1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Structure and Activity of the Type VI Secretion System

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Yassine Cherrak1,2, Nicolas Flaugnatti3,4,5, Eric Durand6, Laure Journet7, Eric Cascales8
  • Editors: Maria Sandkvist9, Peter J. Christie10
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France; 2: Y.C. and N.F. contributed equally to this review.; 3: Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France; 4: Y.C. and N.F. contributed equally to this review.; 5: Present address: Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.; 6: Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France; 7: Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France; 8: Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France; 9: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; 10: Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas
  • Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.PSIB-0031-2019
  • Received 15 November 2018 Accepted 24 May 2019 Published 12 July 2019
  • Eric Cascales, [email protected]
image of Structure and Activity of the Type VI Secretion System
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Structure and Activity of the Type VI Secretion System, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/4/PSIB-0031-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/4/PSIB-0031-2019-2.gif
  • Abstract:

    The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells. The injection apparatus is composed of a baseplate on which is built a contractile tail tube/sheath complex. The inner tube, topped by the spike complex, is propelled outside of the cell by the contraction of the sheath. The injection system is anchored to the cell envelope and oriented towards the cell exterior by a trans-envelope complex. Effectors delivered by the T6SS are loaded within the inner tube or on the spike complex and can target prokaryotic and/or eukaryotic cells. Here we summarize the structure, assembly, and mechanism of action of the T6SS. We also review the function of effectors and their mode of recruitment and delivery.

  • Citation: Cherrak Y, Flaugnatti N, Durand E, Journet L, Cascales E. 2019. Structure and Activity of the Type VI Secretion System. Microbiol Spectrum 7(4):PSIB-0031-2019. doi:10.1128/microbiolspec.PSIB-0031-2019.

References

1. Bönemann G, Pietrosiuk A, Mogk A. 2010. Tubules and donuts: a type VI secretion story. Mol Microbiol 76:815–821. http://dx.doi.org/10.1111/j.1365-2958.2010.07171.x. [PubMed]
2. Zoued A, Brunet YR, Durand E, Aschtgen MS, Logger L, Douzi B, Journet L, Cambillau C, Cascales E. 2014. Architecture and assembly of the type VI secretion system. Biochim Biophys Acta 1843:1664–1673. http://dx.doi.org/10.1016/j.bbamcr.2014.03.018. [PubMed]
3. Cascales E. 2017. Microbiology: and Amoebophilus invented the machine gun! Curr Biol 27:R1170–R1173. http://dx.doi.org/10.1016/j.cub.2017.09.025. [PubMed]
4. Taylor NMI, van Raaij MJ, Leiman PG. 2018. Contractile injection systems of bacteriophages and related systems. Mol Microbiol 108:6–15. http://dx.doi.org/10.1111/mmi.13921. [PubMed]
5. Brackmann M, Nazarov S, Wang J, Basler M. 2017. Using force to punch holes: mechanics of contractile nanomachines. Trends Cell Biol 27:623–632. http://dx.doi.org/10.1016/j.tcb.2017.05.003. [PubMed]
6. Cianfanelli FR, Monlezun L, Coulthurst SJ. 2016. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol 24:51–62. http://dx.doi.org/10.1016/j.tim.2015.10.005. [PubMed]
7. Coyne MJ, Comstock LE. 2019. Type VI secretion systems and the gut microbiota. Microbiol Spectr 7:PSIB-0009-2018. http://dx.doi.org/10.1128/microbiolspec.PSIB-0009-2018. [PubMed]
8. Bingle LE, Bailey CM, Pallen MJ. 2008. Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11:3–8. http://dx.doi.org/10.1016/j.mib.2008.01.006. [PubMed]
9. Cascales E. 2008. The type VI secretion toolkit. EMBO Rep 9:735–741. http://dx.doi.org/10.1038/embor.2008.131. [PubMed]
10. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. 2009. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10:104. http://dx.doi.org/10.1186/1471-2164-10-104. [PubMed]
11. Russell AB, Peterson SB, Mougous JD. 2014. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12:137–148. http://dx.doi.org/10.1038/nrmicro3185. [PubMed]
12. Durand E, Cambillau C, Cascales E, Journet L. 2014. VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol 22:498–507. http://dx.doi.org/10.1016/j.tim.2014.06.004. [PubMed]
13. Alcoforado Diniz J, Liu YC, Coulthurst SJ. 2015. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell Microbiol 17:1742–1751. http://dx.doi.org/10.1111/cmi.12532. [PubMed]
14. Hachani A, Wood TE, Filloux A. 2016. Type VI secretion and anti-host effectors. Curr Opin Microbiol 29:81–93. http://dx.doi.org/10.1016/j.mib.2015.11.006. [PubMed]
15. Fu Y, Waldor MK, Mekalanos JJ. 2013. Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 14:652–663. http://dx.doi.org/10.1016/j.chom.2013.11.001. [PubMed]
16. Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L, Cascales E, Monack DM. 2016. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A 113:E5044–E5051. http://dx.doi.org/10.1073/pnas.1608858113. [PubMed]
17. Sana TG, Lugo KA, Monack DM. 2017. T6SS: the bacterial “fight club” in the host gut. PLoS Pathog 13:e1006325. http://dx.doi.org/10.1371/journal.ppat.1006325. [PubMed]
18. Chassaing B, Cascales E. 2018. Antibacterial weapons: targeted destruction in the microbiota. Trends Microbiol 26:329–338. http://dx.doi.org/10.1016/j.tim.2018.01.006. [PubMed]
19. García-Bayona L, Comstock LE. 2018. Bacterial antagonism in host-associated microbial communities. Science 361:eaat2456. http://dx.doi.org/10.1126/science.aat2456. [PubMed]
20. Veening JW, Blokesch M. 2017. Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 15:621–629. http://dx.doi.org/10.1038/nrmicro.2017.66. [PubMed]
21. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ. 2006. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103:1528–1533. http://dx.doi.org/10.1073/pnas.0510322103. [PubMed]
22. Sana TG, Baumann C, Merdes A, Soscia C, Rattei T, Hachani A, Jones C, Bennett KL, Filloux A, Superti-Furga G, Voulhoux R, Bleves S. 2015. Internalization of Pseudomonas aeruginosa strain PAO1 into epithelial cells is promoted by interaction of a T6SS effector with the microtubule network. mBio 6:e00712-15. http://dx.doi.org/10.1128/mBio.00712-15. [PubMed]
23. Schwarz S, Singh P, Robertson JD, LeRoux M, Skerrett SJ, Goodlett DR, West TE, Mougous JD. 2014. VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect Immun 82:1445–1452. http://dx.doi.org/10.1128/IAI.01368-13. [PubMed]
24. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. 2007. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104:15508–15513. http://dx.doi.org/10.1073/pnas.0706532104. [PubMed]
25. Suarez G, Sierra JC, Erova TE, Sha J, Horneman AJ, Chopra AK. 2010. A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 192:155–168. http://dx.doi.org/10.1128/JB.01260-09. [PubMed]
26. Durand E, Derrez E, Audoly G, Spinelli S, Ortiz-Lombardia M, Raoult D, Cascales E, Cambillau C. 2012. Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae type VI secretion system. J Biol Chem 287:38190–38199. http://dx.doi.org/10.1074/jbc.M112.390153. [PubMed]
27. Aubert DF, Xu H, Yang J, Shi X, Gao W, Li L, Bisaro F, Chen S, Valvano MA, Shao F. 2016. A Burkholderia type VI effector deamidates Rho GTPases to activate the pyrin inflammasome and trigger inflammation. Cell Host Microbe 19:664–674. http://dx.doi.org/10.1016/j.chom.2016.04.004. [PubMed]
28. Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM, Whitney JC, Radey MC, Peterson SB, Ruhland BR, Tran BQ, Goo YA, Goodlett DR, Dove SL, Celli J, Veesler D, Mougous JD. 2016. Secreted effectors encoded within and outside of the Francisella pathogenicity island promote intramacrophage growth. Cell Host Microbe 20:573–583. http://dx.doi.org/10.1016/j.chom.2016.10.008. [PubMed]
29. Ledvina HE, Kelly KA, Eshraghi A, Plemel RL, Peterson SB, Lee B, Steele S, Adler M, Kawula TH, Merz AJ, Skerrett SJ, Celli J, Mougous JD. 2018. A phosphatidylinositol 3-kinase effector alters phagosomal maturation to promote intracellular growth of Francisella. Cell Host Microbe 24:285–295.e8. http://dx.doi.org/10.1016/j.chom.2018.07.003. [PubMed]
30. Lennings J, West TE, Schwarz S. 2019. The Burkholderia type VI secretion system 5: composition, regulation and role in virulence. Front Microbiol 9:3339. http://dx.doi.org/10.3389/fmicb.2018.03339. [PubMed]
31. Hood RD, Singh P, Hsu F, Güvener T, Carl MA, Trinidad RR, Silverman JM, Ohlson BB, Hicks KG, Plemel RL, Li M, Schwarz S, Wang WY, Merz AJ, Goodlett DR, Mougous JD. 2010. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7:25–37. http://dx.doi.org/10.1016/j.chom.2009.12.007. [PubMed]
32. Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W, Mougous JD. 2011. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475:343–347. http://dx.doi.org/10.1038/nature10244. [PubMed]
33. Russell AB, LeRoux M, Hathazi K, Agnello DM, Ishikawa T, Wiggins PA, Wai SN, Mougous JD. 2013. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496:508–512. http://dx.doi.org/10.1038/nature12074. [PubMed]
34. Ma LS, Hachani A, Lin JS, Filloux A, Lai EM. 2014. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16:94–104. http://dx.doi.org/10.1016/j.chom.2014.06.002. [PubMed]
35. Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR, Raunser S, Mougous JD. 2015. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 163:607–619. http://dx.doi.org/10.1016/j.cell.2015.09.027. [PubMed]
36. Pissaridou P, Allsopp LP, Wettstadt S, Howard SA, Mavridou DAI, Filloux A. 2018. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors. Proc Natl Acad Sci U S A 115:12519–12524. http://dx.doi.org/10.1073/pnas.1814181115. [PubMed]
37. Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD. 2018. Bifunctional immunity proteins protect bacteria against FtsZ-targeting ADP-ribosylating toxins. Cell 175:1380–1392.e14. http://dx.doi.org/10.1016/j.cell.2018.09.037. [PubMed]
38. Wang T, Si M, Song Y, Zhu W, Gao F, Wang Y, Zhang L, Zhang W, Wei G, Luo ZQ, Shen X. 2015. Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLoS Pathog 11:e1005020. http://dx.doi.org/10.1371/journal.ppat.1005020. [PubMed]
39. Si M, Zhao C, Burkinshaw B, Zhang B, Wei D, Wang Y, Dong TG, Shen X. 2017. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci U S A 114:E2233–E2242. http://dx.doi.org/10.1073/pnas.1614902114. [PubMed]
40. Si M, Wang Y, Zhang B, Zhao C, Kang Y, Bai H, Wei D, Zhu L, Zhang L, Dong TG, Shen X. 2017. The type VI secretion system engages a redox-regulated dual-functional heme transporter for zinc acquisition. Cell Rep 20:949–959. http://dx.doi.org/10.1016/j.celrep.2017.06.081. [PubMed]
41. Verster AJ, Ross BD, Radey MC, Bao Y, Goodman AL, Mougous JD, Borenstein E. 2017. The landscape of type VI secretion across human gut microbiomes reveals its role in community composition. Cell Host Microbe 22:411–419.e4. http://dx.doi.org/10.1016/j.chom.2017.08.010. [PubMed]
42. Bernard CS, Brunet YR, Gueguen E, Cascales E. 2010. Nooks and crannies in type VI secretion regulation. J Bacteriol 192:3850–3860. http://dx.doi.org/10.1128/JB.00370-10. [PubMed]
43. Silverman JM, Brunet YR, Cascales E, Mougous JD. 2012. Structure and regulation of the type VI secretion system. Annu Rev Microbiol 66:453–472. http://dx.doi.org/10.1146/annurev-micro-121809-151619. [PubMed]
44. Miyata ST, Bachmann V, Pukatzki S. 2013. Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol 62:663–676. http://dx.doi.org/10.1099/jmm.0.053983-0. [PubMed]
45. LeRoux M, Peterson SB, Mougous JD. 2015. Bacterial danger sensing. J Mol Biol 427:3744–3753. http://dx.doi.org/10.1016/j.jmb.2015.09.018. [PubMed]
46. Ho BT, Dong TG, Mekalanos JJ. 2014. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15:9–21. http://dx.doi.org/10.1016/j.chom.2013.11.008. [PubMed]
47. Basler M. 2015. Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci 370:20150021. http://dx.doi.org/10.1098/rstb.2015.0021. [PubMed]
48. Coulthurst S. 2019. The type VI secretion system: a versatile bacterial weapon. Microbiology 165:503–515. http://dx.doi.org/10.1099/mic.0.000789. [PubMed]
49. Durand E, Nguyen VS, Zoued A, Logger L, Péhau-Arnaudet G, Aschtgen MS, Spinelli S, Desmyter A, Bardiaux B, Dujeancourt A, Roussel A, Cambillau C, Cascales E, Fronzes R. 2015. Biogenesis and structure of a type VI secretion membrane core complex. Nature 523:555–560. http://dx.doi.org/10.1038/nature14667. [PubMed]
50. Brunet YR, Zoued A, Boyer F, Douzi B, Cascales E. 2015. The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet 11:e1005545. http://dx.doi.org/10.1371/journal.pgen.1005545. [PubMed]
51. Gerc AJ, Diepold A, Trunk K, Porter M, Rickman C, Armitage JP, Stanley-Wall NR, Coulthurst SJ. 2015. Visualization of the Serratia type VI secretion system reveals unprovoked attacks and dynamic assembly. Cell Rep 12:2131–2142. http://dx.doi.org/10.1016/j.celrep.2015.08.053. [PubMed]
52. Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ. 2012. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:182–186. http://dx.doi.org/10.1038/nature10846. [PubMed]
53. Aschtgen MS, Gavioli M, Dessen A, Lloubès R, Cascales E. 2010. The SciZ protein anchors the enteroaggregative Escherichia coli type VI secretion system to the cell wall. Mol Microbiol 75:886–899. http://dx.doi.org/10.1111/j.1365-2958.2009.07028.x. [PubMed]
54. Aschtgen MS, Bernard CS, De Bentzmann S, Lloubès R, Cascales E. 2008. SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol 190:7523–7531. http://dx.doi.org/10.1128/JB.00945-08. [PubMed]
55. Ma LS, Lin JS, Lai EM. 2009. An IcmF family protein, ImpL M, is an integral inner membrane protein interacting with ImpK L, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 191:4316–4329. http://dx.doi.org/10.1128/JB.00029-09. [PubMed]
56. Aschtgen MS, Zoued A, Lloubès R, Journet L, Cascales E. 2012. The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 type VI secretion system, is inserted by YidC. Microbiologyopen 1:71–82. http://dx.doi.org/10.1002/mbo3.9. [PubMed]
57. Logger L, Aschtgen MS, Guérin M, Cascales E, Durand E. 2016. Molecular dissection of the interface between the type VI secretion TssM cytoplasmic domain and the TssG baseplate component. J Mol Biol 428:4424–4437. http://dx.doi.org/10.1016/j.jmb.2016.08.032. [PubMed]
58. Felisberto-Rodrigues C, Durand E, Aschtgen MS, Blangy S, Ortiz-Lombardia M, Douzi B, Cambillau C, Cascales E. 2011. Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog 7:e1002386. http://dx.doi.org/10.1371/journal.ppat.1002386. [PubMed]
59. Rao VA, Shepherd SM, English G, Coulthurst SJ, Hunter WN. 2011. The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system. Acta Crystallogr D Biol Crystallogr 67:1065–1072. http://dx.doi.org/10.1107/S0907444911046300. [PubMed]
60. Robb CS, Assmus M, Nano FE, Boraston AB. 2013. Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:607–610. http://dx.doi.org/10.1107/S1744309113012220. [PubMed]
61. Durand E, Zoued A, Spinelli S, Watson PJ, Aschtgen MS, Journet L, Cambillau C, Cascales E. 2012. Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem 287:14157–14168. http://dx.doi.org/10.1074/jbc.M111.338731. [PubMed]
62. Robb CS, Nano FE, Boraston AB. 2012. The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol 419:277–283. http://dx.doi.org/10.1016/j.jmb.2012.04.003. [PubMed]
63. Chang JH, Kim YG. 2015. Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. J Microbiol 53:32–37. http://dx.doi.org/10.1007/s12275-015-4539-0. [PubMed]
64. Zoued A, Cassaro CJ, Durand E, Douzi B, España AP, Cambillau C, Journet L, Cascales E. 2016. Structure-function analysis of the TssL cytoplasmic domain reveals a new interaction between the type VI secretion baseplate and membrane complexes. J Mol Biol 428:4413–4423. http://dx.doi.org/10.1016/j.jmb.2016.08.030. [PubMed]
65. Zoued A, Duneau JP, Durand E, España AP, Journet L, Guerlesquin F, Cascales E. 2018. Tryptophan-mediated dimerization of the TssL transmembrane anchor is required for type VI secretion system activity. J Mol Biol 430:987–1003. http://dx.doi.org/10.1016/j.jmb.2018.02.008. [PubMed]
66. Zoued A, Durand E, Bebeacua C, Brunet YR, Douzi B, Cambillau C, Cascales E, Journet L. 2013. TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J Biol Chem 288:27031–27041. http://dx.doi.org/10.1074/jbc.M113.499772. [PubMed]
67. Nguyen VS, Logger L, Spinelli S, Legrand P, Huyen Pham TT, Nhung Trinh TT, Cherrak Y, Zoued A, Desmyter A, Durand E, Roussel A, Kellenberger C, Cascales E, Cambillau C. 2017. Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex. Nat Microbiol 2:17103. http://dx.doi.org/10.1038/nmicrobiol.2017.103. [PubMed]
68. Rapisarda C, Cherrak Y, Kooger R, Schmidt V, Pellarin R, Logger L, Cascales E, Pilhofer M, Durand E, Fronzes R. 2019. In situ and high-resolution cryo-EM structure of a bacterial type VI secretion system membrane complex. EMBO J 38:e100886. http://dx.doi.org/10.15252/embj.2018100886. [PubMed]
69. Yin M, Yan Z, Li X. 2019. Architecture of type VI secretion system membrane core complex. Cell Res 29:251–253. http://dx.doi.org/10.1038/s41422-018-0130-7. [PubMed]
70. Aschtgen MS, Thomas MS, Cascales E. 2010. Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP... what else? Virulence 1:535–540. http://dx.doi.org/10.4161/viru.1.6.13732. [PubMed]
71. Santin YG, Camy CE, Zoued A, Doan T, Aschtgen MS, Cascales E. 2019. Role and recruitment of the TagL peptidoglycan-binding protein during type VI secretion system biogenesis. J Bacteriol 201:e00173-19. http://dx.doi.org/10.1128/JB.00173-19. [PubMed]
72. Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF. 2016. Genetic dissection of the type VI secretion system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, required for its biogenesis. mBio 7:e01253-16. http://dx.doi.org/10.1128/mBio.01253-16. [PubMed]
73. Santin YG, Cascales E. 2017. Domestication of a housekeeping transglycosylase for assembly of a type VI secretion system. EMBO Rep 18:138–149. http://dx.doi.org/10.15252/embr.201643206. [PubMed]
74. Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ, Goo YA, Tran BQ, Barry NA, Zheng H, Peterson SB, Chou S, Gonen T, Goodlett DR, Goodman AL, Mougous JD. 2014. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16:227–236. http://dx.doi.org/10.1016/j.chom.2014.07.007. [PubMed]
75. Coyne MJ, Roelofs KG, Comstock LE. 2016. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics 17:58. http://dx.doi.org/10.1186/s12864-016-2377-z. [PubMed]
76. Nazarov S, Schneider JP, Brackmann M, Goldie KN, Stahlberg H, Basler M. 2018. Cryo-EM reconstruction of type VI secretion system baseplate and sheath distal end. EMBO J 37:e97103. http://dx.doi.org/10.15252/embj.201797103. [PubMed]
77. Cherrak Y, Rapisarda C, Pellarin R, Bouvier G, Bardiaux B, Allain F, Malosse C, Rey M, Chamot-Rooke J, Cascales E, Fronzes R, Durand E. 2018. Biogenesis and structure of a type VI secretion baseplate. Nat Microbiol 3:1404–1416. http://dx.doi.org/10.1038/s41564-018-0260-1. [PubMed]
78. English G, Byron O, Cianfanelli FR, Prescott AR, Coulthurst SJ. 2014. Biochemical analysis of TssK, a core component of the bacterial type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex. Biochem J 461:291–304. http://dx.doi.org/10.1042/BJ20131426. [PubMed]
79. Taylor NM, Prokhorov NS, Guerrero-Ferreira RC, Shneider MM, Browning C, Goldie KN, Stahlberg H, Leiman PG. 2016. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 533:346–352. http://dx.doi.org/10.1038/nature17971. [PubMed]
80. Büttner CR, Wu Y, Maxwell KL, Davidson AR. 2016. Baseplate assembly of phage Mu: defining the conserved core components of contractile-tailed phages and related bacterial systems. Proc Natl Acad Sci U S A 113:10174–10179. http://dx.doi.org/10.1073/pnas.1607966113. [PubMed]
81. Kostyuchenko VA, Leiman PG, Chipman PR, Kanamaru S, van Raaij MJ, Arisaka F, Mesyanzhinov VV, Rossmann MG. 2003. Three-dimensional structure of bacteriophage T4 baseplate. Nat Struct Biol 10:688–693. http://dx.doi.org/10.1038/nsb970. [PubMed]
82. Planamente S, Salih O, Manoli E, Albesa-Jové D, Freemont PS, Filloux A. 2016. TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J 35:1613–1627. http://dx.doi.org/10.15252/embj.201694024. [PubMed]
83. Brunet YR, Espinosa L, Harchouni S, Mignot T, Cascales E. 2013. Imaging type VI secretion-mediated bacterial killing. Cell Rep 3:36–41. http://dx.doi.org/10.1016/j.celrep.2012.11.027. [PubMed]
84. Ballister ER, Lai AH, Zuckermann RN, Cheng Y, Mougous JD. 2008. In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A 105:3733–3738. http://dx.doi.org/10.1073/pnas.0712247105. [PubMed]
85. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, Burley SK, Almo SC, Mekalanos JJ. 2009. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 106:4154–4159. http://dx.doi.org/10.1073/pnas.0813360106. [PubMed]
86. Brunet YR, Hénin J, Celia H, Cascales E. 2014. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep 15:315–321. http://dx.doi.org/10.1002/embr.201337936. [PubMed]
87. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordoñez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ. 2006. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530. http://dx.doi.org/10.1126/science.1128393. [PubMed]
88. Douzi B, Spinelli S, Blangy S, Roussel A, Durand E, Brunet YR, Cascales E, Cambillau C. 2014. Crystal structure and self-interaction of the type VI secretion tail-tube protein from enteroaggregative Escherichia coli. PLoS One 9:e86918. http://dx.doi.org/10.1371/journal.pone.0086918. [PubMed]
89. Renault MG, Zamarreno Beas J, Douzi B, Chabalier M, Zoued A, Brunet YR, Cambillau C, Journet L, Cascales E. 2018. The gp27-like hub of VgrG serves as adaptor to promote Hcp tube assembly. J Mol Biol 430(18 Part B) :3143–3156. http://dx.doi.org/10.1016/j.jmb.2018.07.018. [PubMed]
90. Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG. 2013. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500:350–353. http://dx.doi.org/10.1038/nature12453. [PubMed]
91. Leiman PG, Shneider MM. 2012. Contractile tail machines of bacteriophages. Adv Exp Med Biol 726:93–114. http://dx.doi.org/10.1007/978-1-4614-0980-9_5. [PubMed]
92. Spínola-Amilibia M, Davó-Siguero I, Ruiz FM, Santillana E, Medrano FJ, Romero A. 2016. The structure of VgrG1 from Pseudomonas aeruginosa, the needle tip of the bacterial type VI secretion system. Acta Crystallogr D Struct Biol 72:22–33. http://dx.doi.org/10.1107/S2059798315021142. [PubMed]
93. Uchida K, Leiman PG, Arisaka F, Kanamaru S. 2014. Structure and properties of the C-terminal β-helical domain of VgrG protein from Escherichia coli O157. J Biochem 155:173–182. http://dx.doi.org/10.1093/jb/mvt109. [PubMed]
94. Bönemann G, Pietrosiuk A, Diemand A, Zentgraf H, Mogk A. 2009. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 28:315–325. http://dx.doi.org/10.1038/emboj.2008.269. [PubMed]
95. Lossi NS, Dajani R, Freemont P, Filloux A. 2011. Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology 157:3292–3305. http://dx.doi.org/10.1099/mic.0.051987-0. [PubMed]
96. Bröms JE, Ishikawa T, Wai SN, Sjöstedt A. 2013. A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol 13:96. http://dx.doi.org/10.1186/1471-2180-13-96. [PubMed]
97. Zhang XY, Brunet YR, Logger L, Douzi B, Cambillau C, Journet L, Cascales E. 2013. Dissection of the TssB-TssC interface during type VI secretion sheath complex formation. PLoS One 8:e81074. http://dx.doi.org/10.1371/journal.pone.0081074. [PubMed]
98. Kube S, Kapitein N, Zimniak T, Herzog F, Mogk A, Wendler P. 2014. Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep 8:20–30. http://dx.doi.org/10.1016/j.celrep.2014.05.034. [PubMed]
99. Kudryashev M, Wang RY, Brackmann M, Scherer S, Maier T, Baker D, DiMaio F, Stahlberg H, Egelman EH, Basler M. 2015. Structure of the type VI secretion system contractile sheath. Cell 160:952–962. http://dx.doi.org/10.1016/j.cell.2015.01.037. [PubMed]
100. Wang J, Brackmann M, Castaño-Díez D, Kudryashev M, Goldie KN, Maier T, Stahlberg H, Basler M. 2017. Cryo-EM structure of the extended type VI secretion system sheath-tube complex. Nat Microbiol 2:1507–1512. http://dx.doi.org/10.1038/s41564-017-0020-7. [PubMed]
101. Brackmann M, Wang J, Basler M. 2018. Type VI secretion system sheath inter-subunit interactions modulate its contraction. EMBO Rep 19:225–233. http://dx.doi.org/10.15252/embr.201744416. [PubMed]
102. Kapitein N, Bönemann G, Pietrosiuk A, Seyffer F, Hausser I, Locker JK, Mogk A. 2013. ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol 87:1013–1028. http://dx.doi.org/10.1111/mmi.12147. [PubMed]
103. Zoued A, Durand E, Brunet YR, Spinelli S, Douzi B, Guzzo M, Flaugnatti N, Legrand P, Journet L, Fronzes R, Mignot T, Cambillau C, Cascales E. 2016. Priming and polymerization of a bacterial contractile tail structure. Nature 531:59–63. http://dx.doi.org/10.1038/nature17182. [PubMed]
104. Vettiger A, Winter J, Lin L, Basler M. 2017. The type VI secretion system sheath assembles at the end distal from the membrane anchor. Nat Commun 8:16088. http://dx.doi.org/10.1038/ncomms16088. [PubMed]
105. Zoued A, Durand E, Santin YG, Journet L, Roussel A, Cambillau C, Cascales E. 2017. TssA: the cap protein of the type VI secretion system tail. Bioessays 39:10. http://dx.doi.org/10.1002/bies.201600262. [PubMed]
106. Santin YG, Doan T, Lebrun R, Espinosa L, Journet L, Cascales E. 2018. In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat Microbiol 3:1304–1313. http://dx.doi.org/10.1038/s41564-018-0234-3. [PubMed]
107. Dix SR, Owen HJ, Sun R, Ahmad A, Shastri S, Spiewak HL, Mosby DJ, Harris MJ, Batters SL, Brooker TA, Tzokov SB, Sedelnikova SE, Baker PJ, Bullough PA, Rice DW, Thomas MS. 2018. Structural insights into the function of type VI secretion system TssA subunits. Nat Commun 9:4765. http://dx.doi.org/10.1038/s41467-018-07247-1. [PubMed]
108. Pietrosiuk A, Lenherr ED, Falk S, Bönemann G, Kopp J, Zentgraf H, Sinning I, Mogk A. 2011. Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem 286:30010–30021. http://dx.doi.org/10.1074/jbc.M111.253377. [PubMed]
109. Douzi B, Brunet YR, Spinelli S, Lensi V, Legrand P, Blangy S, Kumar A, Journet L, Cascales E, Cambillau C. 2016. Structure and specificity of the type VI secretion system ClpV-TssC interaction in enteroaggregative Escherichia coli. Sci Rep 6:34405. http://dx.doi.org/10.1038/srep34405. [PubMed]
110. Unterweger D, Kostiuk B, Pukatzki S. 2017. Adaptor proteins of type VI secretion system effectors. Trends Microbiol 25:8–10. http://dx.doi.org/10.1016/j.tim.2016.10.003. [PubMed]
111. Ma J, Pan Z, Huang J, Sun M, Lu C, Yao H. 2017. The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. Virulence 8:1189–1202. http://dx.doi.org/10.1080/21505594.2017.1279374. [PubMed]
112. Brooks TM, Unterweger D, Bachmann V, Kostiuk B, Pukatzki S. 2013. Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem 288:7618–7625. http://dx.doi.org/10.1074/jbc.M112.436725. [PubMed]
113. Toesca IJ, French CT, Miller JF. 2014. The type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by pseudomallei group Burkholderia species. Infect Immun 82:1436–1444. http://dx.doi.org/10.1128/IAI.01367-13. [PubMed]
114. Silverman JM, Agnello DM, Zheng H, Andrews BT, Li M, Catalano CE, Gonen T, Mougous JD. 2013. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell 51:584–593. http://dx.doi.org/10.1016/j.molcel.2013.07.025. [PubMed]
115. Whitney JC, Beck CM, Goo YA, Russell AB, Harding BN, De Leon JA, Cunningham DA, Tran BQ, Low DA, Goodlett DR, Hayes CS, Mougous JD. 2014. Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol 92:529–542. http://dx.doi.org/10.1111/mmi.12571. [PubMed]
116. Unterweger D, Miyata ST, Bachmann V, Brooks TM, Mullins T, Kostiuk B, Provenzano D, Pukatzki S. 2014. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun 5:3549. http://dx.doi.org/10.1038/ncomms4549. [PubMed]
117. Liang X, Moore R, Wilton M, Wong MJ, Lam L, Dong TG. 2015. Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A 112:9106–9111. http://dx.doi.org/10.1073/pnas.1505317112. [PubMed]
118. Unterweger D, Kostiuk B, Ötjengerdes R, Wilton A, Diaz-Satizabal L, Pukatzki S. 2015. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J 34:2198–2210. http://dx.doi.org/10.15252/embj.201591163. [PubMed]
119. Alcoforado Diniz J, Coulthurst SJ. 2015. Intraspecies competition in Serratia marcescens is mediated by type VI-secreted Rhs effectors and a conserved effector-associated accessory protein. J Bacteriol 197:2350–2360. http://dx.doi.org/10.1128/JB.00199-15. [PubMed]
120. Flaugnatti N, Le TT, Canaan S, Aschtgen MS, Nguyen VS, Blangy S, Kellenberger C, Roussel A, Cambillau C, Cascales E, Journet L. 2016. A phospholipase A1 antibacterial type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol 99:1099–1118. http://dx.doi.org/10.1111/mmi.13292. [PubMed]
121. Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM. 2016. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A 113:E3931–E3940. http://dx.doi.org/10.1073/pnas.1600428113. [PubMed]
122. Cianfanelli FR, Alcoforado Diniz J, Guo M, De Cesare V, Trost M, Coulthurst SJ. 2016. VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog 12:e1005735. http://dx.doi.org/10.1371/journal.ppat.1005735. [PubMed]
123. Ma J, Sun M, Dong W, Pan Z, Lu C, Yao H. 2017. PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol 19:345–360. http://dx.doi.org/10.1111/1462-2920.13621. [PubMed]
124. Quentin D, Ahmad S, Shanthamoorthy P, Mougous JD, Whitney JC, Raunser S. 2018. Mechanism of loading and translocation of type VI secretion system effector Tse6. Nat Microbiol 3:1142–1152. http://dx.doi.org/10.1038/s41564-018-0238-z. [PubMed]
125. Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG. 2018. A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol 3:632–640. http://dx.doi.org/10.1038/s41564-018-0144-4. [PubMed]
126. Hachani A, Allsopp LP, Oduko Y, Filloux A. 2014. The VgrG proteins are “à la carte” delivery systems for bacterial type VI effectors. J Biol Chem 289:17872–17884. http://dx.doi.org/10.1074/jbc.M114.563429. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.PSIB-0031-2019
2019-07-12
2019-10-22

Abstract:

The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells. The injection apparatus is composed of a baseplate on which is built a contractile tail tube/sheath complex. The inner tube, topped by the spike complex, is propelled outside of the cell by the contraction of the sheath. The injection system is anchored to the cell envelope and oriented towards the cell exterior by a trans-envelope complex. Effectors delivered by the T6SS are loaded within the inner tube or on the spike complex and can target prokaryotic and/or eukaryotic cells. Here we summarize the structure, assembly, and mechanism of action of the T6SS. We also review the function of effectors and their mode of recruitment and delivery.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic representation of the T6SS. The different subunits are labeled, as are the different subcomplexes. IM, inner membrane; OM, outer membrane.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.PSIB-0031-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Assembly and mechanism of firing of the T6SS. T6SS biogenesis starts with the positioning and assembly of the membrane complex and the assembly of the BP ( 1 ). The recruitment and docking of the BP on the membrane complex ( 2 ) initiate the TssA-mediated polymerization of the tail tube/sheath tubular structure ( 3 to 5 ), which is stopped when hitting the opposite membrane by the TagA stopper ( 5 ). Sheath contraction propels the tube/spike needle into the target ( 6 ). The ClpV ATPase is recruited to the contracted sheath to recycle sheath subunits ( 6 ). Needle components, and effectors associated with them, are delivered inside the target ( 7 ).

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.PSIB-0031-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic representation of the mechanisms of effector loading. Effectors are depicted as red circles. Specialized effectors are chimeric needle proteins with extensions encoding the effector. Cargo effectors are independent proteins that associate with needle components (Hcp, VgrG, and PAAR). Binding of cargo effectors to needle components could be direct or mediated by adaptor modules that are independent proteins (adaptors) or extensions of VgrG and PAAR (internal adaptors).

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.PSIB-0031-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error