagashima K, Burks CM, Tessarollo L, Ivanova PT, Brown HA, Umstead TM, Floros J, Chroneos ZC, St Croix B. 2013. Essential regulation of lung surfactant homeostasis by the orphan G protein-coupled receptor GPR116. Cell Reports 3:1457–1464. [PubMed][CrossRef]
159. Fukuzawa T, Ishida J, Kato A, Ichinose T, Ariestanti DM, Takahashi T, Ito K, Abe J, Suzuki T, Wakana S, Fukamizu A, Nakamura N, Hirose S. 2013. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D. PLoS One 8:e69451. doi:10.1371/journal.pone.0069451. [CrossRef]
160. Ariestanti DM, Ando H, Hirose S, Nakamura N. 2015. Targeted disruption of Ig-Hepta/Gpr116 causes emphysema-like symptoms that are associated with alveolar macrophage activation. J Biol Chem 290:11032–11040. [PubMed][CrossRef]
161. Pierdomenico AM, Recchiuti A, Simiele F, Codagnone M, Mari VC, Davì G, Romano M. 2015. MicroRNA-181b regulates ALX/FPR2 receptor expression and proresolution signaling in human macrophages. J Biol Chem 290:3592–3600. [PubMed][CrossRef]
162. Etzrodt M, Cortez-Retamozo V, Newton A, Zhao J, Ng A, Wildgruber M, Romero P, Wurdinger T, Xavier R, Geissmann F, Meylan E, Nahrendorf M, Swirski FK, Baltimore D, Weissleder R, Pittet MJ. 2012. Regulation of monocyte functional heterogeneity by miR-146a and Relb. Cell Rep 19:317–324. [PubMed][CrossRef]
163. Lu YY, Sweredoski MJ, Huss D, Lansford R, Hess S, Tirrell DA. 2014. Prometastatic GPCR CD97 is a direct target of tumor suppressor microRNA-126. ACS Chem Biol 9:334–338. [PubMed][CrossRef]
164. Boularan C, Kehrl JH. 2014. Implications of non-canonical G-protein signaling for the immune system. Cell Signal 26:1269–1282. [PubMed][CrossRef]
165. Patial S, Saini Y, Parvataneni S, Appledorn DM, Dorn GW II, Lapres JJ, Amalfitano A, Senagore P, Parameswaran N. 2011. Myeloid-specific GPCR kinase-2 negatively regulates NF-κB1p105-ERK pathway and limits endotoxemic shock in mice. J Cell Physiol 226:627–637. [PubMed][CrossRef]
166. Nakaya M, Tajima M, Kosako H, Nakaya T, Hashimoto A, Watari K, Nishihara H, Ohba M, Komiya S, Tani N, Nishida M, Taniguchi H, Sato Y, Matsumoto M, Tsuda M, Kuroda M, Inoue K, Kurose H. 2013. GRK6 deficiency in mice causes autoimmune disease due to impaired apoptotic cell clearance. Nat Commun 4:1532. doi:10.1038/ncomms2540. [PubMed][CrossRef]
167. Ferguson SS. 2001. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24. [PubMed]
168. Fan H. 2014. β-Arrestins 1 and 2 are critical regulators of inflammation. Innate Immun 20:451–460. [PubMed][CrossRef]
169. Watari K, Nakaya M, Nishida M, Kim KM, Kurose H. 2013. β-Arrestin2 in infiltrated macrophages inhibits excessive inflammation after myocardial infarction. PLoS One 8:e68351. doi:10.1371/journal.pone.0068351.
170. Du RW, Du RH, Bu WG. 2014. β-Arrestin 2 mediates the anti-inflammatory effects of fluoxetine in lipopolysaccharide-stimulated microglial cells. J Neuroimmune Pharmacol 9:582–590. [PubMed][CrossRef]
171. Wiege K, Le DD, Syed SN, Ali SR, Novakovic A, Beer-Hammer S, Piekorz RP, Schmidt RE, Nürnberg B, Gessner JE. 2012. Defective macrophage migration in Gα i2- but not Gα i3-deficient mice. J Immunol 189:980–987. [PubMed][CrossRef]
172. Patel J, McNeill E, Douglas G, de Bono JP, Greaves DR, Channon KM. 2014. A new role for the regulator of G-protein signalling-1 in inflammatory cell function in angiotensin II-induced aortic aneurysm formation. Atherosclerosis 232:E7–E7. [CrossRef]
173. Patel J, McNeill E, Douglas G, Hale AB, de Bono J, Lee R, Iqbal AJ, Regan-Komito D, Stylianou E, Greaves DR, Channon KM. 2015. RGS1 regulates myeloid cell accumulation in atherosclerosis and aortic aneurysm rupture through altered chemokine signalling. Nat Commun 6:6614. [PubMed][CrossRef]

Article metrics loading...



As the largest receptor gene family in the human genome, with >800 members, the signal-transducing G protein-coupled receptors (GPCRs) play critical roles in nearly all conceivable physiological processes, ranging from the sensing of photons and odorants to metabolic homeostasis and migration of leukocytes. Unfortunately, an exhaustive review of the several hundred GPCRs expressed by myeloid cells/macrophages (P.J. Groot-Kormelink, L .Fawcett, P.D. Wright, M. Gosling, and T.C. Kent, 12:57, 2012, doi:10.1186/1471-2172-13-57) is beyond the scope of this chapter; however, we will endeavor to cover the GPCRs that contribute to the major facets of macrophage biology, i.e., those whose expression is restricted to macrophages and the GPCRs involved in macrophage differentiation/polarization, microbial elimination, inflammation and resolution, and macrophage-mediated pathology. The chemokine receptors, a major group of myeloid GPCRs, will not be extensively covered as they are comprehensively reviewed elsewhere.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


GPCR signaling and the activation/deactivation of heterotrimeric G proteins. Green circle, ligand; GAP, GTPase-activating protein; PI3K, phosphatidylinositol 3-kinase; PKC, protein kinase C; PLC, phospholipase C.

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.MCHD-0028-2016
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Click to view


Physiological and pathological roles of macrophage GPCRs

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.MCHD-0028-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error