No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Pathoadaptive Mutations in Uropathogenic

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    632.07 Kb
  • HTML
    177.31 Kb
  • XML
    179.71 Kb
  • Author: Evgeni Sokurenko1
  • Editors: Matthew A. Mulvey2, Ann E. Stapleton3, David J. Klumpp4
    Affiliations: 1: University of Washington, Seattle, WA 98195; 2: University of Utah, Salt Lake City, UT; 3: University of Washington, Seattle, WA; 4: Northwestern University, Chicago, IL
  • Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.UTI-0020-2015
  • Received 14 June 2015 Accepted 02 July 2015 Published 04 March 2016
  • Evgeni Sokurenko, [email protected]
image of Pathoadaptive Mutations in Uropathogenic <span class="jp-italic">Escherichia coli</span>
    Preview this microbiology spectrum article:
    Zoom in

    Pathoadaptive Mutations in Uropathogenic , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/2/UTI-0020-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/2/UTI-0020-2015-2.gif
  • Abstract:

    Uropathogenic (UPEC) are opportunistic human pathogens that primarily circulate as part of commensal intestinal microbiota. Though they have the ability to survive and proliferate in various urinary tract compartments, the urinary tract is a transient, occasional habitat for UPEC. Because of this, most of the UPEC traits have originally evolved to serve in intestinal colonization and transmission. Some of these bacterial traits serve as virulence factors – they are critical to or assist in survival of UPEC as pathogens, and the structure and/or function may be specialized for the infection. Other traits could serve as anti-virulence factors – they represent liability in the urinary tract and are under selection to be lost or inactivated during the infection. Inactivation, variation, or other changes of the bacterial genes that increase the pathogen’s fitness during the infection are called . This chapter describes examples of pathoadaptive mutations in UPEC and provides rationale for their further in-depth study.

  • Citation: Sokurenko E. 2016. Pathoadaptive Mutations in Uropathogenic . Microbiol Spectrum 4(2):UTI-0020-2015. doi:10.1128/microbiolspec.UTI-0020-2015.


1. Bloch CA, Stocker BA, Orndorff PE. 1992. A key role for type 1 pili in enterobacterial communicability. Mol Microbiol 6:697–701. [PubMed][CrossRef]
2. Johnson JR, Russo TA. 2002. Extraintestinal pathogenic Escherichia coli: “the other bad E. coli”. J Lab Clin Med 139:155–162. [PubMed][CrossRef]
3. Foxman B. 2002. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med 113(Suppl 1A) :5S–13S. [PubMed][CrossRef]
4. Brown PD, Foxman B. 2000. Pathogenesis of urinary tract infection: the role of sexual behavior and sexual transmission. Curr Infect Dis Rep 2:513–517. [PubMed][CrossRef]
5. Foxman B, Zhang L, Tallman P, Andree BC, Geiger AM, Koopman JS, Gillespie BW, Palin KA, Sobel JD, Rode CK, Bloch CA, Marrs CF. 1997. Transmission of uropathogens between sex partners. J Infect Dis 175:989–992. [PubMed][CrossRef]
6. Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. 2007. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 4:e329. doi:10.1371/journal.pmed.0040329 [PubMed][CrossRef]
7. Stapleton AE, Au-Yeung M, Hooton TM, Fredricks DN, Roberts PL, Czaja CA, Yarova-Yarovaya Y, Fiedler T, Cox M, Stamm WE. 2011. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin Infect Dis 52:1212–1217. [PubMed][CrossRef]
8. Allen SJ, Martinez EG, Gregorio GV, Dans LF. 2010. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev 11:CD003048. [PubMed][CrossRef]
9. Todd EC, Greig JD, Bartleson CA, Michaels BS. 2008. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 4. Infective doses and pathogen carriage. J Food Prot 71:2339–2373. [PubMed]
10. Weissman SJ, Johnson JR, Tchesnokova V, Billig M, Dykhuizen D, Riddell K, Rogers P, Qin X, Butler-Wu S, Cookson BT, Fang FC, Scholes D, Chattopadhyay S, Sokurenko E. 2012. High-resolution two-locus clonal typing of extraintestinal pathogenic Escherichia coli. Appl Environ Microbiol 78:1353–1360. [PubMed][CrossRef]
11. Vejborg RM, Friis C, Hancock V, Schembri MA, Klemm P. 2010. A virulent parent with probiotic progeny: comparative genomics of Escherichia coli strains CFT073, Nissle 1917 and ABU 83972. Mol Genet Genomics 283:469–484. [PubMed][CrossRef]
12. Nielubowicz GR, Mobley HL. 2010. Host-pathogen interactions in urinary tract infection. Nat Rev Urol 7:430–441. [PubMed][CrossRef]
13. Mulvey MA, Schilling JD, Hultgren SJ. 2001. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69:4572–4579. [PubMed][CrossRef]
14. Koonin EV, Makarova KS, Aravind L. 2001. Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742. [PubMed][CrossRef]
15. Timmis KN, Boulnois GJ, Bitter-Suermann D, Cabello FC. 1985. Surface components of Escherichia coli that mediate resistance to the bactericidal activities of serum and phagocytes. Curr Top Microbiol Immunol 118:197–218. [PubMed][CrossRef]
16. Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. 2003. Prophage genomics. Microbiol Mol Biol Rev 67:238–276. [PubMed][CrossRef]
17. Brüssow H, Canchaya C, Hardt WD. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602. [PubMed][CrossRef]
18. Dobrindt U. 2005. (Patho-)Genomics of Escherichia coli. Int J Med Microbiol 295:357–371. [PubMed][CrossRef]
19. Marchès O, Ledger TN, Boury M, Ohara M, Tu X, Goffaux F, Mainil J, Rosenshine I, Sugai M, De Rycke J, Oswald E. 2003. Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol Microbiol 50:1553–1567. [PubMed][CrossRef]
20. Campellone KG, Robbins D, Leong JM. 2004. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev Cell 7:217–228. [PubMed][CrossRef]
21. Jobling MG, Holmes RK. 2012. Type II heat-labile enterotoxins from 50 diverse Escherichia coli isolates belong almost exclusively to the LT-IIc family and may be prophage encoded. PLoS One 7:e29898. doi:10.1371/journal.pone.0029898 [CrossRef]
22. Tóth I, Hérault F, Beutin L, Oswald E. September 2003. Production of cytolethal distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: establishment of the existence of a new cdt variant (Type IV). J Clin Microbiol 41:4285–4291. [PubMed][CrossRef]
23. Lavigne JP, Blanc-Potard AB. 2008. Molecular evolution of Salmonella enterica serovar Typhimurium and pathogenic Escherichia coli: from pathogenesis to therapeutics. Infect Genet Evol 8:217–226. [PubMed][CrossRef]
24. Dobrindt U, Hochhut B, Hentschel U, Hacker J. 2004. Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424. [PubMed][CrossRef]
25. McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A 92:1664–1668. [PubMed][CrossRef]
26. Fleckenstein JM, Lindler LE, Elsinghorst EA, Dale JB. 2000. Identification of a gene within a pathogenicity island of enterotoxigenic Escherichia coli H10407 required for maximal secretion of the heat-labile enterotoxin. Infect Immun 68:2766–2774. [PubMed][CrossRef]
27. Henderson IR, Czeczulin J, Eslava C, Noriega F, Nataro JP. 1999. Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun 67:5587–5596. [PubMed]
28. Al-Hasani K, Henderson IR, Sakellaris H, Rajakumar K, Grant T, Nataro JP, Robins-Browne R, Adler B. 2000. The sigA gene which is borne on the she pathogenicity island of Shigella flexneri 2a encodes an exported cytopathic protease involved in intestinal fluid accumulation. Infect Immun 68:2457–2463. [PubMed][CrossRef]
29. Hacker J, Bender L, Ott M, Wingender J, Lund B, Marre R, Goebel W. 1990. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog 8:213–225. [PubMed][CrossRef]
30. O’Hanley P, Lalonde G, Ji G. 1991. Alpha-hemolysin contributes to the pathogenicity of piliated digalactoside-binding Escherichia coli in the kidney: efficacy of an alpha-hemolysin vaccine in preventing renal injury in the BALB/c mouse model of pyelonephritis. Infect Immun 59:1153–1161. [PubMed]
31. Larbig KD, Christmann A, Johann A, Klockgether J, Hartsch T, Merkl R, Wiehlmann L, Fritz HJ, Tümmler B. 2002. Gene islands integrated into tRNA(Gly) genes confer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol 184:6665–6680. [PubMed][CrossRef]
32. Johnson JR. 1991. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4:80–128. [PubMed]
33. Foxman B, Zhang L, Tallman P, Palin K, Rode C, Bloch C, Gillespie B, Marrs CF. 1995. Virulence characteristics of Escherichia coli causing first urinary tract infection predict risk of second infection. J Infect Dis 172:1536–1541. [PubMed][CrossRef]
34. Johnson JR, O’Bryan TT, Delavari P, Kuskowski M, Stapleton A, Carlino U, Russo TA. 2001. Clonal relationships and extended virulence genotypes among Escherichia coli isolates from women with a first or recurrent episode of cystitis. J Infect Dis 183:1508–1517. [PubMed][CrossRef]
35. Lloyd AL, Henderson TA, Vigil PD, Mobley HL. 2009. Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol 191:3469–3481. [PubMed][CrossRef]
36. Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99:17020–17024. [PubMed][CrossRef]
37. Lane MC, Lockatell V, Monterosso G, Lamphier D, Weinert J, Hebel JR, Johnson DE, Mobley HL. 2005. Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 73:7644–7656. [PubMed][CrossRef]
38. Diard M, Garry L, Selva M, Mosser T, Denamur E, Matic I. 2010. Pathogenicity-associated islands in extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinal colonization. J Bacteriol 192:4885–4893. [PubMed][CrossRef]
39. Haugen BJ, Pellett S, Redford P, Hamilton HL, Roesch PL, Welch RA. 2007. In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA. Infect Immun 75:278–289. [PubMed][CrossRef]
40. Bower JM, Gordon-Raagas HB, Mulvey MA. 2009. Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. Infect Immun 77:2104–2112. [PubMed][CrossRef]
41. Johnson JR, Tchesnokova V, Johnston B, Clabots C, Roberts PL, Billig M, Riddell K, Rogers P, Qin X, Butler-Wu S, Price LB, Aziz M, Nicolas-Chanoine MH, Debroy C, Robicsek A, Hansen G, Urban C, Platell J, Trott DJ, Zhanel G, Weissman SJ, Cookson BT, Fang FC, Limaye AP, Scholes D, Chattopadhyay S, Hooper DC, Sokurenko EV. 2013. Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli. J Infect Dis 207:919–928. [PubMed][CrossRef]
42. Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC. 2006. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313:236–238. [PubMed][CrossRef]
43. Mc Ginty SÉ, Rankin DJ. 2012. The evolution of conflict resolution between plasmids and their bacterial hosts. Evolution 66:1662–1370. [PubMed][CrossRef]
44. Sokurenko EV, Hasty DL, Dykhuizen DE. 1999. Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol 7:191–195. [PubMed][CrossRef]
45. Hoboth C, Hoffmann R, Eichner A, Henke C, Schmoldt S, Imhof A, Heesemann J, Hogardt M. 2009. Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 200:118–130. [PubMed][CrossRef]
46. Hayden HS, Lim R, Brittnacher MJ, Sims EH, Ramage ER, Fong C, Wu Z, Crist E, Chang J, Zhou Y, Radey M, Rohmer L, Haugen E, Gillett W, Wuthiekanun V, Peacock SJ, Kaul R, Miller SI, Manoil C, Jacobs MA. 2012. Evolution of Burkholderia pseudomallei in recurrent melioidosis. PLoS One 7:e36507. doi:10.1371/journal.pone.0036507 [PubMed][CrossRef]
47. Martin DW, Schurr MJ, Mudd MH, Govan JR, Holloway BW, Deretic V. 1993. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90:8377–8381. [PubMed][CrossRef]
48. Holden NJ, Totsika M, Mahler E, Roe AJ, Catherwood K, Lindner K, Dobrindt U, Gally DL. 2006. Demonstration of regulatory cross-talk between P fimbriae and type 1 fimbriae in uropathogenic Escherichia coli. Microbiology 152(Pt 4) :1143–1153. [PubMed][CrossRef]
49. Bliven KA, Maurelli AT. 2012. Antivirulence genes: insights into pathogen evolution through gene loss. Infect Immun 80:4061–4070. [PubMed][CrossRef]
50. Moran NA. 2002. Microbial minimalism: genome reduction in bacterial pathogens. Cel 108:583–586. [PubMed][CrossRef]
51. Kao JS, Stucker DM, Warren JW, Mobley HL. 1997. Pathogenicity island sequences of pyelonephritogenic Escherichia coli CFT073 are associated with virulent uropathogenic strains. Infect Immun 65:2812–2820. [PubMed]
52. Kugelberg E, Kofoid E, Reams AB, Andersson DI, Roth JR. 2006. Multiple pathways of selected gene amplification during adaptive mutation. Proc Natl Acad Sci U S A 103:17319–17324. [PubMed][CrossRef]
53. Kudla G, Murray AW, Tollervey D, Plotkin JB. 2009. Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258. [PubMed][CrossRef]
54. Corvec S, Prodhomme A, Giraudeau C, Dauvergne S, Reynaud A, Caroff N. 2007. Most Escherichia coli strains overproducing chromosomal AmpC beta-lactamase belong to phylogenetic group A. J Antimicrob Chemother 60:872–876. [PubMed][CrossRef]
55. Mammeri H, Eb F, Berkani A, Nordmann P. 2008. Molecular characterization of AmpC-producing Escherichia coli clinical isolates recovered in a French hospital. J Antimicrob Chemother 61:498–503. [PubMed][CrossRef]
56. Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Catry B, Herman L, Haesebrouck F, Butaye P. 2008. Diversity of extended-spectrum beta-lactamases and class C beta-lactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrob Agents Chemother 52:1238–1243. [PubMed][CrossRef]
57. Mira A, Martín-Cuadrado AB, D’Auria G, Rodríguez-Valera F. 2010. The bacterial pan-genome: A new paradigm in microbiology. Int Microbiol 13:45–57. [PubMed]
58. Nichols GL. 1975. Variants of Escherichia coli giving the appearance of mixed growths in urine. J Clin Pathol 28:728–730. [PubMed][CrossRef]
59. Bettelheim KA, Taylor J. 1969. A study of Escherichia coli isolated from chronic urinary infection. J Med Microbiol 2:225–236. [PubMed][CrossRef]
60. Lindberg U, Hanson LA, Jodal U, Lidin-Janson G, Lincoln K, Olling S. 1975. Asymptomatic bacteriuria in schoolgirls. II. Differences in Escherichia coli causing asymptomatic bacteriuria. Acta Paediatr Scand 64:432–436. [PubMed][CrossRef]
61. Lidin-Janson G, Hanson LA, Kaijser B, Lincoln K, Lindberg U, Olling S, Wedel H. 1977. Comparison of Escherichia coli from bacteriuric patients with those from feces of healthy schoolchildren. J Infect Dis 136:346–353. [PubMed][CrossRef]
62. Webb L, Goodwin CS, Green J. 1982. O antigen loss by semi-rough E. coli causing recurrent urinary infections, analysed by gel column filtration and gas-liquid chromatography. Pathology 14:17–24. [PubMed][CrossRef]
63. Pier GB, Desjardins D, Aguilar T, Barnard M, Speert DP. 1986. Polysaccharide surface antigens expressed by nonmucoid isolates of Pseudomonas aeruginosa from cystic fibrosis patients. J Clin Microbiol 24:189–196. [PubMed]
64. Evans DJ, Pier GB, Coyne MJ Jr, Goldberg JB. 1994. The rfb locus from Pseudomonas aeruginosa strain PA103 promotes the expression of O antigen by both LPS-rough and LPS-smooth isolates from cystic fibrosis patients. Mol Microbiol 13:427–434. [PubMed][CrossRef]
65. Liu D, Reeves PR. 1994. Escherichia coli K12 regains its O antigen. Microbiology 140(Pt 1) :49–57. [PubMed][CrossRef]
66. Kido N, Kobayashi H. 2000. A single amino acid substitution in a mannosyltransferase, WbdA, converts the Escherichia coli O9 polysaccharide into O9a: generation of a new O-serotype group. J Bacteriol 182:2567–2573. [PubMed][CrossRef]
67. Franco AV, Liu D, Reeves PR. 1998. The wzz (cld) protein in Escherichia coli: amino acid sequence variation determines O-antigen chain length specificity. J Bacteriol 180:2670–2675. [PubMed]
68. Buckling A, Kassen R, Bell G, Rainey PB. 2000. Disturbance and diversity in experimental microcosms. Nature 408:961–964. [PubMed][CrossRef]
69. McIver CJ, Tapsall JW. 1993. Further studies of clinical isolates of cysteine-requiring Escherichia coli and Klebsiella and possible mechanisms for their selection in vivo. J Med Microbiol 39:382–387. [PubMed][CrossRef]
70. Borderon E, Horodniceanu T. 1978. Metabolically deficient dwarf-colony mutants of Escherichia coli: deficiency and resistance to antibiotics of strains isolated from urine culture. J Clin Microbiol 8:629–634. [PubMed]
71. von Eiff C, Heilmann C, Proctor RA, Woltz C, Peters G, Götz F. 1997. A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly. J Bacteriol 179:4706–4712. [PubMed]
72. Barth AL, Pitt TL. 1995. Auxotrophic variants of Pseudomonas aeruginosa are selected from prototrophic wild-type strains in respiratory infections in patients with cystic fibrosis. J Clin Microbiol 33:37–40. [PubMed]
73. Giraud A, Matic I, Tenaillon O, Clara A, Radman M, Fons M, Taddei F. 2001. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:2606–2608. [PubMed][CrossRef]
74. Denamur E, Bonacorsi S, Giraud A, Duriez P, Hilali F, Amorin C, Bingen E, Andremont A, Picard B, Taddei F, Matic I. 2002. High frequency of mutator strains among human uropathogenic Escherichia coli isolates. J Bacteriol 184:605–609. [PubMed][CrossRef]
75. Baquero MR, Nilsson AI, Turrientes Mdel C, Sandvang D, Galán JC, Martínez JL, Frimodt-Møller N, Baquero F, Andersson DI. 2004. Polymorphic mutation frequencies in Escherichia coli: emergence of weak mutators in clinical isolates. J Bacteriol 186:5538–5542. [PubMed][CrossRef]
76. Komp Lindgren P, Karlsson A, Hughes D. 2003. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob Agents Chemother 47:3222–3232. [PubMed][CrossRef]
77. Picard B, Duriez P, Gouriou S, Matic I, Denamur E, Taddei F. 2001. Mutator natural Escherichia coli isolates have an unusual virulence phenotype. Infect Immun 69:9–14. [PubMed][CrossRef]
78. Labat F, Pradillon O, Garry L, Peuchmaur M, Fantin B, Denamur E. 2005. Mutator phenotype confers advantage in Escherichia coli chronic urinary tract infection pathogenesis. FEMS Immunol Med Microbiol 44:317–321. [PubMed][CrossRef]
79. Cooper LA, Simmons LA, Mobley HL. 2012. Involvement of mismatch repair in the reciprocal control of motility and adherence of uropathogenic Escherichia coli. Infect Immun 80:1969–1979. [PubMed][CrossRef]
80. Galhardo RS, Hastings PJ, Rosenberg SM. 2007. Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42:399–435. [PubMed][CrossRef]
81. Kunin CM, Hua TH, Van Arsdale White L, Villarejo M. 1992. Growth of Escherichia coli in human urine: role of salt tolerance and accumulation of glycine betaine. J Infect Dis 166:1311–1315. [PubMed][CrossRef]
82. Gawel D, Seed PC. 2011. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translation synthesis DNA polymerase IV for virulence. Virulence 2:222–232. [PubMed][CrossRef]
83. Middendorf B, Hochhut B, Leipold K, Dobrindt U, Blum-Oehler G, Hacker J. 2004. Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J Bacteriol 186:3086–3096. [PubMed][CrossRef]
84. Hacker J, Bender L, Ott M, Wingender J, Lund B, Marre R, Goebel W. 1990. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog 8:213–2 25. [PubMed]
85. Anfora AT, Haugen BJ, Roesch P, Redford P, Welch RA. 2007. Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by Escherichia coli CFT073. Infect Immun 75:5298–5304. [PubMed][CrossRef]
86. Tree JJ, Ulett GC, Ong CL, Trott DJ, McEwan AG, Schembri MA. 2008. Trade-off between iron uptake and protection against oxidative stress: deletion of cueO promotes uropathogenic Escherichia coli virulence in a mouse model of urinary tract infection. J Bacteriol 190:6909–6912. [PubMed][CrossRef]
87. Garcia EC, Brumbaugh AR, Mobley HL. 2011. Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect Immun 79:1225–1235. [PubMed][CrossRef]
88. Zdziarski J, Brzuszkiewicz E, Wullt B, Liesegang H, Biran D, Voigt B, Grönberg-Hernandez J, Ragnarsdottir B, Hecker M, Ron EZ, Daniel R, Gottschalk G, Hacker J, Svanborg C, Dobrindt U. 2010. Host imprints on bacterial genomes--rapid, divergent evolution in individual patients. PLoS Pathog 6:e1001078. doi:10.1371/journal.ppat.1001078 [CrossRef]
89. Bengtsson C, Bengtsson U, Bjorkelund C, Lincoln K, Sigurdsson JA. 1998. Bacteriuria in a population sample of women: 24-year follow-up study. Results from the prospective population-based study of women in Gothenburg, Sweden. Scand J Urol Nephrol 32:284–289. [PubMed][CrossRef]
90. Hooton TM, Scholes D, Stapleton AE, Roberts PL, Winter C, Gupta K, Samadpour M, Stamm WE. 2000. A prospective study of asymptomatic bacteriuria in sexually active young women. N Engl J Med 343:992–997. [PubMed][CrossRef]
91. Stapleton AE, Dziura J, Hooton TM, Cox ME, Yarova-Yarovaya Y, Chen S, Gupta K. 2012. Recurrent urinary tract infection and urinary Escherichia coli in women ingesting cranberry juice daily: A randomized controlled trial. Mayo Clin Proc 87:143–150. [PubMed][CrossRef]
92. Trautner BW. 2011. Asymptomatic bacteriuria: when the treatment is worse than the disease. Nat Rev Urol 9:85–93. [PubMed][CrossRef]
93. Cai T, Mazzoli S, Mondaini N, Meacci F, Nesi G, D’Elia C, Malossini G, Boddi V, Bartoletti R. 2012. The role of asymptomatic bacteriuria in young women with recurrent urinary tract infections: to treat or not to treat? Clin Infect Dis 55:771–777. [PubMed][CrossRef]
94. Lane MC, Alteri CJ, Smith SN, Mobley HL. 2007. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci U S A 104:16669–16674. [PubMed][CrossRef]
95. Chattopadhyay S, Weissman SJ, Minin VN, Russo TA, Dykhuizen DE, Sokurenko EV. 2009. High frequency of hotspot mutations in core genes of Escherichia coli due to short-term positive selection. Proc Natl Acad Sci U S A 106:12412–12417. [PubMed][CrossRef]
96. Johnson JR, Delavari P, Kuskowski M, Stell AL. 2001. Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. J Infect Dis 183:78–88. [PubMed][CrossRef]
97. Connell I, Agace W, Klemm P, Shembri M, Mărild S, Svanborg C. 1996. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93:9827–9832. [PubMed][CrossRef]
98. Sokurenko EV, Chesnokova V, Doyle RJ, Hasty DL. 1997. Diversity of the Escherichia coli type 1 fimbriae lectin: differential binding to mannosides and uroepithelial cells. J Biol Chem 272:17880–17886. [PubMed][CrossRef]
99. Hasty DL, Wu XR, Sokurenko E. 1998. Variants of the FimH adhesion confer distinct patterns of interaction of E. coli with urinary bladder. Mol Biol Cell 9(11) :501A.
100. Sokurenko EV, Chesnokova V, Dykhuzien DE, Ofek I, Wu XR, Krogfelt KA, Struve C, Schembri MA, Hasty DL. 1998. Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci U S A 95:8922–8926. [PubMed][CrossRef]
101. Weissman SJ, Beskhlebnaya V, Chesnokova V, Chattopadhyay S, Stamm WE, Hooton TM, Sokurenko EV. 2007. Differential stability and trade-off effects of pathoadaptive mutations in the Escherichia coli FimH adhesin. Infect Immun 75:3548–3555. [PubMed][CrossRef]
102. Sokurenko EV, Feldgarden M, Trintchina E, Weissman SJ, Avagyan S, Chattopadhyay S, Johnson JR, Dykhuizen DE. 2004. Selection footprint in the FimH adhesin shows pathoadaptive niche differentiation in Escherichia coli. Mol Biol Evol 21:1373–1383. [PubMed][CrossRef]
103. Chattopadhyay S, Feldgarden M, Weissman SJ, Dykhuizen DE, van Belle G, Sokurenko EV. 2007. Haplotype diversity in “source-sink” dynamics of Escherichia coli urovirulence. J Mol Evol 64:204–214. [PubMed][CrossRef]
104. Korotkova N, Chattopadhyay S, Tabata TA, Beskhlebnaya V, Vigdorovich V, Kaiser BK, Strong RK, Dykhuizen DE, Sokurenko EV, Moseley SL. 2007. Selection for functional diversity drives accumulation of point mutations in Dr adhesins of Escherichia coli. Mol Microbiol 64:180–194. [PubMed][CrossRef]
105. Nowicki B, Hart A, Coyne KE, Lublin DM, Nowicki S. 1993. Short consensus repeat-3 domain of recombinant decay-accelerating factor is recognized by Escherichia coli recombinant Dr adhesin in a model of a cell-cell interaction. J Exp Med 178:2115–2112. [PubMed][CrossRef]
106. Medof ME, Walter EI, Rutgers JL, Knowles DM, Nussenzweig V. 1987. Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med 165:848–864. [PubMed][CrossRef]
107. Westerlund B, Kuusela P, Risteli J, Risteli L, Vartio T, Rauvala H, Virkola R, Korhonen TK. 1989. The O75X adhesin of uropathogenic Escherichia coli is a type IV collagen-binding protein. Mol Microbiol 3:329–37. [PubMed][CrossRef]
108. Guignot J, Breard J, Bernet-Camard MF, Peiffer I, Nowicki BJ, Servin AL, Blanc-Potard AB. 2000. Pyelonephritogenic diffusely adhering Escherichia coli EC7372 harboring Dr-II adhesin carries classical uropathogenic virulence genes and promotes cell lysis and apoptosis in polarized epithelial caco-2/TC7 cells. Infect Immun 68:7018–7027. [PubMed][CrossRef]
109. Berger CN, Billker O, Meyer TF, Servin AL, Kansau I. 2004. Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC). Mol Microbiol 52:963–983. [PubMed][CrossRef]
110. Korotkova N, Cota E, Lebedin Y, Monpouet S, Guignot J, Servin AL, Matthews S, Moseley SL. 2006. A subfamily of Dr adhesins of Escherichia coli bind independently to decay-accelerating factor and the N-domain of carcinoembryonic antigen. J Biol Chem 281:29120–29130. [PubMed][CrossRef]
111. Servin AL. 2005. Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin Microbiol Rev 18:264–292. [PubMed][CrossRef]
112. Nowicki B, Labigne A, Moseley S, Hull R, Hull S, Moulds J. 1990. The Dr hemagglutinin, afimbrial adhesins AFA-I and AFA-III, and F1845 fimbriae of uropathogenic and diarrhea-associated Escherichia coli belong to a family of hemagglutinins with Dr receptor recognition. Infect Immun 58:279–281. [PubMed]
113. Le Bouguenec C, Garcia MI, Ouin V, Desperrier JM, Gounon P, Labigne A. 1993. Characterization of plasmid-borne afa-3 gene clusters encoding afimbrial adhesins expressed by Escherichia coli strains associated with intestinal or urinary tract infections. Infect Immun 61:5106–5114. [PubMed]
114. Carnoy C, Moseley SL. 1997. Mutational analysis of receptor binding mediated by the Dr family of Escherichia coli adhesins. Mol Microbiol 23:365–379. [PubMed][CrossRef]
115. Pettigrew D, Anderson KL, Billington J, Cota E, Simpson P, Urvil P, Rabuzin F, Roversi P, Nowicki B, du Merle L, Le Bouguénec C, Matthews S, Lea SM. 2004. High resolution studies of the Afa/Dr adhesin DraE and its interaction with chloramphenicol. J Biol Chem 279:46851–46857. [PubMed][CrossRef]
116. Selvarangan R, Goluszko P, Singhal J, Carnoy C, Moseley S, Hudson B, Nowicki S, Nowicki B. 2004. Interaction of Dr adhesin with collagen type IV is a critical step in Escherichia coli renal persistence. Infect Immun 72:4827–4835. [PubMed][CrossRef]
117. Hull RA, Hull SI, Falkow S. 1984. Frequency of gene sequences necessary for pyelonephritis-associated pili expression among isolates of Enterobacteriaceae from human extraintestinal infections. Infect Immun 43:1064–1067. [PubMed]
118. Adlerberth I, Svanborg C, Carlsson B, Mellander L, Hanson LA, Jalil F, Khalil K, Wold AE. 1998. P fimbriae and other adhesins enhance intestinal persistence of Escherichia coli in early infancy. Epidemiol Infect 121:599–608. [PubMed][CrossRef]
119. Connell H, Poulsen LK, Klemm P. 2000. Expression of type 1 and P fimbriae in situ and localisation of a uropathogenic Escherichia coli strain in the murine bladder and kidney. Int J Med Microbiol 290:587–597. [CrossRef]
120. Weissman SJ, Chattopadhyay S, Aprikian P, Obata-Yasuoka M, Yarova-Yarovaya Y, Stapleton A, Ba-Thein W, Dykhuizen D, Johnson JR, Sokurenko EV. 2006. Clonal analysis reveals high rate of structural mutations in fimbrial adhesins of extraintestinal pathogenic Escherichia coli. Mol Microbiol 59:975–988. [PubMed][CrossRef]
121. Totsika M, Beatson SA, Holden N, Gally DL. 2008. Regulatory interplay between pap operons in uropathogenic Escherichia coli. Mol Microbiol 67:996–1011. [PubMed][CrossRef]
122. Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V, Sabo A, Blasiar D, Bieri T, Meyer RR, Ozersky P, Armstrong JR, Fulton RS, Latreille JP, Spieth J, Hooton TM, Mardis ER, Hultgren SJ, Gordon JI. 2006. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: A comparative genomics approach. Proc Natl Acad Sci U S A 103:5977–5982. [PubMed][CrossRef]
123. Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. [PubMed][CrossRef]
124. Murray GL, Attridge SR, Morona R. 2003. Regulation of Salmonella typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol 47:1395–1406. [PubMed][CrossRef]
125. Nikaido H. 1996. Outer Membrane. p 29–47. In Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaecter M, Umbarger HE (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2 nd ed, ASM Press, Washington, DC.
126. Snyder JA, Haugen BJ, Buckles EL, Lockatell CV, Johnson DE, Donnenberg MS, Welch RA, Mobley HL. 2004. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72:6373–6381. [PubMed][CrossRef]
127. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ. 2004. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 101:1333–1338. [PubMed][CrossRef]
128. Chattopadhyay S, Paul S, Kisiela DI, Linardopoulou EV, Sokurenko EV. 2012. Convergent molecular evolution of genomic cores in Salmonella enterica and Escherichia coli. J Bacteriol 194:5002–5011. [PubMed][CrossRef]
129. Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV. 2002. Bacterial adhesion to target cells enhanced by shear force. Cell 109:913–923. [PubMed][CrossRef]
130. Aprikian P, Tchesnokova V, Kidd B, Yakovenko O, Yarov-Yarovoy V, Trinchina E, Vogel V, Thomas W, Sokurenko E. 2007. Interdomain interaction in the FimH adhesin of Escherichia coli regulates the affinity to mannose. J Biol Chem 282:23437–23446. [PubMed][CrossRef]
131. Tchesnokova V, Aprikian P, Yakovenko O, Larock C, Kidd B, Vogel V, Thomas W, Sokurenko E. 2008. Integrin-like allosteric properties of the catch bond-forming FimH adhesin of Escherichia coli. J Biol Chem 283:7823–7833. [PubMed][CrossRef]
132. Le Trong I, Aprikian P, Kidd BA, Forero-Shelton M, Tchesnokova V, Rajagopal P, Rodriguez V, Interlandi G, Klevit R, Vogel V, Stenkamp RE, Sokurenko EV, Thomas WE. 2010. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting. Cell 141:645–655. [PubMed][CrossRef]
133. Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, Knight SD. 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:1061–1066. [PubMed][CrossRef]
134. Tchesnokova V, Aprikian P, Kisiela D, Gowey S, Korotkova N, Thomas W, Sokurenko E. 2011. Type 1 fimbrial adhesin FimH elicits an immune response that enhances cell adhesion of Escherichia coli. Infect Immun 79:3895–3904. [PubMed][CrossRef]
135. Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ. 1997. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276:607–611. [PubMed][CrossRef]
136. Sokurenko EV, Vogel V, Thomas WE. 2008. Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but ... widespread? Cell Host Microbe 4:314–323. [PubMed][CrossRef]
137. Essig M, Friedlander G. 2003. Tubular shear stress and phenotype of renal proximal tubular cells. J Am Soc Nephrol 14(Suppl 1) :S33–S35. [PubMed][CrossRef]
138. Brauner A, Katouli M, Tullus K, Jacobson SH. 1990. Cell surface hydrophobicity, adherence to HeLa cell cultures and haemagglutination pattern of pyelonephritogenic Escherichia coli strains. Epidemiol Infect 105:255–263. [PubMed][CrossRef]
139. Johnson JR, Clabots C. 2006. Sharing of virulent Escherichia coli clones among household members of a woman with acute cystitis. Clin Infect Dis 43:e101–108. [PubMed][CrossRef]
140. Owens RC Jr, Johnson JR, Stogsdill P, Yarmus L, Lolans K, Quinn J. 2011. Community transmission in the United States of a CTX-M-15-producing sequence type ST131 Escherichia coli strain resulting in death. J Clin Microbiol 49:3406–3408. [PubMed][CrossRef]
141. Chattopadhyay S, Dykhuizen DE, Sokurenko EV. 2007. ZPS: visualization of recent adaptive evolution of proteins. BMC Bioinformatics 8:187. [PubMed][CrossRef]
142. Sokurenko EV, Gomulkiewicz R, Dykhuizen DE. 2006. Source-sink dynamics of virulence evolution. Nat Rev Microbiol 4:548–555. [PubMed][CrossRef]
143. Chattopadhyay S, Paul S, Dykhuizen DE, Sokurenko EV. 2013. Tracking recent adaptive evolution in microbial species using TimeZone. Nat Protoc 8:652–665. [PubMed][CrossRef]

Article metrics loading...



Uropathogenic (UPEC) are opportunistic human pathogens that primarily circulate as part of commensal intestinal microbiota. Though they have the ability to survive and proliferate in various urinary tract compartments, the urinary tract is a transient, occasional habitat for UPEC. Because of this, most of the UPEC traits have originally evolved to serve in intestinal colonization and transmission. Some of these bacterial traits serve as virulence factors – they are critical to or assist in survival of UPEC as pathogens, and the structure and/or function may be specialized for the infection. Other traits could serve as anti-virulence factors – they represent liability in the urinary tract and are under selection to be lost or inactivated during the infection. Inactivation, variation, or other changes of the bacterial genes that increase the pathogen’s fitness during the infection are called . This chapter describes examples of pathoadaptive mutations in UPEC and provides rationale for their further in-depth study.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Eco-Evo categories of . UPEC = uropathogenic , EHEC = enterohemorrhagic , EPEC = enteropathogenic .

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.UTI-0020-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


UPEC ecology.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.UTI-0020-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view


Different genetic mechanisms of evolution of virulence exemplified by an adaptive increase in bacterial adhesiveness. Green surface = gastrointestinal mucosa; Gray surface = urothelium.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.UTI-0020-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view


Type 1 fimbriae of and functional variability of the FimH adhesin.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.UTI-0020-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view


Shear-dependent () and conformational () properties of FimH adhesin.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.UTI-0020-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view


Strategies of detection of patho-adapted gene variants (red).

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.UTI-0020-2015
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Click to view


Pathoadaptive genes inactivation in long-term bladder colonization trial (premature stop-codons; frame-shift mutations, deletions)

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.UTI-0020-2015
Generic image for table

Click to view


Pathoadaptive gene variations found by genome-wide screening

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.UTI-0020-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error