No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antibiotic Resistance in and from Nature

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    40.21 Kb
  • HTML
    67.95 Kb
  • PDF
    165.36 Kb
  • Author: Julian Davies1
    Affiliations: 1: Department of Microbiology and Immunology, Life Science Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; 2: University of Louisville, Louisville, KY
  • Source: microbiolspec October 2013 vol. 1 no. 1 doi:10.1128/microbiolspec.OH-0005-2012
  • Received 10 September 2012 Accepted 09 December 2012 Published 25 October 2013
  • Julian Davies, [email protected]
image of Antibiotic Resistance in and from Nature
    Preview this microbiology spectrum article:
    Zoom in

    Antibiotic Resistance in and from Nature, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/1/1/OH-0005-2012-1.gif /docserver/preview/fulltext/microbiolspec/1/1/OH-0005-2012-2.gif
  • Abstract:

    Recent studies have shown that antibiotic resistance genes are omnipresent in nature. Human use of antimicrobial compounds as therapeutics, growth-promoting agents, pesticides, etc., over the past half century have contributed to this situation.

  • Citation: Davies J. 2013. Antibiotic Resistance in and from Nature. Microbiol Spectrum 1(1):OH-0005-2012. doi:10.1128/microbiolspec.OH-0005-2012.


1. Kirby WM, Rantz LA. 1943. Quantitative studies of sulfonamide resistance. J Exp Med 77:29–39.
2. Finland M. 1971. Changes in susceptibility of selected pathogenic bacteria to widely used antibiotics. Ann N Y Acad Sci 182:5–20.
3. Keen PL, Montforts MHMM (ed). 2012. Antimicrobial Resistance in the Environment. Wiley-Blackwell, Hoboken, NJ.
4. D’Costa VM, McGrann KM, Hughes DW, Wright GD. 2006. Sampling the antibiotic resistome. Science 311:374–377.
5. Sommer MO, Dantas G, Church GM. 2009. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–1131.
6. Cundliffe E, Demain AL. 2010. Avoidance of suicide in antibiotic-producing microbes. J Ind Microbiol Biotechnol 37:643–672.
7. Sommer MO, Church GM, Dantas G. 2010. The human microbiome harbors a diverse reservoir of antibiotic resistance genes. Virulence 1:299–303.
8. D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD. 2011. Antibiotic resistance is ancient. Nature 477:457–461.
9. Pallecchi L, Lucchetti C, Bartoloni A, Bartalesi F, Mantella A, Gamboa H, Carattoli A, Paradisi F, Rossolini GM. 2007. Population structure and resistance genes in antibiotic-resistant bacteria from a remote community with minimal antibiotic exposure. Antimicrob Agents Chemother 51:1179–1184.
10. Martinez JL. 2009. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Soc Biol 276:2521–2530.
11. Asimov A, Mackie RI. 2007. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett 271:147–161.
12. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. 2010. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259.
13. Courvalin P. 2006. Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42(Suppl 1) :S25–S34.
14. D’Costa VM, Tariq A, Mukhtar TA, Patel T, Koteva K, Waglechner N, Hughes DW, Wright GD, De Pascale G. 2012. Inactivation of the lipopeptide antibiotic daptomycin by hydrolytic mechanisms. Antimicrob Agents Chemother 56:757–764.
15. Patel R, Piper K, Cockerill FR III, Steckelberg JM, Yousten AA. 2000. The biopesticide Paenibacillus popilliae has a vancomycin resistance gene cluster homologous to the enterococcal VanA vancomycin resistance gene cluster. Antimicrob Agents Chemother 44:705–709.
16. Guardabassi L, Perichon B, van Heijenoort J, Blanot D, Courvalin P. 2005. Glycopeptide resistance vanA operons in Paenibacillus strains isolated from soil. Antimicrob Agents Chemother 49:4227–4233.
17. Jukes TH. 1973. Public health significance of feeding low levels of antibiotics to animals. Adv Appl Microbiol 16:1–54.
18. Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegard B, Soderstrom H, Larsson DG. 2011. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE 6:e17038.
19. Lawrence JG, Ochman H. 1997. Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397.
20. Hon WC, McKay GA, Thompson PR, Sweet RM, Yang DS, Wright GD, Berghuis AM. 1997. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 89:887–895.
21. Yanagisawa T, Kawakami M. 2003. How does Pseudomonas fluorescens avoid suicide from its antibiotic pseudomonic acid? Evidence for two evolutionarily distinct isoleucyl-tRNA synthetases conferring self-defense. J Biol Chem 278:25887–25894.
22. Andersson DI, Hughes DH. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271.
23. Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner S, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, Piddock LJ, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya HI. 2011. Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896.
24. Davies J, Ryan KS. 2012. Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol 7:252–259.
25. Relman DA. 2011. Microbial genomics and infectious diseases. N Engl J Med 365:347–357.
26. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. 2012. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111.
27. Dethlefsen L, Relman DA. 2011. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108:4554–4561.

Article metrics loading...



Recent studies have shown that antibiotic resistance genes are omnipresent in nature. Human use of antimicrobial compounds as therapeutics, growth-promoting agents, pesticides, etc., over the past half century have contributed to this situation.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error