No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    226.55 Kb
  • PDF
    1.07 MB
  • HTML
    231.73 Kb
  • Authors: Alan M. Lambowitz1, Marlene Belfort2
  • Editors: Alan Lambowitz3, Nancy Craig4
    Affiliations: 1: Institute for Cellular Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; 2: Department of Biological Sciences and RNA Institute, University at Albany, State University of New York, Albany, NY 12222; 3: University of Texas, Austin, TX; 4: Johns Hopkins University, Baltimore, MD
  • Source: microbiolspec January 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0050-2014
  • Received 13 August 2014 Accepted 09 October 2014 Published 22 January 2015
  • Alan Lambowitz, [email protected]
image of Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution
    Preview this microbiology spectrum article:
    Zoom in

    Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/1/MDNA3-0050-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/1/MDNA3-0050-2014-2.gif
  • Abstract:

    This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome's small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns.

  • Citation: Lambowitz A, Belfort M. 2015. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution. Microbiol Spectrum 3(1):MDNA3-0050-2014. doi:10.1128/microbiolspec.MDNA3-0050-2014.


1. Lambowitz AM, Zimmerly S. 2004. Mobile group II introns. Annu Rev Genet 38:1–35. [PubMed][CrossRef]
2. Pyle AM, Lambowitz AM. 2006. Group II introns: ribozymes that splice RNA and invade DNA, p 469–505. The RNA World, 3rd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.
3. Toro N, Jiménez-Zurdo JI, García-Rodríguez FM. 2007. Bacterial group II introns: not just splicing. FEMS Microbiol Rev 31:342–358. [PubMed][CrossRef]
4. Lambowitz AM, Zimmerly S. 2011. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 3:a003616. [PubMed][CrossRef]
5. Marcia M, Somarowthu S, Pyle AM. 2013. Now on display: a gallery of group II intron structures at different stages of catalysis. Mob DNA 4:14. [PubMed][CrossRef]
6. Enyeart PJ, Mohr G, Ellington AD, Lambowitz AM. 2014. Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mob DNA 5:2. [PubMed][CrossRef]
7. Peebles CL, Perlman PS, Mecklenburg KL, Petrillo ML, Tabor JH, Jarrell KA, Cheng H-L. 1986. A self-splicing RNA excises an intron lariat. Cell 44:213–223. [PubMed][CrossRef]
8. Jarrell KA, Peebles CL, Dietrich RC, Romiti SL, Perlman PS. 1988. Group II intron self-splicing. Alternative reaction conditions yield novel products. J Biol Chem 263:3432–3439. [PubMed]
9. Podar M, Chu VT, Pyle AM, Perlman PS. 1998. Group II intron splicing i n vivo by first-step hydrolysis. Nature 391:915–918. [PubMed][CrossRef]
10. Pyle AM. 2010. The tertiary structure of group II introns: implications for biological function and evolution. Crit Rev Biochem Mol Biol 45:215–232. [PubMed][CrossRef]
11. Chin K, Pyle AM. 1995. Branch-point attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5′-splice site selection. RNA 1:391–406. [PubMed]
12. Toor N, Keating KS, Taylor SD, Pyle AM. 2008. Crystal structure of a self-spliced group II intron. Science 320:77–82. [PubMed][CrossRef]
13. Marcia M, Pyle AM. 2012. Visualizing group II intron catalysis through the stages of splicing. Cell 151:497–507. [PubMed][CrossRef]
14. Li CF, Costa M, Michel F. 2011. Linking the branchpoint helix to a newly found receptor allows lariat formation by a group II intron. EMBO J 30:3040–3051. [PubMed][CrossRef]
15. Somarowthu S, Legiewicz M, Keating KS, Pyle AM. 2014. Visualizing the ai5γ group IIB intron. Nucl Acids Res 42:1947–1958. [PubMed][CrossRef]
16. Robart AR, Chan RT, Peters JK, Rajashankar KR, Toor N. 2014. Crystal structure of a eukaryotic group II intron lariat. Nature 514:193–197. [PubMed]
17. Blocker FH, Mohr G, Conlan LH, Qi L, Belfort M, Lambowitz AM. 2005. Domain structure and three-dimensional model of a group II intron-encoded reverse transcriptase. RNA 11:14–28. [PubMed][CrossRef]
18. Malik HS, Burke WD, Eickbush TH. 1999. The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16:793–805. [PubMed][CrossRef]
19. Cui X, Matsuura M, Wang Q, Ma H, Lambowitz AM. 2004. A group II intron-encoded maturase functions preferentially in cis and requires both the reverse transcriptase and X domains to promote RNA splicing. J Mol Biol 340:211–231. [PubMed][CrossRef]
20. Moran JV, Zimmerly S, Eskes R, Kennell JC, Lambowitz AM, Butow RA, Perlman PS. 1995. Mobile group II introns of yeast mitochondrial DNA are novel site-specific retroelements. Mol Cell Biol 15:2828–2838. [PubMed]
21. Kennell JC, Moran JV, Perlman PS, Butow RA, Lambowitz AM. 1993. Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Cell 73:133–146. [PubMed][CrossRef]
22. San Filippo J, Lambowitz AM. 2002. Characterization of the C-terminal DNA-binding/DNA endonuclease region of a group II intron-encoded protein. J Mol Biol 324:933–951. [PubMed][CrossRef]
23. San Filippo J. 2003. The DNA-binding and DNA endonuclease domains of a group II intron-encoded protein: characterization and application to the engineering of gene targeting vectors. PhD Thesis, University of Texas at Austin, Austin.
24. Molina-Sánchez M, Martínez-Abarca F, Toro N. 2010. Structural features in the C-terminal region of the Sinorhizobium meliloti RmInt1 group II intron-encoded protein contribute to its maturase and intron DNA-insertion function. FEBS J 277:244–254. [PubMed][CrossRef]
25. Toro N, Martínez-Abarca F. 2013. Comprehensive phylogenetic analysis of bacterial group II intron-encoded ORFs lacking the DNA endonuclease domain reveals new varieties. PLoS One 8:e55102. [PubMed][CrossRef]
26. Gorbalenya AE. 1994. Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci 3:1117–1120. [PubMed][CrossRef]
27. Belfort M, Roberts RJ. 1997. Homing endonucleases: keeping the house in order. Nucl Acids Res 25:3379–3388. [PubMed][CrossRef]
28. Belfort M, Bonocora RP. 2014. Homing endonucleases: from genetic anomalies to programmable genomic clippers. Methods Mol Biol 1123:1–26. [PubMed][CrossRef]
29. Stoddard BL. 2014. Homing endonucleases from mobile group I introns: discovery to genome engineering. Mobile DNA 5:7. [PubMed][CrossRef]
30. Saldanha R, Chen B, Wank H, Matsuura M, Edwards J, Lambowitz AM. 1999. RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. Biochemistry 38:9069–9083. [PubMed][CrossRef]
31. Matsuura M, Noah JW, Lambowitz AM. 2001. Mechanism of maturase-promoted group II intron splicing. EMBO J 20:7259–7270. [PubMed][CrossRef]
32. Anziano PQ, Hanson DK, Mahler HR, Perlman PS. 1982. Functional domains in introns: trans-acting and cis-acting regions of intron 4 of the cob gene. Cell 30:925–932. [PubMed][CrossRef]
33. Carignani G, Groudinsky O, Frezza D, Schiavon E, Bergantino E, Slonimski PP. 1983. An mRNA maturase is encoded by the first intron of the mitochondrial gene for the subunit I of cytochrome oxidase in S. cerevisiae. Cell 35:733–742. [PubMed][CrossRef]
34. Moran JV, Mecklenburg KL, Sass P, Belcher SM, Mahnke D, Lewin A, Perlman P. 1994. Splicing defective mutants of the COX1 gene of yeast mitochondrial DNA: initial definition of the maturase domain of the group II intron aI2. Nucl Acids Res 22:2057–2064. [PubMed][CrossRef]
35. Rambo RP, Doudna JA. 2004. Assembly of an active group II intron-maturase complex by protein dimerization. Biochemistry 43:6486–6497. [PubMed][CrossRef]
36. Gupta K, Contreras LM, Smith D, Qu G, Huang T, Spruce LA, Seeholzer SH, Belfort M, Van Duyne GD. 2014. Quaternary arrangement of an active, native group II intron ribonucleoprotein complex revealed by small-angle X-ray scattering. Nucl Acids Res 42:5347–5360. [PubMed][CrossRef]
37. Wank H, SanFilippo J, Singh RN, Matsuura M, Lambowitz AM. 1999. A reverse-transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. Mol Cell 4:239–250. [PubMed][CrossRef]
38. Singh RN, Saldanha RJ, D'Souza LM, Lambowitz AM. 2002. Binding of a group II intron-encoded reverse transcriptase/maturase to its high affinity intron RNA binding site involves sequence-specific recognition and autoregulates translation. J Mol Biol 318:287–303. [PubMed][CrossRef]
39. Watanabe K, Lambowitz AM. 2004. High-affinity binding site for a group II intron-encoded reverse transcriptase/maturase within a stem-loop structure in the intron RNA. RNA 10:1433–1443. [PubMed][CrossRef]
40. Dai L, Chai D, Gu SQ, Gabel J, Noskov SY, Blocker FJ, Lambowitz AM, Zimmerly S. 2008. A three-dimensional model of a group II intron RNA and its interaction with the intron-encoded reverse transcriptase. Mol Cell 30:472–485. [PubMed][CrossRef]
41. Noah JW, Lambowitz AM. 2003. Effects of maturase binding and Mg 2+ concentration on group II intron RNA folding investigated by UV cross-linking. Biochemistry 42:12466–12480. [PubMed][CrossRef]
42. Noah JW, Park S, Whitt JT, Perutka J, Frey W, Lambowitz AM. 2006. Atomic force microscopy reveals DNA bending during group II intron ribonucleoprotein particle integration into double-stranded DNA. Biochemistry 45:12424–12435. [PubMed][CrossRef]
43. Huang T, Shaikh TR, Gupta K, Contreras-Martin LM, Grassucci RA, Van Duyne GD, Frank J, Belfort M. 2011. The group II intron ribonucleoprotein precursor is a large, loosely packed structure. Nucl Acids Res 39:2845–2854. [PubMed][CrossRef]
44. Mohr S, Matsuura M, Perlman PS, Lambowitz AM. 2006. A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone. Proc Natl Acad Sci U S A 103:3569–3574. [PubMed][CrossRef]
45. Contreras LM, Huang T, Piazza CL, Smith D, Qu G, Gelderman G, Potratz J, Russell R, Belfort M. 2013. Group II intron-ribosome association protects intron RNA from degradation. RNA 19:1497–1509. [PubMed][CrossRef]
46. Gu SQ, Cui X, Mou S, Mohr S, Yao J, Lambowitz AM. 2010. Genetic identification of potential RNA-binding regions in a group II intron-encoded reverse transcriptase. RNA 16:732–747. [PubMed][CrossRef]
47. Fontaine JM, Goux D, Kloareg B, Loiseaux-de Goër S. 1997. The reverse-transcriptase-like proteins encoded by group II introns in the mitochondrial genome of the brown alga Pylaiella littoralis belong to two different lineages which apparently coevolved with the group II ribosyme lineages. J Mol Evol 44:33–42. [PubMed][CrossRef]
48. Toor N, Hausner G, Zimmerly S. 2001. Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptase. RNA 7:1142–1152. [PubMed][CrossRef]
49. Zimmerly S, Hausner G, Wu X. 2001. Phylogenetic relationships among group II intron ORFs. Nucl Acids Res 29:1238–1250. [PubMed][CrossRef]
50. Simon DM, Clarke NA, McNeil BA, Johnson I, Pantuso D, Dai L, Chai D, Zimmerly S. 2008. Group II introns in eubacteria and archaea: ORF-less introns and new varieties. RNA 14:1704–1713. [PubMed][CrossRef]
51. Simon DM, Kelchner SA, Zimmerly S. 2009. A broadscale phylogenetic analysis of group II intron RNAs and intron-encoded reverse transcriptases. Mol Biol Evol 26:2795–2808. [PubMed][CrossRef]
52. Nagy V, Pirakitikulr N, Zhou KI, Chillón I, Luo J, Pyle AM. 2013. Predicted group II intron lineages E and F comprise catalytically active ribozymes. RNA 19:1266–1278. [PubMed][CrossRef]
53. Zimmerly S, Guo H, Eskes R, Yang J, Perlman PS, Lambowitz AM. 1995. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83:529–538. [PubMed][CrossRef]
54. Zimmerly S, Guo H, Perlman PS, Lambowitz AM. 1995. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82:545–554. [PubMed][CrossRef]
55. Yang J, Zimmerly S, Perlman PS, Lambowitz AM. 1996. Efficient integration of an intron RNA into double-stranded DNA by reverse splicing. Nature 381:332–335. [PubMed][CrossRef]
56. Eskes R, Yang J, Lambowitz AM, Perlman PS. 1997. Mobility of yeast mitochondrial group II introns: engineering a new site specificity and retrohoming via full reverse splicing. Cell 88:865–874. [PubMed][CrossRef]
57. Cousineau B, Smith D, Lawrence-Cavanagh S, Mueller JE, Yang J, Mills D, Manias D, Dunny G, Lambowitz AM, Belfort M. 1998. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94:451–462. [PubMed][CrossRef]
58. Ichiyanagi K, Beauregard A, Lawrence S, Smith D, Cousineau B, Belfort M. 2002. Retrotransposition of the Ll.LtrB group II intron proceeds predominantly via reverse splicing into DNA targets. Mol Microbiol 46:1259–1272. [PubMed][CrossRef]
59. Coros CJ, Landthaler M, Piazza CL, Beauregard A, Esposito D, Perutka J, Lambowitz AM, Belfort M. 2005. Retrotransposition strategies of the Lactococcus lactis Ll.LtrB group II intron are dictated by host identity and cellular environment. Mol Microbiol 56:509–524. [PubMed][CrossRef]
60. Martínez-Abarca F, García-Rodríguez FM, Toro N. 2000. Homing of a bacterial group II intron with an intron-encoded protein lacking a recognizable endonuclease domain. Mol Microbiol 35:1405–1412. [PubMed][CrossRef]
61. Muñoz-Adelantado E, San Filippo J, Martínez-Abarca F, García-Rodriguez FM, Lambowitz AM, Toro N. 2003. Mobility of the Sinorhizobium meliloti group II intron RmInt1 occurs by reverse splicing into DNA, but requires an unknown reverse transcriptase priming mechanism. J Mol Biol 327:931–943. [CrossRef]
62. Martínez-Abarca F, Barrientos-Durán A, Fernández-López M, Toro N. 2004. The RmInt1 group II intron has two different retrohoming pathways for mobility using predominantly the nascent lagging strand at DNA replication forks for priming. Nucl Acids Res 32:2880–2888. [PubMed][CrossRef]
63. Candales MA, Duong A, Hood KS, Li T, Neufeld RA, Sun R, McNeil BA, Wu L, Jarding AM, Zimmerly S. 2012. Database for bacterial group II introns. Nucl Acids Res 40:D187–190. [PubMed][CrossRef]
64. Zimmerly S, Moran JV, Perlman PS, Lambowitz AM. 1999. Group II intron reverse transcriptase in yeast mitochondria. Stabilization and regulation of reverse transcriptase activity by the intron RNA. J Mol Biol 289:473–490. [PubMed][CrossRef]
65. Huang HR, Chao MY, Armstrong B, Wang Y, Lambowitz AM, Perlman PS. 2003. The DIVa maturase binding site in the yeast group II intron aI2 is essential for intron homing but not for in vivo splicing. Mol Cell Biol 23:8809–8819. [PubMed][CrossRef]
66. Hu WS, Hughes SH. 2012. HIV-1 reverse transcription. Cold Spring Harb Perspect Med 2:a006882. [PubMed][CrossRef]
67. Conlan LH, Stanger MJ, Ichiyanagi K, Belfort M. 2005. Localization, mobility and fidelity of retrotransposed group II introns in rRNA genes. Nucl Acids Res 33:5262–5270. [PubMed][CrossRef]
68. Mohr S, Ghanem E, Smith W, Sheeter D, Qin Y, King O, Polioudakis D, Iyer VR, Hunicke-Smith S, Swamy S, Kuersten S, Lambowitz AM. 2013. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA 19:958–970. [PubMed][CrossRef]
69. Eskes R, Liu L, Ma H, Chao MY, Dickson L, Lambowitz AM, Perlman PS. 2000. Multiple homing pathways used by yeast mitochondrial group II introns. Mol Cell Biol 20:8432–8446. [PubMed][CrossRef]
70. Lazowska J, Meunier B, Macadre C. 1994. Homing of a group II intron in yeast mitochondrial DNA is accompanied by unidirectional co-conversion of upstream-located markers. EMBO J 13:4963–4972. [PubMed]
71. Mills DA, Manias DA, McKay LL, Dunny GM. 1997. Homing of a group II intron from Lactococcus lactis subsp. lactis ML3. J Bacteriol 179:6107–6111. [PubMed]
72. Smith D, Zhong J, Matsuura M, Lambowitz AM, Belfort M. 2005. Recruitment of host functions suggests a repair pathway for late steps in group II intron retrohoming. Genes Dev 19:2477–2487. [PubMed][CrossRef]
73. Yao J, Truong DM, Lambowitz AM. 2013. Genetic and biochemical assays reveal a key role for replication restart proteins in group II intron retrohoming. PLoS Genet 9:e1003469. [PubMed][CrossRef]
74. Beauregard A, Chalamcharla VR, Piazza CL, Belfort M, Coros CJ. 2006. Bipolar localization of the group II intron Ll.LtrB is maintained in Escherichia coli deficient in nucleoid condensation, chromosome partitioning and DNA replication. Mol Microbiol 62:709–722. [PubMed][CrossRef]
75. Beauregard A, Curcio MJ, Belfort M. 2008. The take and give between retrotransposable elements and their hosts. Annu Rev Genet 42:587–617. [PubMed][CrossRef]
76. Coros CJ, Piazza CL, Chalamcharla VR, Belfort M. 2008. A mutant screen reveals RNase E as a silencer of group II intron retromobility in Escherichia coli. RNA 14:2634–2644. [PubMed][CrossRef]
77. Jiménez-Zurdo JI, García-Rodríguez FM, Barrientos-Durán A, Toro N. 2003. DNA target site requirements for homing in vivo of a bacterial group II intron encoding a protein lacking the DNA endonuclease domain. J Mol Biol 326:413–423. [PubMed][CrossRef]
78. Zhong J, Lambowitz AM. 2003. Group II intron mobility using nascent strands at DNA replication forks to prime reverse transcription. EMBO J 22:4555–4565. [PubMed][CrossRef]
79. Zhuang F, Mastroianni M, White TB, Lambowitz AM. 2009. Linear group II intron RNAs can retrohome in eukaryotes and may use nonhomologous end-joining for cDNA ligation. Proc Natl Acad Sci U S A 106:18189–18194. [PubMed][CrossRef]
80. White TB, Lambowitz AM. 2012. The retrohoming of linear group II intron RNAs in Drosophila melanogaster occurs by both DNA ligase 4-dependent and -independent mechanisms. PLoS Genet 8:e1002534. [PubMed][CrossRef]
81. Toor N, Zimmerly S. 2002. Identification of a family of group II introns encoding LAGLIDADG ORFs typical of group I introns. RNA 8:1373–1377. [CrossRef]
82. Mullineux ST, Costa M, Bassi GS, Michel F, Hausner G. 2010. A group II intron encodes a functional LAGLIDADG homing endonuclease and self-splices under moderate temperature and ionic conditions. RNA 16:1818–1831. [PubMed][CrossRef]
83. Mullineux ST, Willows K, Hausner G. 2011. Evolutionary dynamics of the mS952 intron: a novel mitochondrial group II intron encoding a LAGLIDADG homing endonuclease gene. J Mol Evol 72:433–449. [PubMed][CrossRef]
84. Salman V, Amann R, Shub DA, Schulz-Vogt HN. 2012. Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria. Proc Natl Acad Sci U S A 109:4203–4208. [PubMed][CrossRef]
85. Lambowitz AM, Belfort M. 1993. Introns as mobile genetic elements. Annu Rev Biochem 62:587–622. [PubMed][CrossRef]
86. Mueller MW, Allmaier M, Eskes R, Schweyen RJ. 1993. Transposition of group II intron aI1 in yeast and invasion of mitochondrial genes at new locations. Nature 366:174–176. [PubMed][CrossRef]
87. Sellem CH, Lecellier G, Belcour L. 1993. Transposition of a group II intron. Nature 366:176–178. [PubMed][CrossRef]
88. Martínez-Abarca F, Toro N. 2000. RecA-independent ectopic transposition in vivo of a bacterial group II intron. Nucl Acids Res 28:4397–4402. [PubMed][CrossRef]
89. Dickson L, Huang HR, Liu L, Matsuura M, Lambowitz AM, Perlman PS. 2001. Retrotransposition of a yeast group II intron occurs by reverse splicing directly into ectopic DNA sites. Proc Natl Acad Sci U S A 98:13207–13212. [PubMed][CrossRef]
90. Curcio MJ, Garfinkel DJ. 1991. Single-step selection for Ty1 element retrotransposition. Proc Natl Acad Sci U S A 88:936–940. [PubMed][CrossRef]
91. Heidmann T, Heidmann O, Nicolas JF. 1988. An indicator gene to demonstrate intracellular transposition of defective retroviruses. Proc Natl Acad Sci U S A 85:2219–2223. [PubMed][CrossRef]
92. Ichiyanagi K, Beauregard A, Belfort M. 2003. A bacterial group II intron favors retrotransposition into plasmid targets. Proc Natl Acad Sci U S A 100:15742–15747. [PubMed][CrossRef]
93. Novikova O, Smith D, Hahn I, Beauregard A, Belfort M. 2014. Interaction between conjugative and retrotransposable elements in horizontal gene transfer. PLoS Genet 10:e1004853 [PubMed][CrossRef]
94. Zhong J, Karberg M, Lambowitz AM. 2003. Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. Nucl Acids Res 31:1656–1664. [PubMed][CrossRef]
95. Zhao J, Lambowitz AM. 2005. A bacterial group II intron-encoded reverse transcriptase localizes to cellular poles. Proc Natl Acad Sci U S A 102:16133–16140. [PubMed][CrossRef]
96. Zhao J, Niu W, Yao J, Mohr S, Marcotte EM, Lambowitz AM. 2008. Group II intron protein localization and insertion sites are affected by polyphosphate. PLoS Biology 6:e150. [PubMed][CrossRef]
97. Coros CJ, Piazza CL, Chalamcharla VR, Smith D, Belfort M. 2009. Global regulators orchestrate group II intron retromobility. Mol Cell 34:250–256. [PubMed][CrossRef]
98. Belhocine K, Plante I, Cousineau B. 2004. Conjugation mediates transfer of the Ll.LtrB group II intron between different bacterial species. Mol Microbiol 51:1459–1469. [PubMed][CrossRef]
99. Guo H, Zimmerly S, Perlman PS, Lambowitz AM. 1997. Group II intron endonucleases use both RNA and protein subunits for recognition of specific sequences in double-stranded DNA. EMBO J 16:6835–6848. [PubMed][CrossRef]
100. Guo H, Karberg M, Long M, Jones III JP, Sullenger B, Lambowitz AM. 2000. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289:452–457. [PubMed][CrossRef]
101. Mohr G, Smith D, Belfort M, Lambowitz AM. 2000. Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Genes Dev 14:559–573. [PubMed]
102. Yang J, Mohr G, Perlman PS, Lambowitz AM. 1998. Group II intron mobility in yeast mitochondria: target DNA-primed reverse transcription activity in aI1 and reverse splicing into DNA transposition sites in vitro. J Mol Biol 282:505–523. [PubMed][CrossRef]
103. Perutka J, Wang W, Goerlitz D, Lambowitz AM. 2004. Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J Mol Biol 336:421–439. [PubMed][CrossRef]
104. Zhuang F, Karberg M, Perutka J, Lambowitz AM. 2009. EcI5, a group IIB intron with high retrohoming frequency: DNA target site recognition and use in gene targeting. RNA 15:432–449. [PubMed][CrossRef]
105. Singh NN, Lambowitz AM. 2001. Interaction of a group II intron ribonucleoprotein endonuclease with its DNA target site investigated by DNA footprinting and modification interference. J Mol Biol 309:361–386. [PubMed][CrossRef]
106. Barrientos-Durán A, Chillón I, Martínez-Abarca F, Toro N. 2011. Exon sequence requirements for excision in vivo of the bacterial group II intron RmInt1. BMC Mol Biol 12:12–24. [PubMed][CrossRef]
107. Robart AR, Seo W, Zimmerly S. 2007. Insertion of group II intron retroelements after intrinsic transcriptional terminators. Proc Natl Acad Sci U S A 104:6620–6625. [PubMed][CrossRef]
108. Aizawa Y, Ziang Q, Lambowitz AM, Pyle AM. 2003. The pathway for DNA recognition and RNA integration by a group II intron retrotransposon. Mol Cell 11:795–805. [PubMed][CrossRef]
109. Leclercq S, Cordaux R. 2012. Selection-driven extinction dynamics for group II introns in Enterobacteriales. PLoS One 7:e52268. [PubMed][CrossRef]
110. Dai L, Zimmerly S. 2002. Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior. Nucl Acids Res 30:1091–1102. [PubMed][CrossRef]
111. Fernández-López M, Muñoz-Adelantado E, Gillis M, Willems A, Toro N. 2005. Dispersal and evolution of the Sinorhizobium meliloti group II RmInt1 intron in bacteria that interact with plants. Mol Biol Evol 22:1518–1528. [PubMed][CrossRef]
112. Tourasse NJ, Kolstø AB. 2008. Survey of group I and group IIX introns in 29 sequenced genomes of the Bacillus cereus group: insights into their spread and evolution. Nucl Acids Res 36:4529–4548. [PubMed][CrossRef]
113. Goddard MR, Burt A. 1999. Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci U S A 96:13880–13885. [PubMed][CrossRef]
114. Mohr G, Ghanem E, Lambowitz AM. 2010. Mechanisms used for genomic proliferation by thermophilic group II introns. PLoS Biol 8:e1000391. [PubMed][CrossRef]
115. Leclercq S, Giraud I, Cordaux R. 2011. Remarkable abundance and evolution of mobile group II introns in Wolbachia bacterial endosymbionts. Mol Biol Evol 28:685–697. [PubMed][CrossRef]
116. Ueda K, Yamashita A, Ishikawa J, Shimada M, Watsuji TO, Morimura K, Ikeda H, Hattori M, Beppu T. 2004. Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism. Nucl Acids Res 32:4937–4944. [PubMed][CrossRef]
117. Copertino DW, Hallick RB. 1993. Group II and group III introns of twintrons: potential relationships to nuclear pre-mRNA introns. Trends Biochem Sci 18:467–471. [PubMed][CrossRef]
118. Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E. 1993. Complete sequence of Euglena gracilis chloroplast DNA. Nucl Acids Res 21:3537–3544. [PubMed][CrossRef]
119. Christopher DA, Hallick RB. 1989. Euglena gracilis chloroplast ribosomal protein operon: a new chloroplast gene for ribosomal protein L5 and description of a novel organelle intron category designated group III. Nucl Acids Res 17:7591–7608. [PubMed][CrossRef]
120. Pombert JF, James ER, Janoukovec J, Keeling PJ. 2012. Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome. PLoS One 7:e53433. [PubMed][CrossRef]
121. Wiegert KE, Bennett MS, Triemer RE. 2013. Tracing patterns of chloroplast evolution in euglenoids: contributions from Colacium vesiculosum and Strombomonas acuminata (Euglenophyta). J Euk Micro 60:214–221. [PubMed][CrossRef]
122. Sheveleva EV, Hallick RB. 2004. Recent horizontal intron transfer to a chloroplast genome. Nucl Acids Res 32:803–810. [PubMed][CrossRef]
123. Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S. 2002. Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9:123–130. [PubMed][CrossRef]
124. Cavalier-Smith T. 1991. Intron phylogeny: a new hypothesis. Trends Genet 7:145–148. [PubMed][CrossRef]
125. Palmer JD, Logsdon Jr JM. 1991. The recent origins of introns. Curr Opin Genet Devel 1:470–477. [PubMed][CrossRef]
126. Knoop V, Brennicke A. 1994. Promiscuous mitochondrial group II intron sequences in plant nuclear genomes. J Mol Evol 39:144–150. [PubMed]
127. Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, Feldblyum TV, Buell CR, Ketchum KA, Lee J, Ronning CM, Koo HL, Moffat KS, Cronin LA, Shen M, Pai G, Van Aken S, Umayam L, Tallon LJ, Gill JE, Adams MD, Carrera AJ, Creasy TH, Goodman HM, Somerville CR, Copenhaver GP, Preuss D, Nierman WC, White O, Eisen JA, Salzberg SL, Fraser CM, Venter JC. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768. [PubMed][CrossRef]
128. Gregan J, Kolisek M, Schweyen RJ. 2001. Mitochondrial Mg 2+ homeostasis is critical for group II intron splicing in vivo. Genes Dev 15:2229–2237. [PubMed][CrossRef]
129. Mastroianni M, Watanabe K, White TB, Zhuang F, Vernon J, Matsuura M, Wallingford J, Lambowitz AM. 2008. Group II intron-based gene targeting reactions in eukaryotes. PLoS One 3:e3121. [PubMed][CrossRef]
130. Truong DM, Sidote DJ, Russell R, Lambowitz AM. 2013. Enhanced group II intron retrohoming in magnesium-deficient Escherichia coli via selection of mutations in the ribozyme core. Proc Natl Acad Sci U S A 110:E3800–3809. [PubMed][CrossRef]
131. Günther T. 2006. Concentration, compartmentation and metabolic function of intracellular free Mg 2+. Magnes Res 19:225–236. [PubMed]
132. Chalamcharla VR, Curcio MJ, Belfort M. 2010. Nuclear expression of a group II intron is consistent with spliceosomal intron ancestry. Genes Dev 24:827–836. [PubMed][CrossRef]
133. Qu G, Dong X, Piazza CL, Chalamcharla V, Lutz S, Curcio MJ, Belfort M. 2014. RNA-RNA interactions and pre-RNA mislocalization as the drivers of group II intron loss from nuclear genomes. Proc Natl Acad Sci U S A 111:6612–6617. [PubMed][CrossRef]
134. Zerbato M, Holic N, Moniot-Frin S, Ingrao D, Galy A, Perea J. 2013. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities. PLoS One 8:e58263. [PubMed][CrossRef]
135. Eickbush T, Malik H. 2002. Origins and evolution of retrotransposons, p 1111–1146. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington DC.
136. Eickbush TH, Eickbush DG. 2014. Integration, regulation, and long-term stability of R2 retrotransposons. Mobile DNA III. ASM Press, Washington DC.
137. Fujiwara H. 2014. Site-specific non-LTR elements. Mobile DNA III. ASM Press, Washington DC.
138. Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, Moran JV. 2014. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Mobile DNA III. ASM Press, Washington DC.
139. Mitchell M, Gillis A, Futahashi M, Fujiwara H, Skordalakes E. 2010. Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat Struct Mol Biol 17:513–518. [PubMed][CrossRef]
140. Jamburuthugoda VK, Eickbush TH. 2014. Identification of RNA binding motifs in the R2 retrotransposon-encoded reverse transcriptase. Nucl Acids Res 42:8405–8415. [PubMed][CrossRef]
141. Kojima KK, Fujiwara H. 2005. An extraordinary retrotransposon family encoding dual endonucleases. Genome Res 15:1106–1117. [PubMed][CrossRef]
142. Gladyshev EA, Arkhipova IR. 2007. Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes. Proc Natl Acad Sci U S A 104:9352–9357. [PubMed][CrossRef]
143. Arkhipova IR, Yushenova IA, Rodriguez F. 2013. Endonuclease-containing Penelope retrotransposons in the bdelloid rotifer Adineta vaga exhibit unusual structural features and play a role in expansion of host gene families. Mobile DNA 4:19. [PubMed][CrossRef]
144. Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV. 2002. DNA repair mediated by endonuclease-independent LINE-1 retrotransposision. Nat Genet 31:159–165. [PubMed][CrossRef]
145. Onozawa M, Zhang Z, Kim YJ, Goldberg L, Varga T, Bergsagel PL, Kuehl WM, Aplan PD. 2014. Repair of DNA double-strand breaks by templated nucleotide sequence insertions derived from distant regions of the genome. Proc Natl Acad Sci U S A 111:7729–7734. [PubMed][CrossRef]
146. Morrish TA, Garcia-Perez JL, Stamato TD, Taccioli GE, Sekiguchi J, Moran JV. 2007. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nature 446:208–212. [PubMed][CrossRef]
147. Curcio MJ, Belfort M. 2007. The beginning of the end: Links between ancient retroelements and modern telomerases. Proc Nat Acad Sci U S A 104:9107–9108. [PubMed][CrossRef]
148. Esnault C, Maestre J, Heidmann T. 2000. Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24:363–367. [PubMed][CrossRef]
149. Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV. 2001. Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 21:1429–1439. [PubMed][CrossRef]
150. Kulpa DA, Moran JV. 2006. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol 13:655–660. [PubMed][CrossRef]
151. Richardson SR, Narvaiza I, Planegger RA, Weitzman MD, Moran JV. 2014. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. Elife 3:e02008. [PubMed][CrossRef]
152. Suzuki J, Yamaguchi K, Kajikawa M, Ichiyanagi K, Adachi N, Koyama H, Takeda S, Okada N. 2009. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet 5:e1000461. [PubMed][CrossRef]
153. Bibillo A, Eickbush TH. 2002. The reverse transcriptase of the R2 non-LTR retrotransposon: continuous synthesis of cDNA on non-continuous RNA templates. J Mol Biol 316:459–473. [PubMed][CrossRef]
154. Bibillo A, Eickbush TH. 2004. End-to-end template jumping by the reverse transcriptase encoded by the R2 retrotransposon. J Biol Chem 279:14945–14953. [PubMed][CrossRef]
155. Sharp PA. 1985. On the origin of RNA splicing and introns. Cell 42:397–400. [PubMed][CrossRef]
156. Cech TR. 1986. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44:207–210. [PubMed][CrossRef]
157. Sharp PA. 1991. Five easy pieces. Science 254:663. [PubMed][CrossRef]
158. Valadkhan S. 2010. Role of the snRNAs in spliceosomal active site. RNA Biol 7:345–353. [PubMed][CrossRef]
159. Will CL, Lührmann R. 2011. Spliceosome structure and function. Cold Spring Harb Perspect Biol 3:a003707. [PubMed][CrossRef]
160. Valadkhan S. 2013. The role of snRNAs in spliceosomal catalysis. Prog Mol Biol Transl Sci 120:195–228. [PubMed][CrossRef]
161. Madhani HD, Guthrie C. 1992. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71:803–817. [PubMed][CrossRef]
162. Shukla GC, Padgett RA. 2002. A catalytically active group II intron domain 5 can function in the U12-dependent spliceosome. Mol Cell 9:1145–1150. [PubMed][CrossRef]
163. Keating KS, Toor N, Perlman PS, Pyle AM. 2010. A structural analysis of the group II intron active site and implications for the spliceosome. RNA 16:1–9. [PubMed][CrossRef]
164. Jarrell KA, Dietrich RC, Perlman PS. 1988. Group II intron domain 5 facilitates a trans-splicing eeaction. Mol Cell Biol 8:2361–2366. [PubMed]
165. Goldschmidt-Clermont M, Choquet Y, Girard-Bascou J, Michel F, Schirmer-Rahire M, Rochaix J-D. 1991. A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell 65:135–143. [PubMed][CrossRef]
166. Suchy M, Schmelzer C. 1991. Restoration of the self-splicing activity of a defective group II intron by a small trans-acting RNA. J Mol Biol 222:179–187. [PubMed][CrossRef]
167. Hetzer M, Wurzer G, Schweyen RJ, Mueller MW. 1997. Trans-activation of group II intron splicing by nuclear U5 snRNA. Nature 386:417–420. [PubMed][CrossRef]
168. Glanz S, Kück U. 2009. Trans-splicing of organelle introns--a detour to continuous RNAs. Bioessays 31:921–934. [PubMed][CrossRef]
169. Belhocine K, Mak AB, Cousineau B. 2008. Trans-splicing versatility of the Ll.LtrB group II intron. RNA 14:1782–1790. [PubMed][CrossRef]
170. Quiroga C, Kronstad L, Ritlop C, Filion A, Cousineau B. 2011. Contribution of base-pairing interactions between group II intron fragments during trans-splicing in vivo. RNA 17:2212-2221. [PubMed][CrossRef]
171. Ritlop C, Monat C, Cousineau B. 2012. Isolation and characterization of functional tripartite group II introns using a Tn5-based genetic screen. PLoS One 7:e41589. [PubMed][CrossRef]
172. McNeil BA, Simon DM, Zimmerly S. 2014. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani. Nucl Acids Res 42:1959–1969. [PubMed][CrossRef]
173. Chu VT, Liu Q, Podar M, Perlman PS, Pyle AM. 1998. More than one way to splice an RNA: branching without a bulge and splicing without branching in group II introns. RNA 4:1186–1202. [PubMed][CrossRef]
174. Tseng CK, Cheng SC. 2008. Both catalytic steps of nuclear pre-mRNA splicing are reversible. Science 320:1782–1784. [PubMed][CrossRef]
175. Gordon PM, Sontheimer EJ, Piccirilli JA. 2000. Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: extending the parallels between the spliceosome and group II introns. RNA 6:199–205. [PubMed][CrossRef]
176. Collins CA, Guthrie C. 2000. The question remains: is the spliceosome a ribozyme? Nat Struct Biol 7:850–854. [PubMed][CrossRef]
177. Sontheimer EJ, Sun S, Piccirilli JA. 1997. Metal ion catalysis during splicing of premessenger RNA. Nature 388:801–805. [PubMed][CrossRef]
178. Fica SM, Tuttle N, Novak T, Li NS, Lu J, Koodathingal P, Dai Q, Staley JP, Piccirilli JA. 2013. RNA catalyses nuclear pre-mRNA splicing. Nature 503:229–234. [PubMed]
179. Gordon PM, Piccirilli JA. 2001. Metal ion coordination by the AGC triad in domain 5 contributes to group II intron catalysis. Nat Struct Biol 8:893–898. [PubMed][CrossRef]
180. Fica SM, Mefford MA, Piccirilli JA, Staley JP. 2014. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nat Struct Mol Biol 21:464–471. [PubMed][CrossRef]
181. Dlakic M, Mushegian A. 2011. Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase. RNA 17:799–808. [PubMed][CrossRef]
182. Galej WP, Oubridge C, Newman AJ, Nagai K. 2013. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 493:638–643. [PubMed][CrossRef]
183. Galej WP, Nguyen TH, Newman AJ, Nagai K. 2014. Structural studies of the spliceosome: zooming into the heart of the machine. Curr Opin Struct Biol 25C:57–66. [PubMed][CrossRef]
184. Anokhina M, Bessonov S, Miao Z, Westhof E, Hartmuth K, Lührmann R. 2013. RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core. EMBO J 32:2804–2818. [PubMed][CrossRef]
185. Reyes JL, Gustafson EH, Luo HR, Moore MJ, Konarska MM. 1999. The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5′ splice site. RNA 5:167–179. [PubMed][CrossRef]
186. Turner IA, Norman CM, Churcher MJ, Newman AJ. 2006. Dissection of Prp8 protein defines multiple interactions with crucial RNA sequences in the catalytic core of the spliceosome. RNA 12:375–386. [PubMed][CrossRef]
187. Mohr G, Lambowitz AM. 2003. Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants. Nucl Acids Res 31:647–652. [PubMed][CrossRef]
188. Nakagawa N, Sakurai N. 2006. A mutation in At-nMat1a, which encodes a nuclear gene having high similarity to group II intron maturase, causes impaired splicing of mitochondrial NAD4 transcript and altered carbon metabolism in Arabidopsis thaliana. Plant Cell Physiol 47:772–783. [PubMed][CrossRef]
189. Keren I, Bezawork-Geleta A, Kolton M, Maayan I, Belausov E, Levy M, Mett A, Gidoni D, Shaya F, Ostersetzer-Biran O. 2009. AtnMat2, a nuclear-encoded maturase required for splicing of group-II introns in Arabidopsis mitochondria. RNA 15:2299–2311. [PubMed][CrossRef]
190. Brown GG, Colas des Francs-Small C, Ostersetzer-Biran O. 2014. Group II intron splicing factors in plant mitochondria. Front Plant Sci 5:35. [PubMed][CrossRef]
191. Smyshlyaev G, Voigt F, Blinov A, Barabas O, Novikova O. 2013. Acquisition of an Archaea-like ribonuclease H domain by plant L1 retrotransposons supports modular evolution. Proc Nat Acad Sci U S A 110:20140–20145. [PubMed][CrossRef]
192. Query CC, Konarska MM. 2013. Spliceosome's core exposed. Nature 493:615–616. [PubMed][CrossRef]
193. Doolittle WF. 2013. The spliceosomal catalytic core arose in the RNA world…or did it? Genome Biol 14:141. [PubMed][CrossRef]
194. Curcio MJ, Belfort M. 1996. Retrohoming: cDNA-mediated mobility of group II introns requires a catalytic RNA Cell 84:9–12. [PubMed]
195. Kojima KK, Kanehisa M. 2008. Systematic survey for novel types of prokaryotic retroelements based on gene neighborhood and protein architecture. Mol Biol Evol 25:1395–1404. [PubMed][CrossRef]
196. Simon DM, Zimmerly S. 2008. A diversity of uncharacterized reverse transcriptases in bacteria. Nucl Acids Res 36:7219–7229. [PubMed][CrossRef]
197. Lampson BC, Inouye M, Inouye S. 2005. Retrons, msDNA, and the bacterial genome. Cytogenet Genome Res 110:491–499. [PubMed][CrossRef]
198. Doulatov S, Hodes A, Dai L, Mandhana N, Liu M, Deora R, Simons RW, Zimmerly S, Miller JF. 2004. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431:476–481. [PubMed][CrossRef]
199. Guo H, Arambula D, Ghosh P, Miller JF. 2014. Diversity-generating retroelements in phage and bacterial genomes. Mobile DNA III. ASM Press, Washington DC.
200. Fortier LC, Bouchard JD, Moineau S. 2005. Expression and site-directed mutagenesis of the lactococcal abortive phage infection protein AbiK. J Bacteriol 187:3721–3730. [PubMed][CrossRef]
201. Medhekar B, Miller JF. 2007. Diversity-generating retroelements. Curr Opin Microbiol 10:388–395. [PubMed][CrossRef]
202. Minot S, Grunberg S, Wu GD, Lewis JD, Bushman FD. 2012. Hypervariable loci in the human gut virome. Proc Natl Acad Sci U S A 109:3962–3966. [PubMed][CrossRef]
203. Martin W, Koonin EV. 2006. Introns and the origin of nucleus-cytosol compartmentalization. Nature 440:41–45. [PubMed][CrossRef]
204. Williams TA, Foster PG, Cox CJ, Embley TM. 2013. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504:231–236. [PubMed][CrossRef]
205. Irimia M, Roy SW. 2014. Origin of spliceosomal introns and alternative splicing. Cold Spring Harb Perspect Biol 6:a01607. [PubMed][CrossRef]
206. Poole AM. 2006. Did group II intron proliferation in an endosymbiont-bearing archaeon create eukaryotes? Biol Direct 1:36. [PubMed][CrossRef]
207. Koonin EV. 2009. Intron-dominated genomes of early ancestors of eukaryotes. J Hered 100:618–623. [PubMed][CrossRef]
208. Doolittle WF. 2014. The trouble with (group II) introns. Proc Natl Acad Sci U S A 111:6536–6537. [PubMed][CrossRef]
209. Robart AR, Zimmerly S. 2005. Group II intron retroelements: function and diversity. Cytogenet Genome Res 110:589–597. [PubMed][CrossRef]
210. Collins L, Penny D. 2005. Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 22:1053–1066. [PubMed][CrossRef]
211. Martin W, Koonin EV. 2006. A positive definition of prokaryotes. Nature 442:868. [PubMed][CrossRef]
212. Gladyshev EA, Arkhipova IR. 2011. A widespread class of reverse transcriptase-related cellular genes. Proc Natl Acad Sci U S A 108:20311–20316. [PubMed][CrossRef]
213. Zimmerly S, Wu L. 2014. An unexplored diversity of reverse transcriptases in bacteria. Mobile DNA III. ASM Press, Washington DC.
214. Costa M, Michel F, Westhof E. 2000. A three-dimensional perspective on exon binding by a group II self-splicing intron. EMBO J 19:5007–5018. [PubMed][CrossRef]
215. Toor N, Robart AR, Christianson J, Zimmerly S. 2006. Self-splicing of a group IIC intron: 5′ exon recognition and alternative 5′ splicing events implicate the stem-loop motif of a transcriptional terminator. Nucl Acids Res 34:6461–6471. [PubMed][CrossRef]
216. Michel F, Costa M, Doucet AJ, Ferat JL. 2007. Specialized lineages of bacterial group II introns. Biochimie 89:542–553. [PubMed][CrossRef]
217. Piskareva O, Ernst C, Higgins N, Schmatchenko V. 2013. The carboxy-terminal segment of the human LINE-1 ORF2 protein is involved in RNA binding. FEBS Open Bio 3:433–437. [PubMed][CrossRef]
218. Rouda S, Skordalakes E. 2007. Structure of the RNA-binding domain of telomerase: implications for RNA recognition and binding. Structure 15:1403–1412. [PubMed][CrossRef]
219. Marcia M, Pyle AM. 2014. Principles of ion recognition in RNA: insights from the group II intron structures. RNA 20:516–527. [PubMed][CrossRef]
220. Strobel SA. 2013. Biochemistry: metal ghosts in the splicing machine. Nature 503:201–202. [PubMed]

Article metrics loading...



This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome's small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Group II intron RNA splicing mechanism and structure. (A) Splicing and reverse splicing. Step 1. The 2′-OH of the branch-point adenosine acts as nucleophile to attack the 5′ splice site. Step 2. The 3′-OH of the upstream exon is the nucleophile that attacks the 3′ splice site to generate ligated exons and an excised intron lariat. Both reactions are reversible. (B) Group II intron secondary structure. The Ll.LtrB group IIA intron is shown, with the six domains DI-DVI. Exons are represented by thicker lines with the EBS-IBS pairings shown by dashed black lines. The IEP ORF is looped out of DIV (not drawn to scale). (C) Group II intron crystal structure. The representation is of DI-DV of the group IIC intron (PDB:4E8K) bound to ligated exons, before the spliced exon reopening reaction, provided by Marcia and Pyle ( 13 ). Colors are coded to the domain labels in panel B, although these are different introns that belong to different structural subgroups. The 5′ exon is black and the 3′ exon is dark blue. (D) Base-pairing interactions of group IIA, IIB, and IIC introns with flanking exons. Group IIA and IIB recognize 5′ exons by similar IBS1-EBS1 and IBS2-EBS2 interactions, but use different interactions to recognize 3′ exons (δ-δ' in IIA introns and EBS3/IBS3 in IIB introns ( 214 ). Group IIC ribozymes are only ∼400 nt long, considerably smaller than IIA and IIB introns, and they are located downstream of inverted repeats, such as transcription terminators, which contribute to exon recognition along with short EBS1/IBS1 and EBS3/IBS3 interactions similar to those of IIB introns ( 215 , 216 ). Panel D is adapted from reference 4, with permission of the publisher (© Cold Spring Harbor Laboratory Press).

Source: microbiolspec January 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0050-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


Group II intron and related reverse transcriptase (RTs). (A) Schematics of RTs. Two group II intron RTs, Ll.LtrB (denoted LtrA protein; GenBank: AAB06503) and RmInt (NCBI Reference Sequence: NP_438012) are compared with two non-LTR-retrotransposon RTs, R2Bm (GenBank: AAB59214) and human LINE-1 (UniProtKB/Swiss-Prot: O00370) RTs; yeast telomerase RT (GenBank: AAB64520); and retrovirus HIV-1 RT (PDB:2HMI). Conserved sequence blocks in the RT domain are numbered, and the sequence motif containing two of the conserved aspartic acid residues at the RT active site is shown below for each protein. (B) Three-dimensional model of the Ll.LtrB RT. Regions identified by unigenic evolution analysis as being required for binding the high-affinity binding site DIVa and catalytic core regions of group II intron RNAs are highlighted in red and dark blue in the left and right panels, respectively. Pink in the left panel indicates a region of the protein that may contribute to DIVa binding by stabilizing the structure of neighboring regions ( 46 ). The model was constructed by threading the amino acid sequence of the Ll.LtrB RT onto a HIV-1 RT crystal structure, with one subunit (denoted α; gray) modeled based on the catalytic p66 subunit of HIV-1 RT and the other subunit (denoted β; cyan) modeled based on the p51 subunit of HIV-1 RT ( 17 ). The N-terminal 36 amino acid residues of the Ll.LtrB RT could not be modeled based on the HIV-1 RT and are represented as spheres. APE, apurinic endonuclease domain; CTS, conserved carboxy-terminal segment found to bind RNA nonspecifically in human LINE-1 RT ( 217 ); Cys, cysteine-rich sequence conserved in LINE-1 RT; DB, DNA-binding domain in R2Bm RT; REL, restriction endonuclease-like domain; TEN, telomerase N-terminal domain; TRBD, telomerase RNA-binding domain including motifs CP and T, which contact telomerase RNA ( 139 , 218 ).

Source: microbiolspec January 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0050-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view


Representative retrohoming and retrotransposition pathways. (A, B) Retrohoming into cognate sites is represented by the two pathways on the left. (C, D) Retrotransposition to ectopic sites is represented by the two pathways on the right. For all panels, the intron is red (DNA solid lines, RNA hatched lines); the intron RNP is represented by a grey rectangle with a red intron lariat and an IEP with RT and maturase (X) domains and either containing or lacking an En domain. Exons of the donor (encircled D) are white, and those of the recipient (encircled R) are either white (retrohoming) or grey (retrotransposition). Each pathway ends with a product (encircled P). Green exon fragment represents primer for reverse transcription. The retrohoming pathways (A, B) differ by the presence of the En domain, and whether dsDNA (A) or ssDNA, such as at a replication fork (B), is the target. The black dot in the recipient strand represents the intron-insertion site. In pathway A, the IEP contains an En domain and after reverse splicing into the top strand, cleavage of the bottom strand occurs 9 or 10 nt downstream (step 1′), as for the Ll.LtrB and yeast aI2 introns, respectively ( 54 , 101 ). In pathway B, the IEP lacks an En domain and integrates into DNA at a replication fork (step 1) as demonstrated for RmInt1 intron ( 62 ) and En-deficient mutants of the Ll.LtrB intron ( 78 ), which preferentially use lagging or leading strand primers, respectively. Use of a leading strand primer is not shown in the figure (see reference 78 ). In both pathways, cDNA synthesis proceeds with the intron as template, using the 3′-OH of either the cleaved bottom strand (A) or an Okazaki fragment (B) to prime reverse transcription (step 2). Intron degradation and second-strand cDNA synthesis (step 3) is followed by DNA repair to generate the retrohoming products for both pathways (step 4). Host factors that participate in the process are indicated on pathway A, as established for the Ll.LtrB intron in , with those that silence the pathway shown in red, and those that promote retrohoming indicated in green ( Table 1 ) ( 72 , 73 ). Retrotransposition (C, D) occurs when the intron integrates into ectopic sites with reduced specificity. This occurs for the Ll.LtrB intron into the lagging strand template for DNA synthesis, as in pathway B, where Okazaki fragments prime cDNA synthesis (C) ( 58 ). Stimulatory and repressive host factors are again represented in green and red, respectively ( Table 1 ) ( 45 , 74 , 97 ). Alternatively, primers can be provided by nicks introduced into dsDNA by relaxase, the product of the gene that hosts the intron (pathway D) ( 93 ). Steps 1 to 4 in pathway D are as for retrohoming. EPP, error-prone polymerase.

Source: microbiolspec January 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0050-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view


DNA target site recognition by group IIA, IIB, and IIC introns. Target site interactions are shown for retrohoming ( 100 , 101 , 103 ) and retrotransposition ( 59 , 92 , 93 ) of the Ll.LtrB group IIA intron, and for retrohoming of group IIB introns EcI5 ( 104 ) and RmInt1 ( 77 ), and group IIC intron I1-B ( 107 ). Intron RNA regions involved in EBS1-IBS1, EBS2-IBS2, δ-δ' or EBS3-IBS3 base-pairing interactions with the DNA target site are shown in red. A representative ectopic site is shown for the Ll.LtrB retrotransposition pathway. Base-pairs in the 5′ and 3′ exons that are recognized by the IEP are highlighted in mauve and blue, respectively. CS, bottom-strand cleavage site; IS, intron-insertion site; RF, replication fork; RH, retrohoming; RTP, retrotransposition; SL, stem-loop. CS for EcI5 is not known.

Source: microbiolspec January 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0050-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view


Similar RNA active sites of group II introns and the spliceosome. (A) Schematic of group II intron (left) and spliceosome (right). Group II intron elements are colored as in Fig. 1B and C , with corresponding spliceosomal elements in the same color (D1 and U5 blue; DV and U6 green; DVI and U2, purple). Conserved residues at the splice sites are in red and the branch-point adenosine (A) is circled. Elements are not drawn to scale. (B) Crystal structure of group II intron in the precatalytic state (from PDB file 4FFAQ). The 5′ exon (black) is shown before 5′ splice site hydrolysis. Color-coding is as in Fig. 1B and C and Fig. 5A , with the two catalytic Mg ions shown as yellow spheres bound to DV (green) ( 13 , 219 ). The putative water nucleophile is a cyan sphere. Images in panel B and D provided by Marcia and Pyle. (C) Secondary structures and Mg interactions in intron DV and spliceosomal U6 snRNA. DV (left, shown also in panel B) corresponds to the internal stem loop (ISL) of U6 (right). M1 and M2 are catalytic Mg ions coordinated by phosphate oxygens of the nucleotides shown in red. The circled A in the intron is the adenosine nucleophile with the 2′-OH corresponding to the water molecule in B, which attacks the 5′ splice site (arrow). The introns are depicted in red hatch marks, with a small segment in green representing DV of the group II intron detailed to the right. U2 3′ to the U2-U6 pairing extends to interact with the branch-point region of the intron (arrow to circled A). The three boxed nucleotides in each case comprise the conserved catalytic triad ( 163 , 178 , 183 , 220 ). Dotted brown lines join residues involved in base triples, which are formed by two pairings between the catalytic triad and ether J2/3 or the 5′-ACAGAGA-3′ box and the third pairing to the bulge in each structure ( 163 , 180 ). (D) Base triples in DV of the intron. The J2/3 nucleotides (orange ribbon) form a triple helix with the major groove at the base of DV (from reference 10 ). Two metal ions (yellow spheres) are bound near the twisted bulge loop. (E) Example of base triples in DV and U2-U6. The color-coded base triples are shown for the lower-most base-pair in the catalytic triad with a nucleotide in J2/3 in the group II intron or the 5′-ACAGAGA-3′ box in U6 of the spliceosome, as diagramed in panel C.

Source: microbiolspec January 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0050-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view


Comparison of Prp8 to group II intron and related RTs. Schematic comparing Prp8 (PDB:4I43) with the Ll.LtrB group II intron RT (LtrA protein; GenBank:AAB06503), nMat1 and nMat2 proteins (NCBI Reference Sequence: NP_174294 and NP_177575, respectively), non-LTR-retrotranspson R2Bm RT (GenBank:AAB59214), and RVT RT (GenBank:CAE76174). The plant nMat1 and nMat2 proteins are previous examples of group II intron RTs that were subsumed into nuclear genomes and retained RNA splicing function, with the nMat1 proteins acquiring a novel conserved domain (green) in place of the En domain. The Prp8 configuration of the thumb, long linker, and REL domain is similar to that in the R2Bm RT. Although group II intron RTs and the R2Bm RT lack an RNase H domain, RNase H domains are known to be acquired sporadically in different non-LTR-retrotransposon lineages ( 135 , 191 ). RVT RTs, another potential candidate for an ancestor of Prp8 ( 181 ), lack En and integrase domains and are further distinguished from group II intron and non-LTR-retrotransposon RTs by a large acidic insertion within RT-2a and by conserved N- and C-terminal domains that are not found in other proteins ( 212 ). Conserved sequence blocks in the RT domain are numbered, and the sequence motif containing two of the conserved aspartic acid residues at the RT active site is shown below for each protein. The locations of conserved RT sequence blocks in Prp8 are from structure-based sequence alignments by G Mohr (UT Austin). DB, DNA binding domain; REL, restriction endonuclease-like domain.

Source: microbiolspec January 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0050-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Click to view


Cellular factors that affect group II intron retromobility

Source: microbiolspec January 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0050-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error