No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Host Factors in Retroviral Integration and the Selection of Integration Target Sites

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    163.08 Kb
  • XML
    156.33 Kb
  • PDF
    478.62 Kb
  • Authors: Robert Craigie1, Frederic D. Bushman2
  • Editors: Suzanne Sandmeyer3, Nancy Craig4
    Affiliations: 1: Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0560; 2: Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; 3: University of California, Irvine, CA; 4: Johns Hopkins University, Baltimore, MD
  • Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0026-2014
  • Received 08 July 2014 Accepted 12 August 2014 Published 14 November 2014
  • Frederic Bushman, [email protected]
image of Host Factors in Retroviral Integration and the Selection of Integration Target Sites
    Preview this microbiology spectrum article:
    Zoom in

    Host Factors in Retroviral Integration and the Selection of Integration Target Sites, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/6/MDNA3-0026-2014-1.gif /docserver/preview/fulltext/microbiolspec/2/6/MDNA3-0026-2014-2.gif
  • Abstract:

    In order to replicate, a retrovirus must integrate a DNA copy of the viral RNA genome into a chromosome of the host cell. The study of retroviral integration has advanced considerably in the past few years. Here we focus on host factor interactions and the linked area of integration targeting. Genome-wide screens for cellular factors affecting HIV replication have identified a series of host cell proteins that may mediate subcellular trafficking for preintegration complexes, nuclear import, and integration target site selection. The cell transcriptional co-activator protein LEDGF/p75 has been identified as a tethering factor important for HIV integration, and recently, BET proteins (Brd2, 4, and 4) have been identified as tethering factors for the gammaretroviruses. A new class of HIV inhibitors has been developed targeting the HIV-1 IN-LEDGF binding site, though surprisingly these inhibitors appear to block assembly late during replication and do not act at the integration step. Going forward, genome-wide studies of HIV–host interactions offer many new starting points to investigate HIV replication and identify potential new inhibitor targets.

  • Citation: Craigie R, Bushman F. 2014. Host Factors in Retroviral Integration and the Selection of Integration Target Sites. Microbiol Spectrum 2(6):MDNA3-0026-2014. doi:10.1128/microbiolspec.MDNA3-0026-2014.


1. Donehower LA, Varmus HE. 1984. A mutant murine leukemia virus with a single missense codon in pol is defective in a function affecting integration. Proc Natl Acad Sci USA 81:6461–6465. [PubMed][CrossRef]
2. Panganiban AT, Temin HM. 1984. The retrovirus pol gene encodes a product required for DNA integration: Identification of a retrovirus int locus. Proc Natl Acad Sci USA 81:7885–7889. [PubMed][CrossRef]
3. Schwartzberg P, Colecilli J, Goff SP. 1984. Construction and analysis of deletion mutations in the pol gene of Moloney murine leukemia virus: A new viral function required for productive infection. Cell 37:1043–1052. [PubMed][CrossRef]
4. Brown PO, Bowerman B, Varmus HE, Bishop JM. 1987. Correct integration of retroviral DNA in vitro. Cell 49:347–356. [PubMed][CrossRef]
5. Farnet CM, Haseltine WA. 1990. Integration of human immunodeficiency virus type 1 DNA in vitro. Proc Natl Acad Sci USA 87:4164–4168. [PubMed][CrossRef]
6. Fujiwara T, Mizuuchi K. 1988. Retroviral DNA integration: Structure of an integration intermediate. Cell 54:497–504. [PubMed][CrossRef]
7. Brown PO, Bowerman B, Varmus HE, Bishop JM. 1989. Retroviral integration: Structure of the initial covalent complex and its precursor, and a role for the viral IN protein. Proc Natl Acad Sci USA 86:2525–2529. [PubMed][CrossRef]
8. Bowerman B, Brown PO, Bishop JM, Varmus HE. 1989. A nucleoprotein complex mediates the integration of retroviral DNA. Genes and Development 3:469–478. [PubMed][CrossRef]
9. Bushman FD, Craigie R. 1990. Sequence requirements for integration of Moloney murine leukemia virus DNA in vitro. J Virol 64:5645–5648. [PubMed]
10. Katz RA, Merkel G, Kulkosky J, Leis J, Skalka AM. 1990. The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell 63:87–95. [PubMed][CrossRef]
11. Bushman FD, Fujiwara T, Craigie R. 1990. Retroviral DNA integration directed by HIV integration protein in vitro. Science 249:1555–1558. [PubMed][CrossRef]
12. Sherman PA, Fyfe JA. 1990. Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity. Proc Natl Acad Sci USA 87:5119–5123. [PubMed][CrossRef]
13. Katzman M, Katz RA, Skalka AM, Leis J. 1989. The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J Virol 63:5319–5327. [PubMed]
14. Hindmarsh P, Ridky T, Reeves R, Andrake M, Skalka AM, Leis J. 1999. HMG protein family members stimulate human immunodeficiency virus type 1 avain sarcoma virus concerted DNA integration in vitro. J Virol 73:2994–3003. [PubMed]
15. Li M, Craigie R. 2005. Processing of viral DNA ends channels the HIV-1 integration reaction to concerted integration. J Biol Chem 280:29334–29339. [PubMed][CrossRef]
16. Sinha S, Grandgenett DP. 2005. Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells. J Virol 79:8208–8216. [PubMed][CrossRef]
17. Sinha S, Pursley MH, Grandgenett DP. 2002. Efficient concerted integration by recombinant human immunodeficiency virus type 1 integrase without cellular or viral cofactors. J Virol 76:3105–3113. [PubMed][CrossRef]
18. Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, Cherepanov P. 2009. Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res 37:243–255. [PubMed][CrossRef]
19. Carteau S, Gorelick R, Bushman FD. 1999. Coupled integration of human immunodeficiency virus cDNA ends by purified integrase in vitro: stimulation by the viral nucleocapsid protein. J Virol 73:6670–6679. [PubMed]
20. Iordanskiy S, Berro R, Altieri M, Kashanchi F, Bukrinsky M. 2006. Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin. Retrovirology 3:4. [PubMed][CrossRef]
21. Bukrinsky MI, Sharova N, McDonald TL, Pushkarskaya T, Tarpley GW, Stevenson M. 1993. Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci USA 90:6125–6129. [PubMed][CrossRef]
22. Gallay P, Swingler S, Song J, Bushman F, Trono D. 1995. HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell 17:569–576. [PubMed][CrossRef]
23. Gallay P, Hope T, Chin D, Trono D. 1997. HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc Natl Acad Sci USA 94:9825–9830. [PubMed][CrossRef]
24. Heinzinger NK, Bukrinsky MI, Haggerty SA, Ragland AM, V K, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M. 1994. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 91:7311–7315. [PubMed][CrossRef]
25. Karageorgos L, Li P, Burrell C. 1993. Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Res Human Retrovir 9:817–823. [PubMed][CrossRef]
26. Farnet CM, Haseltine WA. 1991. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol 65:1910–1915. [PubMed]
27. Miller MD, Farnet CM, Bushman FD. 1997. Human Immunodeficiency Virus Type 1 preintegration complexes: Studies of organization and composition. J Virol 71:5382–5390. [PubMed]
28. Llano M, Vanegas M, Fregoso O, Saenz D, Chung S, Peretz M, Poeschla EM. 2004. LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J Virol 78:9524–9537. [PubMed][CrossRef]
29. Chen H, Engelman A. 1998. The barrier-to-autointegration protein is a host factor for HIV type 1 integration. Proc Natl Acad Sci USA 95:15270–15274. [PubMed][CrossRef]
30. Farnet C, Bushman FD. 1997. HIV-1 cDNA integration: Requirement of HMG i(y) protein for function of preintegration complexes in vitro. Cell 88:1–20. [CrossRef]
31. Raghavendra NK, Shkriabai N, Graham R, Hess S, Kvaratskhelia M, Wu L. 2010. Identification of host proteins associated with HIV-1 preintegration complexes isolated from infected CD4 + cells. Retrovirology 7:66. [PubMed][CrossRef]
32. Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K, Hernandez H, Jang GM, Roth SL, Akiva E, Marlett J, Stephens M, D'Orso I, Fernandes J, Fahey M, Mahon C, O'Donoghue AJ, Todorovic A, Morris JH, Maltby DA, Alber T, Cagney G, Bushman FD, Young JA, Chanda SK, Sundquist WI, Kortemme T, Hernandez RD, Craik CS, Burlingame A, Sali A, Frankel AD, Krogan NJ. 2012. Global landscape of HIV-human protein complexes. Nature 481:365–370. [PubMed][CrossRef]
33. Li M, Mizuuchi M, Burke TR, Jr., Craigie R. 2006. Retroviral DNA integration: Reaction pathway and critical intermeidates. Embo J 25:1295–1304. [PubMed][CrossRef]
34. Wei SQ, Mizuuchi K, Craigie R. 1997. A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. Embo J 16:7511–7520. [PubMed][CrossRef]
35. Wei SQ, Mizuuchi K, Craigie R. 1998. Footprints of the viral DNA ends in Moloney murine leukemia virus preintegration complexes reflect a specific association with integrase. Proc Natl Acad Sci USA 95:10535–10540. [PubMed][CrossRef]
36. Chen H, Wei SQ, Engelman A. 1999. Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome. J Biol Chem 274:17358–17364. [PubMed][CrossRef]
37. Lee MS, Craigie R. 1998. A previously unidentified host protein protects retroviral DNA from autointegration. Proc Natl Acad Sci USA 95:1528–1533. [PubMed][CrossRef]
38. Zheng R, Ghirlando R, Lee MS, Mizuuchi K, Krause M, Craigie R. 2000. Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc Natl Acad Sci USA 97:8997–9002. [PubMed][CrossRef]
39. Margalit A, Segura-Totten M, Gruenbaum Y, Wilson KL. 2005. Barrier-to-autointegration factor is required to segregate and enclose chromosomes within the nuclear envelope and assemble the nuclear lamina. Proc Natl Acad Sci USA 102:3290–3295. [PubMed][CrossRef]
40. Skoko D, Li M, Huang Y, Mizuuchi M, Cai M, Bradley CM, Pease PJ, Xiao B, Marko JF, Craigie R, Mizuuchi K. 2009. Barrier-to-autointegration factor (BAF) condenses DNA by looping. Proc Natl Acad Sci USA 106:16610–16615. [PubMed][CrossRef]
41. Suzuki Y, Craigie R. 2002. Regulatory mechanisms by which barrier-to-autointegration factor blocks autointegration and stimulates intermolecular integration of Moloney murine leukemia virus preintegration complexes. J Virol 76:12376–12380. [CrossRef]
42. Suzuki Y, Ogawa K, Koyanagi Y, Suzuki Y. 2010. Functional disruption of the moloney murine leukemia virus preintegration complex by vaccinia-related kinases. J Biol Chem 285:24032–24043. [PubMed][CrossRef]
43. Nichols RJ, Wiebe MS, Traktman P. 2006. The vaccinia-related kinases phosphorylate the N′ terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Molecular Biology of the Cell 17:2451–2464. [PubMed][CrossRef]
44. Bushman FD. 1995. Targeting retroviral integration. Science 267:1443–1444. [PubMed][CrossRef]
45. Bukrinsky MI, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L, Lewis P, Goldfarb D, Emerman M, Stevenson M. 1993. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365:666–669. [PubMed][CrossRef]
46. Bouyac-Bertoia M, Dvorin JD, Fouchier RA, Jenkins Y, Meyer BE, Wu LI, Emerman M, Malim MH. 2001. HIV-1 infection requires a functional integrase NLS. Molecular Cell 7:1025–1035. [PubMed][CrossRef]
47. Fouchier RA, Meyer BE, Simon JH, Fischer U, Albright AV, Gonzalez-Scarano F, Malim MH. 1998. Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J Virol 72:6004–6013. [PubMed]
48. Vodicka MA, Koepp DM, Silver PA, Emerman M. 1998. HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes & Development 12:175–185. [PubMed][CrossRef]
49. Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P. 2000. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185. [PubMed][CrossRef]
50. Matreyek KA, Engelman A. 2013. Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 5:2483–2511. [PubMed][CrossRef]
51. Yamashita M, Emerman M. 2004. Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J Virol 78:5670–5678. [PubMed][CrossRef]
52. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ. 2008. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926. [PubMed][CrossRef]
53. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE, Seidel S, Opaluch AM, Caldwell JS, Weitzman MD, Kuhen KL, Bandyopadhyay S, Ideker T, Orth AP, Miraglia LJ, Bushman FD, Young JA, Chanda SK. 2008. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60. [PubMed][CrossRef]
54. Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, Espeseth AS. 2008. Genome-Scale RNAi Screen for Host Factors Required for HIV Replication. Cell Host & Microbe 4:495–504. [PubMed][CrossRef]
55. Yeung ML, Houzet L, Yedavalli VS, Jeang KT. 2009. A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication. J Biol Chem 284:19463–19473. [PubMed][CrossRef]
56. Krishnan L, Matreyek KA, Oztop I, Lee K, Tipper CH, Li X, Dar MJ, Kewalramani VN, Engelman A. 2010. The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase. J Virol 84:397–406. [PubMed][CrossRef]
57. Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hue S, Fletcher AJ, Lee K, KewalRamani VN, Noursadeghi M, Jenner RG, James LC, Bushman FD, Towers GJ. 2011. HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathogens 7:e1002439. [PubMed][CrossRef]
58. Matreyek KA, Engelman A. 2011. The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J Virol 85:7818–7827. [PubMed][CrossRef]
59. Thys W, De Houwer S, Demeulemeester J, Taltynov O, Vancraenenbroeck R, Gerard M, De Rijck J, Gijsbers R, Christ F, Debyser Z. 2011. Interplay between HIV entry and transportin-SR2 dependency. Retrovirology 8:7. [PubMed][CrossRef]
60. Greene WC, Peterlin BM. 2002. Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy. Nature Medicine 8:673–680. [PubMed][CrossRef]
61. Campbell EM, Hope TJ. 2008. Live cell imaging of the HIV-1 life cycle. Trends in Microbiology 16:580–587. [PubMed][CrossRef]
62. Di Primio C, Quercioli V, Allouch A, Gijsbers R, Christ F, Debyser Z, Arosio D, Cereseto A. 2013. Single-cell imaging of HIV-1 provirus (SCIP). Proc Natl Acad Sci USA 110:5636–5641. [PubMed][CrossRef]
63. Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA. 2004. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–439. [PubMed][CrossRef]
64. Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA. 2001. The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219. [PubMed][CrossRef]
65. Chubb JR, Bickmore WA. 2003. Considering nuclear compartmentalization in light of nuclear dynamics. Cell 112:403–406. [PubMed][CrossRef]
66. Wei Z, Huang D, Gao F, Chang WH, An W, Coetzee GA, Wang K, Lu W. 2013. Biological implications and regulatory mechanisms of long-range chromosomal interactions. J Biol Chem 288:22369–22377. [PubMed][CrossRef]
67. Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T, James LC, Towers GJ, Young JA, Chanda SK, Konig R, Malani N, Berry CC, Bushman FD. 2011. HIV integration targeting: A pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS pathogens 7:e1001313. [PubMed][CrossRef]
68. Cereseto A, Manganaro L, Gutierrez MI, Terreni M, Fittipaldi A, Lusic M, Marcello A, Giacca M. 2005. Acetylation of HIV-1 integrase by p300 regulates viral integration. Embo J 24:3070–3081. [PubMed][CrossRef]
69. Allouch A, Di Primio C, Alpi E, Lusic M, Arosio D, Giacca M, Cereseto A. 2011. The TRIM family protein KAP1 inhibits HIV-1 integration. Cell Host Microbe 9:484–495. [PubMed][CrossRef]
70. Kalpana GV, Goff SP. 1993. Genetic analysis of homomeric interactions of human immunodeficiency virus type 1 integrase using the yeast two-hybrid system. Proc Natl Acad Sci USA 90:10593–10597. [PubMed][CrossRef]
71. Lewinski M, Bushman FD. 2005. Retroviral DNA integration—mechanism and consequences. Adv Genet 55:147–181. [PubMed][CrossRef]
72. Schroder ARW, Shinn P, Chen HM, Berry C, Ecker JR, Bushman F. 2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529. [PubMed][CrossRef]
73. Mitchell R, Chiang C, Berry C, Bushman FD. 2003. Global effects on cellular transcription following infection with an HIV-based vector. Mol Ther 8:674–687. [PubMed][CrossRef]
74. Wu X, Li Y, Crise B, Burgess SM. 2003. Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751. [PubMed][CrossRef]
75. Barr SD, Ciuffi A, Leipzig J, Shinn P, Ecker JR, Bushman FD. 2006. HIV integration site selection: Targeting in macrophages and the effects of different routes of viral entry. Mol Ther 14:218–225. [PubMed][CrossRef]
76. Barr SD, Leipzig J, Shinn P, Ecker JR, Bushman FD. 2005. Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome. J Virol 79:12035–12044. [PubMed][CrossRef]
77. Marshall HM, Ronen K, Berry C, Llano M, Sutherland H, Saenz D, Bickmore W, Poeschla E, Bushman FD. 2007. Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting. PLoS One 2:e1340. [PubMed][CrossRef]
78. Berry CC, Ocwieja KE, Malani N, Bushman FD. 2014. Comparing DNA integration site clusters with scan statistics. Bioinformatics 30:1493–1500. [PubMed][CrossRef]
79. Shun MC, Raghavendra NK, Vandegraaff N, Daigle JE, Hughes S, Kellam P, Cherepanov P, Engelman A. 2007. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes & Development 21:1767–1778. [PubMed][CrossRef]
80. Han Y, Lassen K, Monie D, Sedaghat AR, Shimoji S, Liu S, Pierson TC, Margolick JB, Siliciano RF, Siliciano JD. 2004. Resting CD4 + T cells from human immunodeficiency virus type 1 (HIV-1)-infected inndividuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol 78:6122–6133. [PubMed][CrossRef]
81. Berry C, Hannenhalli S, Leipzig J, Bushman FD. 2006. Selection of target sites for mobile DNA integration in the human genome. PLoS Computational Biology 2:e157. [PubMed][CrossRef]
82. Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. 2007. HIV integration site selection: Analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Research 17:1186–1194. [PubMed][CrossRef]
83. Ciuffi A, Ronen K, Brady T, Malani N, Wang G, Berry CC, Bushman FD. 2009. Methods for integration site distribution analyses in animal cell genomes. Methods 47:261–268. [PubMed][CrossRef]
84. Mitchell RS, Beitzel BF, Schroder ARW, Shinn P, Chen HM, Berry CC, Ecker JR, Bushman FD. 2004. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:1127–1137. [PubMed][CrossRef]
85. Narezkina A, Taganov KD, Litwin S, Stoyanova R, Hayashi J, Seeger C, Skalka AM, Katz RA. 2004. Genome-wide analyses of avain sarcoma virus integration sites. J Virol 78:11656–11663. [PubMed][CrossRef]
86. Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, Collins F, Shinn P, Leipzig J, Hannenhalli S, Berry CC, Ecker JR, Bushman FD. 2006. Retroviral DNA integration: Viral and cellular determinants of target-site selection. PLoS Pathogens 2:e60. [PubMed][CrossRef]
87. Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J, Engelborghs Y, De Clercq E, Debyser Z. 2003. HIV-1 Integrase Forms Stable Tetramers and Associates with LEDGF/p75 Protein in Human Cells. J Biol Chem 278:372–381. [PubMed][CrossRef]
88. Turlure F, Devroe E, Silver PA, Engelman A. 2004. Human cell proteins and human immunodeficiency virus DNA integration. Front Biosci 9:3187–3208. [PubMed][CrossRef]
89. Emiliani S, Mousnier A, Busschots K, Maroun M, Van Maele B, Tempe D, Vandekerckhove L, Moisant F, Ben-Slama L, Witvrouw M, Christ F, Rain JC, Dargemont C, Debyser Z, Benarous R. 2005. Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J Biol Chem 280:25517–25523. [PubMed][CrossRef]
90. Llano M, Saenz DT, Meehan A, Wongthida P, Peretz M, Walker WH, Teo WL, Poeschla EM. 2006. An essential role for LEDGF/p75 in HIV integration. Science 314:461–464. [PubMed][CrossRef]
91. De Rijck J, Vandekerckhove L, Gijsbers R, Hombrouck A, Hendrix J, Vercammen J, Engelborghs Y, Christ F, Debyser Z. 2006. Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication. J Virol 80:11498–11509. [PubMed][CrossRef]
92. Eidahl JO, Crowe BL, North JA, McKee CJ, Shkriabai N, Feng L, Plumb M, Graham RL, Gorelick RJ, Hess S, Poirier MG, Foster MP, Kvaratskhelia M. 2013. Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 41:3924–3936. [PubMed][CrossRef]
93. van Nuland R, van Schaik FM, Simonis M, van Heesch S, Cuppen E, Boelens R, Timmers HM, van Ingen H. 2013. Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenetics & Chromatin 6:12. [PubMed][CrossRef]
94. Cherepanov P, Ambrosio AL, Rahman S, Ellenberger T, Engelman A. 2005. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci USA 102:17308–17313. [PubMed][CrossRef]
95. Hare S, Shun MC, Gupta SS, Valkov E, Engelman A, Cherepanov P. 2009. A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75. PLoS Pathogens 5:e1000259. [PubMed][CrossRef]
96. Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F. 2005. A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287–1289. [PubMed][CrossRef]
97. Ciuffi A, Diamond T, Hwang Y, Marshall H, Bushman FD. 2006. Fusions of LEDGF/p75 to lambda repressor promote HIV DNA integration near lambda operators in vitro. Hum Gene Ther 17:960–967. [PubMed][CrossRef]
98. Vandegraaff N, Devroe E, Turlure F, Silver PA, Engelman A. 2006. Biochemical and genetic analyses of integrase-interacting protein lens epithelium-derived growth factor (LEDGF)/p75 and hepatoma-derived growth factor related protein 2 (HRP2) in preintegration complex function and HIV-1 replication. Virology 346:415–426. [PubMed][CrossRef]
99. Schrijvers R, Vets S, De Rijck J, Malani N, Bushman FD, Debyser Z, Gijsbers R. 2012. HRP-2 determines HIV-1 integration site selection in LEDGF/p75 depleted cells. Retrovirology 9:84. [PubMed][CrossRef]
100. Vandegraaff N, Devroe E, Turlure F, Silver PA, Engelman A. 2005. Biochemical and genetic analysis of integrase-interacting protein lens epithelium-derived growth factor (LEDGF)/p75 and hepatoma-derived growth factor related protein 2 (HRP2) in preintegration complex function and HIV-1 replication. Virology Epub.
101. Schrijvers R, De Rijck J, Demeulemeester J, Adachi N, Vets S, Ronen K, Christ F, Bushman FD, Debyser Z, Gijsbers R. 2012. LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathogens 8:e1002558. [PubMed][CrossRef]
102. Silvers RM, Smith JA, Schowalter M, Litwin S, Liang Z, Geary K, Daniel R. 2010. Modification of integration site preferences of an HIV-1-based vector by expression of a novel synthetic protein. Hum Gene Ther 21:337–349. [PubMed][CrossRef]
103. Gijsbers R, Ronen K, Vets S, Malani N, De Rijck J, McNeely M, Bushman FD, Debyser Z. 2010. LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin. Mol Ther 18:552–560. [PubMed][CrossRef]
104. Ferris AL, Wu X, Hughes CM, Stewart C, Smith SJ, Milne TA, Wang GG, Shun MC, Allis CD, Engelman A, Hughes SH. 2010. Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc Natl Acad Sci USA 107:3135–3140. [PubMed][CrossRef]
105. De Rijck J, de Kogel C, Demeulemeester J, Vets S, El Ashkar S, Malani N, Bushman FD, Landuyt B, Husson SJ, Busschots K, Gijsbers R, Debyser Z. 2013. The BET family of proteins targets Moloney murine leukemia virus integration near transcription start sites. Cell Reports 5:886–894. [PubMed][CrossRef]
106. Sharma A, Larue RC, Plumb MR, Malani N, Male F, Slaughter A, Kessl JJ, Shkriabai N, Coward E, Aiyer SS, Green PL, Wu L, Roth MJ, Bushman FD, Kvaratskhelia M. 2013. BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc Natl Acad Sci USA 110:12036–12041. [PubMed][CrossRef]
107. Larue RC, Plumb MR, Crowe BL, Shkriabai N, Sharma A, Difiore J, Malani N, Aiyer SS, Roth MJ, Bushman FD, Foster MP, Kvaratskhelia M. 2014. Bimodal high-affinity association of Brd4 with murine leukemia virus integrase and mononucleosomes. Nucleic Acids Res. 42:4868–4881. [PubMed][CrossRef]
108. Gupta SS, Maetzig T, Maertens GN, Sharif A, Rothe M, Weidner-Glunde M, Galla M, Schambach A, Cherepanov P, Schulz TF. 2013. Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration. J Virol 87:12721–12736. [PubMed][CrossRef]
109. Studamire B, Goff SP. 2008. Host proteins interacting with the Moloney murine leukemia virus integrase: Multiple transcriptional regulators and chromatin binding factors. Retrovirology 5:48. [PubMed][CrossRef]
110. Pryciak PM, Varmus HE. 1992. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69:769–780. [PubMed][CrossRef]
111. Pryciak PM, Sil A, Varmus HE. 1992. Retroviral integration into minichromosomes in vitro. Embo J 11:291–303. [PubMed]
112. Pryciak P, Muller HP, Varmus HE. 1992. Simian Virus 40 minichromosomes as targets for retroviral integration in vivo. Proc Natl Acad Sci USA 89:9237–9241. [PubMed][CrossRef]
113. Pruss D, Bushman FD, Wolffe AP. 1994. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc Natl Acad Sci USA 91:5913–5917. [PubMed][CrossRef]
114. Pruss D, Reeves R, Bushman FD, Wolffe AP. 1994. The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J Biol Chem 269:25031–25041. [PubMed]
115. Roth SL, Malani N, Bushman FD. 2011. Gammaretroviral integration into nucleosomal target DNA in vivo. J Virol 85:7393–7401. [PubMed][CrossRef]
116. Lesbats P, Botbol Y, Chevereau G, Vaillant C, Calmels C, Arneodo A, Andreola ML, Lavigne M, Parissi V. 2011. Functional coupling between HIV-1 integrase and the SWI/SNF chromatin remodeling complex for efficient in vitro integration into stable nucleosomes. PLoS pathogens 7:e1001280. [PubMed][CrossRef]
117. Botbol Y, Raghavendra NK, Rahman S, Engelman A, Lavigne M. 2008. Chromatinized templates reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro. Nucleic Acids Res 36:1237–1246. [PubMed][CrossRef]
118. Yoder K, Bushman FD. 2000. Repair of gaps in retroviral DNA integration intermediates. J Virol 74:11191–11200. [PubMed][CrossRef]
119. Chow SA, Vincent KA, Ellison V, Brown PO. 1992. Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255:723–726. [PubMed][CrossRef]
120. Daniel R, Katz RA, Skalka AM. 1999. A role for DNA-PK in retroviral DNA integration. Science 284:644–647. [PubMed][CrossRef]
121. Daniel R, Katz RA, Merkel G, Hittle JC, Yen TJ, Skalka AM. 2001. Wortmannin potentiates integrase-mediated killing of lymphocytes and reduces the efficency of stable transduction by retroviruses. Mol Cell Biol 21:1164–1172. [PubMed][CrossRef]
122. Lau A, Kanaar R, Jackson SP, O'Connor MJ. 2004. Suppression of retroviral infection by the RAD52 DNA repair protein. Embo J 23:3421–3429. [PubMed][CrossRef]
123. Daniel R, Kao G, Taganov K, Greger JG, Favorova O, Merkel G, Yen TJ, Katz RA, Skalka AM. 2003. Evidence that the retroviral DNA integration process triggers an ATR-dependent DNA damage response. Proc Natl Acad Sci USA 100:4778–4783. [PubMed][CrossRef]
124. Yoder K, Sarasin A, Kraemer K, McIlhatton M, Bushman F, Fishel R. 2006. The DNA repair genes XPB and XPD defend cells from retroviral infection. Proc Natl Acad Sci USA 103:4622–4627. [PubMed][CrossRef]
125. Li L, Olvera JM, Yoder K, Mitchell RS, Butler SL, Lieber MR, Martin SL, Bushman FD. 2001. Role of the non-homologous DNA end joining pathway in retroviral infection. Embo J 20:3272–3281. [PubMed][CrossRef]
126. Espeseth AS, Fishel R, Hazuda D, Huang Q, Xu M, Yoder K, Zhou H. 2011. siRNA screening of a targeted library of DNA repair factors in HIV infection reveals a role for base excision repair in HIV integration. PLoS One 6:e17612. [PubMed][CrossRef]
127. Yoder KE, Espeseth A, Wang XH, Fang Q, Russo MT, Lloyd RS, Hazuda D, Sobol RW, Fishel R. 2011. The base excision repair pathway is required for efficient lentivirus integration. PLoS One 6:e17862. [PubMed][CrossRef]
128. Arts EJ, Hazuda DJ. 2012. HIV-1 antiretroviral drug therapy. Cold Spring Harbor Perspectives in Medicine 2:a007161. [PubMed][CrossRef]
129. Hazuda DJ, Hastings JC, Wolfe AL, Emini EA. 1994. A novel assay for the DNA strand-transfer reaction of HIV-1 integrase. Nuc Acids Res 22:1121–1122. [PubMed][CrossRef]
130. Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, Espeseth A, Gabryelski L, Schleif W, Blau C, Miller MD. 2000. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287:646–650. [PubMed][CrossRef]
131. Hazuda DJ, Anthony NJ, Gomez RP, Jolly SM, Wai JS, Zhuang L, Fisher TE, Embrey M, P GJ, Jr., Egbertson MS, Vacca JP, Huff JR, Felock PJ, Witmer MV, Stillmock KA, Danovich R, Grobler J, Miller MD, Espeseth AS, Jin L, Chen IW, Lin JH, Kassahun K, Ellis JD, Wong BK, Xu W, Pearson PG, Schleif WA, Cortese R, Emini E, V S, Holloway MK, Young SD. 2004. A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc Natl Acad Sci USA 101:11233–11238. [PubMed][CrossRef]
132. Metifiot M, Marchand C, Pommier Y. 2013. HIV integrase inhibitors: 20-year landmark and challenges. Advances in Pharmacology 67:75–105. [PubMed][CrossRef]
133. Espeseth AS, Felock P, Wolfe A, Witmer M, Grobler J, Anthony N, Egbertson M, Melamed JY, Young S, Hamill T, Cole JL, Hazuda DJ. 2000. HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc Natl Acad Sci USA 97:11244–11249. [PubMed][CrossRef]
134. Krishnan L, Li X, Naraharisetty HL, Hare S, Cherepanov P, Engelman A. 2010. Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc Natl Acad Sci USA 107:15910–15915. [PubMed][CrossRef]
135. Min S, Sloan L, DeJesus E, Hawkins T, McCurdy L, Song I, Stroder R, Chen S, Underwood M, Fujiwara T, Piscitelli S, Lalezari J. 2011. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. Aids 25:1737–1745. [PubMed][CrossRef]
136. Walmsley SL, Antela A, Clumeck N, Duiculescu D, Eberhard A, Gutierrez F, Hocqueloux L, Maggiolo F, Sandkovsky U, Granier C, Pappa K, Wynne B, Min S, Nichols G, Investigators S. 2013. Dolutegravir plus abacavir-lamivudine for the treatment of HIV-1 infection. New England Journal of Medicine 369:1807–1818. [PubMed][CrossRef]
137. Gupta K, Brady T, Dyer BM, Malani N, Hwang Y, Male F, Nolte RT, Wang L, Velthuisen E, Jeffrey J, Van Duyne GD, Bushman FD. 2014. Allosteric inhibition of human immunodeficiency virus integrase: late block during viral replication and abnormal multimerization involving specific protein domains. J. Biol. Chem. 289:20477–20488. [PubMed][CrossRef]
138. Molteni V, Greenwald J, Rhodes D, Hwang Y, Kwiatkowski W, Bushman FD, Siegel JS, Choe S. 2001. Identification of a small molecule binding site at the dimer interface of the HIV integrase catalytic domain. Acta Crystallogr D Biol Crystallogr 57:536–544. [PubMed][CrossRef]
139. Le Rouzic E, Bonnard D, Chasset S, Bruneau JM, Chevreuil F, Le Strat F, Nguyen J, Beauvoir R, Amadori C, Brias J, Vomscheid S, Eiler S, Levy N, Delelis O, Deprez E, Saib A, Zamborlini A, Emiliani S, Ruff M, Ledoussal B, Moreau F, Benarous R. 2013. Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage. Retrovirology 10:144. [PubMed][CrossRef]
140. Jurado KA, Wang H, Slaughter A, Feng L, Kessl JJ, Koh Y, Wang W, Ballandras-Colas A, Patel PA, Fuchs JR, Kvaratskhelia M, Engelman A. 2013. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc Natl Acad Sci USA 110:8690–8695. [PubMed][CrossRef]
141. Feng L, Sharma A, Slaughter A, Jena N, Koh Y, Shkriabai N, Larue RC, Patel PA, Mitsuya H, Kessl JJ, Engelman A, Fuchs JR, Kvaratskhelia M. 2013. The A128T resistance mutation reveals aberrant protein multimerization as the primary mechanism of action of allosteric HIV-1 integrase inhibitors. J. Biol. Chem. 288:15813–15820. [PubMed][CrossRef]
142. Engelman A, Kessl JJ, Kvaratskhelia M. 2013. Allosteric inhibition of HIV-1 integrase activity. Current opinion in chemical biology. Curr. Opin. Chem. 17:339–345. [PubMed][CrossRef]
143. Desimmie BA, Schrijvers R, Demeulemeester J, Borrenberghs D, Weydert C, Thys W, Vets S, Van Remoortel B, Hofkens J, De Rijck J, Hendrix J, Bannert N, Gijsbers R, Christ F, Debyser Z. 2013. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 10:57. [PubMed][CrossRef]
144. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, Gallant J, Markowitz M, Ho DD, Richman DD, Siliciano RF. 1997. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278:1295–1300. [PubMed][CrossRef]
145. Siliciano RF, Greene WC. 2011. HIV latency. Cold Spring Harbor Perspectives in Medicine 1:a007096. [PubMed][CrossRef]
146. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, Schneider T, Hofmann J, Kucherer C, Blau O, Blau IW, Hofmann WK, Thiel E. 2009. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. New England Journal of Medicine 360:692–698. [PubMed][CrossRef]
147. Xing S, Siliciano RF. 2013. Targeting HIV latency: Pharmacologic strategies toward eradication. Drug Discovery Today 18:541–551. [PubMed][CrossRef]
148. Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, Potard V, Versmisse P, Melard A, Prazuck T, Descours B, Guergnon J, Viard JP, Boufassa F, Lambotte O, Goujard C, Meyer L, Costagliola D, Venet A, Pancino G, Autran B, Rouzioux C, Group AVS. 2013. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathogens 9:e1003211. [PubMed][CrossRef]
149. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC, Richman DD, Hudgens MG, Bosch RJ, Coffin JM, Eron JJ, Hazuda DJ, Margolis DM. 2012. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487:482–485. [PubMed][CrossRef]
150. Sherrill-Mix S, Lewinski MK, Famiglietti M, Bosque A, Malani N, Ocwieja KE, Berry CC, Looney D, Shan L, Agosto LM, Pace MJ, Siliciano RF, O'Doherty U, Guatelli J, Planelles V, Bushman FD. 2013. HIV latency and integration site placement in five cell-based models. Retrovirology 10:90. [PubMed][CrossRef]
151. Lewinski MK, Bisgrove D, Shinn P, Chen H, Hoffmann C, Hannenhalli S, Verdin E, Berry CC, Ecker JR, Bushman FD. 2005. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol 79:6610–6619. [PubMed][CrossRef]
152. Han Y, Lin YB, An W, Xu J, Yang HC, O'Connell K, Dordai D, Boeke JD, Siliciano JD, Siliciano RF. 2008. Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host & Microbe 4:134–146. [PubMed][CrossRef]
153. Elgin SC, Reuter G. 2013. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harbor Perspectives in Biology 5:a017780. [PubMed][CrossRef]
154. Spina CA, Anderson J, Archin NM, Bosque A, Chan J, Famiglietti M, Greene WC, Kashuba A, Lewin SR, Margolis DM, Mau M, Ruelas D, Saleh S, Shirakawa K, Siliciano RF, Singhania A, Soto PC, Terry VH, Verdin E, Woelk C, Wooden S, Xing S, Planelles V. 2013. An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4 + T cells from aviremic patients. PLoS Pathogens 9:e1003834. [PubMed][CrossRef]
155. Ikeda T, Shibata J, Yoshimura K, Koito A, Matsushita S. 2007. Recurrent HIV-1 integration at the BACH2 locus in resting CD4 + T cell populations during effective highly active antiretroviral therapy. J Infect Dis 195:716–725. [PubMed][CrossRef]
156. Maldarelli F, Wu X, Su L, Simonetti FR, Shao W, Hill S, Spindler J, Ferris AL, Mellors JW, Kearney MF, Coffin JM, Hughes SH. 2014. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345:179–183. [PubMed][CrossRef]
157. Wagner TA, McLaughlin S, Garg K, Cheung CY, Larsen BB, Styrchak S, Huang HC, Edlefsen PT, Mullins JI, Frenkel LM. 2014. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345:570–573. [PubMed][CrossRef]
158. Margolis D, Bushman F. 2014. HIV/AIDS. Persistence by proliferation? Science 345:143–144. [PubMed][CrossRef]
159. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chretien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chretien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P. 2010. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 467:318–322. [PubMed][CrossRef]
160. Goff SP. 2008. Knockdown screens to knockout HIV-1. Cell 135:417–420. [PubMed][CrossRef]
161. Bushman FD, Malani N, Fernandes J, D'Orso I, Cagney G, Diamond TL, Zhou H, Hazuda DJ, Espeseth AS, Konig R, Bandyopadhyay S, Ideker T, Goff SP, Krogan NJ, Frankel AD, Young JA, Chanda SK. 2009. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathogens 5:e1000437. [PubMed][CrossRef]
162. Bushman FD, Barton S, Bailey A, Greig C, Malani N, Bandyopadhyay S, Young J, Chanda S, Krogan N. 2013. Bringing it all together: Big data and HIV research. Aids 27:835–838. [PubMed][CrossRef]
163. Nguyen DG, Yin H, Zhou Y, Wolff KC, Kuhen KL, Caldwell JS. 2007. Identification of novel therapeutic targets for HIV infection through functional genomic cDNA screening. Virology 362:16–25. [PubMed][CrossRef]
164. Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, Schoggins JW, Rice CM, Yamashita M, Hatziioannou T, Bieniasz PD. 2013. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502:563–566. [PubMed][CrossRef]
165. Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC, Schaller T, Hue S, Barclay WS, Schulz R, Malim MH. 2013. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502:559–562. [PubMed][CrossRef]
166. Bartha I, McLaren PJ, Ciuffi A, Fellay J, Telenti A. 2014. GuavaH: A compendium of host genomic data in HIV biology and disease. Retrovirology 11:6. [PubMed][CrossRef]
167. Coffin JM, Hughes SH, Varmus HE. 1997. Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
168. Farnet CM, Haseltine WA. 1991. Circularization of human immunodeficiency virus type 1 DNA in vitro. J Virol 65:6942–6952. [PubMed]
169. Daniel R, Greger JG, Katz RA, Taganov KD, Wu X, Kappes JC, Skalka AM. 2004. Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J Virol 78:8573–8581. [PubMed][CrossRef]
170. Ariumi Y, Turelli P, Masutani M, Trono D. 2005. DNA damage sensors ATM, ATR, DNA-PKcs, and PARP-1 are dispensable for human immunodeficiency virus type 1 integration. J Virol 79:2973–2978. [PubMed][CrossRef]
171. Cooper A, Garcia M, Petrovas C, Yamamoto T, Koup RA, Nabel GJ. 2013. HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature 498:376–379. [PubMed][CrossRef]
172. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, Greene WC. 2014. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343:428–432. [PubMed][CrossRef]

Article metrics loading...



In order to replicate, a retrovirus must integrate a DNA copy of the viral RNA genome into a chromosome of the host cell. The study of retroviral integration has advanced considerably in the past few years. Here we focus on host factor interactions and the linked area of integration targeting. Genome-wide screens for cellular factors affecting HIV replication have identified a series of host cell proteins that may mediate subcellular trafficking for preintegration complexes, nuclear import, and integration target site selection. The cell transcriptional co-activator protein LEDGF/p75 has been identified as a tethering factor important for HIV integration, and recently, BET proteins (Brd2, 4, and 4) have been identified as tethering factors for the gammaretroviruses. A new class of HIV inhibitors has been developed targeting the HIV-1 IN-LEDGF binding site, though surprisingly these inhibitors appear to block assembly late during replication and do not act at the integration step. Going forward, genome-wide studies of HIV–host interactions offer many new starting points to investigate HIV replication and identify potential new inhibitor targets.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Sites of HIV DNA integration in chromosomes. The human chromosomes are shown in the outermost ring. The green histograms indicated relative G/C content; red indicates gene density, orange indicates density of HIV integration sites in T-cells ( 78 ), and purple indicates MLV integration site density in T-cells ( 115 ).

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0026-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


The inhibitor GSK1264 bound to the LEDGF-binding site on the HIV IN catalytic domain dimer. The alpha carbon backbone of the IN catalytic domain dimer is shown in gold. The GSK1264 compound is show in cyan (carbons) and red (oxygens). Active site residues are shown in orange. Details on the structure and function of GSK1264 are reported in ( 137 ).

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0026-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Click to view


Some resources for working with genome-wide data on HIV research

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0026-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error