No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Cytokines and Chemokines in Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    403.26 Kb
  • PDF
    2.96 MB
  • XML
    445.00 Kb
  • Authors: Racquel Domingo-Gonzalez1, Oliver Prince2, Andrea Cooper3, Shabaana A. Khader4
  • Editors: William R. Jacobs Jr.5, Helen McShane6, Valerie Mizrahi7, Ian M. Orme8
    Affiliations: 1: Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130; 2: Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130; 3: Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, United Kingdom; 4: Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130; 5: Howard Hughes Medical Institute, Albert Einstein School of Medicine, Bronx, NY 10461; 6: University of Oxford, Oxford OX3 7DQ, United Kingdom; 7: University of Cape Town, Rondebosch 7701, South Africa; 8: Colorado State University, Fort Collins, CO 80523
  • Source: microbiolspec October 2016 vol. 4 no. 5 doi:10.1128/microbiolspec.TBTB2-0018-2016
  • Received 19 April 2016 Accepted 01 August 2016 Published 21 October 2016
  • Andrea Cooper, [email protected]; Shabaana Khader, [email protected]
image of Cytokines and Chemokines in <span class="jp-italic">Mycobacterium tuberculosis</span> Infection
    Preview this microbiology spectrum article:
    Zoom in

    Cytokines and Chemokines in Infection, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/5/TBTB2-0018-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/5/TBTB2-0018-2016-2.gif
  • Abstract:

    Chemokines and cytokines are critical for initiating and coordinating the organized and sequential recruitment and activation of cells into -infected lungs. Correct mononuclear cellular recruitment and localization are essential to ensure control of bacterial growth without the development of diffuse and damaging granulocytic inflammation. An important block to our understanding of TB pathogenesis lies in dissecting the critical aspects of the cytokine/chemokine interplay in light of the conditional role these molecules play throughout infection and disease development. Much of the data highlighted in this review appears at first glance to be contradictory, but it is the balance between the cytokines and chemokines that is critical, and the “goldilocks” (not too much and not too little) phenomenon is paramount in any discussion of the role of these molecules in TB. Determination of how the key chemokines/cytokines and their receptors are balanced and how the loss of that balance can promote disease is vital to understanding TB pathogenesis and to identifying novel therapies for effective eradication of this disease.

  • Citation: Domingo-Gonzalez R, Prince O, Cooper A, Khader S. 2016. Cytokines and Chemokines in Infection. Microbiol Spectrum 4(5):TBTB2-0018-2016. doi:10.1128/microbiolspec.TBTB2-0018-2016.


1. Dinarello CA. 2007. Historical insights into cytokines. Eur J Immunol 37(Suppl 1) :S34–S45 http://dx.doi.org/10.1002/eji.200737772. [PubMed][CrossRef]
2. Cooper AM. 2009. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422 http://dx.doi.org/10.1146/annurev.immunol.021908.132703. [PubMed][CrossRef]
3. Flynn JL, Chan J. 2003. Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr Opin Immunol 15:450–455 http://dx.doi.org/10.1016/S0952-7915(03)00075-X. [PubMed][CrossRef]
4. Flynn JL, Chan J. 2001. Immunology of tuberculosis. Annu Rev Immunol 19:93–129 http://dx.doi.org/10.1146/annurev.immunol.19.1.93. [CrossRef]
5. Brites D, Gagneux S. 2015. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev 264:6–24 http://dx.doi.org/10.1111/imr.12264. [PubMed][CrossRef]
6. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S. 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45:1176–1182 http://dx.doi.org/10.1038/ng.2744. [CrossRef]
7. Orme IM, Robinson RT, Cooper AM. 2015. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16:57–63 http://dx.doi.org/10.1038/ni.3048. [PubMed][CrossRef]
8. Dye C, Glaziou P, Floyd K, Raviglione M. 2013. Prospects for tuberculosis elimination. Annu Rev Public Health 34:271–286 http://dx.doi.org/10.1146/annurev-publhealth-031912-114431. [PubMed][CrossRef]
9. Robinson RT, Orme IM, Cooper AM. 2015. The onset of adaptive immunity in the mouse model of tuberculosis and the factors that compromise its expression. Immunol Rev 264:46–59 http://dx.doi.org/10.1111/imr.12259. [PubMed][CrossRef]
10. Wajant H, Pfizenmaier K, Scheurich P. 2003. Tumor necrosis factor signaling. Cell Death Differ 10:45–65 http://dx.doi.org/10.1038/sj.cdd.4401189. [PubMed][CrossRef]
11. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP. 1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729–733 http://dx.doi.org/10.1038/385729a0. [CrossRef]
12. Bazan JF. 1993. Emerging families of cytokines and receptors. Curr Biol 3:603–606 http://dx.doi.org/10.1016/0960-9822(93)90009-D. [CrossRef]
13. Devin A, Lin Y, Yamaoka S, Li Z, Karin M, Liu Zg. 2001. The alpha and beta subunits of IkappaB kinase (IKK) mediate TRAF2-dependent IKK recruitment to tumor necrosis factor (TNF) receptor 1 in response to TNF. Mol Cell Biol 21:3986–3994 http://dx.doi.org/10.1128/MCB.21.12.3986-3994.2001. [PubMed][CrossRef]
14. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. 1996. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4:387–396 http://dx.doi.org/10.1016/S1074-7613(00)80252-6. [PubMed][CrossRef]
15. Hsu H, Xiong J, Goeddel DV. 1995. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81:495–504 http://dx.doi.org/10.1016/0092-8674(95)90070-5. [PubMed][CrossRef]
16. Jiang Y, Woronicz JD, Liu W, Goeddel DV. 1999. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 283:543–546 http://dx.doi.org/10.1126/science.283.5401.543. [PubMed][CrossRef]
17. Naismith JH, Sprang SR. 1998. Modularity in the TNF-receptor family. Trends Biochem Sci 23:74–79 http://dx.doi.org/10.1016/S0968-0004(97)01164-X. [CrossRef]
18. Banner DW, D’Arcy A, Janes W, Gentz R, Schoenfeld HJ, Broger C, Loetscher H, Lesslauer W. 1993. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 73:431–445 http://dx.doi.org/10.1016/0092-8674(93)90132-A. [CrossRef]
19. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ. 2000. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288:2351–2354 http://dx.doi.org/10.1126/science.288.5475.2351. [CrossRef]
20. Faustman DL, Davis M. 2013. TNF Receptor 2 and Disease: Autoimmunity and Regenerative Medicine. Front Immunol 4:478 http://dx.doi.org/10.3389/fimmu.2013.00478. [PubMed][CrossRef]
21. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. 1975. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72:3666–3670 http://dx.doi.org/10.1073/pnas.72.9.3666. [PubMed][CrossRef]
22. Keane J, Balcewicz-Sablinska MK, Remold HG, Chupp GL, Meek BB, Fenton MJ, Kornfeld H. 1997. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 65:298–304. [PubMed]
23. Keane J, Remold HG, Kornfeld H. 2000. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 164:2016–2020 http://dx.doi.org/10.4049/jimmunol.164.4.2016. [CrossRef]
24. Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG. 1998. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol 161:2636–2641. [PubMed]
25. Serbina NV, Flynn JL. 1999. Early emergence of CD8(+) T cells primed for production of type 1 cytokines in the lungs of Mycobacterium tuberculosis-infected mice. Infect Immun 67:3980–3988. [PubMed]
26. Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, Schreiber R, Mak TW, Bloom BR. 1995. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572 http://dx.doi.org/10.1016/1074-7613(95)90001-2. [CrossRef]
27. Algood HM, Lin PL, Flynn JL. 2005. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis 41(Suppl 3) :S189–S193 http://dx.doi.org/10.1086/429994. [PubMed][CrossRef]
28. Roach DR, Bean AG, Demangel C, France MP, Briscoe H, Britton WJ. 2002. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 168:4620–4627 http://dx.doi.org/10.4049/jimmunol.168.9.4620. [CrossRef]
29. Bean AG, Roach DR, Briscoe H, France MP, Korner H, Sedgwick JD, Britton WJ. 1999. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 162:3504–3511. [PubMed]
30. Lin PL, Plessner HL, Voitenok NN, Flynn JL. 2007. Tumor necrosis factor and tuberculosis. J Investig Dermatol Symp Proc 12:22–25 http://dx.doi.org/10.1038/sj.jidsymp.5650027. [PubMed][CrossRef]
31. Kindler V, Sappino AP, Grau GE, Piguet PF, Vassalli P. 1989. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56:731–740 http://dx.doi.org/10.1016/0092-8674(89)90676-4. [PubMed][CrossRef]
32. Farber JM. 1997. Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 61:246–257. [PubMed]
33. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K. 1998. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187:2009–2021 http://dx.doi.org/10.1084/jem.187.12.2009. [CrossRef]
34. Griffith JW, Sokol CL, Luster AD. 2014. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702 http://dx.doi.org/10.1146/annurev-immunol-032713-120145. [PubMed][CrossRef]
35. Saunders BM, Britton WJ. 2007. Life and death in the granuloma: immunopathology of tuberculosis. Immunol Cell Biol 85:103–111 http://dx.doi.org/10.1038/sj.icb.7100027. [PubMed][CrossRef]
36. Lynch K, Farrell M. 2010. Cerebral tuberculoma in a patient receiving anti-TNF alpha (adalimumab) treatment. Clin Rheumatol 29:1201–1204 http://dx.doi.org/10.1007/s10067-010-1466-7. [PubMed][CrossRef]
37. Seong SS, Choi CB, Woo JH, Bae KW, Joung CL, Uhm WS, Kim TH, Jun JB, Yoo DH, Lee JT, Bae SC. 2007. Incidence of tuberculosis in Korean patients with rheumatoid arthritis (RA): effects of RA itself and of tumor necrosis factor blockers. J Rheumatol 34:706–711. [PubMed]
38. Be NA, Kim KS, Bishai WR, Jain SK. 2009. Pathogenesis of central nervous system tuberculosis. Curr Mol Med 9:94–99 http://dx.doi.org/10.2174/156652409787581655. [PubMed][CrossRef]
39. Leonard JM, Des Prez RM. 1990. Tuberculous meningitis. Infect Dis Clin North Am 4:769–787. [PubMed]
40. Tsenova L, Bergtold A, Freedman VH, Young RA, Kaplan G. 1999. Tumor necrosis factor alpha is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system. Proc Natl Acad Sci USA 96:5657–5662 http://dx.doi.org/10.1073/pnas.96.10.5657. [PubMed][CrossRef]
41. Francisco NM, Hsu NJ, Keeton R, Randall P, Sebesho B, Allie N, Govender D, Quesniaux V, Ryffel B, Kellaway L, Jacobs M. 2015. TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis. J Neuroinflammation 12:125 http://dx.doi.org/10.1186/s12974-015-0345-1. [CrossRef]
42. Mohan VP, Scanga CA, Yu K, Scott HM, Tanaka KE, Tsang E, Tsai MM, Flynn JL, Chan J. 2001. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect Immun 69:1847–1855 http://dx.doi.org/10.1128/IAI.69.3.1847-1855.2001. [CrossRef]
43. Feldmann M. 2002. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2:364–371 http://dx.doi.org/10.1038/nri802. [PubMed][CrossRef]
44. Peyrin-Biroulet L. 2010. Anti-TNF therapy in inflammatory bowel diseases: a huge review. Minerva Gastroenterol Dietol 56:233–243. [PubMed]
45. Shaikha SA, Mansour K, Riad H. 2012. Reactivation of tuberculosis in three cases of psoriasis after initiation of anti-TNF therapy. Case Rep Dermatol 4:41–46 http://dx.doi.org/10.1159/000337145. [PubMed][CrossRef]
46. Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, Siegel JN, Braun MM. 2001. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345:1098–1104 http://dx.doi.org/10.1056/NEJMoa011110. [CrossRef]
47. Keane J. 2005. TNF-blocking agents and tuberculosis: new drugs illuminate an old topic. Rheumatology (Oxford) 44:714–720 http://dx.doi.org/10.1093/rheumatology/keh567. [PubMed][CrossRef]
48. Raval A, Akhavan-Toyserkani G, Brinker A, Avigan M. 2007. Brief communication: characteristics of spontaneous cases of tuberculosis associated with infliximab. Ann Intern Med 147:699–702 http://dx.doi.org/10.7326/0003-4819-147-10-200711200-00006. [CrossRef]
49. Gómez-Reino JJ, Carmona L, Valverde VR, Mola EM, Montero MD, BIOBADASER Group. 2003. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report. Arthritis Rheum 48:2122–2127 http://dx.doi.org/10.1002/art.11137. [CrossRef]
50. Dixon WG, Watson K, Lunt M, Hyrich KL, Silman AJ, Symmons DP, British Society for Rheumatology Biologics Register. 2006. Rates of serious infection, including site-specific and bacterial intracellular infection, in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum 54:2368–2376 http://dx.doi.org/10.1002/art.21978.
51. Askling J, Fored CM, Brandt L, Baecklund E, Bertilsson L, Cöster L, Geborek P, Jacobsson LT, Lindblad S, Lysholm J, Rantapää-Dahlqvist S, Saxne T, Romanus V, Klareskog L, Feltelius N. 2005. Risk and case characteristics of tuberculosis in rheumatoid arthritis associated with tumor necrosis factor antagonists in Sweden. Arthritis Rheum 52:1986–1992 http://dx.doi.org/10.1002/art.21137. [CrossRef]
52. Tubach F, Salmon D, Ravaud P, Allanore Y, Goupille P, Bréban M, Pallot-Prades B, Pouplin S, Sacchi A, Chichemanian RM, Bretagne S, Emilie D, Lemann M, Lortholary O, Mariette X; Research Axed on Tolerance of Biotherapies Group. 2009. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: the three-year prospective French Research Axed on Tolerance of Biotherapies registry. Arthritis Rheum 60:1884–1894. (Erratum 60:2540.) http://dx.doi.org/10.1002/art.24632. [CrossRef]
53. Fallahi-Sichani M, Flynn JL, Linderman JJ, Kirschner DE. 2012. Differential risk of tuberculosis reactivation among anti-TNF therapies is due to drug binding kinetics and permeability. J Immunol 188:3169–3178 http://dx.doi.org/10.4049/jimmunol.1103298. [PubMed][CrossRef]
54. Bruns H, Meinken C, Schauenberg P, Härter G, Kern P, Modlin RL, Antoni C, Stenger S. 2009. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest 119:1167–1177 http://dx.doi.org/10.1172/JCI38482. [CrossRef]
55. Lin PL, Myers A, Smith LK, Bigbee C, Bigbee M, Fuhrman C, Grieser H, Chiosea I, Voitenek NN, Capuano SV, Klein E, Flynn JL. 2010. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 62:340–350. [PubMed]
56. Clay H, Volkman HE, Ramakrishnan L. 2008. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29:283–294 http://dx.doi.org/10.1016/j.immuni.2008.06.011. [CrossRef]
57. Harari A, Rozot V, Bellutti Enders F, Perreau M, Stalder JM, Nicod LP, Cavassini M, Calandra T, Blanchet CL, Jaton K, Faouzi M, Day CL, Hanekom WA, Bart PA, Pantaleo G. 2011. Dominant TNF-α+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med 17:372–376 http://dx.doi.org/10.1038/nm.2299. [CrossRef]
58. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189 http://dx.doi.org/10.1189/jlb.0603252. [PubMed][CrossRef]
59. Greenlund AC, Farrar MA, Viviano BL, Schreiber RD. 1994. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO J 13:1591–1600. [PubMed]
60. Kovarik P, Stoiber D, Novy M, Decker T. 1998. Stat1 combines signals derived from IFN-gamma and LPS receptors during macrophage activation. EMBO J 17:3660–3668 http://dx.doi.org/10.1093/emboj/17.13.3660. [PubMed][CrossRef]
61. Frucht DM, Fukao T, Bogdan C, Schindler H, O’Shea JJ, Koyasu S. 2001. IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol 22:556–560 http://dx.doi.org/10.1016/S1471-4906(01)02005-1. [CrossRef]
62. Reed JM, Branigan PJ, Bamezai A. 2008. Interferon gamma enhances clonal expansion and survival of CD4+ T cells. J Interferon Cytokine Res 28:611–622 http://dx.doi.org/10.1089/jir.2007.0145. [PubMed][CrossRef]
63. Munder M, Mallo M, Eichmann K, Modolell M. 1998. Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 187:2103–2108 http://dx.doi.org/10.1084/jem.187.12.2103. [CrossRef]
64. Otani T, Nakamura S, Toki M, Motoda R, Kurimoto M, Orita K. 1999. Identification of IFN-gamma-producing cells in IL-12/IL-18-treated mice. Cell Immunol 198:111–119 http://dx.doi.org/10.1006/cimm.1999.1589. [PubMed][CrossRef]
65. Zhang SY, Boisson-Dupuis S, Chapgier A, Yang K, Bustamante J, Puel A, Picard C, Abel L, Jouanguy E, Casanova JL. 2008. Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-alpha/beta, IFN-gamma, and IFN-lambda in host defense. Immunol Rev 226:29–40 http://dx.doi.org/10.1111/j.1600-065X.2008.00698.x.
66. Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J, Jouanguy E, Boisson-Dupuis S, Fieschi C, Picard C, Casanova JL. 2006. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 18:347–361 http://dx.doi.org/10.1016/j.smim.2006.07.010. [CrossRef]
67. Sologuren I, Boisson-Dupuis S, Pestano J, Vincent QB, Fernández-Pérez L, Chapgier A, Cárdenes M, Feinberg J, García-Laorden MI, Picard C, Santiago E, Kong X, Jannière L, Colino E, Herrera-Ramos E, Francés A, Navarrete C, Blanche S, Faria E, Remiszewski P, Cordeiro A, Freeman A, Holland S, Abarca K, Valerón-Lemaur M, Gonçalo-Marques J, Silveira L, García-Castellano JM, Caminero J, Pérez-Arellano JL, Bustamante J, Abel L, Casanova J-L, Rodríguez-Gallego C. 2011. Partial recessive IFN-γR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum Mol Genet 20:1509–1523 http://dx.doi.org/10.1093/hmg/ddr029. [CrossRef]
68. Vogt G, Chapgier A, Yang K, Chuzhanova N, Feinberg J, Fieschi C, Boisson-Dupuis S, Alcais A, Filipe-Santos O, Bustamante J, de Beaucoudrey L, Al-Mohsen I, Al-Hajjar S, Al-Ghonaium A, Adimi P, Mirsaeidi M, Khalilzadeh S, Rosenzweig S, de la Calle Martin O, Bauer TR, Puck JM, Ochs HD, Furthner D, Engelhorn C, Belohradsky B, Mansouri D, Holland SM, Schreiber RD, Abel L, Cooper DN, Soudais C, Casanova JL. 2005. Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nat Genet 37:692–700 http://dx.doi.org/10.1038/ng1581. [CrossRef]
69. Dorman SE, Holland SM. 1998. Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest 101:2364–2369 http://dx.doi.org/10.1172/JCI2901. [CrossRef]
70. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. 1993. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178:2243–2247 http://dx.doi.org/10.1084/jem.178.6.2243. [PubMed][CrossRef]
71. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. 1993. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254 http://dx.doi.org/10.1084/jem.178.6.2249. [PubMed][CrossRef]
72. Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA. 1993. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259:1739–1742 http://dx.doi.org/10.1126/science.8456300. [PubMed][CrossRef]
73. Russell DG. 2001. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2:569–586 http://dx.doi.org/10.1038/35085034. [PubMed][CrossRef]
74. Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. 2001. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med 193:271–280 http://dx.doi.org/10.1084/jem.193.3.271. [CrossRef]
75. Green AM, Difazio R, Flynn JL. 2013. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J Immunol 190:270–277 http://dx.doi.org/10.4049/jimmunol.1200061. [CrossRef]
76. Gallegos AM, van Heijst JW, Samstein M, Su X, Pamer EG, Glickman MS. 2011. A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLoS Pathog 7:e1002052 http://dx.doi.org/10.1371/journal.ppat.1002052. [CrossRef]
77. Caruso AM, Serbina N, Klein E, Triebold K, Bloom BR, Flynn JL. 1999. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol 162:5407–5416. [PubMed]
78. Saunders BM, Frank AA, Orme IM, Cooper AM. 2002. CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell Immunol 216:65–72 http://dx.doi.org/10.1016/S0008-8749(02)00510-5. [PubMed][CrossRef]
79. Serbina NV, Lazarevic V, Flynn JL. 2001. CD4(+) T cells are required for the development of cytotoxic CD8(+) T cells during Mycobacterium tuberculosis infection. J Immunol 167:6991–7000 http://dx.doi.org/10.4049/jimmunol.167.12.6991. [PubMed][CrossRef]
80. Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD, Masopust D, Barber DL. 2014. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J Immunol 192:2965–2969 http://dx.doi.org/10.4049/jimmunol.1400019.
81. Moguche AO, Shafiani S, Clemons C, Larson RP, Dinh C, Higdon LE, Cambier CJ, Sissons JR, Gallegos AM, Fink PJ, Urdahl KB. 2015. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med 212:715–728 http://dx.doi.org/10.1084/jem.20141518. [CrossRef]
82. Torrado E, Fountain JJ, Liao M, Tighe M, Reiley WW, Lai RP, Meintjes G, Pearl JE, Chen X, Zak DE, Thompson EG, Aderem A, Ghilardi N, Solache A, McKinstry KK, Strutt TM, Wilkinson RJ, Swain SL, Cooper AM. 2015. Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection. J Exp Med 212:1449–1463 http://dx.doi.org/10.1084/jem.20141520. [CrossRef]
83. Keller C, Hoffmann R, Lang R, Brandau S, Hermann C, Ehlers S. 2006. Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun 74:4295–4309 http://dx.doi.org/10.1128/IAI.00057-06. [CrossRef]
84. Eruslanov EB, Lyadova IV, Kondratieva TK, Majorov KB, Scheglov IV, Orlova MO, Apt AS. 2005. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun 73:1744–1753 http://dx.doi.org/10.1128/IAI.73.3.1744-1753.2005. [CrossRef]
85. Majorov KB, Eruslanov EB, Rubakova EI, Kondratieva TK, Apt AS. 2005. Analysis of cellular phenotypes that mediate genetic resistance to tuberculosis using a radiation bone marrow chimera approach. Infect Immun 73:6174–6178 http://dx.doi.org/10.1128/IAI.73.9.6174-6178.2005. [CrossRef]
86. Mitsos LM, Cardon LR, Fortin A, Ryan L, LaCourse R, North RJ, Gros P. 2000. Genetic control of susceptibility to infection with Mycobacterium tuberculosis in mice. Genes Immun 1:467–477 http://dx.doi.org/10.1038/sj.gene.6363712. [PubMed][CrossRef]
87. Nandi B, Behar SM. 2011. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J Exp Med 208:2251–2262 http://dx.doi.org/10.1084/jem.20110919. [PubMed][CrossRef]
88. Desvignes L, Ernst JD. 2009. Interferon-γ-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 31:974–985 http://dx.doi.org/10.1016/j.immuni.2009.10.007. [CrossRef]
89. Stefan DC, Dippenaar A, Detjen AK, Schaaf HS, Marais BJ, Kriel B, Loebenberg L, Walzl G, Hesseling AC. 2010. Interferon-gamma release assays for the detection of Mycobacterium tuberculosis infection in children with cancer. Int J Tuberc Lung Dis 14:689–694. [PubMed]
90. Abu-Taleb AM, El-Sokkary RH, El Tarhouny SA. 2011. Interferon-gamma release assay for detection of latent tuberculosis infection in casual and close contacts of tuberculosis cases. East Mediterr Health J 17:749–753. [PubMed]
91. Ferrara G, Losi M, D’Amico R, Cagarelli R, Pezzi AM, Meacci M, Meccugni B, Marchetti Dori I, Rumpianesi F, Roversi P, Casali L, Fabbri LM, Richeldi L. 2009. Interferon-gamma-release assays detect recent tuberculosis re-infection in elderly contacts. Int J Immunopathol Pharmacol 22:669–677. [PubMed]
92. Diel R, Loddenkemper R, Niemann S, Meywald-Walter K, Nienhaus A. 2011. Negative and positive predictive value of a whole-blood interferon-γ release assay for developing active tuberculosis: an update. Am J Respir Crit Care Med 183:88–95 http://dx.doi.org/10.1164/rccm.201006-0974OC. [CrossRef]
93. Isaacs A, Lindenmann J. 1957. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147:258–267 http://dx.doi.org/10.1098/rspb.1957.0048. [CrossRef]
94. McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. 2015. Type I interferons in infectious disease. Nat Rev Immunol 15:87–103 http://dx.doi.org/10.1038/nri3787. [PubMed][CrossRef]
95. Honda K, Takaoka A, Taniguchi T. 2006. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25:349–360 http://dx.doi.org/10.1016/j.immuni.2006.08.009. [CrossRef]
96. Cooper AM, Pearl JE, Brooks JV, Ehlers S, Orme IM. 2000. Expression of the nitric oxide synthase 2 gene is not essential for early control of Mycobacterium tuberculosis in the murine lung. Infect Immun 68:6879–6882 http://dx.doi.org/10.1128/IAI.68.12.6879-6882.2000. [CrossRef]
97. Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser JM, Barry CE III, Freedman VH, Kaplan G. 2001. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha/beta. Proc Natl Acad Sci USA 98:5752–5757 http://dx.doi.org/10.1073/pnas.091096998. [CrossRef]
98. Ordway D, Henao-Tamayo M, Harton M, Palanisamy G, Troudt J, Shanley C, Basaraba RJ, Orme IM. 2007. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J Immunol 179:522–531 http://dx.doi.org/10.4049/jimmunol.179.1.522. [CrossRef]
99. McNab FW, Ewbank J, Howes A, Moreira-Teixeira L, Martirosyan A, Ghilardi N, Saraiva M, O’Garra A. 2014. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J Immunol 193:3600–3612 http://dx.doi.org/10.4049/jimmunol.1401088. [CrossRef]
100. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, Quinn C, Blankenship D, Dhawan R, Cush JJ, Mejias A, Ramilo O, Kon OM, Pascual V, Banchereau J, Chaussabel D, O’Garra A. 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–977 http://dx.doi.org/10.1038/nature09247. [CrossRef]
101. Antonelli LR, Gigliotti Rothfuchs A, Gonçalves R, Roffê E, Cheever AW, Bafica A, Salazar AM, Feng CG, Sher A. 2010. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120:1674–1682 http://dx.doi.org/10.1172/JCI40817. [CrossRef]
102. Desvignes L, Wolf AJ, Ernst JD. 2012. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J Immunol 188:6205–6215 http://dx.doi.org/10.4049/jimmunol.1200255. [PubMed][CrossRef]
103. Van Snick J. 1990. Interleukin-6: an overview. Annu Rev Immunol 8:253–278 http://dx.doi.org/10.1146/annurev.iy.08.040190.001345. [PubMed][CrossRef]
104. Shalaby MR, Waage A, Espevik T. 1989. Cytokine regulation of interleukin 6 production by human endothelial cells. Cell Immunol 121:372–382 http://dx.doi.org/10.1016/0008-8749(89)90036-1. [PubMed][CrossRef]
105. Sanceau J, Beranger F, Gaudelet C, Wietzerbin J. 1989. IFN-gamma is an essential cosignal for triggering IFN-beta 2/BSF-2/IL-6 gene expression in human monocytic cell lines. Ann N Y Acad Sci 557:130–143, discussion 141–143 http://dx.doi.org/10.1111/j.1749-6632.1989.tb24006.x. [PubMed][CrossRef]
106. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. 2003. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20 http://dx.doi.org/10.1042/bj20030407. [PubMed][CrossRef]
107. Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. 1998. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334:297–314 http://dx.doi.org/10.1042/bj3340297. [PubMed][CrossRef]
108. Ladel CH, Blum C, Dreher A, Reifenberg K, Kopf M, Kaufmann SH. 1997. Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect Immun 65:4843–4849. [PubMed]
109. Appelberg R, Castro AG, Pedrosa J, Minóprio P. 1994. Role of interleukin-6 in the induction of protective T cells during mycobacterial infections in mice. Immunology 82:361–364. [PubMed]
110. Saunders BM, Frank AA, Orme IM, Cooper AM. 2000. Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect Immun 68:3322–3326 http://dx.doi.org/10.1128/IAI.68.6.3322-3326.2000. [CrossRef]
111. Leal IS, Smedegârd B, Andersen P, Appelberg R. 1999. Interleukin-6 and interleukin-12 participate in induction of a type 1 protective T-cell response during vaccination with a tuberculosis subunit vaccine. Infect Immun 67:5747–5754. [PubMed]
112. Atreya R, Neurath MF. 2005. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol 28:187–196 http://dx.doi.org/10.1385/CRIAI:28:3:187. [PubMed][CrossRef]
113. Sodenkamp J, Waetzig GH, Scheller J, Seegert D, Grötzinger J, Rose-John S, Ehlers S, Hölscher C. 2012. Therapeutic targeting of interleukin-6 trans-signaling does not affect the outcome of experimental tuberculosis. Immunobiology 217:996–1004 http://dx.doi.org/10.1016/j.imbio.2012.01.015. [PubMed][CrossRef]
114. Nolan A, Condos R, Huie ML, Dawson R, Dheda K, Bateman E, Rom WN, Weiden MD. 2013. Elevated IP-10 and IL-6 from bronchoalveolar lavage cells are biomarkers of non-cavitary tuberculosis. Int J Tuberc Lung Dis 17:922–927 http://dx.doi.org/10.5588/ijtld.12.0610. [PubMed][CrossRef]
115. el-Ahmady O, Mansour M, Zoeir H, Mansour O. 1997. Elevated concentrations of interleukins and leukotriene in response to Mycobacterium tuberculosis infection. Ann Clin Biochem 34:160–164 http://dx.doi.org/10.1177/000456329703400205. [CrossRef]
116. Dinarello CA. 1991. Interleukin-1 and interleukin-1 antagonism. Blood 77:1627–1652. [PubMed]
117. Menkin V. 1943. The effect of the leukocytosis-promoting factor on the growth of cells in the bone marrow. Am J Pathol 19:1021–1029. [PubMed]
118. Menkin V. 1943. Studies on the isolation of the factor responsible for tissue injury in inflammation. Science 97:165–167 http://dx.doi.org/10.1126/science.97.2511.165. [PubMed][CrossRef]
119. Menkin V. 1944. Chemical basis of fever. Science 100:337–338 http://dx.doi.org/10.1126/science.100.2598.337. [PubMed][CrossRef]
120. Gross O, Yazdi AS, Thomas CJ, Masin M, Heinz LX, Guarda G, Quadroni M, Drexler SK, Tschopp J. 2012. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36:388–400 http://dx.doi.org/10.1016/j.immuni.2012.01.018. [CrossRef]
121. Sansonetti PJ, Phalipon A, Arondel J, Thirumalai K, Banerjee S, Akira S, Takeda K, Zychlinsky A. 2000. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12:581–590 http://dx.doi.org/10.1016/S1074-7613(00)80209-5. [PubMed][CrossRef]
122. Latz E, Xiao TS, Stutz A. 2013. Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411 http://dx.doi.org/10.1038/nri3452. [PubMed][CrossRef]
123. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM. 2011. Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121 http://dx.doi.org/10.1038/nature10558. [CrossRef]
124. Bossaller L, Chiang PI, Schmidt-Lauber C, Ganesan S, Kaiser WJ, Rathinam VA, Mocarski ES, Subramanian D, Green DR, Silverman N, Fitzgerald KA, Marshak-Rothstein A, Latz E. 2012. Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J Immunol 189:5508–5512 http://dx.doi.org/10.4049/jimmunol.1202121. [CrossRef]
125. Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. 2007. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13:851–856 http://dx.doi.org/10.1038/nm1603. [CrossRef]
126. Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, Voronov E, White MR, Dinarello CA, Apte RN. 2011. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol 187:4835–4843 http://dx.doi.org/10.4049/jimmunol.1102048. [CrossRef]
127. Berda-Haddad Y, Robert S, Salers P, Zekraoui L, Farnarier C, Dinarello CA, Dignat-George F, Kaplanski G. 2011. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α. Proc Natl Acad Sci USA 108:20684–20689 http://dx.doi.org/10.1073/pnas.1116848108. [PubMed][CrossRef]
128. Botelho FM, Bauer CM, Finch D, Nikota JK, Zavitz CC, Kelly A, Lambert KN, Piper S, Foster ML, Goldring JJ, Wedzicha JA, Bassett J, Bramson J, Iwakura Y, Sleeman M, Kolbeck R, Coyle AJ, Humbles AA, Stämpfli MR. 2011. IL-1α/IL-1R1 expression in chronic obstructive pulmonary disease and mechanistic relevance to smoke-induced neutrophilia in mice. PLoS One 6:e28457 http://dx.doi.org/10.1371/journal.pone.0028457. [CrossRef]
129. Freigang S, Ampenberger F, Weiss A, Kanneganti T-D, Iwakura Y, Hersberger M, Kopf M. 2013. Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1α and sterile vascular inflammation in atherosclerosis. Nat Immunol 14:1045–1053 http://dx.doi.org/10.1038/ni.2704. [CrossRef]
130. Barry KC, Fontana MF, Portman JL, Dugan AS, Vance RE. 2013. IL-1α signaling initiates the inflammatory response to virulent Legionella pneumophila in vivo. J Immunol 190:6329–6339 http://dx.doi.org/10.4049/jimmunol.1300100. [CrossRef]
131. Biondo C, Mancuso G, Midiri A, Signorino G, Domina M, Lanza Cariccio V, Mohammadi N, Venza M, Venza I, Teti G, Beninati C. 2014. The interleukin-1β/CXCL1/2/neutrophil axis mediates host protection against group B streptococcal infection. Infect Immun 82:4508–4517 http://dx.doi.org/10.1128/IAI.02104-14. [CrossRef]
132. Guo H, Gao J, Taxman DJ, Ting JP, Su L. 2014. HIV-1 infection induces interleukin-1β production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J Biol Chem 289:21716–21726 http://dx.doi.org/10.1074/jbc.M114.566620. [CrossRef]
133. Rynko AE, Fryer AD, Jacoby DB. 2014. Interleukin-1β mediates virus-induced m2 muscarinic receptor dysfunction and airway hyperreactivity. Am J Respir Cell Mol Biol 51:494–501 http://dx.doi.org/10.1165/rcmb.2014-0009OC. [PubMed][CrossRef]
134. Shigematsu Y, Niwa T, Rehnberg E, Toyoda T, Yoshida S, Mori A, Wakabayashi M, Iwakura Y, Ichinose M, Kim YJ, Ushijima T. 2013. Interleukin-1β induced by Helicobacter pylori infection enhances mouse gastric carcinogenesis. Cancer Lett 340:141–147 http://dx.doi.org/10.1016/j.canlet.2013.07.034. [CrossRef]
135. Dinarello CA. 2011. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117:3720–3732 http://dx.doi.org/10.1182/blood-2010-07-273417. [PubMed][CrossRef]
136. Konsman JP, Vigues S, Mackerlova L, Bristow A, Blomqvist A. 2004. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J Comp Neurol 472:113–129 http://dx.doi.org/10.1002/cne.20052. [CrossRef]
137. Marshall JD, Aste-Amézaga M, Chehimi SS, Murphy M, Olsen H, Trinchieri G. 1999. Regulation of human IL-18 mRNA expression. Clin Immunol 90:15–21 http://dx.doi.org/10.1006/clim.1998.4633. [PubMed][CrossRef]
138. Puren AJ, Fantuzzi G, Dinarello CA. 1999. Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci USA 96:2256–2261 http://dx.doi.org/10.1073/pnas.96.5.2256. [CrossRef]
139. Sugawara S, Uehara A, Nochi T, Yamaguchi T, Ueda H, Sugiyama A, Hanzawa K, Kumagai K, Okamura H, Takada H. 2001. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol 167:6568–6575 http://dx.doi.org/10.4049/jimmunol.167.11.6568. [PubMed][CrossRef]
140. Dinarello CA, Novick D, Kim S, Kaplanski G. 2013. Interleukin-18 and IL-18 binding protein. Front Immunol 4:289 http://dx.doi.org/10.3389/fimmu.2013.00289. [PubMed][CrossRef]
141. Hölscher C, Reiling N, Schaible UE, Hölscher A, Bathmann C, Korbel D, Lenz I, Sonntag T, Kröger S, Akira S, Mossmann H, Kirschning CJ, Wagner H, Freudenberg M, Ehlers S. 2008. Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur J Immunol 38:680–694 http://dx.doi.org/10.1002/eji.200736458. [CrossRef]
142. O’Neill LA, Bowie AG. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364 http://dx.doi.org/10.1038/nri2079. [PubMed][CrossRef]
143. Fremond CM, Yeremeev V, Nicolle DM, Jacobs M, Quesniaux VF, Ryffel B. 2004. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest 114:1790–1799 http://dx.doi.org/10.1172/JCI200421027. [CrossRef]
144. Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I, Jacobs M, Ryffel B, Quesniaux VF. 2007. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol 179:1178–1189 http://dx.doi.org/10.4049/jimmunol.179.2.1178. [CrossRef]
145. Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG, Caspar P, Oland S, Gordon S, Sher A. 2011. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35:1023–1034 http://dx.doi.org/10.1016/j.immuni.2011.12.002. [CrossRef]
146. Bourigault ML, Segueni N, Rose S, Court N, Vacher R, Vasseur V, Erard F, Le Bert M, Garcia I, Iwakura Y, Jacobs M, Ryffel B, Quesniaux VF. 2013. Relative contribution of IL-1α, IL-1β and TNF to the host response to Mycobacterium tuberculosis and attenuated M. bovis BCG. Immun Inflamm Dis 1:47–62 http://dx.doi.org/10.1002/iid3.9. [CrossRef]
147. Di Paolo NC, Shafiani S, Day T, Papayannopoulou T, Russell DW, Iwakura Y, Sherman D, Urdahl K, Shayakhmetov DM. 2015. Interdependence between interleukin-1 and tumor necrosis factor regulates TNF-dependent control of Mycobacterium tuberculosis infection. Immunity 43:1125–1136. (Erratum: 44:438.) http://dx.doi.org/10.1016/j.immuni.2015.11.016.
148. Guler R, Parihar SP, Spohn G, Johansen P, Brombacher F, Bachmann MF. 2011. Blocking IL-1α but not IL-1β increases susceptibility to chronic Mycobacterium tuberculosis infection in mice. Vaccine 29:1339–1346 http://dx.doi.org/10.1016/j.vaccine.2010.10.045. [CrossRef]
149. Gopal R, Monin L, Slight S, Uche U, Blanchard E, Fallert Junecko BA, Ramos-Payan R, Stallings CL, Reinhart TA, Kolls JK, Kaushal D, Nagarajan U, Rangel-Moreno J, Khader SA. 2014. Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLoS Pathog 10:e1004099 http://dx.doi.org/10.1371/journal.ppat.1004099. [CrossRef]
150. Schneider BE, Korbel D, Hagens K, Koch M, Raupach B, Enders J, Kaufmann SH, Mittrücker HW, Schaible UE. 2010. A role for IL-18 in protective immunity against Mycobacterium tuberculosis. Eur J Immunol 40:396–405 http://dx.doi.org/10.1002/eji.200939583. [CrossRef]
151. Suwara MI, Green NJ, Borthwick LA, Mann J, Mayer-Barber KD, Barron L, Corris PA, Farrow SN, Wynn TA, Fisher AJ, Mann DA. 2014. IL-1α released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunol 7:684–693 http://dx.doi.org/10.1038/mi.2013.87. [CrossRef]
152. Fielding CA, McLoughlin RM, McLeod L, Colmont CS, Najdovska M, Grail D, Ernst M, Jones SA, Topley N, Jenkins BJ. 2008. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J Immunol 181:2189–2195 http://dx.doi.org/10.4049/jimmunol.181.3.2189. [CrossRef]
153. Lalor SJ, Dungan LS, Sutton CE, Basdeo SA, Fletcher JM, Mills KH. 2011. Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity. J Immunol 186:5738–5748 http://dx.doi.org/10.4049/jimmunol.1003597.
154. Dunne A, Ross PJ, Pospisilova E, Masin J, Meaney A, Sutton CE, Iwakura Y, Tschopp J, Sebo P, Mills KH. 2010. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J Immunol 185:1711–1719 http://dx.doi.org/10.4049/jimmunol.1000105. [CrossRef]
155. Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, Ma L, Watowich SS, Jetten AM, Tian Q, Dong C. 2009. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30:576–587 http://dx.doi.org/10.1016/j.immuni.2009.02.007. [CrossRef]
156. Monin L, Griffiths KL, Slight S, Lin Y, Rangel-Moreno J, Khader SA. 2015. Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge. Mucosal Immunol 8:1099–1109 http://dx.doi.org/10.1038/mi.2014.136. [CrossRef]
157. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL, Locksley RM, Haynes L, Randall TD, Cooper AM. 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8:369–377 http://dx.doi.org/10.1038/ni1449. [CrossRef]
158. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, Derrick SC, Shi R, Kumar NP, Wei W, Yuan X, Zhang G, Cai Y, Babu S, Catalfamo M, Salazar AM, Via LE, Barry CE III, Sher A. 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511:99–103 http://dx.doi.org/10.1038/nature13489. [CrossRef]
159. Tominaga K, Yoshimoto T, Torigoe K, Kurimoto M, Matsui K, Hada T, Okamura H, Nakanishi K. 2000. IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells. Int Immunol 12:151–160 http://dx.doi.org/10.1093/intimm/12.2.151. [PubMed][CrossRef]
160. Okamura H, Kashiwamura S, Tsutsui H, Yoshimoto T, Nakanishi K. 1998. Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol 10:259–264 http://dx.doi.org/10.1016/S0952-7915(98)80163-5. [PubMed][CrossRef]
161. Bohn E, Sing A, Zumbihl R, Bielfeldt C, Okamura H, Kurimoto M, Heesemann J, Autenrieth IB. 1998. IL-18 (IFN-gamma-inducing factor) regulates early cytokine production in, and promotes resolution of, bacterial infection in mice. J Immunol 160:299–307. [PubMed]
162. Sugawara I, Yamada H, Kaneko H, Mizuno S, Takeda K, Akira S. 1999. Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice. Infect Immun 67:2585–2589. [PubMed]
163. Kinjo Y, Kawakami K, Uezu K, Yara S, Miyagi K, Koguchi Y, Hoshino T, Okamoto M, Kawase Y, Yokota K, Yoshino K, Takeda K, Akira S, Saito A. 2002. Contribution of IL-18 to Th1 response and host defense against infection by Mycobacterium tuberculosis: a comparative study with IL-12p40. J Immunol 169:323–329 http://dx.doi.org/10.4049/jimmunol.169.1.323. [CrossRef]
164. Jones LL, Vignali DA. 2011. Molecular interactions within the IL-6/IL-12 cytokine/receptor superfamily. Immunol Res 51:5–14 http://dx.doi.org/10.1007/s12026-011-8209-y. [CrossRef]
165. Collison LW, Vignali DA. 2008. Interleukin-35: odd one out or part of the family? Immunol Rev 226:248–262 http://dx.doi.org/10.1111/j.1600-065X.2008.00704.x. [PubMed][CrossRef]
166. Vignali DA, Kuchroo VK. 2012. IL-12 family cytokines: immunological playmakers. Nat Immunol 13:722–728 http://dx.doi.org/10.1038/ni.2366. [PubMed][CrossRef]
167. Méndez-Samperio P. 2010. Role of interleukin-12 family cytokines in the cellular response to mycobacterial disease. Int J Infect Dis 14:e366–e371 http://dx.doi.org/10.1016/j.ijid.2009.06.022. [CrossRef]
168. Hunter CA. 2005. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 5:521–531 http://dx.doi.org/10.1038/nri1648. [PubMed][CrossRef]
169. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, Trinchieri G. 1989. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 170:827–845 http://dx.doi.org/10.1084/jem.170.3.827. [CrossRef]
170. Gately MK, et al. 1991. Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J Immunol 147:874–882. [PubMed]
171. Ma X, Trinchieri G. 2001. Regulation of interleukin-12 production in antigen-presenting cells. Adv Immunol 79:55–92 http://dx.doi.org/10.1016/S0065-2776(01)79002-5. [CrossRef]
172. O’Shea JJ, Paul WE. 2002. Regulation of T(H)1 differentiation--controlling the controllers. Nat Immunol 3:506–508 http://dx.doi.org/10.1038/ni0602-506. [PubMed][CrossRef]
173. Ozbek N, Fieschi C, Yilmaz BT, de Beaucoudrey L, Demirhan B, Feinberg J, Bikmaz YE, Casanova JL. 2005. Interleukin-12 receptor beta 1 chain deficiency in a child with disseminated tuberculosis. Clin Infect Dis 40:e55–e58 http://dx.doi.org/10.1086/427879. [PubMed][CrossRef]
174. Dorman SE, Holland SM. 2000. Interferon-gamma and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev 11:321–333 http://dx.doi.org/10.1016/S1359-6101(00)00010-1. [PubMed][CrossRef]
175. Picard C, Fieschi C, Altare F, Al-Jumaah S, Al-Hajjar S, Feinberg J, Dupuis S, Soudais C, Al-Mohsen IZ, Génin E, Lammas D, Kumararatne DS, Leclerc T, Rafii A, Frayha H, Murugasu B, Wah LB, Sinniah R, Loubser M, Okamoto E, Al-Ghonaium A, Tufenkeji H, Abel L, Casanova JL. 2002. Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet 70:336–348 http://dx.doi.org/10.1086/338625. [CrossRef]
176. Altare F, Ensser A, Breiman A, Reichenbach J, Baghdadi JE, Fischer A, Emile JF, Gaillard JL, Meinl E, Casanova JL. 2001. Interleukin-12 receptor beta1 deficiency in a patient with abdominal tuberculosis. J Infect Dis 184:231–236 http://dx.doi.org/10.1086/321999. [PubMed][CrossRef]
177. Caragol I, Raspall M, Fieschi C, Feinberg J, Larrosa MN, Hernández M, Figueras C, Bertrán JM, Casanova JL, Español T. 2003. Clinical tuberculosis in 2 of 3 siblings with interleukin-12 receptor beta1 deficiency. Clin Infect Dis 37:302–306 http://dx.doi.org/10.1086/375587. [PubMed][CrossRef]
178. Casanova JL, Abel L. 2002. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620 http://dx.doi.org/10.1146/annurev.immunol.20.081501.125851. [PubMed][CrossRef]
179. Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, Salem S, Radovanovic I, Grant AV, Adimi P, Mansouri N, Okada S, Bryant VL, Kong XF, Kreins A, Velez MM, Boisson B, Khalilzadeh S, Ozcelik U, Darazam IA, Schoggins JW, Rice CM, Al-Muhsen S, Behr M, Vogt G, Puel A, Bustamante J, Gros P, Huibregtse JM, Abel L, Boisson-Dupuis S, Casanova JL. 2012. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337:1684–1688 http://dx.doi.org/10.1126/science.1224026. [CrossRef]
180. Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, Grant AV, Marchal CC, Hubeau M, Chapgier A, de Beaucoudrey L, Puel A, Feinberg J, Valinetz E, Jannière L, Besse C, Boland A, Brisseau JM, Blanche S, Lortholary O, Fieschi C, Emile JF, Boisson-Dupuis S, Al-Muhsen S, Woda B, Newburger PE, Condino-Neto A, Dinauer MC, Abel L, Casanova JL. 2011. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol 12:213–221 http://dx.doi.org/10.1038/ni.1992. [CrossRef]
181. Bustamante J, Picard C, Boisson-Dupuis S, Abel L, Casanova J-L. 2011. Genetic lessons learned from X-linked Mendelian susceptibility to mycobacterial diseases. Ann N Y Acad Sci 1246:92–101 http://dx.doi.org/10.1111/j.1749-6632.2011.06273.x. [PubMed][CrossRef]
182. Filipe-Santos O, Bustamante J, Haverkamp MH, Vinolo E, Ku CL, Puel A, Frucht DM, Christel K, von Bernuth H, Jouanguy E, Feinberg J, Durandy A, Senechal B, Chapgier A, Vogt G, de Beaucoudrey L, Fieschi C, Picard C, Garfa M, Chemli J, Bejaoui M, Tsolia MN, Kutukculer N, Plebani A, Notarangelo L, Bodemer C, Geissmann F, Israël A, Véron M, Knackstedt M, Barbouche R, Abel L, Magdorf K, Gendrel D, Agou F, Holland SM, Casanova JL. 2006. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med 203:1745–1759 http://dx.doi.org/10.1084/jem.20060085. [CrossRef]
183. Zhang M, Gately MK, Wang E, Gong J, Wolf SF, Lu S, Modlin RL, Barnes PF. 1994. Interleukin 12 at the site of disease in tuberculosis. J Clin Invest 93:1733–1739 http://dx.doi.org/10.1172/JCI117157. [PubMed][CrossRef]
184. Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme IM. 1995. The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 84:423–432. [PubMed]
185. Cooper AM, Magram J, Ferrante J, Orme IM. 1997. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med 186:39–45 http://dx.doi.org/10.1084/jem.186.1.39. [PubMed][CrossRef]
186. Cooper AM, Kipnis A, Turner J, Magram J, Ferrante J, Orme IM. 2002. Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J Immunol 168:1322–1327 http://dx.doi.org/10.4049/jimmunol.168.3.1322. [CrossRef]
187. Khader SA, Pearl JE, Sakamoto K, Gilmartin L, Bell GK, Jelley-Gibbs DM, Ghilardi N, deSauvage F, Cooper AM. 2005. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J Immunol 175:788–795 http://dx.doi.org/10.4049/jimmunol.175.2.788. [CrossRef]
188. Feng CG, Jankovic D, Kullberg M, Cheever A, Scanga CA, Hieny S, Caspar P, Yap GS, Sher A. 2005. Maintenance of pulmonary Th1 effector function in chronic tuberculosis requires persistent IL-12 production. J Immunol 174:4185–4192 http://dx.doi.org/10.4049/jimmunol.174.7.4185. [PubMed][CrossRef]
189. Cleary AM, Tu W, Enright A, Giffon T, Dewaal-Malefyt R, Gutierrez K, Lewis DB. 2003. Impaired accumulation and function of memory CD4 T cells in human IL-12 receptor beta 1 deficiency. J Immunol 170:597–603 http://dx.doi.org/10.4049/jimmunol.170.1.597. [PubMed][CrossRef]
190. Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. 2005. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 202:1715–1724 http://dx.doi.org/10.1084/jem.20051782. [PubMed][CrossRef]
191. Pathak SK, Basu S, Bhattacharyya A, Pathak S, Kundu M, Basu J. 2005. Mycobacterium tuberculosis lipoarabinomannan-mediated IRAK-M induction negatively regulates Toll-like receptor-dependent interleukin-12 p40 production in macrophages. J Biol Chem 280:42794–42800 http://dx.doi.org/10.1074/jbc.M506471200. [CrossRef]
192. Pecora ND, Gehring AJ, Canaday DH, Boom WH, Harding CV. 2006. Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J Immunol 177:422–429 http://dx.doi.org/10.4049/jimmunol.177.1.422. [CrossRef]
193. Presky DH, Yang H, Minetti LJ, Chua AO, Nabavi N, Wu CY, Gately MK, Gubler U. 1996. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci USA 93:14002–14007 http://dx.doi.org/10.1073/pnas.93.24.14002. [PubMed][CrossRef]
194. Chua AO, et al. 1994. Expression cloning of a human IL-12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130. J Immunol 153:128–136. [PubMed]
195. Chua AO, Wilkinson VL, Presky DH, Gubler U. 1995. Cloning and characterization of a mouse IL-12 receptor-beta component. J Immunol 155:4286–4294. [PubMed]
196. Gillessen S, Carvajal D, Ling P, Podlaski FJ, Stremlo DL, Familletti PC, Gubler U, Presky DH, Stern AS, Gately MK. 1995. Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. Eur J Immunol 25:200–206 http://dx.doi.org/10.1002/eji.1830250133. [PubMed][CrossRef]
197. Gately MK, Carvajal DM, Connaughton SE, Gillessen S, Warrier RR, Kolinsky KD, Wilkinson VL, Dwyer CM, Higgins GF Jr, Podlaski FJ, Faherty DA, Familletti PC, Stern AS, Presky DH. 1996. Interleukin-12 antagonist activity of mouse interleukin-12 p40 homodimer in vitro and in vivo. Ann N Y Acad Sci 795(1 Interleukin 1) :1–12 http://dx.doi.org/10.1111/j.1749-6632.1996.tb52650.x.
198. Mattner F, Fischer S, Guckes S, Jin S, Kaulen H, Schmitt E, Rüde E, Germann T. 1993. The interleukin-12 subunit p40 specifically inhibits effects of the interleukin-12 heterodimer. Eur J Immunol 23:2202–2208 http://dx.doi.org/10.1002/eji.1830230923. [PubMed][CrossRef]
199. Hölscher C, Atkinson RA, Arendse B, Brown N, Myburgh E, Alber G, Brombacher F. 2001. A protective and agonistic function of IL-12p40 in mycobacterial infection. J Immunol 167:6957–6966 http://dx.doi.org/10.4049/jimmunol.167.12.6957. [PubMed][CrossRef]
200. Khader SA, Partida-Sanchez S, Bell G, Jelley-Gibbs DM, Swain S, Pearl JE, Ghilardi N, Desauvage FJ, Lund FE, Cooper AM. 2006. Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J Exp Med 203:1805–1815 http://dx.doi.org/10.1084/jem.20052545. [CrossRef]
201. Reinhardt RL, Hong S, Kang SJ, Wang ZE, Locksley RM. 2006. Visualization of IL-12/23p40 in vivo reveals immunostimulatory dendritic cell migrants that promote Th1 differentiation. J Immunol 177:1618–1627 http://dx.doi.org/10.4049/jimmunol.177.3.1618. [PubMed][CrossRef]
202. Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, Ernst JD. 2008. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 205:105–115 http://dx.doi.org/10.1084/jem.20071367. [CrossRef]
203. Robinson RT, Khader SA, Martino CA, Fountain JJ, Teixeira-Coelho M, Pearl JE, Smiley ST, Winslow GM, Woodland DL, Walter MJ, Conejo-Garcia JR, Gubler U, Cooper AM. 2010. Mycobacterium tuberculosis infection induces il12rb1 splicing to generate a novel IL-12Rbeta1 isoform that enhances DC migration. J Exp Med 207:591–605. (Erratum: 207:897.) http://dx.doi.org/10.1084/jem.20091085. [CrossRef]
204. Keeton R, Allie N, Dambuza I, Abel B, Hsu NJ, Sebesho B, Randall P, Burger P, Fick E, Quesniaux VF, Ryffel B, Jacobs M. 2014. Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis. J Clin Invest 124:1537–1551 http://dx.doi.org/10.1172/JCI45005.
205. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA. 2000. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725 http://dx.doi.org/10.1016/S1074-7613(00)00070-4. [CrossRef]
206. Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B, Stepankova R, Robinson N, Buonocore S, Tlaskalova-Hogenova H, Cua DJ, Powrie F. 2006. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25:309–318 http://dx.doi.org/10.1016/j.immuni.2006.05.017. [CrossRef]
207. Teng MW, Bowman EP, McElwee JJ, Smyth MJ, Casanova JL, Cooper AM, Cua DJ. 2015. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med 21:719–729 http://dx.doi.org/10.1038/nm.3895. [PubMed][CrossRef]
208. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD. 2003. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748 http://dx.doi.org/10.1038/nature01355. [CrossRef]
209. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD, Cua DJ. 2003. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957 http://dx.doi.org/10.1084/jem.20030896. [PubMed][CrossRef]
210. Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM. 2008. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 205:1535–1541 http://dx.doi.org/10.1084/jem.20080159. [CrossRef]
211. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133 http://dx.doi.org/10.1016/j.cell.2006.07.035. [CrossRef]
212. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, Ahlfors H, Wilhelm C, Tolaini M, Menzel U, Garefalaki A, Potocnik AJ, Stockinger B. 2011. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 12:255–263 http://dx.doi.org/10.1038/ni.1993. [CrossRef]
213. Weaver CT, Hatton RD, Mangan PR, Harrington LE. 2007. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852 http://dx.doi.org/10.1146/annurev.immunol.25.022106.141557. [PubMed][CrossRef]
214. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F, To W, Wagner J, O’Farrell AM, McClanahan T, Zurawski S, Hannum C, Gorman D, Rennick DM, Kastelein RA, de Waal Malefyt R, Moore KW. 2002. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168:5699–5708 http://dx.doi.org/10.4049/jimmunol.168.11.5699. [CrossRef]
215. Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O’Shea JJ. 2004. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 202:139–156 http://dx.doi.org/10.1111/j.0105-2896.2004.00211.x. [PubMed][CrossRef]
216. Trinchieri G. 2003. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146 http://dx.doi.org/10.1038/nri1001. [PubMed][CrossRef]
217. Wozniak TM, Ryan AA, Triccas JA, Britton WJ. 2006. Plasmid interleukin-23 (IL-23), but not plasmid IL-27, enhances the protective efficacy of a DNA vaccine against Mycobacterium tuberculosis infection. Infect Immun 74:557–565 http://dx.doi.org/10.1128/IAI.74.1.557-565.2006. [PubMed][CrossRef]
218. Lockhart E, Green AM, Flynn JL. 2006. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177:4662–4669 http://dx.doi.org/10.4049/jimmunol.177.7.4662. [CrossRef]
219. Khader SA, Guglani L, Rangel-Moreno J, Gopal R, Junecko BA, Fountain JJ, Martino C, Pearl JE, Tighe M, Lin YY, Slight S, Kolls JK, Reinhart TA, Randall TD, Cooper AM. 2011. IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. J Immunol 187:5402–5407 http://dx.doi.org/10.4049/jimmunol.1101377. [CrossRef]
220. Happel KI, Lockhart EA, Mason CM, Porretta E, Keoshkerian E, Odden AR, Nelson S, Ramsay AJ. 2005. Pulmonary interleukin-23 gene delivery increases local T-cell immunity and controls growth of Mycobacterium tuberculosis in the lungs. Infect Immun 73:5782–5788 http://dx.doi.org/10.1128/IAI.73.9.5782-5788.2005. [CrossRef]
221. Gopal R, Rangel-Moreno J, Slight S, Lin Y, Nawar HF, Fallert Junecko BA, Reinhart TA, Kolls J, Randall TD, Connell TD, Khader SA. 2013. Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol 6:972–984 http://dx.doi.org/10.1038/mi.2012.135. [CrossRef]
222. Lindenstrøm T, Woodworth J, Dietrich J, Aagaard C, Andersen P, Agger EM. 2012. Vaccine-induced th17 cells are maintained long-term postvaccination as a distinct and phenotypically stable memory subset. Infect Immun 80:3533–3544 http://dx.doi.org/10.1128/IAI.00550-12. [CrossRef]
223. Desel C, Dorhoi A, Bandermann S, Grode L, Eisele B, Kaufmann SH. 2011. Recombinant BCG ΔureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J Infect Dis 204:1573–1584 http://dx.doi.org/10.1093/infdis/jir592. [CrossRef]
224. Kastelein RA, Hunter CA, Cua DJ. 2007. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 25:221–242 http://dx.doi.org/10.1146/annurev.immunol.22.012703.104758.
225. Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ. 2004. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 202:96–105 http://dx.doi.org/10.1111/j.0105-2896.2004.00214.x. [PubMed][CrossRef]
226. Cox JH, Kljavin NM, Ramamoorthi N, Diehl L, Batten M, Ghilardi N. 2011. IL-27 promotes T cell-dependent colitis through multiple mechanisms. J Exp Med 208:115–123 http://dx.doi.org/10.1084/jem.20100410. [PubMed][CrossRef]
227. Shimizu S, Sugiyama N, Masutani K, Sadanaga A, Miyazaki Y, Inoue Y, Akahoshi M, Katafuchi R, Hirakata H, Harada M, Hamano S, Nakashima H, Yoshida H. 2005. Membranous glomerulonephritis development with Th2-type immune deviations in MRL/lpr mice deficient for IL-27 receptor (WSX-1). J Immunol 175:7185–7192 http://dx.doi.org/10.4049/jimmunol.175.11.7185. [CrossRef]
228. Cao Y, Doodes PD, Glant TT, Finnegan A. 2008. IL-27 induces a Th1 immune response and susceptibility to experimental arthritis. J Immunol 180:922–930 http://dx.doi.org/10.4049/jimmunol.180.2.922. [CrossRef]
229. Pflanz S, Timans JC, Cheung J, Rosales R, Kanzler H, Gilbert J, Hibbert L, Churakova T, Travis M, Vaisberg E, Blumenschein WM, Mattson JD, Wagner JL, To W, Zurawski S, McClanahan TK, Gorman DM, Bazan JF, de Waal Malefyt R, Rennick D, Kastelein RA. 2002. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16:779–790 http://dx.doi.org/10.1016/S1074-7613(02)00324-2. [CrossRef]
230. Pflanz S, Hibbert L, Mattson J, Rosales R, Vaisberg E, Bazan JF, Phillips JH, McClanahan TK, de Waal Malefyt R, Kastelein RA. 2004. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol 172:2225–2231 http://dx.doi.org/10.4049/jimmunol.172.4.2225. [PubMed][CrossRef]
231. Batten M, Li J, Yi S, Kljavin NM, Danilenko DM, Lucas S, Lee J, de Sauvage FJ, Ghilardi N. 2006. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 7:929–936 http://dx.doi.org/10.1038/ni1375. [CrossRef]
232. Neufert C, Becker C, Wirtz S, Fantini MC, Weigmann B, Galle PR, Neurath MF. 2007. IL-27 controls the development of inducible regulatory T cells and Th17 cells via differential effects on STAT1. Eur J Immunol 37:1809–1816 http://dx.doi.org/10.1002/eji.200636896. [PubMed][CrossRef]
233. Takeda A, Hamano S, Yamanaka A, Hanada T, Ishibashi T, Mak TW, Yoshimura A, Yoshida H. 2003. Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol 170:4886–4890 http://dx.doi.org/10.4049/jimmunol.170.10.4886. [PubMed][CrossRef]
234. Pearl JE, Khader SA, Solache A, Gilmartin L, Ghilardi N, deSauvage F, Cooper AM. 2004. IL-27 signaling compromises control of bacterial growth in mycobacteria-infected mice. J Immunol 173:7490–7496 http://dx.doi.org/10.4049/jimmunol.173.12.7490. [PubMed][CrossRef]
235. Hölscher C, Hölscher A, Rückerl D, Yoshimoto T, Yoshida H, Mak T, Saris C, Ehlers S. 2005. The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J Immunol 174:3534–3544 http://dx.doi.org/10.4049/jimmunol.174.6.3534. [CrossRef]
236. Sodenkamp J, Behrends J, Förster I, Müller W, Ehlers S, Hölscher C. 2011. gp130 on macrophages/granulocytes modulates inflammation during experimental tuberculosis. Eur J Cell Biol 90:505–514 http://dx.doi.org/10.1016/j.ejcb.2010.10.010. [CrossRef]
237. Neurath MF. 2008. IL-12 family members in experimental colitis. Mucosal Immunol 1(Suppl 1) :S28–S30 http://dx.doi.org/10.1038/mi.2008.45. [PubMed][CrossRef]
238. Vignali DA, Collison LW, Workman CJ. 2008. How regulatory T cells work. Nat Rev Immunol 8:523–532 http://dx.doi.org/10.1038/nri2343. [PubMed][CrossRef]
239. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DA. 2007. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569 http://dx.doi.org/10.1038/nature06306. [PubMed][CrossRef]
240. Jin W, Dong C. 2013. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect 2:e60 http://dx.doi.org/10.1038/emi.2013.58. [PubMed][CrossRef]
241. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, Fujikado N, Tanahashi Y, Akitsu A, Kotaki H, Sudo K, Nakae S, Sasakawa C, Iwakura Y. 2009. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30:108–119 http://dx.doi.org/10.1016/j.immuni.2008.11.009.
242. Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z, Dong C. 2008. Regulation of inflammatory responses by IL-17F. J Exp Med 205:1063–1075 http://dx.doi.org/10.1084/jem.20071978. [PubMed][CrossRef]
243. Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y, Matsuzaki G. 2007. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol 178:3786–3796 http://dx.doi.org/10.4049/jimmunol.178.6.3786. [CrossRef]
244. Gopal R, Lin Y, Obermajer N, Slight S, Nuthalapati N, Ahmed M, Kalinski P, Khader SA. 2012. IL-23-dependent IL-17 drives Th1-cell responses following Mycobacterium bovis BCG vaccination. Eur J Immunol 42:364–373 http://dx.doi.org/10.1002/eji.201141569. [CrossRef]
245. Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA, Reinhart TA, McAllister F, Edeal J, Gaus K, Husain S, Kreindler JL, Dubin PJ, Pilewski JM, Myerburg MM, Mason CA, Iwakura Y, Kolls JK. 2008. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14:275–281 http://dx.doi.org/10.1038/nm1710. [CrossRef]
246. Aguilo N, Alvarez-Arguedas S, Uranga S, Marinova D, Monzón M, Badiola J, Martin C. 2016. Pulmonary but not subcutaneous delivery of BCG vaccine confers protection to tuberculosis-susceptible mice by an interleukin 17-dependent mechanism. J Infect Dis 213:831–839 http://dx.doi.org/10.1093/infdis/jiv503. [CrossRef]
247. Cruz A, Torrado E, Carmona J, Fraga AG, Costa P, Rodrigues F, Appelberg R, Correia-Neves M, Cooper AM, Saraiva M, Pedrosa J, Castro AG. 2015. BCG vaccination-induced long-lasting control of Mycobacterium tuberculosis correlates with the accumulation of a novel population of CD4 +IL-17 +TNF +IL-2 + T cells. Vaccine 33:85–91 http://dx.doi.org/10.1016/j.vaccine.2014.11.013. [CrossRef]
248. Cruz A, Fraga AG, Fountain JJ, Rangel-Moreno J, Torrado E, Saraiva M, Pereira DR, Randall TD, Pedrosa J, Cooper AM, Castro AG. 2010. Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. J Exp Med 207:1609–1616 http://dx.doi.org/10.1084/jem.20100265. [CrossRef]
249. Gopal R, Monin L, Torres D, Slight S, Mehra S, McKenna KC, Fallert Junecko BA, Reinhart TA, Kolls J, Báez-Saldaña R, Cruz-Lagunas A, Rodríguez-Reyna TS, Kumar NP, Tessier P, Roth J, Selman M, Becerril-Villanueva E, Baquera-Heredia J, Cumming B, Kasprowicz VO, Steyn AJ, Babu S, Kaushal D, Zúñiga J, Vogl T, Rangel-Moreno J, Khader SA. 2013. S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis. Am J Respir Crit Care Med 188:1137–1146 http://dx.doi.org/10.1164/rccm.201304-0803OC. [CrossRef]
250. McAleer JP, Kolls JK. 2014. Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunol Rev 260:129–144 http://dx.doi.org/10.1111/imr.12183. [PubMed][CrossRef]
251. Sonnenberg GF, Nair MG, Kirn TJ, Zaph C, Fouser LA, Artis D. 2010. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J Exp Med 207:1293–1305 http://dx.doi.org/10.1084/jem.20092054. [PubMed][CrossRef]
252. Kolls JK, McCray PB Jr, Chan YR. 2008. Cytokine-mediated regulation of antimicrobial proteins. Nat Rev Immunol 8:829–835 http://dx.doi.org/10.1038/nri2433. [PubMed][CrossRef]
253. Matthews K, Wilkinson KA, Kalsdorf B, Roberts T, Diacon A, Walzl G, Wolske J, Ntsekhe M, Syed F, Russell J, Mayosi BM, Dawson R, Dheda K, Wilkinson RJ, Hanekom WA, Scriba TJ. 2011. Predominance of interleukin-22 over interleukin-17 at the site of disease in human tuberculosis. Tuberculosis (Edinb) 91:587–593 http://dx.doi.org/10.1016/j.tube.2011.06.009. [CrossRef]
254. Yao S, Huang D, Chen CY, Halliday L, Zeng G, Wang RC, Chen ZW. 2010. Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis. PLoS Pathog 6:e1000789 http://dx.doi.org/10.1371/journal.ppat.1000789. [PubMed][CrossRef]
255. Zeng G, Chen CY, Huang D, Yao S, Wang RC, Chen ZW. 2011. Membrane-bound IL-22 after de novo production in tuberculosis and anti- Mycobacterium tuberculosis effector function of IL-22+ CD4+ T cells. J Immunol 187:190–199 http://dx.doi.org/10.4049/jimmunol.1004129. [CrossRef]
256. Dhiman R, Venkatasubramanian S, Paidipally P, Barnes PF, Tvinnereim A, Vankayalapati R. 2014. Interleukin 22 inhibits intracellular growth of Mycobacterium tuberculosis by enhancing calgranulin A expression. J Infect Dis 209:578–587 http://dx.doi.org/10.1093/infdis/jit495. [PubMed][CrossRef]
257. Dhiman R, Indramohan M, Barnes PF, Nayak RC, Paidipally P, Rao LV, Vankayalapati R. 2009. IL-22 produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. J Immunol 183:6639–6645 http://dx.doi.org/10.4049/jimmunol.0902587. [CrossRef]
258. Zhang M, Zeng G, Yang Q, Zhang J, Zhu X, Chen Q, Suthakaran P, Zhang Y, Deng Q, Liu H, Zhou B, Chen X. 2014. Anti-tuberculosis treatment enhances the production of IL-22 through reducing the frequencies of regulatory B cell. Tuberculosis (Edinb) 94:238–244 http://dx.doi.org/10.1016/j.tube.2013.12.003. [PubMed][CrossRef]
259. Behrends J, Renauld JC, Ehlers S, Hölscher C. 2013. IL-22 is mainly produced by IFNγ-secreting cells but is dispensable for host protection against Mycobacterium tuberculosis infection. PLoS One 8:e57379 http://dx.doi.org/10.1371/journal.pone.0057379. [CrossRef]
260. Wilson MS, Feng CG, Barber DL, Yarovinsky F, Cheever AW, Sher A, Grigg M, Collins M, Fouser L, Wynn TA. 2010. Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J Immunol 184:4378–4390 http://dx.doi.org/10.4049/jimmunol.0903416. [CrossRef]
261. Dhiman R, Periasamy S, Barnes PF, Jaiswal AG, Paidipally P, Barnes AB, Tvinnereim A, Vankayalapati R. 2012. NK1.1+ cells and IL-22 regulate vaccine-induced protective immunity against challenge with Mycobacterium tuberculosis. J Immunol 189:897–905 http://dx.doi.org/10.4049/jimmunol.1102833. [CrossRef]
262. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. 1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357. [PubMed]
263. Killar L, MacDonald G, West J, Woods A, Bottomly K. 1987. Cloned, Ia-restricted T cells that do not produce interleukin 4(IL 4)/B cell stimulatory factor 1(BSF-1) fail to help antigen-specific B cells. J Immunol 138:1674–1679. [PubMed]
264. Powrie F, Menon S, Coffman RL. 1993. Interleukin-4 and interleukin-10 synergize to inhibit cell-mediated immunity in vivo. Eur J Immunol 23:3043–3049 http://dx.doi.org/10.1002/eji.1830231147. [PubMed][CrossRef]
265. Appelberg R, Orme IM, Pinto de Sousa MI, Silva MT. 1992. In vitro effects of interleukin-4 on interferon-gamma-induced macrophage activation. Immunology 76:553–559. [PubMed]
266. Ferber IA, Lee HJ, Zonin F, Heath V, Mui A, Arai N, O’Garra A. 1999. GATA-3 significantly downregulates IFN-gamma production from developing Th1 cells in addition to inducing IL-4 and IL-5 levels. Clin Immunol 91:134–144 http://dx.doi.org/10.1006/clim.1999.4718. [CrossRef]
267. Steinke JW, Borish L. 2001. Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res 2:66–70 http://dx.doi.org/10.1186/rr40. [PubMed][CrossRef]
268. Stone KD, Prussin C, Metcalfe DD. 2010. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 125(Suppl 2) :S73–S80 http://dx.doi.org/10.1016/j.jaci.2009.11.017. [CrossRef]
269. MacDonald AS, Araujo MI, Pearce EJ. 2002. Immunology of parasitic helminth infections. Infect Immun 70:427–433 http://dx.doi.org/10.1128/IAI.70.2.427-433.2002. [PubMed][CrossRef]
270. Zhu J, Paul WE. 2008. CD4 T cells: fates, functions, and faults. Blood 112:1557–1569 http://dx.doi.org/10.1182/blood-2008-05-078154. [PubMed][CrossRef]
271. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE. 1999. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17:701–738 http://dx.doi.org/10.1146/annurev.immunol.17.1.701. [PubMed][CrossRef]
272. Zheng W, Flavell RA. 1997. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89:587–596 http://dx.doi.org/10.1016/S0092-8674(00)80240-8. [PubMed][CrossRef]
273. Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. 1997. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 272:21597–21603 http://dx.doi.org/10.1074/jbc.272.34.21597. [PubMed][CrossRef]
274. Kaplan MH, Schindler U, Smiley ST, Grusby MJ. 1996. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4:313–319 http://dx.doi.org/10.1016/S1074-7613(00)80439-2. [PubMed]
275. Shimoda K, van Deursent J, Sangster MY, Sarawar SR, Carson RT, Tripp RA, Chu C, Quelle FW, Nosaka T, Vignali DA, Doherty PC, Grosveld G, Paul WE, Ihle JN. 1996. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380:630–633 http://dx.doi.org/10.1038/380630a0. [PubMed][CrossRef]
276. Swain SL, Weinberg AD, English M, Huston G. 1990. IL-4 directs the development of Th2-like helper effectors. J Immunol 145:3796–3806. [PubMed]
277. Le Gros G, Ben-Sasson SZ, Seder R, Finkelman FD, Paul WE. 1990. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med 172:921–929 http://dx.doi.org/10.1084/jem.172.3.921. [PubMed][CrossRef]
278. Lowenthal JW, Castle BE, Christiansen J, Schreurs J, Rennick D, Arai N, Hoy P, Takebe Y, Howard M. 1988. Expression of high affinity receptors for murine interleukin 4 (BSF-1) on hemopoietic and nonhemopoietic cells. J Immunol 140:456–464. [PubMed]
279. Ohara J, Paul WE. 1987. Receptors for B-cell stimulatory factor-1 expressed on cells of haematopoietic lineage. Nature 325:537–540 http://dx.doi.org/10.1038/325537a0. [PubMed][CrossRef]
280. Coffman RL, Seymour BW, Hudak S, Jackson J, Rennick D. 1989. Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science 245:308–310 http://dx.doi.org/10.1126/science.2787531. [PubMed][CrossRef]
281. Phillips C, Coward WR, Pritchard DI, Hewitt CR. 2003. Basophils express a type 2 cytokine profile on exposure to proteases from helminths and house dust mites. J Leukoc Biol 73:165–171 http://dx.doi.org/10.1189/jlb.0702356. [PubMed][CrossRef]
282. Hitoshi Y, Yamaguchi N, Mita S, Sonoda E, Takaki S, Tominaga A, Takatsu K. 1990. Distribution of IL-5 receptor-positive B cells. Expression of IL-5 receptor on Ly-1(CD5)+ B cells. J Immunol 144:4218–4225. [PubMed]
283. Rolink AG, Thalmann P, Kikuchi Y, Erdei A. 1990. Characterization of the interleukin 5-reactive splenic B cell population. Eur J Immunol 20:1949–1956 http://dx.doi.org/10.1002/eji.1830200912. [PubMed][CrossRef]
284. Takatsu K. 2011. Interleukin-5 and IL-5 receptor in health and diseases. Proc Jpn Acad, Ser B, Phys Biol Sci 87:463–485 http://dx.doi.org/10.2183/pjab.87.463. [PubMed][CrossRef]
285. Schauf V, Rom WN, Smith KA, Sampaio EP, Meyn PA, Tramontana JM, Cohn ZA, Kaplan G. 1993. Cytokine gene activation and modified responsiveness to interleukin-2 in the blood of tuberculosis patients. J Infect Dis 168:1056–1059 http://dx.doi.org/10.1093/infdis/168.4.1056. [PubMed][CrossRef]
286. Surcel HM, Troye-Blomberg M, Paulie S, Andersson G, Moreno C, Pasvol G, Ivanyi J. 1994. Th1/Th2 profiles in tuberculosis, based on the proliferation and cytokine response of blood lymphocytes to mycobacterial antigens. Immunology 81:171–176. [PubMed]
287. Zhang M, Gong J, Iyer DV, Jones BE, Modlin RL, Barnes PF. 1994. T cell cytokine responses in persons with tuberculosis and human immunodeficiency virus infection. J Clin Invest 94:2435–2442 http://dx.doi.org/10.1172/JCI117611. [CrossRef]
288. Lin Y, Zhang M, Hofman FM, Gong J, Barnes PF. 1996. Absence of a prominent Th2 cytokine response in human tuberculosis. Infect Immun 64:1351–1356. [PubMed]
289. Lai CK, Ho S, Chan CH, Chan J, Choy D, Leung R, Lai KN. 1997. Cytokine gene expression profile of circulating CD4+ T cells in active pulmonary tuberculosis. Chest 111:606–611 http://dx.doi.org/10.1378/chest.111.3.606. [PubMed][CrossRef]
290. Mihret A, Bekele Y, Bobosha K, Kidd M, Aseffa A, Howe R, Walzl G. 2013. Plasma cytokines and chemokines differentiate between active disease and non-active tuberculosis infection. J Infect 66:357–365 http://dx.doi.org/10.1016/j.jinf.2012.11.005. [PubMed][CrossRef]
291. Mihret A, Abebe M, Bekele Y, Aseffa A, Walzl G, Howe R. 2014. Impact of HIV co-infection on plasma level of cytokines and chemokines of pulmonary tuberculosis patients. BMC Infect Dis 14:125 http://dx.doi.org/10.1186/1471-2334-14-125. [PubMed][CrossRef]
292. Bezuidenhout J, Roberts T, Muller L, van Helden P, Walzl G. 2009. Pleural tuberculosis in patients with early HIV infection is associated with increased TNF-alpha expression and necrosis in granulomas. PLoS One 4:e4228 http://dx.doi.org/10.1371/journal.pone.0004228. [CrossRef]
293. Mazzarella G, Bianco A, Perna F, D’Auria D, Grella E, Moscariello E, Sanduzzi A. 2003. T lymphocyte phenotypic profile in lung segments affected by cavitary and non-cavitary tuberculosis. Clin Exp Immunol 132:283–288 http://dx.doi.org/10.1046/j.1365-2249.2003.02121.x. [CrossRef]
294. Mattila JT, Diedrich CR, Lin PL, Phuah J, Flynn JL. 2011. Simian immunodeficiency virus-induced changes in T cell cytokine responses in cynomolgus macaques with latent Mycobacterium tuberculosis infection are associated with timing of reactivation. J Immunol 186:3527–3537 http://dx.doi.org/10.4049/jimmunol.1003773. [CrossRef]
295. Wassie L, Demissie A, Aseffa A, Abebe M, Yamuah L, Tilahun H, Petros B, Rook G, Zumla A, Andersen P, Doherty TM. 2008. Ex vivo cytokine mRNA levels correlate with changing clinical status of ethiopian TB patients and their contacts over time. PLoS One 3:e1522. doi:10.1371/journal.pone.0001522. [CrossRef]
296. Fletcher HA, Owiafe P, Jeffries D, Hill P, Rook GA, Zumla A, Doherty TM, Brookes RH, Vacsel Study Group. 2004. Increased expression of mRNA encoding interleukin (IL)-4 and its splice variant IL-4delta2 in cells from contacts of Mycobacterium tuberculosis, in the absence of in vitro stimulation. Immunology 112:669–673 http://dx.doi.org/10.1111/j.1365-2567.2004.01922.x. [CrossRef]
297. Demissie A, Abebe M, Aseffa A, Rook G, Fletcher H, Zumla A, Weldingh K, Brock I, Andersen P, Doherty TM, VACSEL Study Group. 2004. Healthy individuals that control a latent infection with Mycobacterium tuberculosis express high levels of Th1 cytokines and the IL-4 antagonist IL-4delta2. J Immunol 172:6938–6943 http://dx.doi.org/10.4049/jimmunol.172.11.6938. [CrossRef]
298. Jung YJ, LaCourse R, Ryan L, North RJ. 2002. Evidence inconsistent with a negative influence of T helper 2 cells on protection afforded by a dominant T helper 1 response against Mycobacterium tuberculosis lung infection in mice. Infect Immun 70:6436–6443 http://dx.doi.org/10.1128/IAI.70.11.6436-6443.2002. [CrossRef]
299. North RJ. 1998. Mice incapable of making IL-4 or IL-10 display normal resistance to infection with Mycobacterium tuberculosis. Clin Exp Immunol 113:55–58 http://dx.doi.org/10.1046/j.1365-2249.1998.00636.x. [PubMed][CrossRef]
300. Lukacs NW, Addison CL, Gauldie J, Graham F, Simpson K, Strieter RM, Warmington K, Chensue SW, Kunkel SL. 1997. Transgene-induced production of IL-4 alters the development and collagen expression of T helper cell 1-type pulmonary granulomas. J Immunol 158:4478–4484. [PubMed]
301. Ramakrishnan L. 2012. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12:352–366. [CrossRef]
302. Erb KJ, Kirman J, Delahunt B, Chen W, Le Gros G. 1998. IL-4, IL-5 and IL-10 are not required for the control of M. bovis-BCG infection in mice. Immunol Cell Biol 76:41–46 http://dx.doi.org/10.1046/j.1440-1711.1998.00719.x. [PubMed][CrossRef]
303. Diedrich CR, Mattila JT, Flynn JL. 2013. Monocyte-derived IL-5 reduces TNF production by Mycobacterium tuberculosis-specific CD4 T cells during SIV/M. tuberculosis coinfection. J Immunol 190:6320–6328 http://dx.doi.org/10.4049/jimmunol.1202043. [CrossRef]
304. Minty A, Chalon P, Derocq J-M, Dumont X, Guillemot J-C, Kaghad M, Labit C, Leplatois P, Liauzun P, Miloux B, Minty C, Casellas P, Loison G, Lupker J, Shire D, Ferrara P, Caput D. 1993. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature 362:248–250 http://dx.doi.org/10.1038/362248a0. [CrossRef]
305. McKenzie AN, Culpepper JA, de Waal Malefyt R, Briere F, Punnonen J, Aversa G, Sato A, Dang W, Cocks BG, Menon S. 1993. Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. Proc Natl Acad Sci USA 90:3735–3739 http://dx.doi.org/10.1073/pnas.90.8.3735. [PubMed][CrossRef]
306. Wynn TA. 2003. IL-13 effector functions. Annu Rev Immunol 21:425–456 http://dx.doi.org/10.1146/annurev.immunol.21.120601.141142. [CrossRef]
307. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA. 1999. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103:779–788 http://dx.doi.org/10.1172/JCI5909. [CrossRef]
308. Wynn TA, Eltoum I, Oswald IP, Cheever AW, Sher A. 1994. Endogenous interleukin 12 (IL-12) regulates granuloma formation induced by eggs of Schistosoma mansoni and exogenous IL-12 both inhibits and prophylactically immunizes against egg pathology. J Exp Med 179:1551–1561 http://dx.doi.org/10.1084/jem.179.5.1551. [CrossRef]
309. Gessner A, Mohrs K, Mohrs M. 2005. Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. J Immunol 174:1063–1072 http://dx.doi.org/10.4049/jimmunol.174.2.1063. [CrossRef]
310. Ying S, Humbert M, Barkans J, Corrigan CJ, Pfister R, Menz G, Larché M, Robinson DS, Durham SR, Kay AB. 1997. Expression of IL-4 and IL-5 mRNA and protein product by CD4+ and CD8+ T cells, eosinophils, and mast cells in bronchial biopsies obtained from atopic and nonatopic (intrinsic) asthmatics. J Immunol 158:3539–3544. [PubMed]
311. O’Brien TF, Bao K, Dell’Aringa M, Ang WX, Abraham S, Reinhardt RL. 2016. Cytokine expression by invariant natural killer T cells is tightly regulated throughout development and settings of type-2 inflammation. Mucosal Immunol 9:597–609. doi:10.1038/mi.2015.78. [CrossRef]
312. Bao K, Reinhardt RL. 2015. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 75:25–37 http://dx.doi.org/10.1016/j.cyto.2015.05.008. [PubMed][CrossRef]
313. McCormick SM, Heller NM. 2015. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 75:38–50 http://dx.doi.org/10.1016/j.cyto.2015.05.023. [PubMed][CrossRef]
314. Dhanasekaran S, Jenum S, Stavrum R, Ritz C, Faurholt-Jepsen D, Kenneth J, Vaz M, Grewal HM, Doherty TM, Doherty M, Grewal HMS, Hesseling AC, Jacob A, Jahnsen F, Kenneth J, Kurpad AV, Lindtjorn B, Macaden R, Nelson J, Sumithra S, Vaz M, Walker R, TB Trials Study Group. 2013. Identification of biomarkers for Mycobacterium tuberculosis infection and disease in BCG-vaccinated young children in Southern India. Genes Immun 14:356–364 http://dx.doi.org/10.1038/gene.2013.26. [CrossRef]
315. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. 2004. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766 http://dx.doi.org/10.1016/j.cell.2004.11.038. [CrossRef]
316. Singh SB, Davis AS, Taylor GA, Deretic V. 2006. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441 http://dx.doi.org/10.1126/science.1129577. [PubMed][CrossRef]
317. Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V. 2007. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27:505–517 http://dx.doi.org/10.1016/j.immuni.2007.07.022. [CrossRef]
318. Heitmann L, Abad Dar M, Schreiber T, Erdmann H, Behrends J, Mckenzie ANJ, Brombacher F, Ehlers S, Hölscher C. 2014. The IL-13/IL-4Rα axis is involved in tuberculosis-associated pathology. J Pathol 234:338–350 http://dx.doi.org/10.1002/path.4399. [PubMed][CrossRef]
319. Massagué J. 2012. TGFβ signalling in context. Nat Rev Mol Cell Biol 13:616–630 http://dx.doi.org/10.1038/nrm3434. [PubMed][CrossRef]
320. Feng XH, Derynck R. 2005. Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21:659–693 http://dx.doi.org/10.1146/annurev.cellbio.21.022404.142018. [PubMed][CrossRef]
321. Massagué J, Seoane J, Wotton D. 2005. Smad transcription factors. Genes Dev 19:2783–2810 http://dx.doi.org/10.1101/gad.1350705. [PubMed][CrossRef]
322. Trompouki E, Bowman TV, Lawton LN, Fan ZP, Wu DC, DiBiase A, Martin CS, Cech JN, Sessa AK, Leblanc JL, Li P, Durand EM, Mosimann C, Heffner GC, Daley GQ, Paulson RF, Young RA, Zon LI. 2011. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell 147:577–589 http://dx.doi.org/10.1016/j.cell.2011.09.044. [CrossRef]
323. Taylor AW. 2009. Review of the activation of TGF-beta in immunity. J Leukoc Biol 85:29–33 http://dx.doi.org/10.1189/jlb.0708415. [PubMed][CrossRef]
324. Roberts AB, Sporn MB. 1988. Transforming growth factor beta. Adv Cancer Res 51:107–145 http://dx.doi.org/10.1016/S0065-230X(08)60221-3. [CrossRef]
325. Massagué J. 1990. The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641 http://dx.doi.org/10.1146/annurev.cb.06.110190.003121. [CrossRef]
326. Letterio JJ, Roberts AB. 1998. Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161 http://dx.doi.org/10.1146/annurev.immunol.16.1.137. [PubMed][CrossRef]
327. Sporn MB, Roberts AB. 1992. Autocrine secretion--10 years later. Ann Intern Med 117:408–414 http://dx.doi.org/10.7326/0003-4819-117-5-408. [PubMed][CrossRef]
328. Toossi Z, Gogate P, Shiratsuchi H, Young T, Ellner JJ. 1995. Enhanced production of TGF-beta by blood monocytes from patients with active tuberculosis and presence of TGF-beta in tuberculous granulomatous lung lesions. J Immunol 154:465–473. [PubMed]
329. Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z. 1996. Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect Immun 64:399–405. [PubMed]
330. Hirsch CS, Yoneda T, Averill L, Ellner JJ, Toossi Z. 1994. Enhancement of intracellular growth of Mycobacterium tuberculosis in human monocytes by transforming growth factor-beta 1. J Infect Dis 170:1229–1237 http://dx.doi.org/10.1093/infdis/170.5.1229. [CrossRef]
331. Hirsch CS, Ellner JJ, Blinkhorn R, Toossi Z. 1997. In vitro restoration of T cell responses in tuberculosis and augmentation of monocyte effector function against Mycobacterium tuberculosis by natural inhibitors of transforming growth factor beta. Proc Natl Acad Sci USA 94:3926–3931 http://dx.doi.org/10.1073/pnas.94.8.3926. [CrossRef]
332. Othieno C, Hirsch CS, Hamilton BD, Wilkinson K, Ellner JJ, Toossi Z. 1999. Interaction of Mycobacterium tuberculosis-induced transforming growth factor beta1 and interleukin-10. Infect Immun 67:5730–5735. [PubMed]
333. Sivangala R, Ponnana M, Thada S, Joshi L, Ansari S, Hussain H, Valluri V, Gaddam S. 2014. Association of cytokine gene polymorphisms in patients with tuberculosis and their household contacts. Scand J Immunol 79:197–205 http://dx.doi.org/10.1111/sji.12136. [PubMed][CrossRef]
334. Mak JC, Leung HC, Sham AS, Mok TY, Poon YN, Ling SO, Wong KC, Chan-Yeung M. 2007. Genetic polymorphisms and plasma levels of transforming growth factor-beta(1) in Chinese patients with tuberculosis in Hong Kong. Cytokine 40:177–182 http://dx.doi.org/10.1016/j.cyto.2007.09.006.
335. Vieira P, de Waal-Malefyt R, Dang MN, Johnson KE, Kastelein R, Fiorentino DF, deVries JE, Roncarolo MG, Mosmann TR, Moore KW. 1991. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci USA 88:1172–1176 http://dx.doi.org/10.1073/pnas.88.4.1172. [CrossRef]
336. Redford PS, Murray PJ, O’Garra A. 2011. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol 4:261–270 http://dx.doi.org/10.1038/mi.2011.7. [CrossRef]
337. Liu Y, Wei SH, Ho AS, de Waal Malefyt R, Moore KW. 1994. Expression cloning and characterization of a human IL-10 receptor. J Immunol 152:1821–1829. [PubMed]
338. Jang S, Uematsu S, Akira S, Salgame P. 2004. IL-6 and IL-10 induction from dendritic cells in response to Mycobacterium tuberculosis is predominantly dependent on TLR2-mediated recognition. J Immunol 173:3392–3397 http://dx.doi.org/10.4049/jimmunol.173.5.3392. [CrossRef]
339. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reis e Sousa C. 2005. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507–517 http://dx.doi.org/10.1016/j.immuni.2005.03.004. [CrossRef]
340. Ke Z, Yuan L, Ma J, Zhang X, Guo Y, Xiong H. 2015. IL-10 polymorphisms and tuberculosis susceptibility: an updated meta-analysis. Yonsei Med J 56:1274–1287 http://dx.doi.org/10.3349/ymj.2015.56.5.1274. [PubMed][CrossRef]
341. Jeong YH, Hur YG, Lee H, Kim S, Cho JE, Chang J, Shin SJ, Lee H, Kang YA, Cho SN, Ha SJ. 2015. Discrimination between active and latent tuberculosis based on ratio of antigen-specific to mitogen-induced IP-10 production. J Clin Microbiol 53:504–510 http://dx.doi.org/10.1128/JCM.02758-14. [CrossRef]
342. Tebruegge M, Dutta B, Donath S, Ritz N, Forbes B, Camacho-Badilla K, Clifford V, Zufferey C, Robins-Browne R, Hanekom W, Graham SM, Connell T, Curtis N. 2015. Mycobacteria-specific cytokine responses detect tuberculosis infection and distinguish latent from active tuberculosis. Am J Respir Crit Care Med 192:485–499 http://dx.doi.org/10.1164/rccm.201501-0059OC. [CrossRef]
343. Kumar NP, Moideen K, Banurekha VV, Nair D, Sridhar R, Nutman TB, Babu S. 2015. IL-27 and TGFβ mediated expansion of Th1 and adaptive regulatory T cells expressing IL-10 correlates with bacterial burden and disease severity in pulmonary tuberculosis. Immun Inflamm Dis 3:289–299 http://dx.doi.org/10.1002/iid3.68. [CrossRef]
344. Eum SY, Jeon BY, Min JH, Kim SC, Cho S, Park SK, Cho SN. 2008. Tumor necrosis factor-alpha and interleukin-10 in whole blood is associated with disease progression in pulmonary multidrug-resistant tuberculosis patients. Respiration 76:331–337 http://dx.doi.org/10.1159/000113932. [CrossRef]
345. Lago PM, Boéchat N, Migueis DP, Almeida AS, Lazzarini LC, Saldanha MM, Kritski AL, Ho JL, Lapa e Silva JR. 2012. Interleukin-10 and interferon-gamma patterns during tuberculosis treatment: possible association with recurrence. Int J Tuberc Lung Dis 16:656–659. [PubMed][CrossRef]
346. George PJ, Pavan Kumar N, Jaganathan J, Dolla C, Kumaran P, Nair D, Banurekha VV, Shen K, Nutman TB, Babu S. 2015. Modulation of pro- and anti-inflammatory cytokines in active and latent tuberculosis by coexistent Strongyloides stercoralis infection. Tuberculosis (Edinb) 95:822–828 http://dx.doi.org/10.1016/j.tube.2015.09.009. [CrossRef]
347. George PJ, Anuradha R, Kumar NP, Sridhar R, Banurekha VV, Nutman TB, Babu S. 2014. Helminth infections coincident with active pulmonary tuberculosis inhibit mono- and multifunctional CD4+ and CD8+ T cell responses in a process dependent on IL-10. PLoS Pathog 10:e1004375 http://dx.doi.org/10.1371/journal.ppat.1004375. [CrossRef]
348. Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R, Ottenhoff TH. 2004. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA 101:4560–4565 http://dx.doi.org/10.1073/pnas.0400983101. [PubMed][CrossRef]
349. O’Leary S, O’Sullivan MP, Keane J. 2011. IL-10 blocks phagosome maturation in mycobacterium tuberculosis-infected human macrophages. Am J Respir Cell Mol Biol 45:172–180 http://dx.doi.org/10.1165/rcmb.2010-0319OC.
350. Oswald IP, Wynn TA, Sher A, James SL. 1992. Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation. Proc Natl Acad Sci USA 89:8676–8680 http://dx.doi.org/10.1073/pnas.89.18.8676. [CrossRef]
351. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. 2001. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765 http://dx.doi.org/10.1146/annurev.immunol.19.1.683. [PubMed][CrossRef]
352. Richardson ET, Shukla S, Sweet DR, Wearsch PA, Tsichlis PN, Boom WH, Harding CV. 2015. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun 83:2242–2254 http://dx.doi.org/10.1128/IAI.00135-15. [CrossRef]
353. Jung YJ, Ryan L, LaCourse R, North RJ. 2003. Increased interleukin-10 expression is not responsible for failure of T helper 1 immunity to resolve airborne Mycobacterium tuberculosis infection in mice. Immunology 109:295–299 http://dx.doi.org/10.1046/j.1365-2567.2003.01645.x. [CrossRef]
354. Higgins DM, Sanchez-Campillo J, Rosas-Taraco AG, Lee EJ, Orme IM, Gonzalez-Juarrero M. 2009. Lack of IL-10 alters inflammatory and immune responses during pulmonary Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 89:149–157 http://dx.doi.org/10.1016/j.tube.2009.01.001.
355. Beamer GL, Flaherty DK, Assogba BD, Stromberg P, Gonzalez-Juarrero M, de Waal Malefyt R, Vesosky B, Turner J. 2008. Interleukin-10 promotes Mycobacterium tuberculosis disease progression in CBA/J mice. J Immunol 181:5545–5550 http://dx.doi.org/10.4049/jimmunol.181.8.5545. [CrossRef]
356. Cyktor JC, Carruthers B, Kominsky RA, Beamer GL, Stromberg P, Turner J. 2013. IL-10 inhibits mature fibrotic granuloma formation during Mycobacterium tuberculosis infection. J Immunol 190:2778–2790 http://dx.doi.org/10.4049/jimmunol.1202722. [CrossRef]
357. Cilfone NA, Ford CB, Marino S, Mattila JT, Gideon HP, Flynn JL, Kirschner DE, Linderman JJ. 2015. Computational modeling predicts IL-10 control of lesion sterilization by balancing early host immunity-mediated antimicrobial responses with caseation during Mycobacterium tuberculosis infection. J Immunol 194:664–677 http://dx.doi.org/10.4049/jimmunol.1400734. [CrossRef]
358. Dorhoi A, Kaufmann SH. 2016. Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin Immunopathol 38:153–166. doi:10.1007/s00281-015-0531-3. [CrossRef]
359. Yoshimura T. 2015. Discovery of IL-8/CXCL8 (The Story from Frederick). Front Immunol 6:278 http://dx.doi.org/10.3389/fimmu.2015.00278. [PubMed][CrossRef]
360. Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA. 2000. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176. [PubMed]
361. Murphy PM. 2002. International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 54:227–229 http://dx.doi.org/10.1124/pr.54.2.227. [PubMed][CrossRef]
362. Bacon K, Baggiolini M, Broxmeyer H, Horuk R, Lindley I, Mantovani A, Maysushima K, Murphy P, Nomiyama H, Oppenheim J, Rot A, Schall T, Tsang M, Thorpe R, Van Damme J, Wadhwa M, Yoshie O, Zlotnik A, Zoon K, IUIS/WHO Subcommittee on Chemokine Nomenclature. 2002. Chemokine/chemokine receptor nomenclature. J Interferon Cytokine Res 22:1067–1068 http://dx.doi.org/10.1089/107999002760624305. [CrossRef]
363. Zlotnik A, Yoshie O. 2012. The chemokine superfamily revisited. Immunity 36:705–716 http://dx.doi.org/10.1016/j.immuni.2012.05.008. [PubMed][CrossRef]
364. Zlotnik A, Yoshie O. 2000. Chemokines: a new classification system and their role in immunity. Immunity 12:121–127 http://dx.doi.org/10.1016/S1074-7613(00)80165-X. [CrossRef]
365. Su SB, Mukaida N, Wang J, Nomura H, Matsushima K. 1996. Preparation of specific polyclonal antibodies to a C-C chemokine receptor, CCR1, and determination of CCR1 expression on various types of leukocytes. J Leukoc Biol 60:658–666. [PubMed]
366. Neote K, DiGregorio D, Mak JY, Horuk R, Schall TJ. 1993. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell 72:415–425 http://dx.doi.org/10.1016/0092-8674(93)90118-A. [CrossRef]
367. Gao JL, Kuhns DB, Tiffany HL, McDermott D, Li X, Francke U, Murphy PM. 1993. Structure and functional expression of the human macrophage inflammatory protein 1 alpha/RANTES receptor. J Exp Med 177:1421–1427 http://dx.doi.org/10.1084/jem.177.5.1421. [CrossRef]
368. Gao JL, Murphy PM. 1995. Cloning and differential tissue-specific expression of three mouse beta chemokine receptor-like genes, including the gene for a functional macrophage inflammatory protein-1 alpha receptor. J Biol Chem 270:17494–17501 http://dx.doi.org/10.1074/jbc.270.29.17494. [CrossRef]
369. Kaufmann A, Salentin R, Gemsa D, Sprenger H. 2001. Increase of CCR1 and CCR5 expression and enhanced functional response to MIP-1 alpha during differentiation of human monocytes to macrophages. J Leukoc Biol 69:248–252. [PubMed]
370. Cheng SS, Lai JJ, Lukacs NW, Kunkel SL. 2001. Granulocyte-macrophage colony stimulating factor up-regulates CCR1 in human neutrophils. J Immunol 166:1178–1184 http://dx.doi.org/10.4049/jimmunol.166.2.1178. [PubMed][CrossRef]
371. Pokkali S, Das SD, Logamurthy R. 2008. Expression of CXC and CC type of chemokines and its receptors in tuberculous and non-tuberculous effusions. Cytokine 41:307–314 http://dx.doi.org/10.1016/j.cyto.2007.12.009. [PubMed][CrossRef]
372. Pokkali S, Das SD. 2009. Augmented chemokine levels and chemokine receptor expression on immune cells during pulmonary tuberculosis. Hum Immunol 70:110–115 http://dx.doi.org/10.1016/j.humimm.2008.11.003. [CrossRef]
373. Hilda JN, Narasimhan M, Das SD. 2014. Neutrophils from pulmonary tuberculosis patients show augmented levels of chemokines MIP-1α, IL-8 and MCP-1 which further increase upon in vitro infection with mycobacterial strains. Hum Immunol 75:914–922 http://dx.doi.org/10.1016/j.humimm.2014.06.020. [CrossRef]
374. Saukkonen JJ, Bazydlo B, Thomas M, Strieter RM, Keane J, Kornfeld H. 2002. Beta-chemokines are induced by Mycobacterium tuberculosis and inhibit its growth. Infect Immun 70:1684–1693 http://dx.doi.org/10.1128/IAI.70.4.1684-1693.2002. [PubMed][CrossRef]
375. Algood HM, Flynn JL. 2004. CCR5-deficient mice control Mycobacterium tuberculosis infection despite increased pulmonary lymphocytic infiltration. J Immunol 173:3287–3296 http://dx.doi.org/10.4049/jimmunol.173.5.3287.
376. Randolph GJ, Ochando J, Partida-Sánchez S. 2008. Migration of dendritic cell subsets and their precursors. Annu Rev Immunol 26:293–316 http://dx.doi.org/10.1146/annurev.immunol.26.021607.090254. [PubMed][CrossRef]
377. Glatzel A, Wesch D, Schiemann F, Brandt E, Janssen O, Kabelitz D. 2002. Patterns of chemokine receptor expression on peripheral blood gamma delta T lymphocytes: strong expression of CCR5 is a selective feature of V delta 2/V gamma 9 gamma delta T cells. J Immunol 168:4920–4929 http://dx.doi.org/10.4049/jimmunol.168.10.4920. [CrossRef]
378. Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF. 2007. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117:902–909 http://dx.doi.org/10.1172/JCI29919. [PubMed][CrossRef]
379. Hasan Z, Jamil B, Khan J, Ali R, Khan MA, Nasir N, Yusuf MS, Jamil S, Irfan M, Hussain R. 2009. Relationship between circulating levels of IFN-gamma, IL-10, CXCL9 and CCL2 in pulmonary and extrapulmonary tuberculosis is dependent on disease severity. Scand J Immunol 69:259–267 http://dx.doi.org/10.1111/j.1365-3083.2008.02217.x. [CrossRef]
380. Scott HM, Flynn JL. 2002. Mycobacterium tuberculosis in chemokine receptor 2-deficient mice: influence of dose on disease progression. Infect Immun 70:5946–5954 http://dx.doi.org/10.1128/IAI.70.11.5946-5954.2002. [PubMed][CrossRef]
381. Peters W, Scott HM, Chambers HF, Flynn JL, Charo IF, Ernst JD. 2001. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 98:7958–7963 http://dx.doi.org/10.1073/pnas.131207398. [CrossRef]
382. Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, North R, Gerard C, Rollins BJ. 1998. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187:601–608 http://dx.doi.org/10.1084/jem.187.4.601. [CrossRef]
383. Kipnis A, Basaraba RJ, Orme IM, Cooper AM. 2003. Role of chemokine ligand 2 in the protective response to early murine pulmonary tuberculosis. Immunology 109:547–551 http://dx.doi.org/10.1046/j.1365-2567.2003.01680.x. [CrossRef]
384. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, D’Ambrosio D. 2001. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 194:847–854 http://dx.doi.org/10.1084/jem.194.6.847. [CrossRef]
385. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W. 2004. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949 http://dx.doi.org/10.1038/nm1093. [CrossRef]
386. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G. 2007. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646 http://dx.doi.org/10.1038/ni1467. [CrossRef]
387. Kunkel EJ, Boisvert J, Murphy K, Vierra MA, Genovese MC, Wardlaw AJ, Greenberg HB, Hodge MR, Wu L, Butcher EC, Campbell JJ. 2002. Expression of the chemokine receptors CCR4, CCR5, and CXCR3 by human tissue-infiltrating lymphocytes. Am J Pathol 160:347–355 http://dx.doi.org/10.1016/S0002-9440(10)64378-7. [CrossRef]
388. Hu Z, Lancaster JN, Sasiponganan C, Ehrlich LI. 2015. CCR4 promotes medullary entry and thymocyte-dendritic cell interactions required for central tolerance. J Exp Med 212:1947–1965 http://dx.doi.org/10.1084/jem.20150178. [PubMed][CrossRef]
389. Cowan JE, McCarthy NI, Parnell SM, White AJ, Bacon A, Serge A, Irla M, Lane PJ, Jenkinson EJ, Jenkinson WE, Anderson G. 2014. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive αβT cells in the adult thymus. J Immunol 193:1204–1212 http://dx.doi.org/10.4049/jimmunol.1400993. [CrossRef]
390. Andrew DP, Ruffing N, Kim CH, Miao W, Heath H, Li Y, Murphy K, Campbell JJ, Butcher EC, Wu L. 2001. C-C chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both Th1 and Th2 potential. J Immunol 166:103–111 http://dx.doi.org/10.4049/jimmunol.166.1.103. [CrossRef]
391. Paul WE, Zhu J. 2010. How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol 10:225–235 http://dx.doi.org/10.1038/nri2735. [PubMed][CrossRef]
392. Oliphant CJ, Barlow JL, McKenzie AN. 2011. Insights into the initiation of type 2 immune responses. Immunology 134:378–385 http://dx.doi.org/10.1111/j.1365-2567.2011.03499.x. [PubMed][CrossRef]
393. Li L, Lao SH, Wu CY. 2007. Increased frequency of CD4(+)CD25(high) Treg cells inhibit BCG-specific induction of IFN-gamma by CD4(+) T cells from TB patients. Tuberculosis (Edinb) 87:526–534 http://dx.doi.org/10.1016/j.tube.2007.07.004. [PubMed][CrossRef]
394. Roberts T, Beyers N, Aguirre A, Walzl G. 2007. Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta, and interleukin-4 mRNA levels. J Infect Dis 195:870–878 http://dx.doi.org/10.1086/511277. [CrossRef]
395. Bayry J, Tchilian EZ, Davies MN, Forbes EK, Draper SJ, Kaveri SV, Hill AV, Kazatchkine MD, Beverley PC, Flower DR, Tough DF. 2008. In silico identified CCR4 antagonists target regulatory T cells and exert adjuvant activity in vaccination. Proc Natl Acad Sci USA 105:10221–10226 http://dx.doi.org/10.1073/pnas.0803453105. [CrossRef]
396. Feng Y, Yin H, Mai G, Mao L, Yue J, Xiao H, Hu Z. 2011. Elevated serum levels of CCL17 correlate with increased peripheral blood platelet count in patients with active tuberculosis in China. Clin Vaccine Immunol 18:629–632 http://dx.doi.org/10.1128/CVI.00493-10. [CrossRef]
397. Freeman CM, Stolberg VR, Chiu BC, Lukacs NW, Kunkel SL, Chensue SW. 2006. CCR4 participation in Th type 1 (mycobacterial) and Th type 2 (schistosomal) anamnestic pulmonary granulomatous responses. J Immunol 177:4149–4158 http://dx.doi.org/10.4049/jimmunol.177.6.4149. [PubMed][CrossRef]
398. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA. 1996. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673 http://dx.doi.org/10.1038/381667a0. [PubMed][CrossRef]
399. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR. 1996. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666 http://dx.doi.org/10.1038/381661a0. [PubMed][CrossRef]
400. Chu SF, Tam CM, Wong HS, Kam KM, Lau YL, Chiang AK. 2007. Association between RANTES functional polymorphisms and tuberculosis in Hong Kong Chinese. Genes Immun 8:475–479 http://dx.doi.org/10.1038/sj.gene.6364412. [PubMed][CrossRef]
401. Vesosky B, Rottinghaus EK, Stromberg P, Turner J, Beamer G. 2010. CCL5 participates in early protection against Mycobacterium tuberculosis. J Leukoc Biol 87:1153–1165 http://dx.doi.org/10.1189/jlb.1109742. [PubMed][CrossRef]
402. Mantovani A. 1999. The chemokine system: redundancy for robust outputs. Immunol Today 20:254–257 http://dx.doi.org/10.1016/S0167-5699(99)01469-3. [PubMed][CrossRef]
403. Schutyser E, Struyf S, Van Damme J. 2003. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14:409–426 http://dx.doi.org/10.1016/S1359-6101(03)00049-2. [PubMed][CrossRef]
404. Ito T, Carson WF 4th, Cavassani KA, Connett JM, Kunkel SL. 2011. CCR6 as a mediator of immunity in the lung and gut. Exp Cell Res 317:613–619 http://dx.doi.org/10.1016/j.yexcr.2010.12.018. [PubMed][CrossRef]
405. Nandi B, Pai C, Huang Q, Prabhala RH, Munshi NC, Gold JS. 2014. CCR6, the sole receptor for the chemokine CCL20, promotes spontaneous intestinal tumorigenesis. PLoS One 9:e97566 http://dx.doi.org/10.1371/journal.pone.0097566. [PubMed][CrossRef]
406. Lee AY, Körner H. 2014. CCR6 and CCL20: emerging players in the pathogenesis of rheumatoid arthritis. Immunol Cell Biol 92:354–358 http://dx.doi.org/10.1038/icb.2013.97. [PubMed][CrossRef]
407. Stolberg VR, Chiu BC, Martin BE, Shah SA, Sandor M, Chensue SW. 2011. Cysteine-cysteinyl chemokine receptor 6 mediates invariant natural killer T cell airway recruitment and innate stage resistance during mycobacterial infection. J Innate Immun 3:99–108 http://dx.doi.org/10.1159/000321156. [CrossRef]
408. Perreau M, Rozot V, Welles HC, Belluti-Enders F, Vigano S, Maillard M, Dorta G, Mazza-Stalder J, Bart PA, Roger T, Calandra T, Nicod L, Harari A. 2013. Lack of Mycobacterium tuberculosis-specific interleukin-17A-producing CD4+ T cells in active disease. Eur J Immunol 43:939–948 http://dx.doi.org/10.1002/eji.201243090. [CrossRef]
409. Lindestam Arlehamn CS, Gerasimova A, Mele F, Henderson R, Swann J, Greenbaum JA, Kim Y, Sidney J, James EA, Taplitz R, McKinney DM, Kwok WW, Grey H, Sallusto F, Peters B, Sette A. 2013. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog 9:e1003130 http://dx.doi.org/10.1371/journal.ppat.1003130. [CrossRef]
410. Rivero-Lezcano OM, González-Cortés C, Reyes-Ruvalcaba D, Diez-Tascón C. 2010. CCL20 is overexpressed in Mycobacterium tuberculosis-infected monocytes and inhibits the production of reactive oxygen species (ROS). Clin Exp Immunol 162:289–297 http://dx.doi.org/10.1111/j.1365-2249.2010.04168.x. [CrossRef]
411. Lee JS, Lee JY, Son JW, Oh JH, Shin DM, Yuk JM, Song CH, Paik TH, Jo EK. 2008. Expression and regulation of the CC-chemokine ligand 20 during human tuberculosis. Scand J Immunol 67:77–85 http://dx.doi.org/10.1111/j.1365-3083.2007.02040.x. [PubMed][CrossRef]
412. Kang DD, Lin Y, Moreno JR, Randall TD, Khader SA. 2011. Profiling early lung immune responses in the mouse model of tuberculosis. PLoS One 6:e16161 http://dx.doi.org/10.1371/journal.pone.0016161. [PubMed][CrossRef]
413. Mehra S, Pahar B, Dutta NK, Conerly CN, Philippi-Falkenstein K, Alvarez X, Kaushal D. 2010. Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. PLoS One 5:e12266 http://dx.doi.org/10.1371/journal.pone.0012266. [CrossRef]
414. Förster R, Davalos-Misslitz AC, Rot A. 2008. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362–371 http://dx.doi.org/10.1038/nri2297. [PubMed][CrossRef]
415. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H. 1999. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189:451–460 http://dx.doi.org/10.1084/jem.189.3.451. [CrossRef]
416. Kahnert A, Höpken UE, Stein M, Bandermann S, Lipp M, Kaufmann SH. 2007. Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J Infect Dis 195:46–54 http://dx.doi.org/10.1086/508894. [CrossRef]
417. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT. 1998. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 95:258–263 http://dx.doi.org/10.1073/pnas.95.1.258. [PubMed][CrossRef]
418. Saeki H, Moore AM, Brown MJ, Hwang ST. 1999. Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162:2472–2475. [PubMed]
419. Bhatt K, Hickman SP, Salgame P. 2004. Cutting edge: a new approach to modeling early lung immunity in murine tuberculosis. J Immunol 172:2748–2751 http://dx.doi.org/10.4049/jimmunol.172.5.2748. [PubMed][CrossRef]
420. Olmos S, Stukes S, Ernst JD. 2010. Ectopic activation of Mycobacterium tuberculosis-specific CD4+ T cells in lungs of CCR7-/- mice. J Immunol 184:895–901 http://dx.doi.org/10.4049/jimmunol.0901230. [PubMed][CrossRef]
421. Nakano H, Gunn MD. 2001. Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the plt mutation. J Immunol 166:361–369 http://dx.doi.org/10.4049/jimmunol.166.1.361. [CrossRef]
422. Khader SA, Rangel-Moreno J, Fountain JJ, Martino CA, Reiley WW, Pearl JE, Winslow GM, Woodland DL, Randall TD, Cooper AM. 2009. In a murine tuberculosis model, the absence of homeostatic chemokines delays granuloma formation and protective immunity. J Immunol 183:8004–8014 http://dx.doi.org/10.4049/jimmunol.0901937. [CrossRef]
423. Allen SJ, Crown SE, Handel TM. 2007. Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25:787–820 http://dx.doi.org/10.1146/annurev.immunol.24.021605.090529. [PubMed][CrossRef]
424. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D, Chan S-Y, Roczniak S, Shanafelt AB. 1995. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348–27357 http://dx.doi.org/10.1074/jbc.270.45.27348. [PubMed][CrossRef]
425. Hébert CA, Vitangcol RV, Baker JB. 1991. Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J Biol Chem 266:18989–18994. [PubMed]
426. Clark-Lewis I, Dewald B, Geiser T, Moser B, Baggiolini M. 1993. Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proc Natl Acad Sci USA 90:3574–3577 http://dx.doi.org/10.1073/pnas.90.8.3574. [CrossRef]
427. Jones SA, Moser B, Thelen M. 1995. A comparison of post-receptor signal transduction events in Jurkat cells transfected with either IL-8R1 or IL-8R2. Chemokine mediated activation of p42/p44 MAP-kinase (ERK-2). FEBS Lett 364:211–214 http://dx.doi.org/10.1016/0014-5793(95)00397-R. [CrossRef]
428. Slight SR, Khader SA. 2013. Chemokines shape the immune responses to tuberculosis. Cytokine Growth Factor Rev 24:105–113 http://dx.doi.org/10.1016/j.cytogfr.2012.10.002. [PubMed][CrossRef]
429. Alaridah N, Winqvist N, Håkansson G, Tenland E, Rönnholm A, Sturegård E, Björkman P, Godaly G. 2015. Impaired CXCR1-dependent oxidative defence in active tuberculosis patients. Tuberculosis (Edinb) 95:744–750 http://dx.doi.org/10.1016/j.tube.2015.07.008. [CrossRef]
430. Gonçalves AS, Appelberg R. 2002. The involvement of the chemokine receptor CXCR2 in neutrophil recruitment in LPS-induced inflammation and in Mycobacterium avium infection. Scand J Immunol 55:585–591 http://dx.doi.org/10.1046/j.1365-3083.2002.01097.x. [PubMed][CrossRef]
431. O’Kane CM, Boyle JJ, Horncastle DE, Elkington PT, Friedland JS. 2007. Monocyte-dependent fibroblast CXCL8 secretion occurs in tuberculosis and limits survival of mycobacteria within macrophages. J Immunol 178:3767–3776 http://dx.doi.org/10.4049/jimmunol.178.6.3767. [CrossRef]
432. Friedland JS, Remick DG, Shattock R, Griffin GE. 1992. Secretion of interleukin-8 following phagocytosis of Mycobacterium tuberculosis by human monocyte cell lines. Eur J Immunol 22:1373–1378 http://dx.doi.org/10.1002/eji.1830220607. [CrossRef]
433. Zhang Y, Broser M, Cohen H, Bodkin M, Law K, Reibman J, Rom WN. 1995. Enhanced interleukin-8 release and gene expression in macrophages after exposure to Mycobacterium tuberculosis and its components. J Clin Invest 95:586–592 http://dx.doi.org/10.1172/JCI117702. [CrossRef]
434. Lin Y, Zhang M, Barnes PF. 1998. Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect Immun 66:1121–1126. [PubMed]
435. Kurashima K, Mukaida N, Fujimura M, Yasui M, Nakazumi Y, Matsuda T, Matsushima K. 1997. Elevated chemokine levels in bronchoalveolar lavage fluid of tuberculosis patients. Am J Respir Crit Care Med 155:1474–1477 http://dx.doi.org/10.1164/ajrccm.155.4.9105097. [CrossRef]
436. Larsen CG, et al. 1995. The delayed-type hypersensitivity reaction is dependent on IL-8. Inhibition of a tuberculin skin reaction by an anti-IL-8 monoclonal antibody. J Immunol 155:2151–2157. [PubMed]
437. Ma X, Reich RA, Wright JA, Tooker HR, Teeter LD, Musser JM, Graviss EA. 2003. Association between interleukin-8 gene alleles and human susceptibility to tuberculosis disease. J Infect Dis 188:349–355 http://dx.doi.org/10.1086/376559. [CrossRef]
438. Cooke GS, Campbell SJ, Fielding K, Sillah J, Manneh K, Sirugo G, Bennett S, McAdam KP, Lienhardt C, Hill AV. 2004. Interleukin-8 polymorphism is not associated with pulmonary tuberculosis in the gambia. J Infect Dis 189:1545–1546, author reply 1546 http://dx.doi.org/10.1086/382489. [PubMed][CrossRef]
439. Almeida CS, Abramo C, Alves CC, Mazzoccoli L, Ferreira AP, Teixeira HC. 2009. Anti-mycobacterial treatment reduces high plasma levels of CXC-chemokines detected in active tuberculosis by cytometric bead array. Mem Inst Oswaldo Cruz 104:1039–1041 http://dx.doi.org/10.1590/S0074-02762009000700018. [CrossRef]
440. Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J III, Faé KC, Arrey F, Kuhlmann S, Bandermann S, Loewe D, Mollenkopf HJ, Vogelzang A, Meyer-Schwesinger C, Mittrücker HW, McEwen G, Kaufmann SH. 2014. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest 124:1268–1282 http://dx.doi.org/10.1172/JCI72030. [CrossRef]
441. Groom JR, Luster AD. 2011. CXCR3 in T cell function. Exp Cell Res 317:620–631 http://dx.doi.org/10.1016/j.yexcr.2010.12.017. [CrossRef]
442. Thomas SY, Hou R, Boyson JE, Means TK, Hess C, Olson DP, Strominger JL, Brenner MB, Gumperz JE, Wilson SB, Luster AD. 2003. CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J Immunol 171:2571–2580 http://dx.doi.org/10.4049/jimmunol.171.5.2571. [CrossRef]
443. Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, Koch AE, Moser B, Mackay CR. 1998. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 101:746–754 http://dx.doi.org/10.1172/JCI1422. [CrossRef]
444. Lu B, Humbles A, Bota D, Gerard C, Moser B, Soler D, Luster AD, Gerard NP. 1999. Structure and function of the murine chemokine receptor CXCR3. Eur J Immunol 29:3804–3812 http://dx.doi.org/10.1002/(SICI)1521-4141(199911)29:11<3804::AID-IMMU3804>3.0.CO;2-9. [PubMed][CrossRef]
445. Campanella GS, Grimm J, Manice LA, Colvin RA, Medoff BD, Wojtkiewicz GR, Weissleder R, Luster AD. 2006. Oligomerization of CXCL10 is necessary for endothelial cell presentation and in vivo activity. J Immunol 177:6991–6998 http://dx.doi.org/10.4049/jimmunol.177.10.6991. [PubMed][CrossRef]
446. Loetscher M, Loetscher P, Brass N, Meese E, Moser B. 1998. Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol 28:3696–3705 http://dx.doi.org/10.1002/(SICI)1521-4141(199811)28:11<3399::AID-IMMU3399>3.0.CO;2-W. [PubMed]
447. Shields PL, Morland CM, Salmon M, Qin S, Hubscher SG, Adams DH. 1999. Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver. J Immunol 163:6236–6243. [PubMed]
448. Seiler P, Aichele P, Bandermann S, Hauser AE, Lu B, Gerard NP, Gerard C, Ehlers S, Mollenkopf HJ, Kaufmann SH. 2003. Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol 33:2676–2686 http://dx.doi.org/10.1002/eji.200323956. [CrossRef]
449. Chakravarty SD, Xu J, Lu B, Gerard C, Flynn J, Chan J. 2007. The chemokine receptor CXCR3 attenuates the control of chronic Mycobacterium tuberculosis infection in BALB/c mice. J Immunol 178:1723–1735 http://dx.doi.org/10.4049/jimmunol.178.3.1723. [PubMed][CrossRef]
450. Hasan Z, Jamil B, Ashraf M, Islam M, Dojki M, Irfan M, Hussain R. 2009. Differential live Mycobacterium tuberculosis-, M. bovis BCG-, recombinant ESAT6-, and culture filtrate protein 10-induced immunity in tuberculosis. Clin Vaccine Immunol 16:991–998 http://dx.doi.org/10.1128/CVI.00091-09. [PubMed][CrossRef]
451. Azzurri A, Sow OY, Amedei A, Bah B, Diallo S, Peri G, Benagiano M, D’Elios MM, Mantovani A, Del Prete G. 2005. IFN-gamma-inducible protein 10 and pentraxin 3 plasma levels are tools for monitoring inflammation and disease activity in Mycobacterium tuberculosis infection. Microbes Infect 7:1–8 http://dx.doi.org/10.1016/j.micinf.2004.09.004. [CrossRef]
452. Whittaker E, Gordon A, Kampmann B. 2008. Is IP-10 a better biomarker for active and latent tuberculosis in children than IFNgamma? PLoS One 3:e3901 http://dx.doi.org/10.1371/journal.pone.0003901. [PubMed][CrossRef]
453. Kibiki GS, Myers LC, Kalambo CF, Hoang SB, Stoler MH, Stroup SE, Houpt ER. 2007. Bronchoalveolar neutrophils, interferon gamma-inducible protein 10 and interleukin-7 in AIDS-associated tuberculosis. Clin Exp Immunol 148:254–259 http://dx.doi.org/10.1111/j.1365-2249.2007.03330.x. [CrossRef]
454. Tang NL, Fan HP, Chang KC, Ching JK, Kong KP, Yew WW, Kam KM, Leung CC, Tam CM, Blackwell J, Chan CY. 2009. Genetic association between a chemokine gene CXCL-10 (IP-10, interferon gamma inducible protein 10) and susceptibility to tuberculosis. Clin Chim Acta 406:98–102 http://dx.doi.org/10.1016/j.cca.2009.06.006. [CrossRef]
455. Loos T, Dekeyzer L, Struyf S, Schutyser E, Gijsbers K, Gouwy M, Fraeyman A, Put W, Ronsse I, Grillet B, Opdenakker G, Van Damme J, Proost P. 2006. TLR ligands and cytokines induce CXCR3 ligands in endothelial cells: enhanced CXCL9 in autoimmune arthritis. Lab Invest 86:902–916 http://dx.doi.org/10.1038/labinvest.3700453. [PubMed][CrossRef]
456. Kanda N, Shimizu T, Tada Y, Watanabe S. 2007. IL-18 enhances IFN-gamma-induced production of CXCL9, CXCL10, and CXCL11 in human keratinocytes. Eur J Immunol 37:338–350 http://dx.doi.org/10.1002/eji.200636420. [PubMed][CrossRef]
457. Basset L, Chevalier S, Danger Y, Arshad MI, Piquet-Pellorce C, Gascan H, Samson M. 2015. Interleukin-27 and IFNγ regulate the expression of CXCL9, CXCL10, and CXCL11 in hepatitis. J Mol Med (Berl) 93:1355–1367 http://dx.doi.org/10.1007/s00109-015-1319-6. [PubMed][CrossRef]
458. Oo YH, Banz V, Kavanagh D, Liaskou E, Withers DR, Humphreys E, Reynolds GM, Lee-Turner L, Kalia N, Hubscher SG, Klenerman P, Eksteen B, Adams DH. 2012. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J Hepatol 57:1044–1051 http://dx.doi.org/10.1016/j.jhep.2012.07.008. [PubMed][CrossRef]
459. Slight SR, Rangel-Moreno J, Gopal R, Lin Y, Fallert Junecko BA, Mehra S, Selman M, Becerril-Villanueva E, Baquera-Heredia J, Pavon L, Kaushal D, Reinhart TA, Randall TD, Khader SA. 2013. CXCR5 + T helper cells mediate protective immunity against tuberculosis. J Clin Invest 123:712–726. [PubMed][CrossRef]
460. Vermi W, Lonardi S, Bosisio D, Uguccioni M, Danelon G, Pileri S, Fletcher C, Sozzani S, Zorzi F, Arrigoni G, Doglioni C, Ponzoni M, Facchetti F. 2008. Identification of CXCL13 as a new marker for follicular dendritic cell sarcoma. J Pathol 216:356–364 http://dx.doi.org/10.1002/path.2420. [PubMed][CrossRef]
461. Takagi R, Higashi T, Hashimoto K, Nakano K, Mizuno Y, Okazaki Y, Matsushita S. 2008. B cell chemoattractant CXCL13 is preferentially expressed by human Th17 cell clones. J Immunol 181:186–189 http://dx.doi.org/10.4049/jimmunol.181.1.186.