1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Gram-Positive Type IV Pili and Competence

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Sandra Muschiol1,2, Marie-Stephanie Aschtgen3,4, Priyanka Nannapaneni5,6, Birgitta Henriques-Normark7,8
  • Editors: Maria Sandkvist9, Eric Cascales10, Peter J. Christie11
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology, Tumor and Cell Biology; 2: Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden; 3: Department of Microbiology, Tumor and Cell Biology; 4: Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden; 5: Department of Microbiology, Tumor and Cell Biology; 6: Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden; 7: Department of Microbiology, Tumor and Cell Biology; 8: Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden; 9: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; 10: CNRS Aix-Marseille Université, Mediterranean Institute of Microbiology, Marseille, France; 11: Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas
  • Source: microbiolspec February 2019 vol. 7 no. 1 doi:10.1128/microbiolspec.PSIB-0011-2018
  • Received 02 September 2018 Accepted 21 December 2018 Published 08 February 2019
  • Birgitta Henriques-Normark, [email protected]
image of Gram-Positive Type IV Pili and Competence
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Gram-Positive Type IV Pili and Competence, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/1/PSIB-0011-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/1/PSIB-0011-2018-2.gif
  • Abstract:

    Type IV pili (T4P) are remarkable bacterial surface appendages that carry out a range of functions. Various types of T4P have been identified in bacteria and archaea, making them almost universal structures in prokaryotes. T4P are best characterized in Gram-negative bacteria, in which pilus biogenesis and T4P-mediated functions have been studied for decades. Recent advances in microbial whole-genome sequencing have provided ample evidence for the existence of T4P also in many Gram-positive species. However, comparatively little is known, and T4P in Gram-positive bacteria are just beginning to be dissected. So far, they have mainly been studied in and spp. and are involved in diverse cellular processes such as adhesion, motility, and horizontal gene transfer. Here we summarize the current understanding of T4P in Gram-positive species and their functions, with particular focus on the type IV competence pilus produced by the human pathogen and its role in natural transformation.

  • Citation: Muschiol S, Aschtgen M, Nannapaneni P, Henriques-Normark B. 2019. Gram-Positive Type IV Pili and Competence. Microbiol Spectrum 7(1):PSIB-0011-2018. doi:10.1128/microbiolspec.PSIB-0011-2018.

References

1. Imam S, Chen Z, Roos DS, Pohlschröder M. 2011. Identification of surprisingly diverse type IV pili, across a broad range of gram-positive bacteria. PLoS One 6:e28919. http://dx.doi.org/10.1371/journal.pone.0028919. [PubMed]
2. Melville S, Craig L. 2013. Type IV pili in Gram-positive bacteria. Microbiol Mol Biol Rev 77:323–341. http://dx.doi.org/10.1128/MMBR.00063-12. [PubMed]
3. Piepenbrink KH, Sundberg EJ. 2016. Motility and adhesion through type IV pili in Gram-positive bacteria. Biochem Soc Trans 44:1659–1666. http://dx.doi.org/10.1042/BST20160221. [PubMed]
4. Tomich M, Planet PJ, Figurski DH. 2007. The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 5:363–375. http://dx.doi.org/10.1038/nrmicro1636. [PubMed]
5. Craig L, Pique ME, Tainer JA. 2004. Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2:363–378. http://dx.doi.org/10.1038/nrmicro885. [PubMed]
6. Berry JL, Pelicic V. 2015. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 39:134–154. http://dx.doi.org/10.1093/femsre/fuu001. [PubMed]
7. Chung YS, Breidt F, Dubnau D. 1998. Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis. Mol Microbiol 29:905–913. http://dx.doi.org/10.1046/j.1365-2958.1998.00989.x. [PubMed]
8. Chung YS, Dubnau D. 1995. ComC is required for the processing and translocation of comGC, a pilin-like competence protein of Bacillus subtilis. Mol Microbiol 15:543–551. http://dx.doi.org/10.1111/j.1365-2958.1995.tb02267.x. [PubMed]
9. Chung YS, Dubnau D. 1998. All seven comG open reading frames are required for DNA binding during transformation of competent Bacillus subtilis. J Bacteriol 180:41–45. [PubMed]
10. Chen I, Provvedi R, Dubnau D. 2006. A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. J Biol Chem 281:21720–21727. http://dx.doi.org/10.1074/jbc.M604071200. [PubMed]
11. Varga JJ, Nguyen V, O’Brien DK, Rodgers K, Walker RA, Melville SB. 2006. Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other clostridia. Mol Microbiol 62:680–694. http://dx.doi.org/10.1111/j.1365-2958.2006.05414.x. [PubMed]
12. Piepenbrink KH, Maldarelli GA, de la Peña CF, Mulvey GL, Snyder GA, De Masi L, von Rosenvinge EC, Günther S, Armstrong GD, Donnenberg MS, Sundberg EJ. 2014. Structure of Clostridium difficile PilJ exhibits unprecedented divergence from known type IV pilins. J Biol Chem 289:4334–4345. http://dx.doi.org/10.1074/jbc.M113.534404. [PubMed]
13. Piepenbrink KH, Maldarelli GA, Martinez de la Peña CF, Dingle TC, Mulvey GL, Lee A, von Rosenvinge E, Armstrong GD, Donnenberg MS, Sundberg EJ. 2015. Structural and evolutionary analyses show unique stabilization strategies in the type IV pili of Clostridium difficile. Structure 23:385–396. http://dx.doi.org/10.1016/j.str.2014.11.018. [PubMed]
14. Rakotoarivonina H, Jubelin G, Hebraud M, Gaillard-Martinie B, Forano E, Mosoni P. 2002. Adhesion to cellulose of the Gram-positive bacterium Ruminococcus albus involves type IV pili. Microbiology 148:1871–1880. http://dx.doi.org/10.1099/00221287-148-6-1871. [PubMed]
15. Laurenceau R, Péhau-Arnaudet G, Baconnais S, Gault J, Malosse C, Dujeancourt A, Campo N, Chamot-Rooke J, Le Cam E, Claverys JP, Fronzes R. 2013. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS Pathog 9:e1003473. http://dx.doi.org/10.1371/journal.ppat.1003473. [PubMed]
16. Muschiol S, Erlendsson S, Aschtgen MS, Oliveira V, Schmieder P, de Lichtenberg C, Teilum K, Boesen T, Akbey U, Henriques-Normark B. 2017. Structure of the competence pilus major pilin ComGC in Streptococcus pneumoniae. J Biol Chem 292:14134–14146. http://dx.doi.org/10.1074/jbc.M117.787671. [PubMed]
17. Gurung I, Berry JL, Hall AMJ, Pelicic V. 2017. Cloning-independent markerless gene editing in Streptococcus sanguinis: novel insights in type IV pilus biology. Nucleic Acids Res 45:e40. http://dx.doi.org/10.1093/nar/gkw1177. [PubMed]
18. Gurung I, Spielman I, Davies MR, Lala R, Gaustad P, Biais N, Pelicic V. 2016. Functional analysis of an unusual type IV pilus in the Gram-positive Streptococcus sanguinis. Mol Microbiol 99:380–392. http://dx.doi.org/10.1111/mmi.13237. [PubMed]
19. Angelov A, Bergen P, Nadler F, Hornburg P, Lichev A, Übelacker M, Pachl F, Kuster B, Liebl W. 2015. Novel Flp pilus biogenesis-dependent natural transformation. Front Microbiol 6:84. http://dx.doi.org/10.3389/fmicb.2015.00084. [PubMed]
20. Pegden RS, Larson MA, Grant RJ, Morrison M. 1998. Adherence of the gram-positive bacterium Ruminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pil family of proteins. J Bacteriol 180:5921–5927. [PubMed]
21. Håvarstein LS, Coomaraswamy G, Morrison DA. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 92:11140–11144. http://dx.doi.org/10.1073/pnas.92.24.11140. [PubMed]
22. Moreno-Gámez S, Sorg RA, Domenech A, Kjos M, Weissing FJ, van Doorn GS, Veening JW. 2017. Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nat Commun 8:854. http://dx.doi.org/10.1038/s41467-017-00903-y. [PubMed]
23. Johnsborg O, Eldholm V, Håvarstein LS. 2007. Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158:767–778. http://dx.doi.org/10.1016/j.resmic.2007.09.004. [PubMed]
24. Johnston C, Martin B, Fichant G, Polard P, Claverys JP. 2014. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 12:181–196. http://dx.doi.org/10.1038/nrmicro3199. [PubMed]
25. Lee MS, Morrison DA. 1999. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol 181:5004–5016. [PubMed]
26. Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, Luo P, Walling J, Li H, Mintz M, Tsegaye G, Burr PC, Do Y, Ahn S, Gilbert J, Fleischmann RD, Morrison DA. 2004. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 51:1051–1070. http://dx.doi.org/10.1046/j.1365-2958.2003.03907.x. [PubMed]
27. Briley K, Jr, Dorsey-Oresto A, Prepiak P, Dias MJ, Mann JM, Dubnau D. 2011. The secretion ATPase ComGA is required for the binding and transport of transforming DNA. Mol Microbiol 81:818–830. http://dx.doi.org/10.1111/j.1365-2958.2011.07730.x. [PubMed]
28. Giltner CL, Nguyen Y, Burrows LL. 2012. Type IV pilin proteins: versatile molecular modules. Microbiol Mol Biol Rev 76:740–772. http://dx.doi.org/10.1128/MMBR.00035-12. [PubMed]
29. Sandkvist M. 2001. Biology of type II secretion. Mol Microbiol 40:271–283. http://dx.doi.org/10.1046/j.1365-2958.2001.02403.x. [PubMed]
30. Makarova KS, Koonin EV, Albers SV. 2016. Diversity and evolution of type IV pili systems in Archaea. Front Microbiol 7:667. http://dx.doi.org/10.3389/fmicb.2016.00667. [PubMed]
31. Albers SV, Jarrell KF. 2018. The archaellum: an update on the unique archaeal motility structure. Trends Microbiol 26:351–362. http://dx.doi.org/10.1016/j.tim.2018.01.004. [PubMed]
32. Korotkov KV, Hol WG. 2008. Structure of the GspK-GspI-GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nat Struct Mol Biol 15:462–468. http://dx.doi.org/10.1038/nsmb.1426. [PubMed]
33. Wolfgang M, Lauer P, Park HS, Brossay L, Hébert J, Koomey M. 1998. PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 29:321–330. http://dx.doi.org/10.1046/j.1365-2958.1998.00935.x. [PubMed]
34. Obergfell KP, Seifert HS. 2015. Mobile DNA in the pathogenic Neisseria. Microbiol Spectr 3:MDNA3-0015-2014.
35. Matthey N, Blokesch M. 2016. The DNA-uptake process of naturally competent Vibrio cholerae. Trends Microbiol 24:98–110. http://dx.doi.org/10.1016/j.tim.2015.10.008. [PubMed]
36. Ellison CK, Dalia TN, Vidal Ceballos A, Wang JC, Biais N, Brun YV, Dalia AB. 2018. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat Microbiol 3:773–780. http://dx.doi.org/10.1038/s41564-018-0174-y. [PubMed]
37. Cowley LA, Petersen FC, Junges R, Jimson D, Jimenez M, Morrison DA, Hanage WP. 2018. Evolution via recombination: cell-to-cell contact facilitates larger recombination events in Streptococcus pneumoniae. PLoS Genet 14:e1007410. http://dx.doi.org/10.1371/journal.pgen.1007410. [PubMed]
38. Kolappan S, Ng D, Yang G, Harn T, Craig L. 2015. Crystal structure of the minor pilin CofB, the initiator of CFA/III pilus assembly in enterotoxigenic Escherichia coli. J Biol Chem 290:25805–25818. http://dx.doi.org/10.1074/jbc.M115.676106. [PubMed]
39. Ng D, Harn T, Altindal T, Kolappan S, Marles JM, Lala R, Spielman I, Gao Y, Hauke CA, Kovacikova G, Verjee Z, Taylor RK, Biais N, Craig L. 2016. The Vibrio cholerae minor pilin TcpB initiates assembly and retraction of the toxin-coregulated pilus. PLoS Pathog 12:e1006109. http://dx.doi.org/10.1371/journal.ppat.1006109. [PubMed]
40. Giltner CL, Habash M, Burrows LL. 2010. Pseudomonas aeruginosa minor pilins are incorporated into type IV pili. J Mol Biol 398:444–461. http://dx.doi.org/10.1016/j.jmb.2010.03.028. [PubMed]
41. Nguyen Y, Sugiman-Marangos S, Harvey H, Bell SD, Charlton CL, Junop MS, Burrows LL. 2015. Pseudomonas aeruginosa minor pilins prime type IVa pilus assembly and promote surface display of the PilY1 adhesin. J Biol Chem 290:601–611. http://dx.doi.org/10.1074/jbc.M114.616904. [PubMed]
42. Marko VA, Kilmury SLN, MacNeil LT, Burrows LL. 2018. Pseudomonas aeruginosa type IV minor pilins and PilY1 regulate virulence by modulating FimS-AlgR activity. PLoS Pathog 14:e1007074. http://dx.doi.org/10.1371/journal.ppat.1007074. [PubMed]
43. Kuchma SL, Griffin EF, O’Toole GA. 2012. Minor pilins of the type IV pilus system participate in the negative regulation of swarming motility. J Bacteriol 194:5388–5403. http://dx.doi.org/10.1128/JB.00899-12. [PubMed]
44. Cehovin A, Simpson PJ, McDowell MA, Brown DR, Noschese R, Pallett M, Brady J, Baldwin GS, Lea SM, Matthews SJ, Pelicic V. 2013. Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci U S A 110:3065–3070. http://dx.doi.org/10.1073/pnas.1218832110. [PubMed]
45. Cisneros DA, Bond PJ, Pugsley AP, Campos M, Francetic O. 2012. Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J 31:1041–1053. http://dx.doi.org/10.1038/emboj.2011.454. [PubMed]
46. Cisneros DA, Pehau-Arnaudet G, Francetic O. 2012. Heterologous assembly of type IV pili by a type II secretion system reveals the role of minor pilins in assembly initiation. Mol Microbiol 86:805–818. http://dx.doi.org/10.1111/mmi.12033. [PubMed]
47. Burrows LL. 2012. Prime time for minor subunits of the type II secretion and type IV pilus systems. Mol Microbiol 86:765–769. http://dx.doi.org/10.1111/mmi.12034. [PubMed]
48. Johnston C, Campo N, Bergé MJ, Polard P, Claverys JP. 2014. Streptococcus pneumoniae, le transformiste. Trends Microbiol 22:113–119. http://dx.doi.org/10.1016/j.tim.2014.01.002. [PubMed]
49. Diallo A, Foster HR, Gromek KA, Perry TN, Dujeancourt A, Krasteva PV, Gubellini F, Falbel TG, Burton BM, Fronzes R. 2017. Bacterial transformation: ComFA is a DNA-dependent ATPase that forms complexes with ComFC and DprA. Mol Microbiol 105:741–754. http://dx.doi.org/10.1111/mmi.13732. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.PSIB-0011-2018
2019-02-08
2019-09-18

Abstract:

Type IV pili (T4P) are remarkable bacterial surface appendages that carry out a range of functions. Various types of T4P have been identified in bacteria and archaea, making them almost universal structures in prokaryotes. T4P are best characterized in Gram-negative bacteria, in which pilus biogenesis and T4P-mediated functions have been studied for decades. Recent advances in microbial whole-genome sequencing have provided ample evidence for the existence of T4P also in many Gram-positive species. However, comparatively little is known, and T4P in Gram-positive bacteria are just beginning to be dissected. So far, they have mainly been studied in and spp. and are involved in diverse cellular processes such as adhesion, motility, and horizontal gene transfer. Here we summarize the current understanding of T4P in Gram-positive species and their functions, with particular focus on the type IV competence pilus produced by the human pathogen and its role in natural transformation.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Type IV competence pilus produced by R6. The pilus was visualized by transmission electron microscopy after negative staining with uranyl acetate. Scale bar, 100 nm.

Source: microbiolspec February 2019 vol. 7 no. 1 doi:10.1128/microbiolspec.PSIB-0011-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of the DNA uptake machinery in competent . Upon competence induction, the pneumococcal competence pilus composed of ComGC is made and captures extracellular, transforming DNA ( 15 ). Captured DNA is passed to the DNA receptor ComEA and the transmembrane channel protein ComEC. This step is possibly mediated by an unknown retraction ATPase and subsequent pilus retraction or yet another undescribed mechanism. Double-stranded DNA (dsDNA) is cleaved by the endonuclease EndA and single-stranded DNA (ssDNA) enters the cytoplasm through the ComEC pore driven by the DNA-dependent ATPase ComFA ( 48 ). ComFA forms a complex with ComFC and DprA ( 49 ) and together with SsbB and RecA help in stabilization and processing of internalized ssDNA to facilitate genetic exchange ( 24 ).

Source: microbiolspec February 2019 vol. 7 no. 1 doi:10.1128/microbiolspec.PSIB-0011-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error