No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.


MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    169.69 Kb
  • HTML
    152.22 Kb
  • PDF
    473.48 Kb
  • Author: Kosuke Yusa1
  • Editors: Mick Chandler2, Nancy Craig3
    Affiliations: 1: Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; 2: Université Paul Sabatier, Toulouse, France; 3: Johns Hopkins University, Baltimore, MD
  • Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0028-2014
  • Received 15 May 2014 Accepted 14 August 2014 Published 05 March 2015
  • Kosuke Yusa, [email protected]
image of <span class="jp-italic">piggyBac</span> Transposon
    Preview this microbiology spectrum article:
    Zoom in

    Transposon, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/2/MDNA3-0028-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/2/MDNA3-0028-2014-2.gif
  • Abstract:

    The transposon was originally isolated from the cabbage looper moth, , in the 1980s. Despite its early discovery and dissimilarity to the other DNA transposon families, the transposon was not recognized as a member of a large transposon superfamily for a long time. Initially, the transposon was thought to be a rare transposon. This view, however, has now been completely revised as a number of fully sequenced genomes have revealed the presence of -like repetitive elements. The isolation of active copies of the -like elements from several distinct species further supported this revision. This includes the first isolation of an active mammalian DNA transposon identified in the bat genome. To date, the transposon has been deeply characterized and it represents a number of unique characteristics. In general, all members of the superfamily use TTAA as their integration target sites. In addition, the transposon shows precise excision, i.e., restoring the sequence to its preintegration state, and can transpose in a variety of organisms such as yeasts, malaria parasites, insects, mammals, and even in plants. Biochemical analysis of the chemical steps of transposition revealed that does not require DNA synthesis during the actual transposition event. The broad host range has attracted researchers from many different fields, and the transposon is currently the most widely used transposon system for genetic manipulations.

  • Citation: Yusa K. 2015. Transposon. Microbiol Spectrum 3(2):MDNA3-0028-2014. doi:10.1128/microbiolspec.MDNA3-0028-2014.


1. Potter KN, Faulkner P, MacKinnon EA. 1976. Strain selection during serial passage of Trichoplusia in nuclear polyhedrosis virus. J Virol 18:1040–1050. [PubMed]
2. Fraser MJ, Smith GE, Summers MD. 1983. Acquisition of Host Cell DNA Sequences by Baculoviruses: Relationship Between Host DNA Insertions and FP Mutants of Autographa californica and Galleria mellonella Nuclear Polyhedrosis Viruses. J Virol 47:287–300. [PubMed]
3. Fraser MJ, Hink WF. 1982. The isolation and characterization of the MP and FP plaque variants of Galleria mellonella nuclear polyhedrosis virus. Virology 117:366–378. [PubMed][CrossRef]
4. Fraser MJ, Brusca JS, Smith GE, Summers MD. 1985. Transposon-mediated mutagenesis of a baculovirus. Virology 145:356–361. [PubMed][CrossRef]
5. Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ. 1989. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169. [PubMed][CrossRef]
6. Elick TA, Bauser CA, Fraser MJ. 1996. Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica 98:33–41. [PubMed][CrossRef]
7. Baudry C, Malinsky S, Restituito M, Kapusta A, Rosa S, Meyer E, Betermier M. 2009. PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev 23:2478–2483. doi:10.1101/gad.547309. [PubMed][CrossRef]
8. Cheng CY, Vogt A, Mochizuki K, Yao MC. 2010. A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol Biol Cell 21:1753–1762. doi:10.1091/mbc.E09-12-1079. [PubMed][CrossRef]
9. Garrett JE, Carroll D. 1986. Tx1: a transposable element from Xenopus laevis with some unusual properties. Mol Cell Biol 6:933–941. [PubMed]
10. Garrett JE, Knutzon DS, Carroll D. 1989. Composite transposable elements in the Xenopus laevis genome. Mol Cell Biol 9:3018–3027. [PubMed]
11. Wang HH, Fraser MJ, Cary LC. 1989. Transposon mutagenesis of baculoviruses: analysis of TFP3 lepidopteran transposon insertions at the FP locus of nuclear polyhedrosis viruses. Gene 81:97–108. [PubMed][CrossRef]
12. Schetter C, Oellig C, Doerfler W. 1990. An insertion of insect cell DNA in the 81-map-unit segment of Autographa californica nuclear polyhedrosis virus DNA. J Virol 64:1844–1850. [PubMed]
13. Carstens EB. 1987. Identification and nucleotide sequence of the regions of Autographa californica nuclear polyhedrosis virus genome carrying insertion elements derived from Spodoptera frugiperda. Virology 161:8–17. [PubMed][CrossRef]
14. Beames B, Summers MD. 1990. Sequence comparison of cellular and viral copies of host cell DNA insertions found in Autographa californica nuclear polyhedrosis virus. Virology 174:354–363. [PubMed][CrossRef]
15. Handler AM, McCombs SD, Fraser MJ, Saul SH. 1998. The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc Natl Acad Sci U S A 95:7520–7525. [PubMed][CrossRef]
16. Handler AM, Harrell RA, 2nd. 1999. Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol Biol 8:449–457. [PubMed][CrossRef]
17. Handler AM, McCombs SD. 2000. The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome. Insect Mol Biol 9:605–612. doi:imb227. [PubMed][CrossRef]
18. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921. doi:10.1038/35057062. [PubMed][CrossRef]
19. Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S. 2002. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310. doi:10.1126/science.1072104. [PubMed][CrossRef]
20. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O'Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149. doi:10.1126/science.1076181. [PubMed][CrossRef]
21. Penton EH, Sullender BW, Crease TJ. 2002. Pokey, a new DNA transposon in Daphnia (cladocera: crustacea). J Mol Evol 55:664–673. doi:10.1007/s00239-002-2362-9. [PubMed][CrossRef]
22. Sarkar A, Sim C, Hong YS, Hogan JR, Fraser MJ, Robertson HM, Collins FH. 2003. Molecular evolutionary analysis of the widespread piggyBac transposon family and related “domesticated” sequences. Mol Genet Genomics 270:173–180. doi:10.1007/s00438-003-0909-0. [PubMed][CrossRef]
23. Wu M, Sun Z-C, Hu C-L, Zhang G-F, Han Z-J. 2008. An active piggyBac-like element in Macdunnoughia crassisigna. Insect Sci 15:521–528. [CrossRef]
24. Xu HF, Xia QY, Liu C, Cheng TC, Zhao P, Duan J, Zha XF, Liu SP. 2006. Identification and characterization of piggyBac-like elements in the genome of domesticated silkworm, Bombyx mori. Mol Genet Genomics 276:31–40. doi:10.1007/s00438-006-0124-x. [PubMed][CrossRef]
25. Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, Qin N, Donahue G, Yang P, Li Q, Li C, Zhang P, Huang Z, Berger SL, Reinberg D, Wang J, Liebig J. 2010. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329:1068–1071. doi:10.1126/science.1192428. [PubMed][CrossRef]
26. Hikosaka A, Kobayashi T, Saito Y, Kawahara A. 2007. Evolution of the Xenopus piggyBac transposon family TxpB: domesticated and untamed strategies of transposon subfamilies. Mol Biol Evol 24:2648–2656. doi:msm191. [PubMed][CrossRef]
27. Mitra R, Li X, Kapusta A, Mayhew D, Mitra RD, Feschotte C, Craig NL. 2013. Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon. Proc Natl Acad Sci U S A 110:234–239. doi:10.1073/pnas.1217548110. [PubMed][CrossRef]
28. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562. doi:10.1038/nature01262. [PubMed][CrossRef]
29. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Alba M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hubner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Payseur BA, Bourque G, Lopez-Otin C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F. 2004. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521. doi:10.1038/nature02426. [PubMed]
30. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, 3rd, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, DeJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SM, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger JP, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O'Neill B, O'Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander ES. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819. doi:10.1038/nature04338. [CrossRef]
31. Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, Adelson DL, Eichler EE, Elnitski L, Guigo R, Hamernik DL, Kappes SM, Lewin HA, Lynn DJ, Nicholas FW, Reymond A, Rijnkels M, Skow LC, Zdobnov EM, Schook L, Womack J, Alioto T, Antonarakis SE, Astashyn A, Chapple CE, Chen HC, Chrast J, Camara F, Ermolaeva O, Henrichsen CN, Hlavina W, Kapustin Y, Kiryutin B, Kitts P, Kokocinski F, Landrum M, Maglott D, Pruitt K, Sapojnikov V, Searle SM, Solovyev V, Souvorov A, Ucla C, Wyss C, Anzola JM, Gerlach D, Elhaik E, Graur D, Reese JT, Edgar RC, McEwan JC, Payne GM, Raison JM, Junier T, Kriventseva EV, Eyras E, Plass M, Donthu R, Larkin DM, Reecy J, Yang MQ, Chen L, Cheng Z, Chitko-McKown CG, Liu GE, Matukumalli LK, Song J, Zhu B, Bradley DG, Brinkman FS, Lau LP, Whiteside MD, Walker A, Wheeler TT, Casey T, German JB, Lemay DG, Maqbool NJ, Molenaar AJ, Seo S, Stothard P, Baldwin CL, Baxter R, Brinkmeyer-Langford CL, Brown WC, Childers CP, Connelley T, Ellis SA, Fritz K, Glass EJ, Herzig CT, Livanainen A, Lahmers KK, Bennett AK, Dickens CM, Gilbert JG, Hagen DE, Salih H, Aerts J, Caetano AR, Dalrymple B, Garcia JF, Gill CA, Hiendleder SG, Memili E, Spurlock D, Williams JL, Alexander L, Brownstein MJ, Guan L, Holt RA, Jones SJ, Marra MA, Moore R, Moore SS, Roberts A, Taniguchi M, Waterman RC, Chacko J, Chandrabose MM, Cree A, Dao MD, Dinh HH, Gabisi RA, Hines S, Hume J, Jhangiani SN, Joshi V, Kovar CL, Lewis LR, Liu YS, Lopez J, Morgan MB, Nguyen NB, Okwuonu GO, Ruiz SJ, Santibanez J, Wright RA, Buhay C, Ding Y, Dugan-Rocha S, Herdandez J, Holder M, Sabo A, Egan A, Goodell J, Wilczek-Boney K, Fowler GR, Hitchens ME, Lozado RJ, Moen C, Steffen D, Warren JT, Zhang J, Chiu R, Schein JE, Durbin KJ, Havlak P, Jiang H, Liu Y, Qin X, Ren Y, Shen Y, Song H, Bell SN, Davis C, Johnson AJ, Lee S, Nazareth LV, Patel BM, Pu LL, Vattathil S, Williams RL, Jr., Curry S, Hamilton C, Sodergren E, Wheeler DA, Barris W, Bennett GL, Eggen A, Green RD, Harhay GP, Hobbs M, Jann O, Keele JW, Kent MP, Lien S, McKay SD, McWilliam S, Ratnakumar A, Schnabel RD, Smith T, Snelling WM, Sonstegard TS, Stone RT, Sugimoto Y, Takasuga A, Taylor JF, Van Tassell CP, Macneil MD, Abatepaulo AR, Abbey CA, Ahola V, Almeida IG, Amadio AF, Anatriello E, Bahadue SM, Biase FH, Boldt CR, Carroll JA, Carvalho WA, Cervelatti EP, Chacko E, Chapin JE, Cheng Y, Choi J, Colley AJ, de Campos TA, De Donato M, Santos IK, de Oliveira CJ, Deobald H, Devinoy E, Donohue KE, Dovc P, Eberlein A, Fitzsimmons CJ, Franzin AM, Garcia GR, Genini S, Gladney CJ, Grant JR, Greaser ML, Green JA, Hadsell DL, Hakimov HA, Halgren R, Harrow JL, Hart EA, Hastings N, Hernandez M, Hu ZL, Ingham A, Iso-Touru T, Jamis C, Jensen K, Kapetis D, Kerr T, Khalil SS, Khatib H, Kolbehdari D, Kumar CG, Kumar D, Leach R, Lee JC, Li C, Logan KM, Malinverni R, Marques E, Martin WF, Martins NF, Maruyama SR, Mazza R, McLean KL, Medrano JF, Moreno BT, More DD, Muntean CT, Nandakumar HP, Nogueira MF, Olsaker I, Pant SD, Panzitta F, Pastor RC, Poli MA, Poslusny N, Rachagani S, Ranganathan S, Razpet A, Riggs PK, Rincon G, Rodriguez-Osorio N, Rodriguez-Zas SL, Romero NE, Rosenwald A, Sando L, Schmutz SM, Shen L, Sherman L, Southey BR, Lutzow YS, Sweedler JV, Tammen I, Telugu BP, Urbanski JM, Utsunomiya YT, Verschoor CP, Waardenberg AJ, Wang Z, Ward R, Weikard R, Welsh TH, Jr., White SN, Wilming LG, Wunderlich KR, Yang J, Zhao FQ. 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522–528. doi:10.1126/science.1169588. [PubMed][CrossRef]
32. Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blocker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guerin G, Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, Roed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syvanen AC, Tozaki T, Valberg SJ, Vaudin M, White JR, Zody MC, Lander ES, Lindblad-Toh K. 2009. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326:865–867. doi:10.1126/science.1178158. [PubMed][CrossRef]
33. Pace JK, 2nd, Feschotte C. 2007. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17:422–432. doi:10.1101/gr.5826307. [PubMed][CrossRef]
34. Ray DA, Feschotte C, Pagan HJ, Smith JD, Pritham EJ, Arensburger P, Atkinson PW, Craig NL. 2008. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res 18:717–728. doi:10.1101/gr.071886.107. [PubMed][CrossRef]
35. Ray DA, Pagan HJ, Thompson ML, Stevens RD. 2007. Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. Mol Biol Evol 24:632–639. doi:10.1093/molbev/msl192. [PubMed][CrossRef]
36. Kapitonov VV, Jurka J. 2005. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3:e181. doi:10.1371/journal.pbio.0030181. [PubMed][CrossRef]
37. Hencken CG, Li X, Craig NL. 2012. Functional characterization of an active Rag-like transposase. Nat Struct Mol Biol 19:834–836. doi:10.1038/nsmb.2338. [PubMed][CrossRef]
38. Casola C, Hucks D, Feschotte C. 2008. Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol Biol Evol 25:29–41. doi:10.1093/molbev/msm221. [PubMed][CrossRef]
39. Pavelitz T, Gray LT, Padilla SL, Bailey AD, Weiner AM. 2013. PGBD5: a neural-specific intron-containing piggyBac transposase domesticated over 500 million years ago and conserved from cephalochordates to humans. Mobile DNA 4:23. doi:10.1186/1759-8753-4-23. [PubMed][CrossRef]
40. Hickman AB, Chandler M, Dyda F. 2010. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol 45:50–69. doi:10.3109/10409230903505596. [PubMed][CrossRef]
41. Yuan YW, Wessler SR. 2011. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci U S A 108:7884–7889. doi:10.1073/pnas.1104208108. [PubMed][CrossRef]
42. Keith JH, Schaeper CA, Fraser TS, Fraser MJ, Jr. 2008. Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase. BMC Mol Biol 9:73. doi:10.1186/1471-2199-9-73. [PubMed][CrossRef]
43. Mitra R, Fain-Thornton J, Craig NL. 2008. piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J 27:1097–1109. doi:10.1038/emboj.2008.41. [PubMed][CrossRef]
44. Bienz M. 2006. The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 31:35–40. doi:10.1016/j.tibs.2005.11.001. [PubMed][CrossRef]
45. Yusa K, Zhou L, Li MA, Bradley A, Craig NL. 2011. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci U S A 108:1531–1536. doi:10.1073/pnas.1008322108. [PubMed][CrossRef]
46. Bischerour J, Chalmers R. 2009. Base flipping in tn10 transposition: an active flip and capture mechanism. PLoS One 4:e6201. doi:10.1371/journal.pone.0006201. [PubMed][CrossRef]
47. Bischerour J, Chalmers R. 2007. Base-flipping dynamics in a DNA hairpin processing reaction. Nucleic Acids Res 35:2584–2595. doi:10.1093/nar/gkm186. [PubMed][CrossRef]
48. Arkhipova IR, Meselson M. 2005. Diverse DNA transposons in rotifers of the class Bdelloidea. Proc Natl Acad Sci U S A 102:11781–11786. doi:10.1073/pnas.0505333102. [PubMed][CrossRef]
49. Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, Wang X, Bradley A, Liu P. 2008. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci U S A 105:9290–9295. doi:10.1073/pnas.0801017105. [PubMed][CrossRef]
50. Li MA, Turner DJ, Ning Z, Yusa K, Liang Q, Eckert S, Rad L, Fitzgerald TW, Craig NL, Bradley A. 2011. Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res 39:e148. doi:10.1093/nar/gkr764. [PubMed][CrossRef]
51. Li MA, Pettitt SJ, Eckert S, Ning Z, Rice S, Cadinanos J, Yusa K, Conte N, Bradley A. 2013. The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol Cell Biol 33:1317–1330. doi:10.1128/MCB.00670-12. [PubMed][CrossRef]
52. Plasterk RH. 1996. The Tc1/mariner transposon family. Curr Top Microbiol Immunol 204:125–143. [PubMed][CrossRef]
53. Spradling AC, Stern DM, Kiss I, Roote J, Laverty T, Rubin GM. 1995. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci U S A 92:10824–10830. [PubMed][CrossRef]
54. Bellen HJ, O'Kane CJ, Wilson C, Grossniklaus U, Pearson RK, Gehring WJ. 1989. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev 3:1288–1300. [PubMed][CrossRef]
55. Handler AM. 2002. Use of the piggyBac transposon for germ-line transformation of insects. Insect Biochem Mol Biol 32:1211–1220. doi:S096517480200084X. [PubMed][CrossRef]
56. Fraser MJ, Cary L, Boonvisudhi K, Wang HG. 1995. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology 211:397–407. doi:10.1006/viro.1995.1422. [PubMed][CrossRef]
57. Fraser MJ, Ciszczon T, Elick T, Bauser C. 1996. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol 5:141–151. [PubMed][CrossRef]
58. Feschotte C. 2006. The piggyBac transposon holds promise for human gene therapy. Proc Natl Acad Sci U S A 103:14981–14982. doi:0607282103. [PubMed][CrossRef]
59. Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P. 2000. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84. doi:10.1038/71978. [PubMed][CrossRef]
60. Li X, Lobo N, Bauser CA, Fraser MJ, Jr. 2001. The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggyBac. Mol Genet Genomics 266:190–198. [PubMed][CrossRef]
61. Li X, Harrell RA, Handler AM, Beam T, Hennessy K, Fraser MJ, Jr. 2005. piggyBac internal sequences are necessary for efficient transformation of target genomes. Insect Mol Biol 14:17–30. doi:IMB525. [PubMed][CrossRef]
62. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T. 2005. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483. doi:S0092-8674(05)00707-5. [PubMed][CrossRef]
63. Rostovskaya M, Fu J, Obst M, Baer I, Weidlich S, Wang H, Smith AJ, Anastassiadis K, Stewart AF. 2012. Transposon-mediated BAC transgenesis in human ES cells. Nucleic Acids Res 40:e150. doi:10.1093/nar/gks643. [PubMed][CrossRef]
64. Rostovskaya M, Naumann R, Fu J, Obst M, Mueller D, Stewart AF, Anastassiadis K. 2013. Transposon mediated BAC transgenesis via pronuclear injection of mouse zygotes. Genesis 51:135–141. doi:10.1002/dvg.22362. [PubMed][CrossRef]
65. Lacoste A, Berenshteyn F, Brivanlou AH. 2009. An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell 5:332–342. doi:10.1016/j.stem.2009.07.011. [PubMed][CrossRef]
66. Cadinanos J, Bradley A. 2007. Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 35:e87. doi:gkm446. [PubMed]
67. Doherty JE, Huye LE, Yusa K, Zhou L, Craig NL, Wilson MH. 2012. Hyperactive piggyBac gene transfer in human cells and in vivo. Hum Gene Ther 23:311–320. doi:10.1089/hum.2011.138. [PubMed][CrossRef]
68. Li X, Burnight ER, Cooney AL, Malani N, Brady T, Sander JD, Staber J, Wheelan SJ, Joung JK, McCray PB, Jr., Bushman FD, Sinn PL, Craig NL. 2013. piggyBac transposase tools for genome engineering. Proc Natl Acad Sci U S A 110:E2279–2287. doi:10.1073/pnas.1305987110. [CrossRef]
69. Feil R, Wagner J, Metzger D, Chambon P. 1997. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757. doi:10.1006/bbrc.1997.7124. [PubMed][CrossRef]
70. Wu SC, Meir YJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM. 2006. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci U S A 103:15008–15013. doi:0606979103. [PubMed][CrossRef]
71. Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, van Wezenbeek P, Melief C, Berns A. 1984. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37:141–150. [PubMed][CrossRef]
72. Kool J, Uren AG, Martins CP, Sie D, de Ridder J, Turner G, van Uitert M, Matentzoglu K, Lagcher W, Krimpenfort P, Gadiot J, Pritchard C, Lenz J, Lund AH, Jonkers J, Rogers J, Adams DJ, Wessels L, Berns A, van Lohuizen M. 2010. Insertional mutagenesis in mice deficient for p15Ink4b, p16Ink4a, p21Cip1, and p27Kip1 reveals cancer gene interactions and correlations with tumor phenotypes. Cancer Res 70:520–531. doi:10.1158/0008-5472.CAN-09-2736. [PubMed][CrossRef]
73. Peters G, Brookes S, Smith R, Dickson C. 1983. Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell 33:369–377. [PubMed][CrossRef]
74. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z. 1997. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510. [PubMed][CrossRef]
75. Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA. 2005. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436:221–226. doi:10.1038/nature03691. [PubMed][CrossRef]
76. Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S, Campos LS, Yusa K, Banerjee R, Li MA, de la Rosa J, Strong A, Lu D, Ellis P, Conte N, Yang FT, Liu P, Bradley A. 2010. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330:1104–1107. doi:10.1126/science.1193004. [PubMed][CrossRef]
77. Collier LS, Carlson CM, Ravimohan S, Dupuy AJ, Largaespada DA. 2005. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436:272–276. doi:10.1038/nature03681. [PubMed][CrossRef]
78. Balu B, Adams JH. 2006. Functional genomics of Plasmodium falciparum through transposon-mediated mutagenesis. Cell Microbiol 8:1529–1536. doi:10.1111/j.1462-5822.2006.00776.x. [PubMed][CrossRef]
79. Balu B, Shoue DA, Fraser MJ, Jr., Adams JH. 2005. High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. Proc Natl Acad Sci U S A 102:16391–16396. doi:0504679102. [PubMed][CrossRef]
80. Ikadai H, Shaw Saliba K, Kanzok SM, McLean KJ, Tanaka TQ, Cao J, Williamson KC, Jacobs-Lorena M. 2013. Transposon mutagenesis identifies genes essential for Plasmodium falciparum gametocytogenesis. Proc Natl Acad Sci U S A 110:E1676–1684. doi:10.1073/pnas.1217712110. [PubMed][CrossRef]
81. Kuwayama H, Yaginuma T, Yamashita O, Niimi T. 2006. Germ-line transformation and RNAi of the ladybird beetle, Harmonia axyridis. Insect Mol Biol 15:507–512. doi:10.1111/j.1365-2583.2006.00665.x. [PubMed][CrossRef]
82. Lorenzen MD, Berghammer AJ, Brown SJ, Denell RE, Klingler M, Beeman RW. 2003. piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol Biol 12:433–440. doi:427. [PubMed][CrossRef]
83. Lobo N, Li X, Hua-Van A, Fraser MJ, Jr. 2001. Mobility of the piggyBac transposon in embryos of the vectors of Dengue fever (Aedes albopictus) and La Crosse encephalitis (Ae. triseriatus). Mol Genet Genomics 265:66–71. [PubMed][CrossRef]
84. Lobo N, Li X, Fraser MJ, Jr. 1999. Transposition of the piggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni. Mol Gen Genet 261:803–810. [PubMed][CrossRef]
85. Rodrigues FG, Oliveira SB, Rocha BC, Moreira LA. 2006. Germline transformation of Aedes fluviatilis (Diptera:Culicidae) with the piggyBac transposable element. Mem Inst Oswaldo Cruz 101:755–757. doi:S0074-02762006000700008. [PubMed][CrossRef]
86. Condon KC, Condon GC, Dafa'alla TH, Forrester OT, Phillips CE, Scaife S, Alphey L. 2007. Germ-line transformation of the Mexican fruit fly. Insect Mol Biol 16:573–580. doi:10.1111/j.1365-2583.2007.00752.x. [PubMed][CrossRef]
87. Perera OP, Harrell IR, Handler AM. 2002. Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol Biol 11:291–297. doi:336. [PubMed][CrossRef]
88. Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ. 2001. Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol 10:597–604. doi:299. [PubMed][CrossRef]
89. Grossman GL, Rafferty CS, Fraser MJ, Benedict MQ. 2000. The piggyBac element is capable of precise excision and transposition in cells and embryos of the mosquito, Anopheles gambiae. Insect Biochem Mol Biol 30:909–914. doi:S0965174800000928. [PubMed][CrossRef]
90. Nolan T, Bower TM, Brown AE, Crisanti A, Catteruccia F. 2002. piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker. J Biol Chem 277:8759–8762. doi:10.1074/jbc.C100766200. [PubMed][CrossRef]
91. Raphael KA, Shearman DC, Streamer K, Morrow JL, Handler AM, Frommer M. 2011. Germ-line transformation of the Queensland fruit fly, Bactrocera tryoni, using a piggyBac vector in the presence of endogenous piggyBac elements. Genetica 139:91–97. doi:10.1007/s10709-010-9500-x. [PubMed][CrossRef]
92. Schetelig MF, Handler AM. 2013. Germline transformation of the spotted wing drosophilid, Drosophila suzukii, with a piggyBac transposon vector. Genetica 141:189–193. doi:10.1007/s10709-013-9717-6. [PubMed][CrossRef]
93. Hediger M, Niessen M, Wimmer EA, Dubendorfer A, Bopp D. 2001. Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol Biol 10:113–119. doi:imb243. [PubMed][CrossRef]
94. Warren IA, Fowler K, Smith H. 2010. Germline transformation of the stalk-eyed fly, Teleopsis dalmanni. BMC Mol Biol 11:86. doi:10.1186/1471-2199-11-86. [PubMed][CrossRef]
95. Sumitani M, Yamamoto DS, Oishi K, Lee JM, Hatakeyama M. 2003. Germline transformation of the sawfly, Athalia rosae (Hymenoptera: Symphyta), mediated by a piggyBac-derived vector. Insect Biochem Mol Biol 33:449–458. doi:S0965174803000092. [PubMed][CrossRef]
96. Marcus JM, Ramos DM, Monteiro A. 2004. Germline transformation of the butterfly Bicyclus anynana. Proc Biol Sci / The Royal Society 271 Suppl 5:S263–265. doi:10.1098/rsbl.2004.0175. [PubMed][CrossRef]
97. Ferguson HJ, Neven LG, Thibault ST, Mohammed A, Fraser M. 2011. Genetic transformation of the codling moth, Cydia pomonella L., with piggyBac EGFP. Transgenic Res 20:201–214. doi:10.1007/s11248-010-9391-8. [PubMed][CrossRef]
98. Ren X, Han Z, Miller TA. 2006. Excision and transposition of piggyBac transposable element in tobacco budworm embryos. Arch Insect Biochem Physiol 63:49–56. doi:10.1002/arch.20140. [PubMed][CrossRef]
99. Mandrioli M, Wimmer EA. 2003. Stable transformation of a Mamestra brassicae (lepidoptera) cell line with the lepidopteran-derived transposon piggyBac. Insect Biochem Mol Biol 33:1–5. doi:S0965174802001893. [PubMed][CrossRef]
100. Liu D, Yan S, Huang Y, Tan A, Stanley DW, Song Q. 2012. Genetic transformation mediated by piggyBac in the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). Arch Insect Biochem Physiol 80:140–150. doi:10.1002/arch.21035. [PubMed][CrossRef]
101. Thibault ST, Luu HT, Vann N, Miller TA. 1999. Precise excision and transposition of piggyBac in pink bollworm embryos. Insect Mol Biol 8:119–123. [PubMed][CrossRef]
102. Mohammed A, Coates CJ. 2004. Promoter and piggyBac activities within embryos of the potato tuber moth, Phthorimaea operculella, Zeller (Lepidoptera: Gelechiidae). Gene 342:293–301. doi:S0378-1119(04)00492-5. [PubMed][CrossRef]
103. Martins S, Naish N, Walker AS, Morrison NI, Scaife S, Fu G, Dafa'alla T, Alphey L. 2012. Germline transformation of the diamondback moth, Plutella xylostella L., using the piggyBac transposable element. Insect Mol Biol 21:414–421. doi:10.1111/j.1365-2583.2012.01146.x. [PubMed][CrossRef]
104. Shinmyo Y, Mito T, Matsushita T, Sarashina I, Miyawaki K, Ohuchi H, Noji S. 2004. piggyBac-mediated somatic transformation of the two-spotted cricket, Gryllus bimaculatus. Dev Growth Differ 46:343–349. doi:10.1111/j.1440-169x.2004.00751.x. [PubMed][CrossRef]
105. Li J, Zhang JM, Li X, Suo F, Zhang MJ, Hou W, Han J, Du LL. 2011. A piggyBac transposon-based mutagenesis system for the fission yeast Schizosaccharomyces pombe. Nucleic Acids Res 39:e40. doi:10.1093/nar/gkq1358. [PubMed][CrossRef]
106. Morales ME, Mann VH, Kines KJ, Gobert GN, Fraser MJ, Jr., Kalinna BH, Correnti JM, Pearce EJ, Brindley PJ. 2007. piggyBac transposon mediated transgenesis of the human blood fluke, Schistosoma mansoni. FASEB J 21:3479–3489. doi:fj.07-8726com. [PubMed][CrossRef]
107. Fonager J, Franke-Fayard BM, Adams JH, Ramesar J, Klop O, Khan SM, Janse CJ, Waters AP. 2011. Development of the piggyBac transposable system for Plasmodium berghei and its application for random mutagenesis in malaria parasites. BMC Genomics 12:155. doi:10.1186/1471-2164-12-155. [PubMed][CrossRef]
108. Su H, Liu X, Yan W, Shi T, Zhao X, Blake DP, Tomley FM, Suo X. 2012. piggyBac transposon-mediated transgenesis in the apicomplexan parasite Eimeria tenella. PLoS One 7:e40075. doi:10.1371/journal.pone.0040075. [PubMed][CrossRef]
109. Shao H, Li X, Nolan TJ, Massey HC, Jr., Pearce EJ, Lok JB. 2012. Transposon-mediated chromosomal integration of transgenes in the parasitic nematode Strongyloides ratti and establishment of stable transgenic lines. PLoS Pathog 8:e1002871. doi:10.1371/journal.ppat.1002871. [CrossRef]
110. Gonzalez-Estevez C, Momose T, Gehring WJ, Salo E. 2003. Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. Proc Natl Acad Sci U S A 100:14046–14051. doi:10.1073/pnas.2335980100. [PubMed][CrossRef]
111. Lobo NF, Fraser TS, Adams JA, Fraser MJ, Jr. 2006. Interplasmid transposition demonstrates piggyBac mobility in vertebrate species. Genetica 128:347–357. doi:10.1007/s10709-006-7165-2. [CrossRef]
112. Lu Y, Lin C, Wang X. 2009. PiggyBac transgenic strategies in the developing chicken spinal cord. Nucleic Acids Res 37:e141. doi:10.1093/nar/gkp686. [PubMed][CrossRef]
113. Park TS, Han JY. 2012. piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc Natl Acad Sci U S A 109:9337–9341. doi:10.1073/pnas.1203823109. [PubMed][CrossRef]
114. Liu X, Li N, Hu X, Zhang R, Li Q, Cao D, Liu T, Zhang Y. 2013. Efficient production of transgenic chickens based on piggyBac. Transgenic Res 22:417–423. doi:10.1007/s11248-012-9642-y. [PubMed][CrossRef]
115. Macdonald J, Taylor L, Sherman A, Kawakami K, Takahashi Y, Sang HM, McGrew MJ. 2012. Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci U S A 109:E1466–1472. doi:10.1073/pnas.1118715109. [PubMed][CrossRef]
116. Jang CW, Behringer RR. 2007. Transposon-mediated transgenesis in rats. CSH protocols 2007:pdb prot4866. doi:10.1101/pdb.prot4866. [PubMed][CrossRef]
117. Chen F, LoTurco J. 2012. A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J Neurosci Methods 207:172–180. doi:10.1016/j.jneumeth.2012.03.016. [PubMed][CrossRef]
118. Bai DP, Yang MM, Chen YL. 2012. PiggyBac transposon-mediated gene transfer in Cashmere goat fetal fibroblast cells. Biosci Biotechnol Biochem 76:933–937. doi:DN/JST.JSTAGE/bbb/110939. [PubMed][CrossRef]
119. Wu Z, Xu Z, Zou X, Zeng F, Shi J, Liu D, Urschitz J, Moisyadi S, Li Z. 2013. Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer. Transgenic Res 22:1107–1118. doi:10.1007/s11248-013-9729-0. [PubMed][CrossRef]
120. Nagy K, Sung HK, Zhang P, Laflamme S, Vincent P, Agha-Mohammadi S, Woltjen K, Monetti C, Michael IP, Smith LC, Nagy A. 2011. Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7:693–702. doi:10.1007/s12015-011-9239-5. [PubMed][CrossRef]
121. Xue X, Huang X, Nodland SE, Mates L, Ma L, Izsvak Z, Ivics Z, LeBien TW, McIvor RS, Wagner JE, Zhou X. 2009. Stable gene transfer and expression in cord blood-derived CD34+ hematopoietic stem and progenitor cells by a hyperactive Sleeping Beauty transposon system. Blood 114:1319–1330. doi:10.1182/blood-2009-03-210005. [PubMed][CrossRef]
122. Galvan DL, Nakazawa Y, Kaja A, Kettlun C, Cooper LJ, Rooney CM, Wilson MH. 2009. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. J Immunother 32:837–844. doi:10.1097/CJI.0b013e3181b2914c. [PubMed][CrossRef]
123. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordonez A, Hannan NR, Rouhani FJ, Darche S, Alexander G, Marciniak SJ, Fusaki N, Hasegawa M, Holmes MC, Di Santo JP, Lomas DA, Bradley A, Vallier L. 2011. Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394. doi:10.1038/nature10424. [PubMed][CrossRef]
124. Nishizawa-Yokoi A, Endo M, Osakabe K, Saika H, Toki S. 2014. Precise marker excision system using an animal-derived piggyBac transposon in plants. Plant J 77:454–463. doi:10.1111/tpj.12367. [PubMed][CrossRef]
125. Trauner J, Schinko J, Lorenzen MD, Shippy TD, Wimmer EA, Beeman RW, Klingler M, Bucher G, Brown SJ. 2009. Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC Biol 7:73. doi:10.1186/1741-7007-7-73. [PubMed][CrossRef]
126. Lorenzen MD, Kimzey T, Shippy TD, Brown SJ, Denell RE, Beeman RW. 2007. piggyBac-based insertional mutagenesis in Tribolium castaneum using donor/helper hybrids. Insect Mol Biol 16:265–275. doi:IMB727. [PubMed][CrossRef]
127. Mathieu J, Sung HH, Pugieux C, Soetaert J, Rorth P. 2007. A sensitized PiggyBac-based screen for regulators of border cell migration in Drosophila. Genetics 176:1579–1590. doi:genetics.107.071282. [PubMed][CrossRef]
128. Hacker U, Nystedt S, Barmchi MP, Horn C, Wimmer EA. 2003. piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila. Proc Natl Acad Sci U S A 100:7720–7725. doi:10.1073/pnas.1230526100. [PubMed][CrossRef]
129. Bonin CP, Mann RS. 2004. A piggyBac transposon gene trap for the analysis of gene expression and function in Drosophila. Genetics 167:1801–1811. doi:10.1534/genetics.104.027557. [PubMed][CrossRef]
130. Ni TK, Landrette SF, Bjornson RD, Bosenberg MW, Xu T. 2013. Low-copy piggyBac transposon mutagenesis in mice identifies genes driving melanoma. Proc Natl Acad Sci U S A 110:E3640–3649. doi:10.1073/pnas.1314435110. [PubMed][CrossRef]
131. Landrette SF, Cornett JC, Ni TK, Bosenberg MW, Xu T. 2011. piggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART) for genetic screens in mice. PLoS One 6:e26650. doi:10.1371/journal.pone.0026650. [PubMed][CrossRef]
132. Pettitt SJ, Rehman FL, Bajrami I, Brough R, Wallberg F, Kozarewa I, Fenwick K, Assiotis I, Chen L, Campbell J, Lord CJ, Ashworth A. 2013. A genetic screen using the PiggyBac transposon in haploid cells identifies Parp1 as a mediator of olaparib toxicity. PLoS One 8:e61520. doi:10.1371/journal.pone.0061520. [PubMed][CrossRef]
133. Wang W, Hale C, Goulding D, Haslam SM, Tissot B, Lindsay C, Michell S, Titball R, Yu J, Toribio AL, Rossi R, Dell A, Bradley A, Dougan G. 2011. Mannosidase 2, alpha 1 deficiency is associated with ricin resistance in embryonic stem (ES) cells. PLoS One 6:e22993. doi:10.1371/journal.pone.0022993. [PubMed][CrossRef]
134. Wang W, Bradley A, Huang Y. 2009. A piggyBac transposon-based genome-wide library of insertionally mutated Blm-deficient murine ES cells. Genome Res 19:667–673. doi:10.1101/gr.085621.108. [PubMed][CrossRef]
135. Balu B, Chauhan C, Maher SP, Shoue DA, Kissinger JC, Fraser MJ, Jr., Adams JH. 2009. piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome. BMC Microbiol 9:83. doi:10.1186/1471-2180-9-83. [PubMed][CrossRef]
136. Vos JC, De Baere I, Plasterk RHA. 1996. Transposase is the only nematode protein required for in vitro transposition of Tc1. Gene Dev. 10:755–761. doi: 10.1101/gad.10.6.755. [PubMed][CrossRef]

Article metrics loading...



The transposon was originally isolated from the cabbage looper moth, , in the 1980s. Despite its early discovery and dissimilarity to the other DNA transposon families, the transposon was not recognized as a member of a large transposon superfamily for a long time. Initially, the transposon was thought to be a rare transposon. This view, however, has now been completely revised as a number of fully sequenced genomes have revealed the presence of -like repetitive elements. The isolation of active copies of the -like elements from several distinct species further supported this revision. This includes the first isolation of an active mammalian DNA transposon identified in the bat genome. To date, the transposon has been deeply characterized and it represents a number of unique characteristics. In general, all members of the superfamily use TTAA as their integration target sites. In addition, the transposon shows precise excision, i.e., restoring the sequence to its preintegration state, and can transpose in a variety of organisms such as yeasts, malaria parasites, insects, mammals, and even in plants. Biochemical analysis of the chemical steps of transposition revealed that does not require DNA synthesis during the actual transposition event. The broad host range has attracted researchers from many different fields, and the transposon is currently the most widely used transposon system for genetic manipulations.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Structure of the transposon (GenBank accession number J04364.2). TIR, terminal inverted repeat. The minimum TIR sequences are based on ref. ( 61 ).

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0028-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


The chemical steps of transposition. Black and grey arrowheads indicate positions of nicks or sites where 3′ OH groups attack, respectively. Modified from ref. ( 43 ).

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0028-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view


Comparison of target site joining and repair in (left) and (right). Grey arrowheads indicate sites where 3′ OH groups attack. Modified from ref. ( 136 ).

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0028-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view


Transposon-mediated cancer gene discovery in mice. () Commonly used genetic elements. TIR, terminal inverted repeat; SA, splice acceptor site; pA, polyadenylation signal sequence; SD, splice donor site. () In gene activation, a strong constitutive promoter ectopically expresses or overexpresses a trapped gene. The transposon carries two splice acceptor sites in both directions; the trapped genes will be inactivated in spite of the transposon orientation relative to the gene.

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0028-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Click to view


Studies in which transposition has been confirmed in insect species

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0028-2014
Generic image for table

Click to view


Studies in which transposition has been confirmed in noninsect species

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0028-2014
Generic image for table

Click to view


Studies using the transposon as an insertional mutagen

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0028-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error