No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Metabolic Perspectives on Persistence

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    144.11 Kb
  • XML
    147.64 Kb
  • PDF
    352.00 Kb
  • Authors: Travis E. Hartman1, Zhe Wang2, Robert S. Jansen3, Susana Gardete4, Kyu Y. Rhee5,6
  • Editors: William R. Jacobs Jr.7, Helen McShane8, Valerie Mizrahi9, Ian M. Orme10
    Affiliations: 1: Departments of Medicine; 2: Departments of Medicine; 3: Departments of Medicine; 4: Departments of Medicine; 5: Departments of Medicine; 6: Microbiology & Immunology, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065; 7: Howard Hughes Medical Institute, Albert Einstein School of Medicine, Bronx, NY 10461; 8: University of Oxford, Oxford OX3 7DQ, United Kingdom; 9: University of Cape Town, Rondebosch 7701, South Africa; 10: Colorado State University, Fort Collins, CO 80523
  • Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0026-2016
  • Received 30 July 2016 Accepted 06 August 2016 Published 01 February 2017
  • Kyu Y. Rhee, [email protected]
image of Metabolic Perspectives on Persistence
    Preview this microbiology spectrum article:
    Zoom in

    Metabolic Perspectives on Persistence, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/1/TBTB2-0026-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/1/TBTB2-0026-2016-2.gif
  • Abstract:

    Accumulating evidence has left little doubt about the importance of persistence or metabolism in the biology and chemotherapy of tuberculosis. However, knowledge of the intersection between these two factors has only recently begun to emerge. Here, we provide a focused review of metabolic characteristics associated with persistence. We focus on metabolism because it is the biochemical foundation of all physiologic processes and a distinguishing hallmark of physiology and pathogenicity. In addition, it serves as the chemical interface between host and pathogen. Existing knowledge, however, derives largely from physiologic contexts in which replication is the primary biochemical objective. The goal of this review is to reframe current knowledge of metabolism in the context of persistence, where quiescence is often a key distinguishing characteristic. Such a perspective may help ongoing efforts to develop more efficient cures and inform on novel strategies to break the cycle of transmission sustaining the pandemic.

  • Citation: Hartman T, Wang Z, Jansen R, Gardete S, Rhee K. 2017. Metabolic Perspectives on Persistence. Microbiol Spectrum 5(1):TBTB2-0026-2016. doi:10.1128/microbiolspec.TBTB2-0026-2016.


1. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M, Supply P, Vincent V. 2005. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1:e5 http://dx.doi.org/10.1371/journal.ppat.0010005. [PubMed]
2. Russell DG, Barry CE III, Flynn JL. 2010. Tuberculosis: what we don’t know can, and does, hurt us. Science 328:852–856 http://dx.doi.org/10.1126/science.1184784. [PubMed]
3. Nathan C. 2012. Fresh approaches to anti-infective therapies. Sci Transl Med 4:140sr2 http://dx.doi.org/10.1126/scitranslmed.3003081. [PubMed]
4. Kester JC, Fortune SM. 2014. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol 49:91–101 http://dx.doi.org/10.3109/10409238.2013.869543. [PubMed]
5. Ehrt S, Rhee K. 2013. Mycobacterium tuberculosis metabolism and host interaction: mysteries and paradoxes. Curr Top Microbiol Immunol 374:163–188 http://dx.doi.org/10.1007/82_2012_299. [PubMed]
6. Gomez JE, McKinney JD. 2004. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb) 84:29–44 http://dx.doi.org/10.1016/j.tube.2003.08.003. [PubMed]
7. Kalscheuer R, Syson K, Veeraraghavan U, Weinrick B, Biermann KE, Liu Z, Sacchettini JC, Besra G, Bornemann S, Jacobs WR Jr. 2010. Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway. Nat Chem Biol 6:376–384 http://dx.doi.org/10.1038/nchembio.340. [PubMed]
8. Venugopal A, Bryk R, Shi S, Rhee K, Rath P, Schnappinger D, Ehrt S, Nathan C. 2011. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe 9:21–31 http://dx.doi.org/10.1016/j.chom.2010.12.004.
9. Eoh H, Rhee KY. 2014. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci USA 111:4976–4981 http://dx.doi.org/10.1073/pnas.1400390111.
10. Intlekofer AM, Dematteo RG, Venneti S, Finley LW, Lu C, Judkins AR, Rustenburg AS, Grinaway PB, Chodera JD, Cross JR, Thompson CB. 2015. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab 22:304–311 http://dx.doi.org/10.1016/j.cmet.2015.06.023. [PubMed]
11. McCune RM Jr, McDermott W, Tompsett R. 1956. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med 104:763–802 http://dx.doi.org/10.1084/jem.104.5.763.
12. Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, Johnston JC, Gardy J, Lipsitch M, Fortune SM. 2013. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 45:784–790 http://dx.doi.org/10.1038/ng.2656.
13. Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, Sherman DR. 2009. A replication clock for Mycobacterium tuberculosis. Nat Med 15:211–214 http://dx.doi.org/10.1038/nm.1915. [PubMed]
14. Stead WW, Eisenach KD, Cave MD, Beggs ML, Templeton GL, Thoen CO, Bates JH. 1995. When did Mycobacterium tuberculosis infection first occur in the New World? An important question with public health implications. Am J Respir Crit Care Med 151:1267–1268.
15. Jasmer RM, Bozeman L, Schwartzman K, Cave MD, Saukkonen JJ, Metchock B, Khan A, Burman WJ, Tuberculosis Trials Consortium. 2004. Recurrent tuberculosis in the United States and Canada: relapse or reinfection? Am J Respir Crit Care Med 170:1360–1366 http://dx.doi.org/10.1164/rccm.200408-1081OC.
16. Hawken M, Nunn P, Godfrey-Faussett P, McAdam KPWJ, Morris J, Odhiambo J, Githui W, Gilks C, Hawken M, Gathua S, Nunn P, Hawken M, Brindle R, Batchelor B. 1993. Increased recurrence of tuberculosis in HIV-1-infected patients in Kenya. Lancet 342:332–337 http://dx.doi.org/10.1016/0140-6736(93)91474-Z.
17. Bryant JM, Harris SR, Parkhill J, Dawson R, Diacon AH, van Helden P, Pym A, Mahayiddin AA, Chuchottaworn C, Sanne IM, Louw C, Boeree MJ, Hoelscher M, McHugh TD, Bateson AL, Hunt RD, Mwaigwisya S, Wright L, Gillespie SH, Bentley SD. 2013. Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study. Lancet Respir Med 1:786–792 http://dx.doi.org/10.1016/S2213-2600(13)70231-5.
18. Guerra-Assunção JA, Houben RM, Crampin AC, Mzembe T, Mallard K, Coll F, Khan P, Banda L, Chiwaya A, Pereira RP, McNerney R, Harris D, Parkhill J, Clark TG, Glynn JR. 2015. Recurrence due to relapse or reinfection with Mycobacterium tuberculosis: a whole-genome sequencing approach in a large, population-based cohort with a high HIV infection prevalence and active follow-up. J Infect Dis 211:1154–1163 http://dx.doi.org/10.1093/infdis/jiu574.
19. Narayanan S, Swaminathan S, Supply P, Shanmugam S, Narendran G, Hari L, Ramachandran R, Locht C, Jawahar MS, Narayanan PR. 2010. Impact of HIV infection on the recurrence of tuberculosis in South India. J Infect Dis 201:691–703 http://dx.doi.org/10.1086/650528. [PubMed]
20. Crampin AC, Mwaungulu JN, Mwaungulu FD, Mwafulirwa DT, Munthali K, Floyd S, Fine PE, Glynn JR. 2010. Recurrent TB: relapse or reinfection? The effect of HIV in a general population cohort in Malawi. AIDS 24:417–426 http://dx.doi.org/10.1097/QAD.0b013e32832f51cf. [PubMed]
21. Vandiviere HM, Loring WE, Melvin I, Willis S. 1956. The treated pulmonary lesion and its tubercle bacillus. II. The death and resurrection. Am J Med Sci 232:30–37, passim http://dx.doi.org/10.1097/00000441-195607000-00006. [PubMed]
22. Zhang Y, Mitchison D. 2003. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis 7:6–21. [PubMed]
23. Mitchison D, Davies G. 2012. The chemotherapy of tuberculosis: past, present and future. Int J Tuberc Lung Dis 16:724–732 http://dx.doi.org/10.5588/ijtld.12.0083. [PubMed]
24. Corper HJ, Cohn ML. 1951. The viability and virulence of old cultures of tubercle bacilli: studies on 30-year-old broth cultures maintained at 37 degrees C. Tubercle 32:232–237 http://dx.doi.org/10.1016/S0041-3879(51)80038-2.
25. Warner DF, Mizrahi V. 2006. Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin Microbiol Rev 19:558–570 http://dx.doi.org/10.1128/CMR.00060-05. [PubMed]
26. Keren I, Minami S, Rubin E, Lewis K. 2011. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio 2:e00100–11 http://dx.doi.org/10.1128/mBio.00100-11. [PubMed]
27. Pethe K, Sequeira PC, Agarwalla S, Rhee K, Kuhen K, Phong WY, Patel V, Beer D, Walker JR, Duraiswamy J, Jiricek J, Keller TH, Chatterjee A, Tan MP, Ujjini M, Rao SP, Camacho L, Bifani P, Mak PA, Ma I, Barnes SW, Chen Z, Plouffe D, Thayalan P, Ng SH, Au M, Lee BH, Tan BH, Ravindran S, Nanjundappa M, Lin X, Goh A, Lakshminarayana SB, Shoen C, Cynamon M, Kreiswirth B, Dartois V, Peters EC, Glynne R, Brenner S, Dick T. 2010. A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nat Commun 1:57 http://dx.doi.org/10.1038/ncomms1060.
28. Edson NL. 1951. The intermediary metabolism of the mycobacteria. Bacteriol Rev 15:147–182. [PubMed]
29. McDonough KA, Kress Y, Bloom BR. 1993. Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 61:2763–2773. [PubMed]
30. Rohde K, Yates RM, Purdy GE, Russell DG. 2007. Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev 219:37–54 http://dx.doi.org/10.1111/j.1600-065X.2007.00547.x. [PubMed]
31. Pieters J. 2008. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3:399–407 http://dx.doi.org/10.1016/j.chom.2008.05.006. [PubMed]
32. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94:5243–5248 http://dx.doi.org/10.1073/pnas.94.10.5243. [PubMed]
33. MacMicking J, Xie QW, Nathan C. 1997. Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350 http://dx.doi.org/10.1146/annurev.immunol.15.1.323. [PubMed]
34. van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ. 2007. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298 http://dx.doi.org/10.1016/j.cell.2007.05.059. [PubMed]
35. Smith I. 2003. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16:463–496 http://dx.doi.org/10.1128/CMR.16.3.463-496.2003. [PubMed]
36. Liu Y, Tan S, Huang L, Abramovitch RB, Rohde KH, Zimmerman MD, Chen C, Dartois V, VanderVen BC, Russell DG. 2016. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J Exp Med 213:809–825 http://dx.doi.org/10.1084/jem.20151248. [PubMed]
37. Connolly LE, Edelstein PH, Ramakrishnan L. 2007. Why is long-term therapy required to cure tuberculosis? PLoS Med 4:e120 http://dx.doi.org/10.1371/journal.pmed.0040120. [PubMed]
38. Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S, McKinney JD. 2013. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339:91–95 http://dx.doi.org/10.1126/science.1229858. [PubMed]
39. Maglica Ž, Özdemir E, McKinney JD. 2015. Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism. MBio 6:e02236–14 http://dx.doi.org/10.1128/mBio.02236-14.
40. Aldridge BB, Fernandez-Suarez M, Heller D, Ambravaneswaran V, Irimia D, Toner M, Fortune SM. 2012. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335:100–104 http://dx.doi.org/10.1126/science.1216166.
41. Barr DA, Kamdolozi M, Nishihara Y, Ndhlovu V, Khonga M, Davies GR, Sloan DJ. 2016. Serial image analysis of Mycobacterium tuberculosis colony growth reveals a persistent subpopulation in sputum during treatment of pulmonary TB. Tuberculosis (Edinb) 98:110–115 http://dx.doi.org/10.1016/j.tube.2016.03.001.
42. Murry JP, Rubin EJ. 2005. New genetic approaches shed light on TB virulence. Trends Microbiol 13:366–372 http://dx.doi.org/10.1016/j.tim.2005.06.003. [PubMed]
43. Sassetti CM, Boyd DH, Rubin EJ. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98:12712–12717 http://dx.doi.org/10.1073/pnas.231275498.
44. Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM. 2011. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7:e1002251 http://dx.doi.org/10.1371/journal.ppat.1002251. doi:10.1371/journal.ppat.1002251.
45. Zhang YJ, Ioerger TR, Huttenhower C, Long JE, Sassetti CM, Sacchettini JC, Rubin EJ. 2012. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog 8:e1002946 http://dx.doi.org/10.1371/journal.ppat.1002946. [Erratum, doi:10.1371/annotation/4669e9e7-fd12-4a01-be2a-617b956ec0bb.]
46. Sassetti CM, Boyd DH, Rubin EJ. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84 http://dx.doi.org/10.1046/j.1365-2958.2003.03425.x. [PubMed]
47. Lamichhane G, Tyagi S, Bishai WR. 2005. Designer arrays for defined mutant analysis to detect genes essential for survival of Mycobacterium tuberculosis in mouse lungs. Infect Immun 73:2533–2540 http://dx.doi.org/10.1128/IAI.73.4.2533-2540.2005.
48. Fortune SM, Chase MR, Rubin EJ. 2006. Dividing oceans into pools: strategies for the global analysis of bacterial genes. Microbes Infect 8:1631–1636 http://dx.doi.org/10.1016/j.micinf.2005.11.015.
49. Kruh NA, Troudt J, Izzo A, Prenni J, Dobos KM. 2010. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. PLoS One 5:e13938 http://dx.doi.org/10.1371/journal.pone.0013938.
50. Hisert KB, Kirksey MA, Gomez JE, Sousa AO, Cox JS, Jacobs WR Jr, Nathan CF, McKinney JD. 2004. Identification of Mycobacterium tuberculosis counterimmune (cim) mutants in immunodeficient mice by differential screening. Infect Immun 72:5315–5321 http://dx.doi.org/10.1128/IAI.72.9.5315-5321.2004.
51. Dhar N, McKinney JD. 2010. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc Natl Acad Sci USA 107:12275–12280 http://dx.doi.org/10.1073/pnas.1003219107.
52. Shui W, Gilmore SA, Sheu L, Liu J, Keasling JD, Bertozzi CR. 2009. Quantitative proteomic profiling of host-pathogen interactions: the macrophage response to Mycobacterium tuberculosis lipids. J Proteome Res 8:282–289 http://dx.doi.org/10.1021/pr800422e.
53. Bell C, Smith GT, Sweredoski MJ, Hess S. 2012. Characterization of the Mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques: a comprehensive resource for tuberculosis research. J Proteome Res 11:119–130 http://dx.doi.org/10.1021/pr2007939.
54. Beste DJV, Espasa M, Bonde B, Kierzek AM, Stewart GR, McFadden J. 2009. The genetic requirements for fast and slow growth in mycobacteria. PLoS One 4:e5349 http://dx.doi.org/10.1371/journal.pone.0005349. [PubMed][CrossRef]
55. Beste DJV, Nöh K, Niedenführ S, Mendum TA, Hawkins ND, Ward JL, Beale MH, Wiechert W, McFadden J. 2013. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem Biol 20:1012–1021 http://dx.doi.org/10.1016/j.chembiol.2013.06.012. [PubMed]
56. Darby CM, Ingólfsson HI, Jiang X, Shen C, Sun M, Zhao N, Burns K, Liu G, Ehrt S, Warren JD, Anderson OS, Brickner SJ, Nathan C. 2013. Whole cell screen for inhibitors of pH homeostasis in Mycobacterium tuberculosis. PLoS One 8:e68942 http://dx.doi.org/10.1371/journal.pone.0068942. [Erratum, doi:10.1371/annotation/760b5b07-4922-42c4-b33a-162c1e9ae188.]
57. Gold B, Warrier T, Nathan C. 2015. A multi-stress model for high throughput screening against non-replicating Mycobacterium tuberculosis. Methods Mol Biol 1285:293–315 http://dx.doi.org/10.1007/978-1-4939-2450-9_18.
58. Gold B, Smith R, Nguyen Q, Roberts J, Ling Y, Lopez Quezada L, Somersan S, Warrier T, Little D, Pingle M, Zhang D, Ballinger E, Zimmerman M, Dartois V, Hanson P, Mitscher LA, Porubsky P, Rogers S, Schoenen FJ, Nathan C, Aubé J. 2016. Novel cephalosporins selectively active on nonreplicating Mycobacterium tuberculosis. J Med Chem 59:6027–6044 http://dx.doi.org/10.1021/acs.jmedchem.5b01833.
59. Aly S, Wagner K, Keller C, Malm S, Malzan A, Brandau S, Bange FC, Ehlers S. 2006. Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol 210:298–305 http://dx.doi.org/10.1002/path.2055. [PubMed]
60. Cunningham-Bussel A, Zhang T, Nathan CF. 2013. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc Natl Acad Sci USA 110:E4256–E4265 http://dx.doi.org/10.1073/pnas.1316894110.
61. Heng Y, Seah PG, Siew JY, Tay HC, Singhal A, Mathys V, Kiass M, Bifani P, Dartois V, Hervé M. 2011. Mycobacterium tuberculosis infection induces hypoxic lung lesions in the rat. Tuberculosis (Edinb) 91:339–341 http://dx.doi.org/10.1016/j.tube.2011.05.003.
62. Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, Taylor K, Klein E, Manjunatha U, Gonzales J, Lee EG, Park SK, Raleigh JA, Cho SN, McMurray DN, Flynn JL, Barry CE III. 2008. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76:2333–2340 http://dx.doi.org/10.1128/IAI.01515-07.
63. Wayne LG, Hayes LG. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069. [PubMed]
64. Hartman T, Weinrick B, Vilchèze C, Berney M, Tufariello J, Cook GM, Jacobs WR Jr. 2014. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis. PLoS Pathog 10:e1004510 http://dx.doi.org/10.1371/journal.ppat.1004510.
65. Shi L, Sohaskey CD, Kana BD, Dawes S, North RJ, Mizrahi V, Gennaro ML. 2005. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci USA 102:15629–15634 http://dx.doi.org/10.1073/pnas.0507850102.
66. Talaat AM, Lyons R, Howard ST, Johnston SA. 2004. The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci USA 101:4602–4607 http://dx.doi.org/10.1073/pnas.0306023101.
67. Timm J, Post FA, Bekker LG, Walther GB, Wainwright HC, Manganelli R, Chan WT, Tsenova L, Gold B, Smith I, Kaplan G, McKinney JD. 2003. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA 100:14321–14326 http://dx.doi.org/10.1073/pnas.2436197100.
68. Wayne LG. 1977. Synchronized replication of Mycobacterium tuberculosis. Infect Immun 17:528–530. [PubMed]
69. Wayne LG, Sohaskey CD. 2001. Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol 55:139–163 http://dx.doi.org/10.1146/annurev.micro.55.1.139. [PubMed]
70. McCormick CC, Li WP, Calero M. 2000. Oxygen tension limits nitric oxide synthesis by activated macrophages. Biochem J 350:709–716 http://dx.doi.org/10.1042/bj3500709.
71. Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE III, Boshoff HI. 2011. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7:e1002287 http://dx.doi.org/10.1371/journal.ppat.1002287.
72. Eoh H, Rhee KY. 2013. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 110:6554–6559 http://dx.doi.org/10.1073/pnas.1219375110.
73. Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Churchyard G, Venter A, Allen J, Palomino JC, De Marez T, van Heeswijk RP, Lounis N, Meyvisch P, Verbeeck J, Parys W, de Beule K, Andries K, Mc Neeley DF. 2009. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360:2397–2405 http://dx.doi.org/10.1056/NEJMoa0808427.
74. Dawson R, Diacon AH, Everitt D, van Niekerk C, Donald PR, Burger DA, Schall R, Spigelman M, Conradie A, Eisenach K, Venter A, Ive P, Page-Shipp L, Variava E, Reither K, Ntinginya NE, Pym A, von Groote-Bidlingmaier F, Mendel CM. 2015. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet 385:1738–1747 http://dx.doi.org/10.1016/S0140-6736(14)62002-X.
75. Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, Gao M, Awad M, Park SK, Shim TS, Suh GY, Danilovits M, Ogata H, Kurve A, Chang J, Suzuki K, Tupasi T, Koh WJ, Seaworth B, Geiter LJ, Wells CD. 2012. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med 366:2151–2160 http://dx.doi.org/10.1056/NEJMoa1112433.
76. Preiss L, Langer JD, Yildiz Ö, Eckhardt-Strelau L, Guillemont JE, Koul A, Meier T. 2015. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci Adv 1:e1500106 http://dx.doi.org/10.1126/sciadv.1500106. [PubMed]
77. Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V. 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227 http://dx.doi.org/10.1126/science.1106753.
78. Koul A, Vranckx L, Dendouga N, Balemans W, Van den Wyngaert I, Vergauwen K, Göhlmann HW, Willebrords R, Poncelet A, Guillemont J, Bald D, Andries K. 2008. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem 283:25273–25280 http://dx.doi.org/10.1074/jbc.M803899200. [PubMed]
79. Gengenbacher M, Rao SPS, Pethe K, Dick T. 2010. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156:81–87 http://dx.doi.org/10.1099/mic.0.033084-0.
80. Rao SPS, Alonso S, Rand L, Dick T, Pethe K. 2008. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci USA 105:11945–11950 http://dx.doi.org/10.1073/pnas.0711697105.
81. Diacon AH, Pym A, Grobusch MP, de los Rios JM, Gotuzzo E, Vasilyeva I, Leimane V, Andries K, Bakare N, De Marez T, Haxaire-Theeuwes M, Lounis N, Meyvisch P, De Paepe E, van Heeswijk RP, Dannemann B, TMC207-C208 Study Group. 2014. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med 371:723–732 http://dx.doi.org/10.1056/NEJMoa1313865.
82. Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, Dowd CS, Lee IY, Kim P, Zhang L, Kang S, Keller TH, Jiricek J, Barry CE III. 2008. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322:1392–1395 http://dx.doi.org/10.1126/science.1164571.
83. Manjunatha U, Boshoff HI, Barry CE. 2009. The mechanism of action of PA-824: novel insights from transcriptional profiling. Commun Integr Biol 2:215–218 http://dx.doi.org/10.4161/cib.2.3.7926. [PubMed]
84. Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR. 2000. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966 http://dx.doi.org/10.1038/35016103.
85. Tyagi S, Nuermberger E, Yoshimatsu T, Williams K, Rosenthal I, Lounis N, Bishai W, Grosset J. 2005. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob Agents Chemother 49:2289–2293 http://dx.doi.org/10.1128/AAC.49.6.2289-2293.2005.
86. Dawson R, Diacon AH, Everitt D, van Niekerk C, Donald PR, Burger DA, Schall R, Spigelman M, Conradie A, Eisenach K, Venter A, Ive P, Page-Shipp L, Variava E, Reither K, Ntinginya NE, Pym A, von Groote-Bidlingmaier F, Mendel CM. 2015. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet 385:1738–1747 http://dx.doi.org/10.1016/S0140-6736(14)62002-X.
87. Diacon AH, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A, Donald PR, van Niekerk C, Everitt D, Winter H, Becker P, Mendel CM, Spigelman MK. 2012. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 380:986–993 http://dx.doi.org/10.1016/S0140-6736(12)61080-0.
88. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731 http://dx.doi.org/10.1046/j.1365-2958.2002.02779.x.
89. Rohde KH, Abramovitch RB, Russell DG. 2007. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2:352–364 http://dx.doi.org/10.1016/j.chom.2007.09.006.
90. Fisher MA, Plikaytis BB, Shinnick TM. 2002. Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 184:4025–4032 http://dx.doi.org/10.1128/JB.184.14.4025-4032.2002.
91. Sassetti CM, Rubin EJ. 2003. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994 http://dx.doi.org/10.1073/pnas.2134250100. [PubMed]
92. Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. 2011. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7:e1002093 http://dx.doi.org/10.1371/journal.ppat.1002093.
93. Garton NJ, Waddell SJ, Sherratt AL, Lee SM, Smith RJ, Senner C, Hinds J, Rajakumar K, Adegbola RA, Besra GS, Butcher PD, Barer MR. 2008. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5:e75 http://dx.doi.org/10.1371/journal.pmed.0050075.
94. Rachman H, Strong M, Ulrichs T, Grode L, Schuchhardt J, Mollenkopf H, Kosmiadi GA, Eisenberg D, Kaufmann SH. 2006. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74:1233–1242 http://dx.doi.org/10.1128/IAI.74.2.1233-1242.2006.
95. Ward SK, Abomoelak B, Marcus SA, Talaat AM. 2010. Transcriptional profiling of Mycobacterium tuberculosis during infection: lessons learned. Front Microbiol 1:121 http://dx.doi.org/10.3389/fmicb.2010.00121.
96. Klotzsche M, Ehrt S, Schnappinger D. 2009. Improved tetracycline repressors for gene silencing in mycobacteria. Nucleic Acids Res 37:1778–1788 http://dx.doi.org/10.1093/nar/gkp015. [PubMed]
97. McKinney JD, Höner zu Bentrup K, Muñoz-Elías EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR Jr, Russell DG. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738 http://dx.doi.org/10.1038/35021074.
98. Muñoz-Elías EJ, McKinney JD. 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11:638–644 http://dx.doi.org/10.1038/nm1252.
99. Gould TA, van de Langemheen H, Muñoz-Elías EJ, McKinney JD, Sacchettini JC. 2006. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol Microbiol 61:940–947 http://dx.doi.org/10.1111/j.1365-2958.2006.05297.x.
100. Upton AM, Mushtaq A, Victor TC, Sampson SL, Sandy J, Smith DM, van Helden PV, Sim E. 2001. Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol Microbiol 42:309–317 http://dx.doi.org/10.1046/j.1365-2958.2001.02648.x.
101. Nandakumar M, Nathan C, Rhee KY. 2014. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat Commun 5:4306 http://dx.doi.org/10.1038/ncomms5306. [PubMed]
102. Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S. 2010. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107:9819–9824 http://dx.doi.org/10.1073/pnas.1000715107.
103. Machová I, Snašel J, Zimmermann M, Laubitz D, Plocinski P, Oehlmann W, Singh M, Dostál J, Sauer U, Pichová I. 2014. Mycobacterium tuberculosis phosphoenolpyruvate carboxykinase is regulated by redox mechanisms and interaction with thioredoxin. J Biol Chem 289:13066–13078 http://dx.doi.org/10.1074/jbc.M113.536748.
104. Marrero J, Trujillo C, Rhee KY, Ehrt S. 2013. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. PLoS Pathog 9:e1003116 http://dx.doi.org/10.1371/journal.ppat.1003116.
105. Ganapathy U, Marrero J, Calhoun S, Eoh H, de Carvalho LP, Rhee K, Ehrt S. 2015. Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis. Nat Commun 6:7912 http://dx.doi.org/10.1038/ncomms8912. doi:10.1371/journal.ppat.1003116.
106. Maksymiuk C, Balakrishnan A, Bryk R, Rhee KY, Nathan CF. 2015. E1 of α-ketoglutarate dehydrogenase defends Mycobacterium tuberculosis against glutamate anaplerosis and nitroxidative stress. Proc Natl Acad Sci USA 112:E5834–E5843 http://dx.doi.org/10.1073/pnas.1510932112. [Erratum, 112:E6257, doi:10.1073/pnas.1519907112.]
107. Gandotra S, Lebron MB, Ehrt S. 2010. The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxide. PLoS Pathog 6:e1001040 http://dx.doi.org/10.1371/journal.ppat.1001040.
108. Primm TP, Andersen SJ, Mizrahi V, Avarbock D, Rubin H, Barry CE III. 2000. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182:4889–4898 http://dx.doi.org/10.1128/JB.182.17.4889-4898.2000.
109. Dahl JL, Kraus CN, Boshoff HI, Doan B, Foley K, Avarbock D, Kaplan G, Mizrahi V, Rubin H, Barry CE III. 2003. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci USA 100:10026–10031 http://dx.doi.org/10.1073/pnas.1631248100. [PubMed]
110. Berney M, Berney-Meyer L, Wong KW, Chen B, Chen M, Kim J, Wang J, Harris D, Parkhill J, Chan J, Wang F, Jacobs WR Jr. 2015. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 112:10008–10013 http://dx.doi.org/10.1073/pnas.1513033112.
111. Glickman MS, Cox JS, Jacobs WR Jr. 2000. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5:717–727 http://dx.doi.org/10.1016/S1097-2765(00)80250-6.
112. Flentie K, Garner AL, Stallings CL. 2016. Mycobacterium tuberculosis transcription machinery: ready to respond to host attacks. J Bacteriol 198:1360–1373 http://dx.doi.org/10.1128/JB.00935-15.
113. Mak PA, Rao SP, Ping Tan M, Lin X, Chyba J, Tay J, Ng SH, Tan BH, Cherian J, Duraiswamy J, Bifani P, Lim V, Lee BH, Ling Ma N, Beer D, Thayalan P, Kuhen K, Chatterjee A, Supek F, Glynne R, Zheng J, Boshoff HI, Barry CE III, Dick T, Pethe K, Camacho LR. 2012. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem Biol 7:1190–1197 http://dx.doi.org/10.1021/cb2004884.
114. Rao V, Fujiwara N, Porcelli SA, Glickman MS. 2005. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201:535–543 http://dx.doi.org/10.1084/jem.20041668.
115. Bloch H, Segal W. 1956. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol 72:132–141. [PubMed]
116. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 http://dx.doi.org/10.1038/31159.
117. Williams KJ, Boshoff HI, Krishnan N, Gonzales J, Schnappinger D, Robertson BD. 2011. The Mycobacterium tuberculosis β-oxidation genes echA5 and fadB3 are dispensable for growth in vitro and in vivo. Tuberculosis (Edinb) 91:549–555 http://dx.doi.org/10.1016/j.tube.2011.06.006. [PubMed]
118. Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE. 2004. Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030 http://dx.doi.org/10.1128/JB.186.15.5017-5030.2004.
119. Pandey AK, Sassetti CM. 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105:4376–4380 http://dx.doi.org/10.1073/pnas.0711159105. [Erratum, 105:9130, doi:10.1073/pnas.0804298105.] [PubMed]
120. Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, McKinney JD, Bertozzi CR, Sassetti CM. 2012. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 19:218–227 http://dx.doi.org/10.1016/j.chembiol.2011.12.016.
121. Nesbitt NM, Yang X, Fontán P, Kolesnikova I, Smith I, Sampson NS, Dubnau E. 2010. A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78:275–282 http://dx.doi.org/10.1128/IAI.00893-09.
122. Yang X, Gao J, Smith I, Dubnau E, Sampson NS. 2011. Cholesterol is not an essential source of nutrition for Mycobacterium tuberculosis during infection. J Bacteriol 193:1473–1476 http://dx.doi.org/10.1128/JB.01210-10. [PubMed]
123. Kim J-H, O’Brien KM, Sharma R, Boshoff HI, Rehren G, Chakraborty S, Wallach JB, Monteleone M, Wilson DJ, Aldrich CC, Barry CE III, Rhee KY, Ehrt S, Schnappinger D. 2013. A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc Natl Acad Sci USA 110:19095–19100 http://dx.doi.org/10.1073/pnas.1315860110.
124. Woong Park S, Klotzsche M, Wilson DJ, Boshoff HI, Eoh H, Manjunatha U, Blumenthal A, Rhee K, Barry CE III, Aldrich CC, Ehrt S, Schnappinger D. 2011. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog 7:e1002264 http://dx.doi.org/10.1371/journal.ppat.1002264.
125. Wayne LG, Lin KY. 1982. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun 37:1042–1049. [PubMed]
126. Schubert OT, Mouritsen J, Ludwig C, Röst HL, Rosenberger G, Arthur PK, Claassen M, Campbell DS, Sun Z, Farrah T, Gengenbacher M, Maiolica A, Kaufmann SH, Moritz RL, Aebersold R. 2013. The Mtb proteome library: a resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. Cell Host Microbe 13:602–612 http://dx.doi.org/10.1016/j.chom.2013.04.008.
127. Ortega C, Liao R, Anderson LN, Rustad T, Ollodart AR, Wright AT, Sherman DR, Grundner C. 2014. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch. PLoS Biol 12:e1001746 http://dx.doi.org/10.1371/journal.pbio.1001746.
128. Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, Gomes A, Rustad T, Dolganov G, Glotova I, Abeel T, Mahwinney C, Kennedy AD, Allard R, Brabant W, Krueger A, Jaini S, Honda B, Yu WH, Hickey MJ, Zucker J, Garay C, Weiner B, Sisk P, Stolte C, Winkler JK, Van de Peer Y, Iazzetti P, Camacho D, Dreyfuss J, Liu Y, Dorhoi A, Mollenkopf HJ, Drogaris P, Lamontagne J, Zhou Y, Piquenot J, Park ST, Raman S, Kaufmann SH, Mohney RP, Chelsky D, Moody DB, Sherman DR, Schoolnik GK. 2013. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499:178–183 http://dx.doi.org/10.1038/nature12337.
129. Baek S-H, Li AH, Sassetti CM. 2011. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol 9:e1001065 http://dx.doi.org/10.1371/journal.pbio.1001065. [PubMed]
130. Shi L, Sohaskey CD, Pheiffer C, Datta P, Parks M, McFadden J, North RJ, Gennaro ML. 2010. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol Microbiol 78:1199–1215 http://dx.doi.org/10.1111/j.1365-2958.2010.07399.x. [Erratum, 99:1179.]
131. Bertram R, Prax M. 2014. Metabolic aspects of bacterial persister cells. Front Cell Infect Microbiol 4:1–6. [PubMed]
132. Allison KR, Brynildsen MP, Collins JJ. 2011. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473:216–220 http://dx.doi.org/10.1038/nature10069. [PubMed]
133. Orman MA, Brynildsen MP. 2015. Inhibition of stationary phase respiration impairs persister formation in E. coli. Nat Commun 6:7983 http://dx.doi.org/10.1038/ncomms8983.
134. Schuetz R, Kuepfer L, Sauer U. 2007. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119 http://dx.doi.org/10.1038/msb4100162.
135. Dutta NK, Bandyopadhyay N, Veeramani B, Lamichhane G, Karakousis PC, Bader JS. 2014. Systems biology-based identification of Mycobacterium tuberculosis persistence genes in mouse lungs. MBio 5:e01066-13 http://dx.doi.org/10.1128/mBio.01066-13.

Article metrics loading...



Accumulating evidence has left little doubt about the importance of persistence or metabolism in the biology and chemotherapy of tuberculosis. However, knowledge of the intersection between these two factors has only recently begun to emerge. Here, we provide a focused review of metabolic characteristics associated with persistence. We focus on metabolism because it is the biochemical foundation of all physiologic processes and a distinguishing hallmark of physiology and pathogenicity. In addition, it serves as the chemical interface between host and pathogen. Existing knowledge, however, derives largely from physiologic contexts in which replication is the primary biochemical objective. The goal of this review is to reframe current knowledge of metabolism in the context of persistence, where quiescence is often a key distinguishing characteristic. Such a perspective may help ongoing efforts to develop more efficient cures and inform on novel strategies to break the cycle of transmission sustaining the pandemic.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Generic image for table

Click to view


Predicted essential genes for survival of at 8 weeks that are not significantly inhibited at 4 weeks

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0026-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error