No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    399.69 Kb
  • HTML
    376.13 Kb
  • PDF
    1.17 MB
  • Authors: Peter Chahales1, David G. Thanassi2
  • Editors: Matthew A. Mulvey3, Ann E. Stapleton4, David J. Klumpp5
    Affiliations: 1: Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794; 2: Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794; 3: University of Utah, Salt Lake City, UT; 4: University of Washington, Seattle, WA; 5: Northwestern University, Chicago, IL
  • Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0018-2013
  • Received 14 May 2013 Accepted 25 September 2014 Published 18 September 2015
  • David G. Thanassi, [email protected]
image of Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria
    Preview this microbiology spectrum article:
    Zoom in

    Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/5/UTI-0018-2013-1.gif /docserver/preview/fulltext/microbiolspec/3/5/UTI-0018-2013-2.gif
  • Abstract:

    Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities, including biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hair-like fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic . Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections.

  • Citation: Chahales P, Thanassi D. 2015. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Microbiol Spectrum 3(5):UTI-0018-2013. doi:10.1128/microbiolspec.UTI-0018-2013.


1. Pizarro-Cerda J, Cossart P. 2006. Bacterial adhesion and entry into host cells. Cell 124:715–727. [PubMed][CrossRef]
2. Kline KA, Falker S, Dahlberg S, Normark S, Henriques-Normark B. 2009. Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5:580–592. [PubMed][CrossRef]
3. Johnson JR. 1991. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4:80–128. [PubMed]
4. Ottow JCG. 1975. Ecology, physiology and genetics of fimbriae and pili. Annu Rev Microbiol 29:79–108. [PubMed][CrossRef]
5. Duguid JP, Smith IW, Dempster G, Edmunds PN. 1955. Non-flagellar filamentous appendages (“fimbriae”) and hemagglutinating activity in bacterium coli. J Pathol Bacteriol 70:335–348. [PubMed][CrossRef]
6. Brinton CC. 1959. Non-flagellar appendages of bacteria. Nature 183:782–786. [PubMed][CrossRef]
7. Duguid JP, Anderson ES, Campbell I. 1966. Fimbriae and adhesive properties in Salmonellae. J Pathol Bacteriol 92:107–138. [PubMed][CrossRef]
8. Orskov I, Orskov F. 1990. Serologic classification of fimbriae. Curr Top Microbiol Immunol 151:71–90. [PubMed][CrossRef]
9. Low D, Braaten B, van der Woude M. 1996. Fimbriae, p 146–157. In Neidhardt FC (ed), Escherichia Coli and Salmonella; Cellular and Molecular Biology, 2nd ed. ASM Press, Washington DC. [PubMed]
10. Thanassi DG, Nuccio S-P, Shu Kin So S, Bäumler AJ. 2007. Fimbriae: Classification and Biochemistry. In Bôck A, Curtiss R III, Kaper JB, Neidhardt FC, Nyström T, Rudd KE, Squires CL (ed), EcoSal–Escherichia coli and Salmonella: cellular and molecular biology, vol. [Online] http://www.ecosal.org. ASM Press, Washington, DC.
11. Duguid JP, Clegg S, Wilson MI. 1979. The fimbrial and non-fimbrial haemagglutinins of Escherichia coli. J Med Microbiol 12:213–227. [PubMed][CrossRef]
12. Old DC. 1972. Inhibition of the interaction between fimbrial hemagglutinatinins and erythrocytes by D-mannose and other carbohydrates. J Gen Microbiol 71:149–157. [PubMed][CrossRef]
13. Hull RA, Gill RE, Hsu P, Minshaw BH, Falkow S. 1981. Construction and expression of recombinant plasmids encoding type 1 and D-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect Immun 33:933–938. [PubMed]
14. Hacker J, Schmidt G, Hughes C, Knapp S, Marget M, Goebel W. 1985. Cloning and characterization of genes involved in production of mannose-resistant neuraminidase-susceptible (X) fimbriae from a uropathogenic 06:K15:H31 Escherichia coli strain. Infect Immun 47:434–440. [PubMed]
15. Fronzes R, Remaut H, Waksman G. 2008. Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J 27:2271–2280. [PubMed][CrossRef]
16. Barnhart M, Chapman M. 2006. Curli biogenesis and function. Annu Rev Microbiol 60:131–147. [PubMed][CrossRef]
17. Yanagawa R, Otsuki K. 1970. Some properties of the pili of Corynebacterium renale. J Bacteriol 101:1063–1069. [PubMed]
18. Yanagawa R, Otsuki K, Tokui T. 1968. Electron microscopy of fine structure of Corynebacterium renale with special reference to pili. Jpn J Vet Res 16:31–37. [PubMed]
19. Ton-That H, Marraffini LA, Schneewind O. 2004. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol Microbiol 53:251–261. [PubMed][CrossRef]
20. Ton-That H, Schneewind O. 2003. Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol 50:1429–1438. [PubMed][CrossRef]
21. Danne C, Dramsi S. 2012. Pili of gram-positive bacteria: roles in host colonization. Res Microbiol 163:645–658. [PubMed][CrossRef]
22. Vengadesan K, Narayana SV. 2011. Structural biology of Gram-positive bacterial adhesins. Protein Sci 20:759–772. [PubMed][CrossRef]
23. Hendrickx AP, Willems RJ, Bonten MJ, van Schaik W. 2009. LPxTG surface proteins of enterococci. Trends Microbiol 17:423–430. [PubMed][CrossRef]
24. Nuccio SP, Baumler AJ. 2007. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 71:551–575. [PubMed][CrossRef]
25. Zav’yalov V, Zavialov A, Zav’yalova G, Korpela T. 2010. Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiol Rev 34:317–378. [PubMed][CrossRef]
26. Waksman G, Hultgren SJ. 2009. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7:765–774. [PubMed][CrossRef]
27. Thanassi DG, Bliska JB, Christie PJ. 2012. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 36:1046–1082. [PubMed][CrossRef]
28. Miller E, Garcia T, Hultgren S, Oberhauser AF. 2006. The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques. Biophys J 91:3848–3856. [PubMed][CrossRef]
29. Fallman E, Schedin S, Jass J, Uhlin BE, Axner O. 2005. The unfolding of the P pili quaternary structure by stretching is reversible, not plastic. EMBO Rep 6:52–56. [PubMed][CrossRef]
30. Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV. 2002. Bacterial adhesion to target cells enhanced by shear force. Cell 109:913–923. [PubMed][CrossRef]
31. Castelain M, Ehlers S, Klinth J, Lindberg S, Andersson M, Uhlin BE, Axner O. 2011. Fast uncoiling kinetics of F1C pili expressed by uropathogenic Escherichia coli are revealed on a single pilus level using force-measuring optical tweezers. Eur Biophys J 40:305–316. [PubMed][CrossRef]
32. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. 2000. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19:2803–2812. [PubMed][CrossRef]
33. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497. [PubMed][CrossRef]
34. Eto DS, Jones TA, Sundsbak JL, Mulvey MA. 2007. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog 3:e100. [PubMed][CrossRef]
35. Wright KJ, Seed PC, Hultgren SJ. 2007. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9:2230–2241. [PubMed][CrossRef]
36. Mossman KL, Mian MF, Lauzon NM, Gyles CL, Lichty B, Mackenzie R, Gill N, Ashkar AA. 2008. Cutting edge: FimH adhesin of type 1 fimbriae is a novel TLR4 ligand. J Immunol 181:6702–6706. [PubMed][CrossRef]
37. Bergsten G, Samuelsson M, Wullt B, Leijonhufvud I, Fischer H, Svanborg C. 2004. PapG-dependent adherence breaks mucosal inertia and triggers the innate host response. J Infect Dis 189:1734–1742. [PubMed][CrossRef]
38. Plancon L, Du Merle L, Le Friec S, Gounon P, Jouve M, Guignot J, Servin A, Le Bouguenec C. 2003. Recognition of the cellular beta1-chain integrin by the bacterial AfaD invasin is implicated in the internalization of afa-expressing pathogenic Escherichia coli strains. Cell Microbiol 5:681–693. [PubMed][CrossRef]
39. Oelschlaeger TA, Dobrindt U, Hacker J. 2002. Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. Int J Antimicrob Agents 19:517–521. [PubMed][CrossRef]
40. van der Velden AW, Baumler AJ, Tsolis RM, Heffron F. 1998. Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. Infect Immun 66:2803–2808. [PubMed]
41. Korea CG, Badouraly R, Prevost MC, Ghigo JM, Beloin C. 2010. Escherichia coli K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct surface specificities. Environ Microbiol 12:1957–1977. [PubMed][CrossRef]
42. Hatkoff M, Runco LM, Pujol C, Jayatilaka I, Furie MB, Bliska JB, Thanassi DG. 2012. Roles of chaperone/usher pathways of Yersinia pestis in a murine model of plague and adhesion to host cells. Infect Immun 80:3490–3500. [PubMed][CrossRef]
43. Wurpel DJ, Beatson SA, Totsika M, Petty NK, Schembri MA. 2013. Chaperone-Usher Fimbriae of Escherichia coli. PLoS ONE 8:e52835. [PubMed][CrossRef]
44. Blomfield IC. 2001. The regulation of pap and type 1 fimbriation in Escherichia coli. Adv Microb Physiol 45:1–49. [PubMed][CrossRef]
45. van der Woude M, Braaten B, Low D. 1996. Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol 4:5–9. [PubMed][CrossRef]
46. Xia Y, Gally D, Forsman-Semb K, Uhlin BE. 2000. Regulatory cross-talk between adhesin operons in Escherichia coli: inhibition of type 1 fimbriae expression by the PapB operon. EMBO J 19:1450–1457. [PubMed][CrossRef]
47. Totsika M, Beatson SA, Holden N, Gally DL. 2008. Regulatory interplay between pap operons in uropathogenic Escherichia coli. Mol Microbiol 67:996–1011. [PubMed][CrossRef]
48. Snyder JA, Haugen BJ, Lockatell CV, Maroncle N, Hagan EC, Johnson DE, Welch RA, Mobley HL. 2005. Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 73:7588–7596. [PubMed][CrossRef]
49. Lane MC, Simms AN, Mobley HL. 2007. complex interplay between type 1 fimbrial expression and flagellum-mediated motility of uropathogenic Escherichia coli. J Bacteriol 189:5523–5533. [PubMed][CrossRef]
50. Armbruster CE, Mobley HL. 2012. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol 10:743–754. [PubMed][CrossRef]
51. Servin AL. 2005. Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin Microbiol Rev 18:264–292. [PubMed][CrossRef]
52. Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, Knight SD. 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:1061–1066. [PubMed][CrossRef]
53. Sauer FG, Fütterer K, Pinkner JS, Dodson KW, Hultgren SJ, Waksman G. 1999. Structural basis of chaperone function and pilus biogenesis. Science 285:1058–1061. [PubMed][CrossRef]
54. Sauer FG, Pinkner JS, Waksman G, Hultgren SJ. 2002. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111:543–551. [PubMed][CrossRef]
55. Zavialov AV, Berglund J, Pudney AF, Fooks LJ, Ibrahim TM, MacIntyre S, Knight SD. 2003. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113:587–596. [PubMed][CrossRef]
56. Phan G, Remaut H, Wang T, Allan WJ, Pirker KF, Lebedev A, Henderson NS, Geibel S, Volkan E, Yan J, Kunze MBA, Pinkner JS, Ford B, Kay CWM, Li H, Hultgren S, Thanassi DG, Waksman G. 2011. Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature 474:49–53. [PubMed][CrossRef]
57. Anderson KL, Billington J, Pettigrew D, Cota E, Simpson P, Roversi P, Chen HA, Urvil P, du Merle L, Barlow PN, Medof ME, Smith RA, Nowicki B, Le Bouguenec C, Lea SM, Matthews S. 2004. An atomic resolution model for assembly, architecture, and function of the Dr adhesins. Mol Cell 15:647–657. [PubMed][CrossRef]
58. Bork P, Holm L, Sander C. 1994. The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol 242:309–320. [PubMed][CrossRef]
59. Henderson NS, Ng TW, Talukder I, Thanassi DG. 2011. Function of the usher N-terminus in catalysing pilus assembly. Mol Microbiol 79:954–967. [PubMed][CrossRef]
60. Puorger C, Eidam O, Capitani G, Erilov D, Grutter MG, Glockshuber R. 2008. Infinite kinetic stability against dissociation of supramolecular protein complexes through donor strand complementation. Structure 16:631–642. [PubMed][CrossRef]
61. Bullitt E, Makowski L. 1995. Structural polymorphism of bacterial adhesion pili. Nature 373:164–167. [PubMed][CrossRef]
62. Pettigrew D, Anderson KL, Billington J, Cota E, Simpson P, Urvil P, Rabuzin F, Roversi P, Nowicki B, du Merle L, Le Bouguenec C, Matthews S, Lea SM. 2004. High resolution studies of the Afa/Dr adhesin DraE and its interaction with chloramphenicol. J Biol Chem 279:46851–46857. [PubMed][CrossRef]
63. Korotkova N, Le Trong I, Samudrala R, Korotkov K, Van Loy CP, Bui AL, Moseley SL, Stenkamp RE. 2006. Crystal structure and mutational analysis of the DaaE adhesin of Escherichia coli. J Biol Chem 281:22367–22377. [PubMed][CrossRef]
64. Zavialov A, Zav’yalova G, Korpela T, Zav’yalov V. 2007. FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol Rev 31:478–514. [PubMed][CrossRef]
65. Cota E, Jones C, Simpson P, Altroff H, Anderson KL, du Merle L, Guignot J, Servin A, Le Bouguenec C, Mardon H, Matthews S. 2006. The solution structure of the invasive tip complex from Afa/Dr fibrils. Mol Microbiol 62:356–366. [PubMed][CrossRef]
66. Dodson KW, Pinkner JS, Rose T, Magnusson G, Hultgren SJ, Waksman G. 2001. Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105:733–743. [PubMed][CrossRef]
67. Hung CS, Bouckaert J, Hung D, Pinkner J, Widberg C, DeFusco A, Auguste CG, Strouse R, Langermann S, Waksman G, Hultgren SJ. 2002. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44:903–915. [PubMed][CrossRef]
68. Sung MA, Fleming K, Chen HA, Matthews S. 2001. The solution structure of PapGII from uropathogenic Escherichia coli and its recognition of glycolipid receptors. EMBO Rep 2:621–627. [PubMed][CrossRef]
69. Buts L, Bouckaert J, De Genst E, Loris R, Oscarson S, Lahmann M, Messens J, Brosens E, Wyns L, De Greve H. 2003. The fimbrial adhesin F17-G of enterotoxigenic Escherichia coli has an immunoglobulin-like lectin domain that binds N-acetylglucosamine. Mol Microbiol 49:705–715. [PubMed][CrossRef]
70. Merckel MC, Tanskanen J, Edelman S, Westerlund-Wikstrom B, Korhonen TK, Goldman A. 2003. The structural basis of receptor-binding by Escherichia coli associated with diarrhea and septicemia. J Mol Biol 331:897–905. [PubMed][CrossRef]
71. Li YF, Poole S, Rasulova F, McVeigh AL, Savarino SJ, Xia D. 2007. A Receptor-binding Site as Revealed by the Crystal Structure of CfaE, the Colonization Factor Antigen I Fimbrial Adhesin of Enterotoxigenic Escherichia coli. J Biol Chem 282:23970–23980. [PubMed][CrossRef]
72. Westerlund-Wikstrom B, Korhonen TK. 2005. Molecular structure of adhesin domains in Escherichia coli fimbriae. Int J Med Microbiol 295:479–486. [PubMed][CrossRef]
73. Jedrzejczak R, Dauter Z, Dauter M, Piatek R, Zalewska B, Mroz M, Bury K, Nowicki B, Kur J. 2006. Structure of DraD invasin from uropathogenic Escherichia coli: a dimer with swapped beta-tails. Acta Crystallogr D Biol Crystallogr 62:157–164. [PubMed][CrossRef]
74. Yakovenko O, Sharma S, Forero M, Tchesnokova V, Aprikian P, Kidd B, Mach A, Vogel V, Sokurenko E, Thomas WE. 2008. FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation. J Biol Chem 283:11596–11605. [PubMed][CrossRef]
75. Le Trong I, Aprikian P, Kidd BA, Forero-Shelton M, Tchesnokova V, Rajagopal P, Rodriguez V, Interlandi G, Klevit R, Vogel V, Stenkamp RE, Sokurenko EV, Thomas WE. 2010. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting. Cell 141:645–655. [PubMed][CrossRef]
76. Forero M, Yakovenko O, Sokurenko EV, Thomas WE, Vogel V. 2006. Uncoiling mechanics of Escherichia coli type I fimbriae are optimized for catch bonds. PLoS Biol 4:e298. [PubMed][CrossRef]
77. Aprikian P, Interlandi G, Kidd BA, Le Trong I, Tchesnokova V, Yakovenko O, Whitfield MJ, Bullitt E, Stenkamp RE, Thomas WE, Sokurenko EV. 2011. The bacterial fimbrial tip acts as a mechanical force sensor. PLoS Biol 9:e1000617. [PubMed][CrossRef]
78. Lycklama ANJA, Driessen AJ. 2012. The bacterial Sec-translocase: structure and mechanism. Philos Trans R Soc Lond B Biol Sci 367:1016–1028. [PubMed][CrossRef]
79. Jones CH, Dexter P, Evans AK, Liu C, Hultgren SJ, Hruby DE. 2002. Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J Bacteriol 184:5762–5771. [PubMed][CrossRef]
80. Slonim LN, Pinkner JS, Branden CI, Hultgren SJ. 1992. Interactive surface in the PapD chaperone cleft is conserved in pilus chaperone superfamily and essential in subunit recognition and assembly. EMBO J 11:4747–4756. [PubMed]
81. Holmgren A, Brändén C. 1989. Crystal structure of chaperone protein PapD reveals an immunoglobulin fold. Nature 342:248–251. [PubMed][CrossRef]
82. Kuehn MJ, Ogg DJ, Kihlberg J, Slonim LN, Flemmer K, Bergfors T, Hultgren SJ. 1993. Structural basis of pilus subunit recognition by the PapD chaperone. Science 262:1234–1241. [PubMed][CrossRef]
83. Zavialov AV, Kersley J, Korpela T, Zav’yalov VP, MacIntyre S, Knight SD. 2002. Donor strand complementation mechanism in the biogenesis of non-pilus systems. Mol Microbiol 45:983–995. [PubMed][CrossRef]
84. Barnhart MM, Pinkner JS, Soto GE, Sauer FG, Langermann S, Waksman G, Frieden C, Hultgren SJ. 2000. PapD-like chaperones provide the missing information for folding of pilin proteins. Proc Natl Acad Sci USA 97:7709–7714. [PubMed][CrossRef]
85. Hung DL, Knight SD, Woods RM, Pinkner JS, Hultgren SJ. 1996. Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J 15:3792–3805. [PubMed]
86. Remaut H, Rose RJ, Hannan TJ, Hultgren SJ, Radford SE, Ashcroft AE, Waksman G. 2006. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted beta strand displacement mechanism. Mol Cell 22:831–842. [PubMed][CrossRef]
87. Yu XD, Fooks LJ, Moslehi-Mohebi E, Tischenko VM, Askarieh G, Knight SD, Macintyre S, Zavialov AV. 2012. Large is fast, small is tight: determinants of speed and affinity in subunit capture by a periplasmic chaperone. J Mol Biol 417:294–308. [PubMed][CrossRef]
88. Crespo MD, Puorger C, Scharer MA, Eidam O, Grutter MG, Capitani G, Glockshuber R. 2012. Quality control of disulfide bond formation in pilus subunits by the chaperone FimC. Nat Chem Biol 8:707–713. [PubMed][CrossRef]
89. Di Yu X, Dubnovitsky A, Pudney AF, Macintyre S, Knight SD, Zavialov AV. 2012. Allosteric mechanism controls traffic in the chaperone/usher pathway. Structure 20:1861–1871. [PubMed][CrossRef]
90. Remaut H, Tang C, Henderson NS, Pinkner JS, Wang T, Hultgren SJ, Thanassi DG, Waksman G, Li H. 2008. Fiber Formation across the Bacterial Outer Membrane by the Chaperone/Usher Pathway. Cell 133:640–652. [PubMed][CrossRef]
91. Nishiyama M, Ishikawa T, Rechsteiner H, Glockshuber R. 2008. Reconstitution of Pilus Assembly Reveals a Bacterial Outer Membrane Catalyst. Science 320:376–379. [PubMed][CrossRef]
92. Soto GE, Dodson KW, Ogg D, Liu C, Heuser J, Knight S, Kihlberg J, Jones CH, Hultgren SJ. 1998. Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus. EMBO J 17:6155–6167. [PubMed][CrossRef]
93. Sauer FG, Remaut H, Hultgren SJ, Waksman G. 2004. Fiber assembly by the chaperone-usher pathway. Biochim Biophys Acta 1694:259267. [PubMed][CrossRef]
94. Vetsch M, Erilov D, Moliere N, Nishiyama M, Ignatov O, Glockshuber R. 2006. Mechanism of fibre assembly through the chaperone-usher pathway. EMBO Rep 7:734–738. [PubMed][CrossRef]
95. Yu J, Kape JB. 1992. Cloning and characterization of the eae gene of enterohaemorrhaic Escherichia coli O157:H7. Mol Microbiol 6:411–417. [PubMed][CrossRef]
96. Jacob-Dubuisson F, Striker R, Hultgren SJ. 1994. Chaperone-assisted self-assembly of pili independent of cellular energy. J Biol Chem 269:12447–12455. [PubMed]
97. Thanassi DG, Stathopoulos C, Karkal A, Li H. 2005. Protein secretion in the absence of ATP: the autotransporter, two-partner secretion, and chaperone/usher pathways of Gram-negative bacteria. Mol Membr Biol 22:63–72. [PubMed][CrossRef]
98. Zavialov AV, Tischenko VM, Fooks LJ, Brandsdal BO, Aqvist J, Zav’yalov VP, Macintyre S, Knight SD. 2005. Resolving the energy paradox of chaperone/usher-mediated fibre assembly. Biochem J 389:685–694. [PubMed][CrossRef]
99. Lee YM, Dodson KW, Hultgren SJ. 2007. Adaptor function of PapF depends on donor strand exchange in P-pilus biogenesis of Escherichia coli. J Bacteriol 189:5276–5283. [PubMed][CrossRef]
100. Rose RJ, Verger D, Daviter T, Remaut H, Paci E, Waksman G, Ashcroft AE, Radford SE. 2008. Unraveling the molecular basis of subunit specificity in P pilus assembly by mass spectrometry. Proc Natl Acad Sci USA 105:12873–12878. [PubMed][CrossRef]
101. Nishiyama M, Glockshuber R. 2010. The outer membrane usher guarantees the formation of functional pili by selectively catalyzing donor-strand exchange between subunits that are adjacent in the mature pilus. J Mol Biol 396:1–8. [PubMed][CrossRef]
102. Dodson KW, Jacob-Dubuisson F, Striker RT, Hultgren SJ. 1993. Outer membrane PapC usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc Natl Acad Sci USA 90:3670–3674. [PubMed][CrossRef]
103. Saulino ET, Thanassi DG, Pinkner JS, Hultgren SJ. 1998. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis. EMBO J 17:2177–2185. [PubMed][CrossRef]
104. Li Q, Ng TW, Dodson KW, So SS, Bayle KM, Pinkner JS, Scarlata S, Hultgren SJ, Thanassi DG. 2010. The differential affinity of the usher for chaperone-subunit complexes is required for assembly of complete pili. Mol Microbiol 76:159–172. [PubMed][CrossRef]
105. Nishiyama M, Horst R, Eidam O, Herrmann T, Ignatov O, Vetsch M, Bettendorff P, Jelesarov I, Grutter MG, Wuthrich K, Glockshuber R, Capitani G. 2005. Structural basis of chaperone-subunit complex recognition by the type 1 pilus assembly platform FimD. EMBO J 24:2075–2086. [PubMed][CrossRef]
106. Shu Kin So S, Thanassi DG. 2006. Analysis of the requirements for pilus biogenesis at the outer membrane usher and the function of the usher C-terminus. Mol Microbiol 60:364–375. [PubMed][CrossRef]
107. Mapingire OS, Henderson NS, Duret G, Thanassi DG, Delcour AH. 2009. Modulating effects of the plug, helix and N- and C-terminal domains on channel properties of the PapC usher. J Biol Chem 284:36324–36333. [PubMed][CrossRef]
108. Ford B, Rego AT, Ragan TJ, Pinkner J, Dodson K, Driscoll PC, Hultgren S, Waksman G. 2010. Structural homology between the C-terminal domain of the PapC usher and its plug. J Bacteriol 192:1824–1831. [PubMed][CrossRef]
109. Huang Y, Smith BS, Chen LX, Baxter RH, Deisenhofer J. 2009. Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC. Proc Natl Acad Sci USA 106:7403–7407. [PubMed][CrossRef]
110. Ng TW, Akman L, Osisami M, Thanassi DG. 2004. The usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events. J Bacteriol 186:5321–5331. [PubMed][CrossRef]
111. Li H, Qian L, Chen Z, Thahbot D, Liu G, Liu T, Thanassi DG. 2004. The outer membrane usher forms a twin-pore secretion complex. J Mol Biol 344:1397–1407. [PubMed][CrossRef]
112. Allen WJ, Phan G, Hultgren SJ, Waksman G. 2013. Dissection of Pilus Tip Assembly by the FimD Usher Monomer. J Mol Biol 425:958–967. [PubMed][CrossRef]
113. Munera D, Hultgren S, Fernandez LA. 2007. Recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is required for type 1 pilus biogenesis. Mol Microbiol 64:333–346. [PubMed][CrossRef]
114. Nowicki B, Selvarangan R, Nowicki S. 2001. Family of Escherichia coli Dr adhesins: decay-accelerating factor receptor recognition and invasiveness. J Infect Dis 183(Suppl 1) :S24–27. [PubMed][CrossRef]
115. Marre R, Kreft B, Hacker J. 1990. Genetically engineered S and F1C fimbriae differ in their contribution to adherence of Escherichia coli to cultured renal tubular cells. Infect Immun 58:3434–3437. [PubMed]
116. Schmoll T, Morschhauser J, Ott M, Ludwig B, van Die I, Hacker J. 1990. Complete genetic organization and functional aspects of the Escherichia coli S fimbrial adhesion determinant: nucleotide sequence of the genes sfa B, C, D, E, F. Microb Pathog 9:331–343. [CrossRef]
117. Riegman N, Kusters R, H. VV, Bergmans H, Van Bergen En Henegouwen P, Hacker J, Van Die I. 1990. F1C fimbriae of a uropathogenic Escherichia coli strain: genetic and functional organization of the foc gene cluster andidentification of minor subunits. J Bacteriol 172:1114–1120. [PubMed]
118. Spurbeck RR, Stapleton AE, Johnson JR, Walk ST, Hooton TM, Mobley HL. 2011. Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of Ygi and Yad fimbriae. Infect Immun 79:4753–4763. [PubMed][CrossRef]
119. Buckles EL, Bahrani-Mougeot FK, Molina A, Lockatell CV, Johnson DE, Drachenberg CB, Burland V, Blattner FR, Donnenberg MS. 2004. Identification and characterization of a novel uropathogenic Escherichia coli-associated fimbrial gene cluster. Infect Immun 72:3890–3901. [PubMed][CrossRef]
120. Ulett GC, Mabbett AN, Fung KC, Webb RI, Schembri MA. 2007. The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation. Microbiology 153:2321–2331. [PubMed][CrossRef]
121. Labigne-Roussel A, Falkow S. 1988. Distribution and degree of heterogeneity of the afimbrial-adhesin-encoding operon (afa) among uropathogenic Escherichia coli isolates. Infect Immun 56:640–648. [PubMed]
122. Van Loy CP, Sokurenko EV, Moseley SL. 2002. The major structural subunits of Dr and F1845 fimbriae are adhesins. Infect Immun 70:1694–1702. [PubMed][CrossRef]
123. Berger CN, Billker O, Meyer TF, Servin AL, Kansau I. 2004. Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC). Mol Microbiol 52:963983. [PubMed][CrossRef]
124. Carnoy C, Moseley SL. 1997. Mutational analysis of receptor binding mediated by the Dr family of Escherichia coli adhesins. Mol Microbiol 23:365–379. [PubMed][CrossRef]
125. Schmoll T, Hoschutzky H, Morschhauser J, Lottspeich F, Jann K, Hacker J. 1989. Analysis of genes coding for the sialic acid-binding adhesin and two other minor fimbrial subunits of the S-fimbrial adhesin determinant of Escherichia coli. Mol Microbiol 3:1735–1744. [PubMed][CrossRef]
126. Virkola R, Parkkinen J, Hacker J, Korhonen TK. 1993. Sialyloligosaccharide chains of laminin as an extracellular matrix target for S fimbriae of Escherichia coli. Infect Immun 61:4480–4484. [PubMed]
127. Korhonen TK, Parkkinen J, Hacker J, Finne J, Pere A, Rhen M, Holthofer H. 1986. Binding of Escherichia coli S fimbriae to human kidney epithelium. Infect Immun 54:322–327. [PubMed]
128. Backhed F, Alsen B, Roche N, Angstrom J, von Euler A, Breimer ME, Westerlund-Wikstrom B, Teneberg S, Richter-Dahlfors A. 2002. Identification of target tissue glycosphingolipid receptors for uropathogenic, F1C-fimbriated Escherichia coli and its role in mucosal inflammation. J Biol Chem 277:18198–18205. [PubMed][CrossRef]
129. Langermann S, Mollby R, Burlein JE, Palaszynski SR, Auguste CG, DeFusco A, Strouse R, Schenerman MA, Hultgren SJ, Pinkner JS, Winberg J, Guldevall L, Soderhall M, Ishikawa K, Normark S, Koenig S. 2000. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181:774–778. [PubMed][CrossRef]
130. Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ. 1997. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276:607–611. [PubMed][CrossRef]
131. Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ. 2012. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 36:616–648. [PubMed][CrossRef]
132. Abraham SN, Sun D, Dale JB, Beachey EH. 1988. Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature 336:682–684. [PubMed][CrossRef]
133. Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR. 2001. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 276:9924–9930. [PubMed][CrossRef]
134. Baorto DM, Gao Z, Malaviya R, Dustin ML, van der Merwe A, Lublin DM, Abraham SN. 1997. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389:636–639. [PubMed][CrossRef]
135. Kukkonen M, Raunio T, Virkola R, Lahteenmaki K, Makela PH, Klemm P, Clegg S, Korhonen TK. 1993. Basement membrane carbohydrate as a target for bacterial adhesion: binding of type 1 fimbriae of Salmonella enterica and E scherichia coli to laminin. Mol Microbiol 7:229–227. [PubMed][CrossRef]
136. Pratt LA, Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293. [PubMed][CrossRef]
137. Jones CH, Pinkner JS, Roth R, Heuser J, Nicholoes AV, Abraham SN, Hultgren SJ. 1995. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci USA 92:2081–2085. [PubMed][CrossRef]
138. Hahn E, Wild P, Hermanns U, Sebbel P, Glockshuber R, Haner M, Taschner N, Burkhard P, Aebi U, Muller SA. 2002. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol 323:845–857. [PubMed][CrossRef]
139. Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP. 2001. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114:4095–4103. [PubMed]
140. Thumbikat P, Berry RE, Zhou G, Billips BK, Yaggie RE, Zaichuk T, Sun TT, Schaeffer AJ, Klumpp DJ. 2009. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 5:e1000415. [PubMed][CrossRef]
141. Connell H, Agace W, Klemm P, Schembri M, Marild S, Svanborg C. 1996. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93:9827–9832. [PubMed][CrossRef]
142. Song J, Bishop BL, Li G, Grady R, Stapleton A, Abraham SN. 2009. TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc Natl Acad Sci USA 106:14966–14971. [PubMed][CrossRef]
143. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107. [PubMed][CrossRef]
144. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ. 2004. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 101:1333–1338. [PubMed][CrossRef]
145. Blango MG, Mulvey MA. 2010. Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrob Agents Chemother 54:1855–1863. [PubMed][CrossRef]
146. Chen SL, Hung CS, Pinkner JS, Walker JN, Cusumano CK, Li Z, Bouckaert J, Gordon JI, Hultgren SJ. 2009. Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc Natl Acad Sci USA 106:22439–22444. [PubMed][CrossRef]
147. Mulvey MA, Schilling JD, Hultgren SJ. 2001. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69:4572–4579. [PubMed][CrossRef]
148. Mysorekar IU, Hultgren SJ. 2006. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci USA 103:14170–14175. [PubMed][CrossRef]
149. Bock K, Breimer ME, Brignole A, Hansson GC, Karlsson K-A, Larson G, Leffler H, Samuelsson BE, Strömberg N, Svanborg-Edén C, Thurin J. 1985. Specificity of binding of a strain of uropathogenic Escherichia coli to Gala(1-4)Gal-containing glycosphingolipids. J Biol Chem 260:8545–8551. [PubMed]
150. Roberts JA, Marklund B-I, Ilver D, Haslam D, Kaack MB, Baskin G, Louis M, Mollby R, Winberg J, Normark S. 1994. The Gal(alpha1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA 91:11889–11893. [PubMed][CrossRef]
151. Kallenius G, Mollby R, Svenson SB, Windberg J, Lundblud A, Svenson S, Cedergen B. 1980. The P k antigen as receptor for the haemagglutinin of pyelonephritogenic Escherichia coli. FEMS Microbiol Lett 7:297–302. [CrossRef]
152. Ewers C, Li G, Wilking H, Kiessling S, Alt K, Antao EM, Laturnus C, Diehl I, Glodde S, Homeier T, Bohnke U, Steinruck H, Philipp HC, Wieler LH. 2007. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol 297:163–76. [PubMed][CrossRef]
153. Welch RA, Burland V, Plunkett G, 3rd, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024. [PubMed][CrossRef]
154. Lund B, Marklund BI, Stromberg N, Lindberg F, Karlsson KA, Normark S. 1988. Uropathogenic Escherichia coli Can Express Serologically Identical Pili of Different Receptor-Binding Specificities. Mol Microbiol 2:255–263. [PubMed][CrossRef]
155. Stromberg N, Marklund BI, Lund B, Ilver D, Hamers A, Gaastra W, Karlsson KA, Normark S. 1990. Host-specificity of uropathogenic Escherichia coli depends on differences in binding specificity to Galalpha(1-4)Gal-containing isoreceptors. EMBO J 9:2001–2010. [PubMed]
156. Johnson JR, Russo TA, Brown JJ, Stapleton A. 1998. papG alleles of Escherichia coli strains causing first-episode or recurrent acute cystitis in adult women. J Infect Dis 177:97–101. [PubMed][CrossRef]
157. Kuehn MJ, Heuser J, Normark S, Hultgren SJ. 1992. P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356:252–255. [PubMed][CrossRef]
158. Jacob-Dubuisson F, Heuser J, Dodson K, Normark S, Hultgren SJ. 1993. Initiation of assembly and association of the structural elements of a bacterial pilus depend on two specialized tip proteins. EMBO J 12:837–847. [PubMed]
159. Mu XQ, Bullitt E. 2006. Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Proc Natl Acad Sci USA 103:9861–9866. [PubMed][CrossRef]
160. Baga M, Norgren M, Normark S. 1987. Biogenesis of E. coli Pap pili: PapH, a minor pilin subunit involved in cell anchoring and length modulation. Cell 49:241–251. [PubMed][CrossRef]
161. Verger D, Miller E, Remaut H, Waksman G, Hultgren S. 2006. Molecular mechanism of P pilus termination in uropathogenic Escherichia coli. EMBO Rep 7:1228–1232. [PubMed][CrossRef]
162. Hagberg L, Hull R, Hull S, Falkow S, Freter R, Svanborg Eden C. 1983. Contribution of adhesion to bacterial persistence in the mouse urinary tract. Infect Immun 40:265–272. [PubMed]
163. Roberts JA, Hardaway K, Kaack B, Fussell EN, Baskin G. 1984. Prevention of pyelonephritis by immunization with P-fimbriae. J Urol 131:602–607. [PubMed]
164. O’Hanley P, Lark D, Falkow S, Schoolnik G. 1985. Molecular basis of Escherichia coli colonizatin of the upper urinary tract in BALB/c mice: Gal-Gal pili immunization prevents Escherichia coli pyelonephritis. J Clin Invest 83:2102–2108.
165. Lane MC, Mobley HL. 2007. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int 72:19–25. [PubMed][CrossRef]
166. Hedlund M, Svensson M, Nilsson Å, Duan R-D, Svanborg C. 1996. Role of the ceramide-signaling pathway in cytokine responses to P-fimbriated Escherichia coli. J Exp Med 183:1037–1044. [PubMed][CrossRef]
167. Hedlund M, Wachtler C, Johansson E, Hang L, Somerville JE, Darveau RP, Svanborg C. 1999. P fimbriae-dependent, lipopolysaccharide-independent activation of epithelial cytokine responses. Mol Microbiol 33:693–703. [PubMed][CrossRef]
168. Fischer H, Ellstrom P, Ekstrom K, Gustafsson L, Gustafsson M, Svanborg C. 2007. Ceramide as a TLR4 agonist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4. Cell Microbiol 9:1239–1251. [PubMed][CrossRef]
169. Zhang JP, Normark S. 1996. Induction of gene expression in Escherichia coli after pilus-mediated adherence. Science 273:1234–1236. [PubMed][CrossRef]
170. Austin JW, Sanders G, Kay WW, Collinson SK. 1998. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301. [PubMed][CrossRef]
171. Zogaj X, Bokranz W, Nimtz M, Romling U. 2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158. [PubMed][CrossRef]
172. Gophna U, Barlev M, Seijffers R, Oelschlager T, Hacker J, Ron E. 2001. Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun 69:2659–2665. [PubMed][CrossRef]
173. Olsen A, Jonsson A, Normark S. 1989. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655. [PubMed][CrossRef]
174. Olsen A, Arnqvist A, Hammar M, Sukupolvi S, Normark S. 1993. The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7:523–536. [PubMed][CrossRef]
175. Ben Nasr A, Olsen A, Sjobring U, Muller-Esterl W, Bjorck L. 1996. Assembly of human contact phase proteins and release of bradykinin at the surface of curli-expressing Escherichia coli. Mol Microbiol 20:927–935. [PubMed][CrossRef]
176. Olsen A, Herwald H, Wikstrom M, Persson K, Mattsson E, Bjorck L. 2002. Identification of two protein-binding and functional regions of curli, a surface organelle and virulence determinant of Escherichia coli. J Biol Chem 277:34568–34572. [PubMed][CrossRef]
177. Bian Z, Brauner A, Li Y, Normark S. 2000. Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J Infect Dis 181:602–612. [PubMed][CrossRef]
178. Kai-Larsen Y, Luthje P, Chromek M, Peters V, Wang X, Holm A, Kadas L, Hedlund KO, Johansson J, Chapman MR, Jacobson SH, Romling U, Agerberth B, Brauner A. 2010. Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog 6:e1001010. [PubMed][CrossRef]
179. Tukel C, Nishimori JH, Wilson RP, Winter MG, Keestra AM, van Putten JP, Baumler AJ. 2010. Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cell Microbiol 12:1495–1505. [PubMed][CrossRef]
180. Cohen FE, Kelly JW. 2003. Therapeutic approaches to protein-misfolding diseases. Nature 426:905–909. [PubMed][CrossRef]
181. Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D. 2005. Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778. [PubMed][CrossRef]
182. Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR. 2012. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20:66–73. [PubMed][CrossRef]
183. Fowler DM, Koulov AV, Balch WE, Kelly JW. 2007. Functional amyloid--from bacteria to humans. Trends Biochem Sci 32:217–224. [PubMed][CrossRef]
184. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. [PubMed][CrossRef]
185. Shewmaker F, McGlinchey RP, Thurber KR, McPhie P, Dyda F, Tycko R, Wickner RB. 2009. The functional curli amyloid is not based on in-register parallel beta-sheet structure. J Biol Chem 284:25065–25076. [PubMed][CrossRef]
186. Collinson SK, Emody L, Muller KH, Trust TJ, Kay WW. 1991. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 173:4773–4781. [PubMed]
187. Nilsson MR. 2004. Techniques to study amyloid fibril formation in vitro. Methods 34:151–160. [PubMed][CrossRef]
188. Wang X, Chapman MR. 2008. Sequence determinants of bacterial amyloid formation. J Mol Biol 380:570–580. [PubMed][CrossRef]
189. Hammar M, Bian Z, Normark S. 1996. Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci USA 93:6562–6566. [PubMed][CrossRef]
190. Wang X, Zhou Y, Ren JJ, Hammer ND, Chapman MR. 2010. Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis. Proc Natl Acad Sci USA 107:163–168. [PubMed][CrossRef]
191. Barak J, Gorski L, Naraghi-Arani P, Charkowski A. 2005. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl Environ Microbiol 71:5685–5691. [PubMed][CrossRef]
192. Hammar M, Arnqvist A, Bian Z, Olsen A, Normark S. 1995. Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K–12. Mol Microbiol 18:661–670. [PubMed][CrossRef]
193. Taylor JD, Zhou Y, Salgado PS, Patwardhan A, McGuffie M, Pape T, Grabe G, Ashman E, Constable SC, Simpson PJ, Lee WC, Cota E, Chapman MR, Matthews SJ. 2011. Atomic resolution insights into curli fiber biogenesis. Structure 19:1307–1316. [PubMed][CrossRef]
194. Romling U, Rohde M, Olsen A, Normark S, Reinkoster J. 2000. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36:10–23. [PubMed][CrossRef]
195. Hammer N, Schmidt J, Chapman M. 2007. The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci USA 104:12494–12499. [PubMed][CrossRef]
196. Robinson LS, Ashman EM, Hultgren SJ, Chapman MR. 2006. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 59:870–881. [PubMed][CrossRef]
197. Collinson SK, Parker JM, Hodges RS, Kay WW. 1999. Structural predictions of AgfA, the insoluble fimbrial subunit of Salmonella thin aggregative fimbriae. J Mol Biol 290:741–756. [PubMed][CrossRef]
198. Nenninger AA, Robinson LS, Hammer ND, Epstein EA, Badtke MP, Hultgren SJ, Chapman MR. 2011. CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation. Mol Microbiol 81:486–499. [PubMed][CrossRef]
199. Nenninger AA, Robinson LS, Hultgren SJ. 2009. Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. Proc Natl Acad Sci USA 106:900–905. [PubMed][CrossRef]
200. Tukel C, Raffatellu M, Humphries A, Wilson R, Andrews-Polymenis H, Gull T, Figueiredo J, Wong M, Michelsen K, Akcelik M, Adams L, Baumler A. 2005. CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Mol Microbiol 58:289–304. [PubMed][CrossRef]
201. Hung C, Marschall J, Burnham CA, Byun AS, Henderson JP. 2014. The bacterial amyloid curli is associated with urinary source bloodstream infection. PLoS One 9:e86009. [PubMed][CrossRef]
202. Olsen A, Wick M, Morgelin M, Bjorck L. 1998. Curli, fibrous surface proteins of Escherichia coli, interact with major histocompatibility complex class I molecules. Infect Immun 66:944–949. [PubMed]
203. Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Aberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ. 2009. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5:913–919. [PubMed][CrossRef]
204. Kikuchi T, Mizunoe Y, Takade A, Naito S, Yoshida S. 2005. Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol 49:875–884. [PubMed][CrossRef]
205. Cherny I, Rockah L, Levy-Nissenbaum O, Gophna U, Ron EZ, Gazit E. 2005. The formation of Escherichia coli curli amyloid fibrils is mediated by prion-like peptide repeats. J Mol Biol 352:245–252. [PubMed][CrossRef]
206. Leo JC, Grin I, Linke D. 2012. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos Trans R Soc Lond B Biol Sci 367:1088–1101. [PubMed][CrossRef]
207. Leyton DL, Rossiter AE, Henderson IR. 2012. From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nat Rev Microbiol 10:213–225. [PubMed][CrossRef]
208. Jose J, Jahnig F, Meyer TF. 1995. Common structural features of IgA1 protease-like outer membrane protein autotransporters. Mol Microbiol 18:378–380. [PubMed][CrossRef]
209. Pohlner J, Halter R, Beyreuther K, Meyer TF. 1987. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325:458–462. [PubMed][CrossRef]
210. Oomen CJ, Van Ulsen P, Van Gelder P, Feijen M, Tommassen J, Gros P. 2004. Structure of the translocator domain of a bacterial autotransporter. EMBO J 23:1257–1266. [PubMed][CrossRef]
211. Phadnis SH, Ilver D, Janzon L, Normark S, Westblom TU. 1994. Pathological significance and molecular characterization of the vacuolating toxin gene of Helicobacter pylori. Infect Immun 62:1557–1565. [PubMed]
212. Emsley P, Charles IG, Fairweather NF, Isaacs NW. 1996. Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature 381:90–92. [PubMed][CrossRef]
213. Benz I, Schmidt MA. 1992. AIDA-I, the adhesin involved in diffuse adherence of the diarrhoeagenic Escherichia coli strain 2787 (O126:H27), is synthesized via a precursor molecule. Mol Microbiol 6:1539–1546. [PubMed][CrossRef]
214. Charbonneau ME, Janvore J, Mourez M. 2009. Autoprocessing of the Escherichia coli AIDA-I autotransporter: a new mechanism involving acidic residues in the junction region. J Biol Chem 284:17340–17351. [PubMed][CrossRef]
215. Schembri MA, Dalsgaard D, Klemm P. 2004. Capsule shields the function of short bacterial adhesins. J Bacteriol 186:1249–1257. [PubMed][CrossRef]
216. Hasman H, Chakraborty T, Klemm P. 1999. Antigen-43-mediated autoaggregation of Escherichia coli is blocked by fimbriation. J Bacteriol 181:4834–4841. [PubMed]
217. Allsopp LP, Totsika M, Tree JJ, Ulett GC, Mabbett AN, Wells TJ, Kobe B, Beatson SA, Schembri MA. 2010. UpaH is a newly identified autotransporter protein that contributes to biofilm formation and bladder colonization by uropathogenic Escherichia coli CFT073. Infect Immun 78:1659–1669. [PubMed][CrossRef]
218. Parham NJ, Srinivasan U, Desvaux M, Foxman B, Marrs CF, Henderson IR. 2004. PicU, a second serine protease autotransporter of uropathogenic Escherichia coli. FEMS Microbiol Lett 230:73–83. [PubMed][CrossRef]
219. Guyer DM, Henderson IR, Nataro JP, Mobley HL. 2000. Identification of sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol Microbiol 38:53–66. [PubMed][CrossRef]
220. Alamuri P, Lower M, Hiss JA, Himpsl SD, Schneider G, Mobley HL. 2010. Adhesion, invasion, and agglutination mediated by two trimeric autotransporters in the human uropathogen Proteus mirabilis. Infect Immun 78:4882–4894. [PubMed][CrossRef]
221. Yen MR, Peabody CR, Partovi SM, Zhai Y, Tseng YH, Saier MH. 2002. Protein-translocating outer membrane porins of Gram-negative bacteria. Biochim Biophys Acta 1562:6–31. [PubMed][CrossRef]
222. van den Berg B. 2010. Crystal structure of a full-length autotransporter. J Mol Biol 396:627–633. [PubMed][CrossRef]
223. Barnard TJ, Dautin N, Lukacik P, Bernstein HD, Buchanan SK. 2007. Autotransporter structure reveals intra-barrel cleavage followed by conformational changes. Nature Struct Mol Biol 14:1214–1220. [PubMed][CrossRef]
224. Klauser T, Kramer J, Otzelberger K, Pohlner J, Meyer TF. 1993. Characterization of the Neisseria Iga beta-core. The essential unit for outer membrane targeting and extracellular protein secretion. J Mol Biol 234:579–593. [PubMed][CrossRef]
225. Oliver DC, Huang G, Fernandez RC. 2003. Identification of secretion determinants of the Bordetella pertussis BrkA autotransporter. J Bacteriol 185:489–495. [PubMed][CrossRef]
226. Maurer J, Jose J, Meyer TF. 1999. Characterization of the essential transport function of the AIDA-I autotransporter and evidence supporting structural predictions. J Bacteriol 181:7014–7020. [PubMed]
227. Roggenkamp A, Ackermann N, Jacobi CA, Truelzsch K, Hoffmann H, Heesemann J. 2003. Molecular analysis of transport and oligomerization of the Yersinia enterocolitica adhesin YadA. J Bacteriol 185:3735–3744. [PubMed][CrossRef]
228. Surana NK, Cutter D, Barenkamp SJ, St Geme JW, 3rd. 2004. The Haemophilus influenzae Hia autotransporter contains an unusually short trimeric translocator domain. J Biol Chem 279:14679–14685. [PubMed][CrossRef]
229. Meng G, Surana NK, St Geme JW, 3rd, Waksman G. 2006. Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J 25:2297–2304. [PubMed][CrossRef]
230. Yeo HJ, Cotter SE, Laarmann S, Juehne T, St Geme JW, Waksman G. 2004. Structural basis for host recognition by the Haemophilus influenzae Hia autotransporter. EMBO J 23:1245–1256. [PubMed][CrossRef]
231. Nummelin H, Merckel MC, Leo JC, Lankinen H, Skurnik M, Goldman A. 2004. The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel beta-roll. EMBO J 23:701–711. [PubMed][CrossRef]
232. Valle J, Mabbett AN, Ulett GC, Toledo-Arana A, Wecker K, Totsika M, Schembri MA, Ghigo JM, Beloin C. 2008. UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J Bacteriol 190:4147–4161. [PubMed][CrossRef]
233. Meng G, Spahich N, Kenjale R, Waksman G, St Geme JW, 3rd. 2011. Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation. EMBO J 30:3864–3874. [PubMed][CrossRef]
234. Khan S, Mian HS, Sandercock LE, Chirgadze NY, Pai EF. 2011. Crystal structure of the passenger domain of the Escherichia coli autotransporter EspP. J Mol Biol 413:985–1000. [PubMed][CrossRef]
235. Gangwer KA, Mushrush DJ, Stauff DL, Spiller B, McClain MS, Cover TL, Lacy DB. 2007. Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc Natl Acad Sci USA 104:16293–16298. [PubMed][CrossRef]
236. Szczesny P, Lupas A. 2008. Domain annotation of trimeric autotransporter adhesins--daTAA. Bioinformatics 24:1251–1256. [PubMed][CrossRef]
237. Hartmann MD, Grin I, Dunin-Horkawicz S, Deiss S, Linke D, Lupas AN, Hernandez Alvarez B. 2012. Complete fiber structures of complex trimeric autotransporter adhesins conserved in enterobacteria. Proc Natl Acad Sci USA 109:20907–20912. [PubMed][CrossRef]
238. Leo JC, Lyskowski A, Hattula K, Hartmann MD, Schwarz H, Butcher SJ, Linke D, Lupas AN, Goldman A. 2011. The structure of E. coli IgG-binding protein D suggests a general model for bending and binding in trimeric autotransporter adhesins. Structure 19:1021–1030. [PubMed][CrossRef]
239. Biedzka-Sarek M, Salmenlinna S, Gruber M, Lupas AN, Meri S, Skurnik M. 2008. Functional mapping of YadA- and Ail-mediated binding of human factor H to Yersinia enterocolitica serotype O:3. Infect Immun 76:5016–5027. [PubMed][CrossRef]
240. Ruiz-Perez F, Henderson IR, Leyton DL, Rossiter AE, Zhang Y, Nataro JP. 2009. Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae. J Bacteriol 191:6571–6583. [PubMed][CrossRef]
241. Leyton DL, Sevastsyanovich YR, Browning DF, Rossiter AE, Wells TJ, Fitzpatrick RE, Overduin M, Cunningham AF, Henderson IR. 2011. Size and conformation limits to secretion of disulfide-bonded loops in autotransporter proteins. J Biol Chem 286:42283–42291. [PubMed][CrossRef]
242. Desvaux M, Scott-Tucker A, Turner SM, Cooper LM, Huber D, Nataro JP, Henderson IR. 2007. A conserved extended signal peptide region directs posttranslational protein translocation via a novel mechanism. Microbiology 153:59–70. [PubMed][CrossRef]
243. Szabady RL, Peterson JH, Skillman KM, Bernstein HD. 2005. An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc Natl Acad Sci USA 102:221–226. [PubMed][CrossRef]
244. Hagan CL, Silhavy TJ, Kahne D. 2011. beta-Barrel membrane protein assembly by the Bam complex. Ann Rev Biochem 80:189–210. [PubMed][CrossRef]
245. Ieva R, Tian P, Peterson JH, Bernstein HD. 2011. Sequential and spatially restricted interactions of assembly factors with an autotransporter beta domain. Proc Natl Acad Sci USA 108:E383–391. [PubMed][CrossRef]
246. Jain S, Goldberg MB. 2007. Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol 189:5393–5398. [PubMed][CrossRef]
247. Rossiter AE, Leyton DL, Tveen-Jensen K, Browning DF, Sevastsyanovich Y, Knowles TJ, Nichols KB, Cunningham AF, Overduin M, Schembri MA, Henderson IR. 2011. The essential beta-barrel assembly machinery complex components BamD and BamA are required for autotransporter biogenesis. J Bacteriol 193:4250–4253. [PubMed][CrossRef]
248. Junker M, Besingi RN, Clark PL. 2009. Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion. Mol Microbiol 71:1323–1332. [PubMed][CrossRef]
249. Peterson JH, Tian P, Ieva R, Dautin N, Bernstein HD. 2010. Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment. Proc Natl Acad Sci USA 107:17739–17744. [PubMed][CrossRef]
250. Jose J, Kramer J, Klauser T, Pohlner J, Meyer TF. 1996. Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the Iga beta autotransporter pathway. Gene 178:107–110. [PubMed][CrossRef]
251. Jong WS, ten Hagen-Jongman CM, den Blaauwen T, Slotboom DJ, Tame JR, Wickstrom D, de Gier JW, Otto BR, Luirink J. 2007. Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Mol Microbiol 63:1524–1536. [PubMed][CrossRef]
252. Ohnishi Y, Nishiyama M, Horinouchi S, Beppu T. 1994. Involvement of the COOH-terminal pro-sequence of Serratia marcescens serine protease in the folding of the mature enzyme. J Biol Chem 269:32800–32806. [PubMed]
253. Oliver DC, Huang G, Nodel E, Pleasance S, Fernandez RC. 2003. A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol Microbiol 47:1367–1383. [PubMed][CrossRef]
254. Soprova Z, Sauri A, van Ulsen P, Tame JR, den Blaauwen T, Jong WS, Luirink J. 2010. A conserved aromatic residue in the autochaperone domain of the autotransporter Hbp is critical for initiation of outer membrane translocation. J Biol Chem 285:38224–38233. [PubMed][CrossRef]
255. Junker M, Schuster CC, McDonnell AV, Sorg KA, Finn MC, Berger B, Clark PL. 2006. Pertactin beta-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins. Proc Natl Acad Sci USA 103:4918–4923. [PubMed][CrossRef]
256. Veiga E, de Lorenzo V, Fernandez LA. 2004. Structural tolerance of bacterial autotransporters for folded passenger protein domains. Mol Microbiol 52:1069–1080. [PubMed][CrossRef]
257. Skillman KM, Barnard TJ, Peterson JH, Ghirlando R, Bernstein HD. 2005. Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter. Mol Microbiol 58:945–958. [PubMed][CrossRef]
258. Sherlock O, Dobrindt U, Jensen JB, Munk Vejborg R, Klemm P. 2006. Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein. J Bacteriol 188:1798–1807. [PubMed][CrossRef]
259. Sauri A, Soprova Z, Wickstrom D, de Gier JW, Van der Schors RC, Smit AB, Jong WS, Luirink J. 2009. The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. Microbiology 155:3982–3991. [PubMed][CrossRef]
260. Ieva R, Skillman KM, Bernstein HD. 2008. Incorporation of a polypeptide segment into the beta-domain pore during the assembly of a bacterial autotransporter. Mol Microbiol 67:188–201. [PubMed][CrossRef]
261. Klemm P, Hjerrild L, Gjermansen M, Schembri MA. 2004. Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli. Mol Microbiol 51:283–296. [PubMed][CrossRef]
262. Henderson IR, Meehan M, Owen P. 1997. Antigen 43, a phase-variable bipartite outer membrane protein, determines colony morphology and autoaggregation in Escherichia coli K–12. FEMS Microbiol Lett 149:115–120. [PubMed][CrossRef]
263. Reidl S, Lehmann A, Schiller R, Salam Khan A, Dobrindt U. 2009. Impact of O-glycosylation on the molecular and cellular adhesion properties of the Escherichia coli autotransporter protein Ag43. Int J Med Microbiol 299:389–401. [PubMed][CrossRef]
264. van der Woude MW, Henderson IR. 2008. Regulation and function of Ag43 (flu). Annu Rev Microbiol 62:153–169. [PubMed][CrossRef]
265. Ulett GC, Valle J, Beloin C, Sherlock O, Ghigo JM, Schembri MA. 2007. Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun 75:3233–3244. [PubMed][CrossRef]
266. Schembri MA, Klemm P. 2001. Coordinate gene regulation by fimbriae-induced signal transduction. EMBO J 20:3074–3081. [PubMed][CrossRef]
267. Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D. 2004. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68:692–744. [PubMed][CrossRef]
268. Heras B, Totsika M, Peters KM, Paxman JJ, Gee CL, Jarrott RJ, Perugini MA, Whitten AE, Schembri MA. 2014. The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. Proc Natl Acad Sci USA 111:457–462. [PubMed][CrossRef]
269. Vejborg RM, Klemm P. 2009. Cellular chain formation in Escherichia coli biofilms. Microbiology 155:1407–1417. [PubMed][CrossRef]
270. Allsopp LP, Beloin C, Ulett GC, Valle J, Totsika M, Sherlock O, Ghigo JM, Schembri MA. 2012. Molecular characterization of UpaB and UpaC, two new autotransporter proteins of uropathogenic Escherichia coli CFT073. Infect Immun 80:321–332. [PubMed][CrossRef]
271. Durant L, Metais A, Soulama-Mouze C, Genevard JM, Nassif X, Escaich S. 2007. Identification of candidates for a subunit vaccine against extraintestinal pathogenic Escherichia coli. Infect Immun 75:1916–1925. [PubMed][CrossRef]
272. Allsopp LP, Beloin C, Moriel DG, Totsika M, Ghigo JM, Schembri MA. 2012. Functional heterogeneity of the UpaH autotransporter protein from uropathogenic Escherichia coli. J Bacteriol 194:5769–5782. [PubMed][CrossRef]
273. Moriel DG, Bertoldi I, Spagnuolo A, Marchi S, Rosini R, Nesta B, Pastorello I, Corea VA, Torricelli G, Cartocci E, Savino S, Scarselli M, Dobrindt U, Hacker J, Tettelin H, Tallon LJ, Sullivan S, Wieler LH, Ewers C, Pickard D, Dougan G, Fontana MR, Rappuoli R, Pizza M, Serino L. 2010. Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proc Natl Acad Sci USA 107:9072–9077. [PubMed][CrossRef]
274. Nesta B, Spraggon G, Alteri C, Moriel DG, Rosini R, Veggi D, Smith S, Bertoldi I, Pastorello I, Ferlenghi I, Fontana MR, Frankel G, Mobley HL, Rappuoli R, Pizza M, Serino L, Soriani M. 2012. FdeC, a novel broadly conserved Escherichia coli adhesin eliciting protection against urinary tract infections. MBio 3:e00010–e00012. [PubMed][CrossRef]
275. Isberg RR, Voorhis DL, Falkow S. 1987. Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50:769–778. [PubMed][CrossRef]
276. Luo Y, Frey EA, Pfuetzner RA, Creagh AL, Knoechel DG, Haynes CA, Finlay BB, Strynadka NC. 2000. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405:1073–1077. [PubMed][CrossRef]
277. Oberhettinger P, Schutz M, Leo JC, Heinz N, Berger J, Autenrieth IB, Linke D. 2012. Intimin and invasin export their C-terminus to the bacterial cell surface using an inverse mechanism compared to classical autotransport. PLoS One 7:e47069. [PubMed][CrossRef]
278. Leveille S, Caza M, Johnson JR, Clabots C, Sabri M, Dozois CM. 2006. Iha from an Escherichia coli urinary tract infection outbreak clonal group A strain is expressed in vivo in the mouse urinary tract and functions as a catecholate siderophore receptor. Infect Immun 74:3427–3436. [PubMed][CrossRef]
279. Johnson JR, Jelacic S, Schoening LM, Clabots C, Shaikh N, Mobley HL, Tarr PI. 2005. The IrgA homologue adhesin Iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect Immun 73:965–971. [PubMed][CrossRef]
280. Tarr PI, Bilge SS, Vary JC, Jr., Jelacic S, Habeeb RL, Ward TR, Baylor MR, Besser TE. 2000. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect Immun 68:1400–1407. [PubMed][CrossRef]
281. Buchanan SK, Smith BS, Venkatramani L, Xia D, Esser L, Palnitkar M, Chakraborty R, van der Helm D, Deisenhofer J. 1999. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nature Struct Biol 6:56–63. [PubMed][CrossRef]
282. Manges AR, Johnson JR, Foxman B, O’Bryan TT, Fullerton KE, Riley LW. 2001. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N Engl J Med 345:1007–1013. [PubMed][CrossRef]
283. Burall LS, Harro JM, Li X, Lockatell CV, Himpsl SD, Hebel JR, Johnson DE, Mobley HL. 2004. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 72:2922–2938. [PubMed][CrossRef]
284. Linhartova I, Bumba L, Masin J, Basler M, Osicka R, Kamanova J, Prochazkova K, Adkins I, Hejnova-Holubova J, Sadilkova L, Morova J, Sebo P. 2010. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34:1076–1112. [PubMed][CrossRef]
285. Koronakis V, Eswaran J, Hughes C. 2004. Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem 73:467–489. [PubMed][CrossRef]
286. Delepelaire P. 2004. Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694:149–161. [PubMed][CrossRef]
287. Vigil PD, Wiles TJ, Engstrom MD, Prasov L, Mulvey MA, Mobley HL. 2012. The repeat-in-toxin family member TosA mediates adherence of uropathogenic Escherichia coli and survival during bacteremia. Infect Immun 80:493–505. [PubMed][CrossRef]
288. Parham NJ, Pollard SJ, Chaudhuri RR, Beatson SA, Desvaux M, Russell MA, Ruiz J, Fivian A, Vila J, Henderson IR. 2005. Prevalence of pathogenicity island II CFT073 genes among extraintestinal clinical isolates of Escherichia coli. J Clin Microbiol 43:2425–2434. [PubMed][CrossRef]
289. Vigil PD, Alteri CJ, Mobley HL. 2011. Identification of in vivo-induced antigens including an RTX family exoprotein required for uropathogenic Escherichia coli virulence. Infect Immun 79:2335–2344. [PubMed][CrossRef]
290. Ronald A. 2003. The etiology of urinary tract infection: traditional and emerging pathogens. Dis Mon 49:71–82. [PubMed][CrossRef]
291. Koch S, Hufnagel M, Theilacker C, Huebner J. 2004. Enterococcal infections: host response, therapeutic, and prophylactic possibilities. Vaccine 22:822–830. [PubMed][CrossRef]
292. Mandlik A, Swierczynski A, Das A, Ton-That H. 2008. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40. [PubMed][CrossRef]
293. Chagnot C, Listrat A, Astruc T, Desvaux M. 2012. Bacterial adhesion to animal tissues: protein determinants for recognition of extracellular matrix components. Cell Microbiol 14:1687–1696. [PubMed][CrossRef]
294. Patti JM, Hook M. 1994. Microbial adhesins recognizing extracellular matrix macromolecules. Curr Opin Cell Biol 6:752–758. [PubMed][CrossRef]
295. Rich RL, Kreikemeyer B, Owens RT, LaBrenz S, Narayana SV, Weinstock GM, Murray BE, Hook M. 1999. Ace is a collagen-binding MSCRAMM from Enterococcus faecalis. J Biol Chem 274:26939–26945. [PubMed][CrossRef]
296. Sakinc T, Kleine B, Michalski N, Kaase M, Gatermann SG. 2009. SdrI of Staphylococcus saprophyticus is a multifunctional protein: localization of the fibronectin-binding site. FEMS Microbiol Lett 301:28–34. [PubMed][CrossRef]
297. Nallapareddy SR, Qin X, Weinstock GM, Hook M, Murray BE. 2000. Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 68:5218–5224. [PubMed][CrossRef]
298. Bowden MG, Heuck AP, Ponnuraj K, Kolosova E, Choe D, Gurusiddappa S, Narayana SV, Johnson AE, Hook M. 2008. Evidence for the “dock, lock, and latch” ligand binding mechanism of the staphylococcal microbial surface component recognizing adhesive matrix molecules (MSCRAMM) SdrG. J Biol Chem 283:638–647. [PubMed][CrossRef]
299. Ponnuraj K, Bowden MG, Davis S, Gurusiddappa S, Moore D, Choe D, Xu Y, Hook M, Narayana SV. 2003. A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. Cell 115:217–228. [PubMed][CrossRef]
300. Ponnuraj K, Narayana SV. 2007. Crystal structure of ACE19, the collagen binding subdomain of Enterococus faecalis surface protein ACE. Proteins 69:199–203. [PubMed][CrossRef]
301. Liu Q, Ponnuraj K, Xu Y, Ganesh VK, Sillanpaa J, Murray BE, Narayana SV, Hook M. 2007. The Enterococcus faecalis MSCRAMM ACE binds its ligand by the Collagen Hug model. J Biol Chem 282:19629–19637. [PubMed][CrossRef]
302. Zong Y, Xu Y, Liang X, Keene DR, Hook A, Gurusiddappa S, Hook M, Narayana SV. 2005. A ‘Collagen Hug’ model for Staphylococcus aureus CNA binding to collagen. EMBO J 24:4224–4236. [PubMed][CrossRef]
303. Deivanayagam CC, Rich RL, Carson M, Owens RT, Danthuluri S, Bice T, Hook M, Narayana SV. 2000. Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein. Structure 8:67–78. [PubMed][CrossRef]
304. Ganesh VK, Rivera JJ, Smeds E, Ko YP, Bowden MG, Wann ER, Gurusiddappa S, Fitzgerald JR, Hook M. 2008. A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. PLoS Pathog 4:e1000226. [PubMed][CrossRef]
305. Deivanayagam CC, Wann ER, Chen W, Carson M, Rajashankar KR, Hook M, Narayana SV. 2002. A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A. EMBO J 21:6660–6672. [PubMed][CrossRef]
306. Lebreton F, Riboulet-Bisson E, Serror P, Sanguinetti M, Posteraro B, Torelli R, Hartke A, Auffray Y, Giard JC. 2009. ace, Which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 77:2832–2839. [PubMed][CrossRef]
307. Kuroda M, Yamashita A, Hirakawa H, Kumano M, Morikawa K, Higashide M, Maruyama A, Inose Y, Matoba K, Toh H, Kuhara S, Hattori M, Ohta T. 2005. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc Natl Acad Sci U S A 102:13272–13277. [PubMed][CrossRef]
308. King NP, Beatson SA, Totsika M, Ulett GC, Alm RA, Manning PA, Schembri MA. 2011. UafB is a serine-rich repeat adhesin of Staphylococcus saprophyticus that mediates binding to fibronectin, fibrinogen and human uroepithelial cells. Microbiology 157:1161–1175. [PubMed][CrossRef]
309. Kline KA, Ingersoll MA, Nielsen HV, Sakinc T, Henriques-Normark B, Gatermann S, Caparon MG, Hultgren SJ. 2010. Characterization of a novel murine model of Staphylococcus saprophyticus urinary tract infection reveals roles for Ssp and SdrI in virulence. Infect Immun 78:1943–1951. [PubMed][CrossRef]
310. Schneewind O, Mihaylova-Petkov D, Model P. 1993. Cell wall sorting signals in surface proteins of gram-positive bacteria. EMBO J 12:4803–4811. [PubMed]
311. Symersky J, Patti JM, Carson M, House-Pompeo K, Teale M, Moore D, Jin L, Schneider A, DeLucas LJ, Hook M, Narayana SV. 1997. Structure of the collagen-binding domain from a Staphylococcus aureus adhesin. Nat Struct Biol 4:833–838. [PubMed][CrossRef]
312. Nallapareddy SR, Singh KV, Sillanpaa J, Zhao M, Murray BE. 2011. Relative contributions of Ebp Pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect Immun 79:2901–2910. [PubMed][CrossRef]
313. Matsuoka E, Tanaka Y, Kuroda M, Shouji Y, Ohta T, Tanaka I, Yao M. 2011. Crystal structure of the functional region of Uro-adherence factor A from Staphylococcus saprophyticus reveals participation of the B domain in ligand binding. Protein Sci 20:406–416. [PubMed][CrossRef]
314. Schneewind O, Missiakas DM. 2012. Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 367:1123–1139. [PubMed][CrossRef]
315. Model P, Russel M. 1990. Prokaryotic secretion. Cell 61:739–741. [PubMed][CrossRef]
316. Schneewind O, Model P, Fischetti VA. 1992. Sorting of protein A to the staphylococcal cell wall. Cell 70:267–281. [PubMed][CrossRef]
317. Spirig T, Weiner EM, Clubb RT. 2011. Sortase enzymes in Gram-positive bacteria. Mol Microbiol 82:1044–1059. [PubMed][CrossRef]
318. Mazmanian SK, Liu G, Ton-That H, Schneewind O. 1999. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760–763. [PubMed][CrossRef]
319. Maresso AW, Schneewind O. 2008. Sortase as a target of anti-infective therapy. Pharmacol Rev 60:128–141. [PubMed][CrossRef]
320. Marraffini LA, Dedent AC, Schneewind O. 2006. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev 70:192–221. [PubMed][CrossRef]
321. Perry AM, Ton-That H, Mazmanian SK, Schneewind O. 2002. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. III. Lipid II is an in vivo peptidoglycan substrate for sortase-catalyzed surface protein anchoring. J Biol Chem 277:16241–16248. [PubMed][CrossRef]
322. Ruzin A, Severin A, Ritacco F, Tabei K, Singh G, Bradford PA, Siegel MM, Projan SJ, Shlaes DM. 2002. Further evidence that a cell wall precursor [C(55)-MurNAc-(peptide)-GlcNAc] serves as an acceptor in a sorting reaction. J Bacteriol 184:2141–2147. [PubMed][CrossRef]
323. Foster TJ, Hook M. 1998. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488. [PubMed][CrossRef]
324. Murray BE. 1990. The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65. [PubMed]
325. Arias CA, Murray BE. 2012. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–278. [PubMed][CrossRef]
326. Raz R, Colodner R, Kunin CM. 2005. Who are you— Staphylococcus saprophyticus? Clin Infect Dis 40:896–898. [PubMed][CrossRef]
327. Szabados F, Kleine B, Anders A, Kaase M, Sakinc T, Schmitz I, Gatermann S. 2008. Staphylococcus saprophyticus ATCC 15305 is internalized into human urinary bladder carcinoma cell line 5637. FEMS Microbiol Lett 285:163–169. [PubMed][CrossRef]
328. Valle J, Mabbett AN, Ulett GC, Toledo-Arana A, Wecker K, Totsika M, Schembri MA, Ghigo JM, Beloin C. 2008. UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J Bacteriol 190:4147–4161. [PubMed][CrossRef]
329. Sakinc T, Kleine B, Gatermann SG. 2006. SdrI, a serine-aspartate repeat protein identified in Staphylococcus saprophyticus strain 7108, is a collagen-binding protein. Infect Immun 74:4615–4623. [PubMed][CrossRef]
330. Holmes AR, McNab R, Millsap KW, Rohde M, Hammerschmidt S, Mawdsley JL, Jenkinson HF. 2001. The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol Microbiol 41:1395–1408. [PubMed][CrossRef]
331. Torelli R, Serror P, Bugli F, Paroni Sterbini F, Florio AR, Stringaro A, Colone M, De Carolis E, Martini C, Giard JC, Sanguinetti M, Posteraro B. 2012. The PavA-like Fibronectin-Binding Protein of Enterococcus faecalis, EfbA, Is Important for Virulence in a Mouse Model of Ascending Urinary Tract Infection. J Infect Dis 206(6) :952–960. [PubMed][CrossRef]
332. Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS, Johnson DE. 2001. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun 69:4366–4372. [PubMed][CrossRef]
333. Tendolkar PM, Baghdayan AS, Shankar N. 2005. The N-terminal domain of enterococcal surface protein, Esp, is sufficient for Esp-mediated biofilm enhancement in Enterococcus faecalis. J Bacteriol 187:6213–6222. [PubMed][CrossRef]
334. Kang HJ, Paterson NG, Gaspar AH, Ton-That H, Baker EN. 2009. The Corynebacterium diphtheriae shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds. Proc Natl Acad Sci USA 106:16967–16971. [PubMed][CrossRef]
335. Spraggon G, Koesema E, Scarselli M, Malito E, Biagini M, Norais N, Emolo C, Barocchi MA, Giusti F, Hilleringmann M, Rappuoli R, Lesley S, Covacci A, Masignani V, Ferlenghi I. 2010. Supramolecular organization of the repetitive backbone unit of the Streptococcus pneumoniae pilus. PLoS One 5:e10919. [PubMed][CrossRef]
336. Linke C, Young PG, Kang HJ, Bunker RD, Middleditch MJ, Caradoc-Davies TT, Proft T, Baker EN. 2010. Crystal structure of the minor pilin FctB reveals determinants of Group A streptococcal pilus anchoring. J Biol Chem 285:20381–20389. [PubMed][CrossRef]
337. Kang HJ, Baker EN. 2009. Intramolecular isopeptide bonds give thermodynamic and proteolytic stability to the major pilin protein of Streptococcus pyogenes. J Biol Chem 284:20729–20737. [PubMed][CrossRef]
338. Krishnan V, Gaspar AH, Ye N, Mandlik A, Ton-That H, Narayana SV. 2007. An IgG-like domain in the minor pilin GBS52 of Streptococcus agalactiae mediates lung epithelial cell adhesion. Structure 15:893–903. [PubMed][CrossRef]
339. Sillanpaa J, Nallapareddy SR, Singh KV, Prakash VP, Fothergill T, Ton-That H, Murray BE. 2010. Characterization of the ebp(fm) pilus-encoding operon of Enterococcus faecium and its role in biofilm formation and virulence in a murine model of urinary tract infection. Virulence 1:236–246. [PubMed][CrossRef]
340. Nallapareddy SR, Singh KV, Sillanpaa J, Garsin DA, Hook M, Erlandsen SL, Murray BE. 2006. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J Clin Invest 116:2799–2807. [PubMed][CrossRef]
341. Budzik JM, Poor CB, Faull KF, Whitelegge JP, He C, Schneewind O. 2009. Intramolecular amide bonds stabilize pili on the surface of bacilli. Proc Natl Acad Sci USA 106:19992–19997. [PubMed][CrossRef]
342. Izore T, Contreras-Martel C, El Mortaji L, Manzano C, Terrasse R, Vernet T, Di Guilmi AM, Dessen A. 2010. Structural basis of host cell recognition by the pilus adhesin from Streptococcus pneumoniae. Structure 18:106–115. [PubMed][CrossRef]
343. Kang HJ, Coulibaly F, Clow F, Proft T, Baker EN. 2007. Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure. Science 318:1625–1628. [PubMed][CrossRef]
344. Mandlik A, Das A, Ton-That H. 2008. The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria. Proc Natl Acad Sci USA 105:14147–14152. [PubMed][CrossRef]
345. Nielsen HV, Guiton PS, Kline KA, Port GC, Pinkner JS, Neiers F, Normark S, Henriques-Normark B, Caparon MG, Hultgren SJ. 2012. The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection. MBio 3:e00177–e00112. [PubMed][CrossRef]
346. Sillanpaa J, Chang C, Singh KV, Montealegre MC, Nallapareddy SR, Harvey BR, Ton-That H, Murray BE. 2013. Contribution of Individual Ebp Pilus Subunits of Enterococcus faecalis OG1RF to Pilus Biogenesis, Biofilm Formation and Urinary Tract Infection. PLoS One 8:e68813. [PubMed][CrossRef]
347. Sillanpaa J, Nallapareddy SR, Prakash VP, Qin X, Hook M, Weinstock GM, Murray BE. 2008. Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium. Microbiology 154:3199–3211. [PubMed][CrossRef]
348. Whittaker CA, Hynes RO. 2002. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13:3369–3387. [PubMed][CrossRef]
349. Lee JO, Rieu P, Arnaout MA, Liddington R. 1995. Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80:631–638. [CrossRef]
350. Hilleringmann M, Giusti F, Baudner BC, Masignani V, Covacci A, Rappuoli R, Barocchi MA, Ferlenghi I. 2008. Pneumococcal pili are composed of protofilaments exposing adhesive clusters of Rrg A. PLoS Pathog 4:e1000026. [PubMed][CrossRef]
351. Budzik JM, Marraffini LA, Souda P, Whitelegge JP, Faull KF, Schneewind O. 2008. Amide bonds assemble pili on the surface of bacilli. Proc Natl Acad Sci USA 105:10215–10220. [PubMed][CrossRef]
352. Singh KV, Nallapareddy SR, Murray BE. 2007. Importance of the ebp (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J Infect Dis 195:1671–1677. [PubMed][CrossRef]
353. Sillanpaa J, Xu Y, Nallapareddy SR, Murray BE, Hook M. 2004. A family of putative MSCRAMMs from Enterococcus faecalis. Microbiology 150:2069–2078. [PubMed][CrossRef]
354. Roberts JA, Kaack MB, Baskin G, Chapman MR, Hunstad DA, Pinkner JS, Hultgren SJ. 2004. Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. J Urol 171:1682–1685. [PubMed][CrossRef]
355. Tchesnokova V, Aprikian P, Kisiela D, Gowey S, Korotkova N, Thomas W, Sokurenko E. 2011. Type 1 fimbrial adhesin FimH elicits an immune response that enhances cell adhesion of Escherichia coli. Infect Immun 79:3895–3904. [PubMed][CrossRef]
356. Otto M. 2008. Targeted immunotherapy for staphylococcal infections : focus on anti-MSCRAMM antibodies. BioDrugs 22:27–36. [PubMed][CrossRef]
357. Patti JM. 2004. A humanized monoclonal antibody targeting Staphylococcus aureus. Vaccine 22(Suppl 1) :S39–43. [PubMed][CrossRef]
358. Salminen A, Loimaranta V, Joosten JA, Khan AS, Hacker J, Pieters RJ, Finne J. 2007. Inhibition of P-fimbriated Escherichia coli adhesion by multivalent galabiose derivatives studied by a live-bacteria application of surface plasmon resonance. J Antimicrob Chemother 60:495–501. [PubMed][CrossRef]
359. Wellens A, Garofalo C, Nguyen H, Van Gerven N, Slattegard R, Hernalsteens JP, Wyns L, Oscarson S, De Greve H, Hultgren S, Bouckaert J. 2008. Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS One 3:e2040. [PubMed][CrossRef]
360. Han Z, Pinkner JS, Ford B, Obermann R, Nolan W, Wildman SA, Hobbs D, Ellenberger T, Cusumano CK, Hultgren SJ, Janetka JW. 2010. Structure-based drug design and optimization of mannoside bacterial FimH antagonists. J Med Chem 53:4779–4792. [PubMed][CrossRef]
361. Schwardt O, Rabbani S, Hartmann M, Abgottspon D, Wittwer M, Kleeb S, Zalewski A, Smiesko M, Cutting B, Ernst B. 2011. Design, synthesis and biological evaluation of mannosyl triazoles as FimH antagonists. Bioorg Med Chem 19:6454–6473. [PubMed][CrossRef]
362. Pinkner JS, Remaut H, Buelens F, Miller E, Aberg V, Pemberton N, Hedenstrom M, Larsson A, Seed P, Waksman G, Hultgren SJ, Almqvist F. 2006. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc Natl Acad Sci USA 103:17897–17902. [PubMed][CrossRef]
363. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. 2008. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27. [PubMed][CrossRef]
364. Dobrindt U, Hacker J. 2008. Targeting virulence traits: potential strategies to combat extraintestinal pathogenic E. coli infections. Curr Opin Microbiol 11:409–413. [PubMed][CrossRef]
365. Jones CH, Dodson K, Hultgren SJ. 1996. Structure, function, and assembly of adhesive P pili, p 175–219. In Mobley HLT, Warren JW (ed), Urinary tract infections: molecular pathogenesis and clinical management, 1 ed. ASM Press, Washington, DC.
366. Leffler H, Svanborg-Eden C. 1981. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun 34:920–929. [PubMed]
367. Wu XR, Sun TT, Medina JJ. 1996. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc Natl Acad Sci USA 93:9630–9635. [PubMed][CrossRef]
368. Korhonen TK, Valtonen MV, Parkkinen J, Vaisanen-Rhen V, Finne J, Orskov F, Orskov I, Svenson SB, Makela PH. 1985. Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis. Infect Immun 48:486–491. [PubMed]
369. Castelain M, Sjostrom AE, Fallman E, Uhlin BE, Andersson M. 2010. Unfolding and refolding properties of S pili on extraintestinal pathogenic Escherichia coli. Eur Biophys J 39:1105–1115. [PubMed][CrossRef]
370. Khan AS, Kniep B, Oelschlaeger TA, Van Die I, Korhonen T, Hacker J. 2000. Receptor structure for F1C fimbriae of uropathogenic Escherichia coli. Infect Immun 68:3541–3547. [PubMed][CrossRef]
371. Ong CL, Ulett GC, Mabbett AN, Beatson SA, Webb RI, Monaghan W, Nimmo GR, Looke DF, McEwan AG, Schembri MA. 2008. Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J Bacteriol 190:1054–1063. [PubMed][CrossRef]
372. Struve C, Bojer M, Krogfelt KA. 2008. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun 76:4055–4065. [PubMed][CrossRef]
373. Gerlach GF, Clegg S, Allen BL. 1989. Identification and characterization of the genes encoding the type 3 and type 1 fimbrial adhesins of Klebsiella pneumoniae. J Bacteriol 171:1262–1270. [PubMed]
374. Stahlhut SG, Chattopadhyay S, Struve C, Weissman SJ, Aprikian P, Libby SJ, Fang FC, Krogfelt KA, Sokurenko EV. 2009. Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae. J Bacteriol 191:1941–1950. [PubMed][CrossRef]
375. Tarkkanen AM, Allen BL, Westerlund B, Holthofer H, Kuusela P, Risteli L, Clegg S, Korhonen TK. 1990. Type V collagen as the target for type-3 fimbriae, enterobacterial adherence organelles. Mol Microbiol 4:1353–1361. [PubMed][CrossRef]
376. Stahlhut SG, Struve C, Krogfelt KA. 2012. Klebsiella pneumoniae type 3 fimbriae agglutinate yeast in a mannose-resistant manner. J Med Microbiol 61:317–322. [PubMed][CrossRef]
377. Ong CL, Beatson SA, Totsika M, Forestier C, McEwan AG, Schembri MA. 2010. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol 10:183. [PubMed][CrossRef]
378. Zunino P, Geymonat L, Allen AG, Preston A, Sosa V, Maskell DJ. 2001. New aspects of the role of MR/P fimbriae in Proteus mirabilis urinary tract infection. FEMS Immunol Med Microbiol 31:113–120. [PubMed][CrossRef]
379. Li X, Johnson DE, Mobley HL. 1999. Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. Infect Immun 67:2822–2833. [PubMed]
380. Bahrani FK, Mobley HL. 1994. Proteus mirabilis MR/P fimbrial operon: genetic organization, nucleotide sequence, and conditions for expression. J Bacteriol 176:3412–3419. [PubMed]
381. Zunino P, Sosa V, Allen AG, Preston A, Schlapp G, Maskell DJ. 2003. Proteus mirabilis fimbriae (PMF) are important for both bladder and kidney colonization in mice. Microbiology 149:3231–3237. [PubMed][CrossRef]
382. Massad G, Lockatell CV, Johnson DE, Mobley HLT. 1994. Proteus mirabilis fimbriae: construction of an isogenic pmfA mutant and analysis of virulence in a CBA mouse model of ascending urinary tract infection. Infect Immmun 62:536–542. [PubMed]
383. Pellegrino R, Scavone P, Umpierrez A, Maskell DJ, Zunino P. 2013. Proteus mirabilis uroepithelial cell adhesin (UCA) fimbria plays a role in the colonization of the urinary tract. Pathog Dis 67:104–107. [PubMed][CrossRef]
384. Cook SW, Mody N, Valle J, Hull R. 1995. Molecular cloning of Proteus mirabilis uroepithelial cell adherence ( uca) genes. Infect Immun 63:2082–2086. [PubMed]
385. Lee KK, Harrison BA, Latta R, Altman E. 2000. The binding of Proteus mirabilis nonagglutinating fimbriae to ganglio-series asialoglycolipids and lactosyl ceramide. Can J Microbiol 46:961–966. [PubMed][CrossRef]
386. Massad G, Fulkerson Jr JF, Watson DC, Mobley HL. 1996. Proteus mirabilis ambient-temperature fimbriae: cloning and nucleotide sequence of the aft gene cluster. Infect Immun 64:4390–4395. [PubMed]
387. Zunino P, Geymonat L, Allen AG, Legnani-Fajardo C, Maskell DJ. 2000. Virulence of a Proteus mirabilis ATF isogenic mutant is not impaired in a mouse model of ascending urinary tract infection. FEMS Immunol Med Microbiol 29:137–143. [PubMed][CrossRef]

Article metrics loading...



Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities, including biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hair-like fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic . Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Representative CU gene clusters and pili. Gene clusters coding for P (), type 1 () and Dr/Afa pili are depicted, with the functions of the genes indicated. Electron micrographs are shown for (A) an bacterium expressing type 1 pili, (B) a P pilus fiber, and (C) a type 1 pilus fiber. Scale bars equal 700 nm (A), 100 nm (B), and 20 nm (C). The images in panels A-C are reprinted from references 138 , 157 , and 137 , respectively, with permission of the publishers.

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


Model for pilus biogenesis by the CU pathway. Pilus subunits enter the periplasm as unfolded polypeptides via the Sec system. Subunits fold upon forming binary complexes with the periplasmic chaperone (yellow). The crystal structure in the lower right depicts the chaperone-subunit donor strand exchange reaction (PapD-PapA; PDB ID: 2UY6), with the chaperone donor strand indicated in red. Pilus assembly takes place at the outer membrane usher, which catalyzes the exchange of chaperone-subunit for subunit-subunit interactions. Models for assembled P, type 1 and Afa/Dr pilus fibers are shown. The crystal structure in the upper left depicts the subunit-subunit donor strand exchange reaction that occurs in the pilus fiber (PapA-PapA; PDB ID: 2UY6), with the Nte donor strand indicated. Crystal structures of the PapG (P pili; PDB ID: 1J8R) and FimH (type 1 pili; PDB ID: 1KLF) adhesin domains with bound globoside and mannose, respectively. The sugars are depicted as dark gray spheres.

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view


Crystal structure of the FimD-FimC-FimH type 1 pilus assembly intermediate (PDB ID: 3RFZ). The Usher NTD, plug, β-barrel channel, and CTD domains are indicated. The FimH adhesin domain (FimH) is inserted inside the usher channel, and the FimH pilin domain (FimH) and bound FimC chaperone are located at the usher CTDs.

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view


Model for curli biogenesis by the extracellular nucleation/precipitation pathway. The gene cluster coding for curli biogenesis is shown at the bottom. The curli subunit proteins enter the periplasm via the Sec system and are secreted to the bacterial surface via the CsgG outer membrane channel. CsgE may act as a chaperone for the curli subunits in the periplasm, whereas CsgF assists assembly of CsgB on the cell surface. Polymerization of CsgA occurs on the cell surface and is nucleated by interaction with CsgB. Electron micrograph of expressing curli. Scale bar equals 1 µm; reprinted from reference ( 205 ) with permission of the publisher. Structure of a CsgA subunit, with the R1-R5 repeats indicated.

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view


Model for autotransporter secretion and assembly on the bacterial surface. The domain organization of an autotransporter protein is shown at the bottom. Autotransporter polypeptides have an N-terminal signal sequence for translocation to the periplasm via the Sec system. The protein is maintained in an extended, largely unfolded state during transit across the periplasm, assisted by periplasmic folding factors (SurA, Skp, DegP and FkpA). The C-terminal translocator domain inserts into the outer membrane as a β-barrel channel, with the assistance of the Bam complex. The Bam complex may also assist in secretion of the passenger domain to the cell surface. In the hairpin model of secretion, the C-terminal region of the passenger domain forms a hairpin structure in the translocator channel, exposing part of the passenger to the cell surface. Folding initiates at the autochaperone region, which then nucleates folding and secretion of the rest of the passenger domain. Following secretion, the linker region adopts an α-helical structure to plug the translocator domain channel. The passenger domain may remain linked to the translocator domain or may be proteolytically cleaved.

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view


Crystal structures of representative autotransporter proteins. Translocator domains from the monomeric NalP and trimeric Hia autotransporters are shown (PDB IDs: 1UYN and 2GR7, respectively), with the β-barrel channels in blue and the α-helical linker regions in red. Passenger domains from the monomeric Pertactin and trimeric EibD autotransporters are shown (PDB IDs: 1DAB and 2XQH, respectively), with the approximate location of the Pertactin autochaperone region indicated in purple. The complete structure of the EstA autotransporter is shown (PDB ID: 3KVN), with the translocator domain in blue, the α-helical linker in red, and the globular passenger domain in gray.

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

Click to view


Model for MSCRAMM secretion and incorporation into the cell wall. The domain organization of a typical MSCRAMM is shown at the bottom. MSCRAMMs have an N-terminal Sec signal sequence for translocation across the cytoplasmic membrane. The protein remains anchored in the cytoplasmic membrane by the CWSS. The positively charged C terminus remains in the cytoplasm, orienting the LPXTG motif to the extracellular side of the membrane. The SrtA sortase cleaves between the Thr and Gly of the MSCRAMM LPXTG motif, forming a covalent thioacyl intermediate. The MSCRAMM is then transferred to a lipid II peptidoglycan precursor and finally integrated into the cell wall at an amino acid cross-bridge. Crystal structures of the Ace and UafA MSCRAMMs (PDB IDs: 2Z1P and 3IRP, respectively). The upper structure shows the N and N subdomains of Ace in blue and green, respectively; the yellow circle represents bound collagen. Both domains have DEv-Ig folds. The C terminus of the N subdomain inserts into the N subdomain, forming a latch. The lower structure depicts the N, N, and B subdomains of UafA. The N and N subdomains adopt DEv-Ig folds and the B subdomain adopts a variant of the IgG-rev fold. The loop connecting the N and B domains (cyan) is thought to insert into the N subdomain upon ligand binding to form a latch.

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8

Click to view


Crystal structures of representative tip and major pilins. The RrgA tip pilin of (PDB ID: 2WW8) is shown on the left, with the fold adopted by each of the four subdomains indicated. The VWA domain is depicted in green, with the residues forming the MIDAS motif and bound magnesium ion shown in purple. The residues involved in intramolecular isopeptide bond formation are shown in red. The Spy0128 major pilin of (PDB ID: 3B2M) is depicted on the right in purple and the two subdomains are labeled as for RrgA. The lysine side chain of Syp0128 thought to be involved in intermolecular isopeptide bond formation is shown in cyan.

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9

Click to view


Model for Gram-positive pilus polymerization and incorporation into the cell wall. The domain organization of typical major and minor pilins is shown at the bottom, along with the gene cluster coding for Ebp pili of . The steps of secretion across the cytoplasmic membrane and covalent linkage to a sortase are the same as for MSCRAMMs, except the pilins are processed by the SrtC pilus-specific sortase. Pilus subunits are polymerized by formation of intermolecular isopeptide bonds between the Lys of a pilin motif of one subunit and the Thr of the LPXTG motif of a preceding subunit in the fiber. Linkage to the cell wall occurs when a growing pilus fiber is transferred to a base pilin bound to the SrtA housekeeping sortase. Integration of the pilus into the cell wall follows the mechanism as described for MSCRAMMs.

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Click to view


Adhesins of uropathogenic bacteria

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0018-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error