No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Hijacking and Use of Host Lipids by Intracellular Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    224.11 Kb
  • PDF
    491.52 Kb
  • XML
    216.49 Kb
  • Authors: Alvaro Toledo1, Jorge L. Benach2
  • Editors: Indira T. Kudva3, John P. Bannantine4
    Affiliations: 1: Department of Molecular Genetics and Microbiology, Stony Brook University, Center for Infectious Diseases at the Center for Molecular Medicine, Stony Brook, NY 11794; 2: Department of Molecular Genetics and Microbiology, Stony Brook University, Center for Infectious Diseases at the Center for Molecular Medicine, Stony Brook, NY 11794; 3: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA; 4: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA
  • Source: microbiolspec December 2015 vol. 3 no. 6 doi:10.1128/microbiolspec.VMBF-0001-2014
  • Received 02 December 2014 Accepted 21 April 2015 Published 21 December 2015
  • Jorge L. Benach, [email protected]
image of Hijacking and Use of Host Lipids by Intracellular Pathogens
    Preview this microbiology spectrum article:
    Zoom in

    Hijacking and Use of Host Lipids by Intracellular Pathogens, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/6/VMBF-0001-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/6/VMBF-0001-2014-2.gif
  • Abstract:

    Intracellular bacteria use a number of strategies to survive, grow, multiply, and disseminate within the host. One of the most striking adaptations that intracellular pathogens have developed is the ability to utilize host lipids and their metabolism. Bacteria such as , , or can use host lipids for different purposes, such as a means of entry through lipid rafts, building blocks for bacteria membrane formation, energy sources, camouflage to avoid the fusion of phagosomes and lysosomes, and dissemination. One of the most extreme examples of lipid exploitation is , which not only utilizes the host lipid as a carbon and energy source but is also able to reprogram the host lipid metabolism. Likewise, spp. have also developed numerous mechanisms to reprogram lipids onto their intracellular inclusions. Finally, while the ability to exploit host lipids is important in intracellular bacteria, it is not an exclusive trait. Extracellular pathogens, including , , and , can recruit and metabolize host lipids that are important for their growth and survival.

    Throughout this chapter we will review how intracellular and extracellular bacterial pathogens utilize host lipids to enter, survive, multiply, and disseminate in the host.

  • Citation: Toledo A, Benach J. 2015. Hijacking and Use of Host Lipids by Intracellular Pathogens. Microbiol Spectrum 3(6):VMBF-0001-2014. doi:10.1128/microbiolspec.VMBF-0001-2014.


1. Mercer J, Schelhaas M, Helenius A. 2010. Virus entry by endocytosis. Annu Rev Biochem 79:803–833. [PubMed][CrossRef]
2. Cossart P, Helenius A. 2014. Endocytosis of viruses and bacteria. Cold Spring Harb Perspect Biol 6: pii: a016972. [PubMed][CrossRef]
3. Tweten RK, Parker MW, Johnson AE. 2001. The cholesterol-dependent cytolysins. Curr Top Microbiol Immunol 257:15–33. [PubMed][CrossRef]
4. Rosenberger CM, Brumell JH, Finlay BB. 2000. Microbial pathogenesis: lipid rafts as pathogen portals. Curr Biol 10:R823–R825. [PubMed][CrossRef]
5. Duncan MJ, Shin JS, Abraham SN. 2002. Microbial entry through caveolae: variations on a theme. Cell Microbiol 4:783–791. [PubMed][CrossRef]
6. Manes S, del Real G, Martinez AC. 2003. Pathogens: raft hijackers. Nat Rev Immunol 3:557–568. [PubMed][CrossRef]
7. Lafont F, van der Goot FG. 2005. Bacterial invasion via lipid rafts. Cell Microbiol 7:613–620. [PubMed][CrossRef]
8. Abraham SN, Duncan MJ, Li G, Zaas D. 2005. Bacterial penetration of the mucosal barrier by targeting lipid rafts. J Invest Med 53:318–321. [PubMed][CrossRef]
9. van der Meer-Janssen YP, van Galen J, Batenburg JJ, Helms JB. 2010. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome. Progr Lipid Res 49:1–26. [PubMed][CrossRef]
10. Sabareesh V, Singh G. 2013. Mass spectrometry based lipid(ome) analyzer and molecular platform: a new software to interpret and analyze electrospray and/or matrix-assisted laser desorption/ionization mass spectrometric data of lipids: a case study from Mycobacterium tuberculosis. J Mass Spectrom 48:465–477. [PubMed][CrossRef]
11. Layre E, Moody DB. 2013. Lipidomic profiling of model organisms and the world’s major pathogens. Biochimie 95:109–115. [PubMed][CrossRef]
12. Benamara H, Rihouey C, Abbes I, Ben Mlouka MA, Hardouin J, Jouenne T, Alexandre S. 2014. Characterization of membrane lipidome changes in Pseudomonas aeruginosa during biofilm growth on glass wool. PloS One 9:e108478. doi:10.1371/journal.pone.0108478. [PubMed][CrossRef]
13. Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387:569–572. [PubMed][CrossRef]
14. Brown DA, London E. 1998. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114. [PubMed][CrossRef]
15. Brown RE. 1998. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 111(Pt 1) :1–9. [PubMed]
16. Brown DA, London E. 1998. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136. [PubMed][CrossRef]
17. Simons K, Toomre D. 2000. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39. [PubMed][CrossRef]
18. Brown DA, Rose JK. 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544. [PubMed][CrossRef]
19. Epand RM. 2008. Proteins and cholesterol-rich domains. Biochim Biophys Acta 1778:1576–1582. [PubMed][CrossRef]
20. Huttner WB, Zimmerberg J. 2001. Implications of lipid microdomains for membrane curvature, budding and fission. Curr Opin Cell Biol 13:478–484. [PubMed][CrossRef]
21. Nichols B. 2003. Caveosomes and endocytosis of lipid rafts. J Cell Sci 116:4707–4714. [PubMed][CrossRef]
22. Salaun C, James DJ, Chamberlain LH. 2004. Lipid rafts and the regulation of exocytosis. Traffic 5:255–264. [PubMed][CrossRef]
23. Zaas DW, Duncan M, Rae Wright J, Abraham SN. 2005. The role of lipid rafts in the pathogenesis of bacterial infections. Biochim Biophys Acta 1746:305–313. [PubMed][CrossRef]
24. Riethmuller J, Riehle A, Grassme H, Gulbins E. 2006. Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758:2139–2147. [PubMed][CrossRef]
25. Spiteri G. 2013. Sexually Transmitted Infections in Europe 2011. European Center for Disease Prevention and Control, Stockholm. http://ecdc.europa.eu/en/publications/_layouts/forms/Publication_DispForm.aspx?List=4f55ad51-4aed-4d32-b960-af70113dbb90&ID=898.
26. Centers for Disease Control and Prevention. 2011. Sexually Transmitted Disease Surveillance 2010. CDC, Atlanta, GA. http://www.cdc.gov/std/stats10/.
27. Workowski KA, Berman S, Centers for Disease Control and Prevention. 2010. Sexually transmitted diseases treatment guidelines, 2010. MMWR Recomm Rep 59:1–110. [PubMed]
28. Taylor-Robinson D. 1998. Chlamydia trachomatis as a probable cause of prostatitis. Int J STD AIDS 9:779. [PubMed]
29. Ostaszewska I, Zdrodowska-Stefanow B, Badyda J, Pucilo K, Trybula J, Bulhak V. 1998. Chlamydia trachomatis: probable cause of prostatitis. Int J STD AIDS 9:350–353. [PubMed][CrossRef]
30. Marrazzo JM. 2005. Mucopurulent cervicitis: no longer ignored, but still misunderstood. Infect Dis Clin North Am 19:333–349, viii. [PubMed][CrossRef]
31. Sweet RL. 2012. Pelvic inflammatory disease: current concepts of diagnosis and management. Curr Infect Dis Rep. [Epub ahead of print.] [PubMed][CrossRef]
32. Rours GI, Duijts L, Moll HA, Arends LR, de Groot R, Jaddoe VW, Hofman A, Steegers EA, Mackenbach JP, Ott A, Willemse HF, van der Zwaan EA, Verkooijen RP, Verbrugh HA. 2011. Chlamydia trachomatis infection during pregnancy associated with preterm delivery: a population-based prospective cohort study. Eur J Epidemiol 26:493–502. [PubMed][CrossRef]
33. Munoz B, West S. 1997. Trachoma: the forgotten cause of blindness. Epidemiol Rev 19:205–217. [PubMed][CrossRef]
34. Baneke A. 2012. Review: targeting trachoma: strategies to reduce the leading infectious cause of blindness. Travel Med Infect Dis 10:92–96. [PubMed][CrossRef]
35. Cohen MS, Hoffman IF, Royce RA, Kazembe P, Dyer JR, Daly CC, Zimba D, Vernazza PL, Maida M, Fiscus SA, Eron JJ, Jr. 1997. Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. AIDSCAP Malawi Research Group. Lancet 349:1868–1873. [CrossRef]
36. Kuo CC, Jackson LA, Campbell LA, Grayston JT. 1995. Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 8:451–461. [PubMed]
37. Grayston JT, Kuo CC, Coulson AS, Campbell LA, Lawrence RD, Lee MJ, Strandness ED, Wang SP. 1995. Chlamydia pneumoniae (TWAR) in atherosclerosis of the carotid artery. Circulation 92:3397–3400. [PubMed][CrossRef]
38. Laurila AL, Von Hertzen L, Saikku P. 1997. Chlamydia pneumoniae and chronic lung diseases. Scand J Infect Dis Suppl 104:34–36. [PubMed]
39. Chen J, Zhu M, Ma G, Zhao Z, Sun Z. 2013. Chlamydia pneumoniae infection and cerebrovascular disease: a systematic review and meta-analysis. BMC Neurol 13:183. [CrossRef]
40. Moulder JW. 1991. Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55:143–190. [PubMed]
41. Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T. 2004. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci USA 101:10166–10171. [CrossRef]
42. Subtil A, Wyplosz B, Balana ME, Dautry-Varsat A. 2004. Analysis of Chlamydia caviae entry sites and involvement of Cdc42 and Rac activity. J Cell Sci 117:3923–3933. [PubMed][CrossRef]
43. Carabeo RA, Grieshaber SS, Hasenkrug A, Dooley C, Hackstadt T. 2004. Requirement for the Rac GTPase in Chlamydia trachomatis invasion of non-phagocytic cells. Traffic 5:418–425. [PubMed][CrossRef]
44. Balana ME, Niedergang F, Subtil A, Alcover A, Chavrier P, Dautry-Varsat A. 2005. ARF6 GTPase controls bacterial invasion by actin remodelling. J Cell Sci 118:2201–2210. [PubMed][CrossRef]
45. Korhonen JT, Puolakkainen M, Haveri A, Tammiruusu A, Sarvas M, Lahesmaa R. 2012. Chlamydia pneumoniae entry into epithelial cells by clathrin-independent endocytosis. Microb Pathog 52:157–164. [PubMed][CrossRef]
46. Jutras I, Abrami L, Dautry-Varsat A. 2003. Entry of the lymphogranuloma venereum strain of Chlamydia trachomatis into host cells involves cholesterol-rich membrane domains. Infect Immun 71:260–266. [PubMed][CrossRef]
47. Gabel BR, Elwell C, van Ijzendoorn SC, Engel JN. 2004. Lipid raft-mediated entry is not required for Chlamydia trachomatis infection of cultured epithelial cells. Infect Immun 72:7367–7373. [PubMed][CrossRef]
48. Norkin LC, Wolfrom SA, Stuart ES. 2001. Association of caveolin with Chlamydia trachomatis inclusions at early and late stages of infection. Exp Cell Res 266:229–238. [PubMed][CrossRef]
49. Stuart ES, Webley WC, Norkin LC. 2003. Lipid rafts, caveolae, caveolin-1, and entry by Chlamydiae into host cells. Exp Cell Res 287:67–78. [PubMed][CrossRef]
50. Webley WC, Norkin LC, Stuart ES. 2004. Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1. BMC Infect Dis 4:23. [PubMed][CrossRef]
51. Gruenheid S, Finlay BB. 2003. Microbial pathogenesis and cytoskeletal function. Nature 422:775–781. [PubMed][CrossRef]
52. Fessler MB, Arndt PG, Frasch SC, Lieber JG, Johnson CA, Murphy RC, Nick JA, Bratton DL, Malcolm KC, Worthen GS. 2004. Lipid rafts regulate lipopolysaccharide-induced activation of Cdc42 and inflammatory functions of the human neutrophil. J Biol Chem 279:39989–39998. [PubMed][CrossRef]
53. Brumell JH, Grinstein S. 2003. Role of lipid-mediated signal transduction in bacterial internalization. Cell Microbiol 5:287–297. [PubMed][CrossRef]
54. Naroeni A, Porte F. 2002. Role of cholesterol and the ganglioside GM(1) in entry and short-term survival of Brucella suis in murine macrophages. Infect Immun 70:1640–1644. [PubMed][CrossRef]
55. Watarai M, Makino S, Michikawa M, Yanagisawa K, Murakami S, Shirahata T. 2002. Macrophage plasma membrane cholesterol contributes to Brucella abortus infection of mice. Infect Immun 70:4818–4825. [PubMed][CrossRef]
56. Kim S, Watarai M, Suzuki H, Makino S, Kodama T, Shirahata T. 2004. Lipid raft microdomains mediate class A scavenger receptor-dependent infection of Brucella abortus. Microb Pathog 37:11–19. [PubMed][CrossRef]
57. Martin-Martin AI, Vizcaino N, Fernandez-Lago L. 2010. Cholesterol, ganglioside GM1 and class A scavenger receptor contribute to infection by Brucella ovis and Brucella canis in murine macrophages. Microbes Infect 12:246–251. [PubMed][CrossRef]
58. French CT, Panina EM, Yeh SH, Griffith N, Arambula DG, Miller JF. 2009. The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol 11:1735–1749. [PubMed][CrossRef]
59. Tamilselvam B, Daefler S. 2008. Francisella targets cholesterol-rich host cell membrane domains for entry into macrophages. J Immunol 180:8262–8271. [PubMed][CrossRef]
60. Lafont F, Tran Van Nhieu G, Hanada K, Sansonetti P, van der Goot FG. 2002. Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J 21:4449–4457. [PubMed][CrossRef]
61. Gilk SD, Cockrell DC, Luterbach C, Hansen B, Knodler LA, Ibarra JA, Steele-Mortimer O, Heinzen RA. 2013. Bacterial colonization of host cells in the absence of cholesterol. PLoS Pathog 9:e1003107. doi:10.1371/journal.ppat.1003107. [PubMed][CrossRef]
62. Schraw W, Li Y, McClain MS, van der Goot FG, Cover TL. 2002. Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts. J Biol Chem 277:34642–34650. [PubMed][CrossRef]
63. Lai CH, Chang YC, Du SY, Wang HJ, Kuo CH, Fang SH, Fu HW, Lin HH, Chiang AS, Wang WC. 2008. Cholesterol depletion reduces Helicobacter pylori CagA translocation and CagA-induced responses in AGS cells. Infect Immun 76:3293–3303. [PubMed][CrossRef]
64. Hutton ML, Kaparakis-Liaskos M, Turner L, Cardona A, Kwok T, Ferrero RL. 2010. Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun 78:4523–4531. [PubMed][CrossRef]
65. Grassme H, Jendrossek V, Riehle A, von Kurthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E. 2003. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9:322–330. [PubMed][CrossRef]
66. Yamamoto N, Yamamoto N, Petroll MW, Cavanagh HD, Jester JV. 2005. Internalization of Pseudomonas aeruginosa is mediated by lipid rafts in contact lens-wearing rabbit and cultured human corneal epithelial cells. Invest Ophthalmol Vis Sci 46:1348–1355. [PubMed][CrossRef]
67. Zaidi T, Bajmoczi M, Zaidi T, Golan DE, Pier GB. 2008. Disruption of CFTR-dependent lipid rafts reduces bacterial levels and corneal disease in a murine model of Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 49:1000–1009. [PubMed][CrossRef]
68. Kannan S, Audet A, Huang H, Chen LJ, Wu M. 2008. Cholesterol-rich membrane rafts and Lyn are involved in phagocytosis during Pseudomonas aeruginosa infection. J Immunol 180:2396–2408. [PubMed][CrossRef]
69. Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O’Toole GA, Stanton BA. 2009. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 5:e1000382. doi:10.1371/journal.ppat.1000382. [PubMed][CrossRef]
70. Wylie JL, Hatch GM, McClarty G. 1997. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J Bacteriol 179:7233–7242. [PubMed]
71. Hatch GM, McClarty G. 1998. Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell. Infect Immun 66:3727–3735. [PubMed]
72. Carabeo RA, Mead DJ, Hackstadt T. 2003. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci USA 100:6771–6776. [PubMed][CrossRef]
73. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759. [PubMed][CrossRef]
74. Robertson DK, Gu L, Rowe RK, Beatty WL. 2009. Inclusion biogenesis and reactivation of persistent Chlamydia trachomatis requires host cell sphingolipid biosynthesis. PLoS Pathog 5:e1000664. doi:10.1371/journal.ppat.1000664. [PubMed][CrossRef]
75. van Ooij C, Kalman L, van I, Nishijima M, Hanada K, Mostov K, Engel JN. 2000. Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis. Cell Microbiol 2:627–637. [PubMed][CrossRef]
76. Valdivia RH. 2008. Chlamydia effector proteins and new insights into chlamydial cellular microbiology. Curr Opin Microbiol 11:53–59. [PubMed][CrossRef]
77. Li Z, Chen C, Chen D, Wu Y, Zhong Y, Zhong G. 2008. Characterization of fifty putative inclusion membrane proteins encoded in the Chlamydia trachomatis genome. Infect Immun 76:2746–2757. [PubMed][CrossRef]
78. Bannantine JP, Griffiths RS, Viratyosin W, Brown WJ, Rockey DD. 2000. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell Microbiol 2:35–47. [PubMed][CrossRef]
79. Hackstadt T, Scidmore MA, Rockey DD. 1995. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci USA 92:4877–4881. [PubMed][CrossRef]
80. Hackstadt T, Rockey DD, Heinzen RA, Scidmore MA. 1996. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15:964–977. [PubMed]
81. Beatty WL. 2008. Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63. Infect Immun 76:2872–2881. [PubMed][CrossRef]
82. Elwell CA, Jiang S, Kim JH, Lee A, Wittmann T, Hanada K, Melancon P, Engel JN. 2011. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog 7:e1002198. doi:10.1371/journal.ppat.1002198. [PubMed][CrossRef]
83. Rockey DD, Fischer ER, Hackstadt T. 1996. Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy. Infect Immun 64:4269–4278. [PubMed]
84. Wolf K, Hackstadt T. 2001. Sphingomyelin trafficking in Chlamydia pneumoniae-infected cells. Cell Microbiol 3:145–152. [PubMed][CrossRef]
85. Beatty WL. 2006. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J Cell Sci 119:350–359. [PubMed][CrossRef]
86. Moore ER, Fischer ER, Mead DJ, Hackstadt T. 2008. The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles. Traffic 9:2130–2140. [PubMed][CrossRef]
87. Derre I, Swiss R, Agaisse H. 2011. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER- Chlamydia inclusion membrane contact sites. PLoS Pathog 7:e1002092. doi:10.1371/journal.ppat.1002092. [PubMed][CrossRef]
88. Agaisse H, Derre I. 2014. Expression of the effector protein IncD in Chlamydia trachomatis mediates recruitment of the lipid transfer protein CERT and the endoplasmic reticulum-resident protein VAPB to the inclusion membrane. Infect Immun 82:2037–2047. [PubMed][CrossRef]
89. Christian JG, Heymann J, Paschen SA, Vier J, Schauenburg L, Rupp J, Meyer TF, Hacker G, Heuer D. 2011. Targeting of a chlamydial protease impedes intracellular bacterial growth. PLoS Pathog 7:e1002283. doi:10.1371/journal.ppat.1002283. [PubMed][CrossRef]
90. Heuer D, Rejman Lipinski A, Machuy N, Karlas A, Wehrens A, Siedler F, Brinkmann V, Meyer TF. 2009. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457:731–735. [PubMed][CrossRef]
91. Rejman Lipinski A, Heymann J, Meissner C, Karlas A, Brinkmann V, Meyer TF, Heuer D. 2009. Rab6 and Rab11 regulate Chlamydia trachomatis development and golgin-84-dependent Golgi fragmentation. PLoS Pathog 5:e1000615. doi:10.1371/journal.ppat.1000615. [PubMed][CrossRef]
92. Moorhead AM, Jung JY, Smirnov A, Kaufer S, Scidmore MA. 2010. Multiple host proteins that function in phosphatidylinositol-4-phosphate metabolism are recruited to the chlamydial inclusion. Infect Immun 78:1990–2007. [PubMed][CrossRef]
93. Mital J, Hackstadt T. 2011. Role for the SRC family kinase Fyn in sphingolipid acquisition by chlamydiae. Infect Immun 79:4559–4568. [PubMed][CrossRef]
94. Rzomp KA, Scholtes LD, Briggs BJ, Whittaker GR, Scidmore MA. 2003. Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. Infect Immun 71:5855–5870. [PubMed][CrossRef]
95. Cortes C, Rzomp KA, Tvinnereim A, Scidmore MA, Wizel B. 2007. Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases. Infect Immun 75:5586–5596. [PubMed][CrossRef]
96. Capmany A, Damiani MT. 2010. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication. PloS One 5:e14084. doi:10.1371/journal.pone.0014084. [PubMed][CrossRef]
97. Moore ER, Mead DJ, Dooley CA, Sager J, Hackstadt T. 2011. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane. Microbiology 157:830–838. [PubMed][CrossRef]
98. Kumar Y, Cocchiaro J, Valdivia RH. 2006. The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr Biol 16:1646–1651. [PubMed][CrossRef]
99. Cocchiaro JL, Kumar Y, Fischer ER, Hackstadt T, Valdivia RH. 2008. Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci USA 105:9379–9384. [PubMed][CrossRef]
100. Lin M, Rikihisa Y. 2003. Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect Immun 71:5324–5331. [PubMed][CrossRef]
101. Xiong Q, Wang X, Rikihisa Y. 2007. High-cholesterol diet facilitates Anaplasma phagocytophilum infection and up-regulates macrophage inflammatory protein-2 and CXCR2 expression in apolipoprotein E-deficient mice. J Infect Dis 195:1497–1503. [PubMed][CrossRef]
102. Lin M, Rikihisa Y. 2003. Obligatory intracellular parasitism by Ehrlichia chaffeensis and Anaplasma phagocytophilum involves caveolae and glycosylphosphatidylinositol-anchored proteins. Cell Microbiol 5:809–820. [PubMed][CrossRef]
103. Xiong QM, Lin MQ, Rikihisa Y. 2009. Cholesterol-dependent Anaplasma phagocytophilum exploits the low-density lipoprotein uptake pathway. PLoS Pathog 5:e1000329. doi:10.1371/journal.ppat.1000329. [PubMed][CrossRef]
104. Howe D, Heinzen RA. 2006. Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism. Cell Microbiol 8:496–507. [PubMed][CrossRef]
105. Howe D, Heinzen RA. 2005. Replication of Coxiella burnetii is inhibited in CHO K-1 cells treated with inhibitors of cholesterol metabolism. Ann N Y Acad Sci 1063:123–129. [PubMed][CrossRef]
106. Gilk SD, Beare PA, Heinzen RA. 2010. Coxiella burnetii expresses a functional Delta24 sterol reductase. J Bacteriol 192:6154–6159. [PubMed][CrossRef]
107. Gilk SD. 2012. Role of lipids in Coxiella burnetii infection. Adv Exp Med Biol 984:199–213. [PubMed][CrossRef]
108. Rasmussen JW, Cello J, Gil H, Forestal CA, Furie MB, Thanassi DG, Benach JL. 2006. Mac-1+ cells are the predominant subset in the early hepatic lesions of mice infected with Francisella tularensis. Infect Immun 74:6590–6598. [PubMed][CrossRef]
109. Law HT, Lin AE, Kim Y, Quach B, Nano FE, Guttman JA. 2011. Francisella tularensis uses cholesterol and clathrin-based endocytic mechanisms to invade hepatocytes. Sci Rep 1:192. [PubMed][CrossRef]
110. Seveau S, Bierne H, Giroux S, Prevost MC, Cossart P. 2004. Role of lipid rafts in E-cadherin—and HGF-R/Met—mediated entry of Listeria monocytogenes into host cells. J Cell Biol 166:743–753. [PubMed][CrossRef]
111. Gekara NO, Weiss S. 2004. Lipid rafts clustering and signalling by listeriolysin O. Biochem Soc Trans 32:712–714. [PubMed][CrossRef]
112. Allen-Vercoe E, Waddell B, Livingstone S, Deans J, DeVinney R. 2006. Enteropathogenic Escherichia coli Tir translocation and pedestal formation requires membrane cholesterol in the absence of bundle-forming pili. Cell Microbiol 8:613–624. [PubMed][CrossRef]
113. Duncan MJ, Li G, Shin JS, Carson JL, Abraham SN. 2004. Bacterial penetration of bladder epithelium through lipid rafts. J Biol Chem 279:18944–18951. [PubMed][CrossRef]
114. Riff JD, Callahan JW, Sherman PM. 2005. Cholesterol-enriched membrane microdomains are required for inducing host cell cytoskeleton rearrangements in response to attaching-effacing Escherichia coli. Infect Immun 73:7113–7125. [PubMed][CrossRef]
115. Kansau I, Berger C, Hospital M, Amsellem R, Nicolas V, Servin AL, Bernet-Camard MF. 2004. Zipper-like internalization of Dr-positive Escherichia coli by epithelial cells is preceded by an adhesin-induced mobilization of raft-associated molecules in the initial step of adhesion. Infect Immun 72:3733–3742. [PubMed][CrossRef]
116. Catron DM, Sylvester MD, Lange Y, Kadekoppala M, Jones BD, Monack DM, Falkow S, Haldar K. 2002. The Salmonella-containing vacuole is a major site of intracellular cholesterol accumulation and recruits the GPI-anchored protein CD55. Cell Microbiol 4:315–328. [PubMed][CrossRef]
117. Rogers TJ, Thorpe CM, Paton AW, Paton JC. 2012. Role of lipid rafts and flagellin in invasion of colonic epithelial cells by Shiga-toxigenic Escherichia coli O113:H21. Infect Immun 80:2858–2867. [PubMed][CrossRef]
118. Hayward RD, Cain RJ, McGhie EJ, Phillips N, Garner MJ, Koronakis V. 2005. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol Microbiol 56:590–603. [PubMed][CrossRef]
119. van der Goot FG, Tran van Nhieu G, Allaoui A, Sansonetti P, Lafont F. 2004. Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. J Biol Chem 279:47792–47798. [PubMed][CrossRef]
120. Gatfield J, Pieters J. 2000. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288:1647–1650. [PubMed][CrossRef]
121. Perez-Guzman C, Vargas MH, Quinonez F, Bazavilvazo N, Aguilar A. 2005. A cholesterol-rich diet accelerates bacteriologic sterilization in pulmonary tuberculosis. Chest 127:643–651. [PubMed][CrossRef]
122. Maldonado-Garcia G, Chico-Ortiz M, Lopez-Marin LM, Sanchez-Garcia FJ. 2004. High-polarity Mycobacterium avium-derived lipids interact with murine macrophage lipid rafts. Scand J Immunol 60:463–470. [PubMed][CrossRef]
123. Pandey AK, Sassetti CM. 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105:4376–4380. [PubMed][CrossRef]
124. Edward DG, Fitzgerald WA. 1951. Cholesterol in the growth of organisms of the pleuropneumonia group. J Gen Microbiol 5:576–586. [PubMed][CrossRef]
125. Argaman M, Razin S. 1965. Cholesterol and cholesterol esters in Mycoplasma. J Gen Microbiol 38:153–160. [PubMed][CrossRef]
126. Smith PF, Mayberry WR. 1968. Identification of the major glycolipid from Mycoplasma sp., strain J as 3,4,6-triacyl-beta-glucopyranose. Biochemistry 7:2706–2710. [PubMed][CrossRef]
127. Smith PF. 1971. Biosynthesis of cholesteryl glucoside by Mycoplasma gallinarum. J Bacteriol 108:986–991. [PubMed]
128. Slutzky GM, Razin S, Kahane I, Eisenberg S. 1977. Cholesterol transfer from serum lipoproteins to Mycoplasma membranes. Biochemistry 16:5158–5163. [PubMed][CrossRef]
129. Rottem S, Verkleij AJ. 1982. Possible association of segregated lipid domains of Mycoplasma gallisepticum membranes with cell resistance to osmotic lysis. J Bacteriol 149:338–345. [PubMed]
130. Razin S, Efrati H, Kutner S, Rottem S. 1982. Cholesterol and phospholipid uptake by mycoplasmas. Rev Infect Dis 4(Suppl) :S85–S92. [PubMed][CrossRef]
131. Inamine JM, Denny TP, Loechel S, Schaper U, Huang CH, Bott KF, Hu PC. 1988. Nucleotide sequence of the P1 attachment-protein gene of Mycoplasma pneumoniae. Gene 64:217–229. [PubMed][CrossRef]
132. Dallo SF, Chavoya A, Baseman JB. 1990. Characterization of the gene for a 30-kilodalton adhesion-related protein of Mycoplasma pneumoniae. Infect Immun 58:4163–4165. [PubMed]
133. Tarshis M, Salman M, Rottem S. 1993. Cholesterol is required for the fusion of single unilamellar vesicles with Mycoplasma capricolum. Biophys J 64:709–715. [PubMed][CrossRef]
134. Deutsch J, Salman M, Rottem S. 1995. An unusual polar lipid from the cell membrane of Mycoplasma fermentans. Eur J Biochem 227:897–902. [PubMed][CrossRef]
135. Dybvig K, Voelker LL. 1996. Molecular biology of mycoplasmas. Annu Rev Microbiol 50:25–57. [PubMed][CrossRef]
136. Murray HW, Masur H, Senterfit LB, Roberts RB. 1975. The protean manifestations of Mycoplasma pneumoniae infection in adults. Am J Med 58:229–242. [PubMed][CrossRef]
137. Baseman JB, Tully JG. 1997. Mycoplasmas: sophisticated, reemerging, and burdened by their notoriety. Emerg Infect Dis 3:21–32. [PubMed][CrossRef]
138. LaRocca TJ, Pathak P, Chiantia S, Toledo A, Silvius JR, Benach JL, London E. 2013. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9:e1003353. doi:10.1371/journal.ppat.1003353. [PubMed][CrossRef]
139. Belisle JT, Brandt ME, Radolf JD, Norgard MV. 1994. Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. J Bacteriol 176:2151–2157. [PubMed]
140. Jones JD, Bourell KW, Norgard MV, Radolf JD. 1995. Membrane topology of Borrelia burgdorferi and Treponema pallidum lipoproteins. Infect Immun 63:2424–2434. [PubMed]
141. Radolf JD, Goldberg MS, Bourell K, Baker SI, Jones JD, Norgard MV. 1995. Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 63:2154–2163. [PubMed]
142. Stubs G, Fingerle V, Wilske B, Gobel UB, Zahringer U, Schumann RR, Schroder NW. 2009. Acylated cholesteryl galactosides are specific antigens of borrelia causing Lyme disease and frequently induce antibodies in late stages of disease. J Biol Chem 284:13326–13334. [PubMed][CrossRef]
143. Stubs G, Fingerle V, Zahringer U, Schumann RR, Rademann J, Schroder NW. 2011. Acylated cholesteryl galactosides are ubiquitous glycolipid antigens among Borrelia burgdorferi sensu lato. FEMS Immunol Med Microbiol 63:140–143. [PubMed][CrossRef]
144. Ben-Menachem G, Kubler-Kielb J, Coxon B, Yergey A, Schneerson R. 2003. A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci USA 100:7913–7918. [PubMed][CrossRef]
145. Schroder NW, Schombel U, Heine H, Gobel UB, Zahringer U, Schumann RR. 2003. Acylated cholesteryl galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. J Biol Chem 278:33645–33653. [PubMed][CrossRef]
146. Garcia-Monco JC, Seidman RJ, Benach JL. 1995. Experimental immunization with Borrelia burgdorferi induces development of antibodies to gangliosides. Infect Immun 63:4130–4137. [PubMed]
147. LaRocca TJ, Crowley JT, Cusack BJ, Pathak P, Benach J, London E, Garcia-Monco JC, Benach JL. 2010. Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host Microbe 8:331–342. [PubMed][CrossRef]
148. Coleman JL, Crowley JT, Toledo AM, Benach JL. 2013. The HtrA protease of Borrelia burgdorferi degrades outer membrane protein BmpD and chemotaxis phosphatase CheX. Mol Microbiol 88:619–633. [PubMed][CrossRef]
149. Toledo A, Crowley JT, Coleman JL, LaRocca TJ, Chiantia S, London E, Benach JL. 2014. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi. mBio 5:e00899-14. doi:10.1128/mBio.00899-14. [PubMed][CrossRef]
150. Crowley JT, Toledo AM, LaRocca TJ, Coleman JL, London E, Benach JL. 2013. Lipid exchange between Borrelia burgdorferi and host cells. PLoS Pathog 9:e1003109. doi:10.1371/journal.ppat.1003109. [PubMed][CrossRef]
151. Ostberg Y, Berg S, Comstedt P, Wieslander A, Bergstrom S. 2007. Functional analysis of a lipid galactosyltransferase synthesizing the major envelope lipid in the Lyme disease spirochete Borrelia burgdorferi. FEMS Microbiol Lett 272:22–29. [PubMed][CrossRef]
152. Ansorg R, Muller KD, von Recklinghausen G, Nalik HP. 1992. Cholesterol binding of Helicobacter pylori. Zentralbl Bakteriol 276:323–329. [PubMed][CrossRef]
153. Trampenau C, Muller KD. 2003. Affinity of Helicobacter pylori to cholesterol and other steroids. Microb Infect 5:13–17. [PubMed][CrossRef]
154. Jimenez-Soto LF, Rohrer S, Jain U, Ertl C, Sewald X, Haas R. 2012. Effects of cholesterol on Helicobacter pylori growth and virulence properties in vitro. Helicobacter 17:133–139. [PubMed][CrossRef]
155. Shimomura H, Hosoda K, Hayashi S, Yokota K, Hirai Y. 2012. Phosphatidylethanolamine of Helicobacter pylori functions as a steroid-binding lipid in the assimilation of free cholesterol and 3beta-hydroxl steroids into the bacterial cell membrane. J Bacteriol 194:2658–2667. [PubMed][CrossRef]
156. Wunder C, Churin Y, Winau F, Warnecke D, Vieth M, Lindner B, Zahringer U, Mollenkopf HJ, Heinz E, Meyer TF. 2006. Cholesterol glucosylation promotes immune evasion by Helicobacter pylori. Nat Med 12:1030–1038. [PubMed][CrossRef]
157. Lebrun AH, Wunder C, Hildebrand J, Churin Y, Zahringer U, Lindner B, Meyer TF, Heinz E, Warnecke D. 2006. Cloning of a cholesterol-alpha-glucosyltransferase from Helicobacter pylori. J Biol Chem 281:27765–27772. [PubMed][CrossRef]
158. McGee DJ, George AE, Trainor EA, Horton KE, Hildebrandt E, Testerman TL. 2011. Cholesterol enhances Helicobacter pylori resistance to antibiotics and LL-37. Antimicrob Agents Chemother 55:2897–2904. [PubMed][CrossRef]
159. Shimomura H, Hosoda K, McGee DJ, Hayashi S, Yokota K, Hirai Y. 2013. Detoxification of 7-dehydrocholesterol fatal to Helicobacter pylori is a novel role of cholesterol glucosylation. J Bacteriol 195:359–367. [PubMed][CrossRef]
160. Hildebrandt E, McGee DJ. 2009. Helicobacter pylori lipopolysaccharide modification, Lewis antigen expression, and gastric colonization are cholesterol-dependent. BMC Microbiol 9:258. [PubMed][CrossRef]
161. Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287:1497–1500. [PubMed][CrossRef]
162. Wang HJ, Cheng WC, Cheng HH, Lai CH, Wang WC. 2012. Helicobacter pylori cholesteryl glucosides interfere with host membrane phase and affect type IV secretion system function during infection in AGS cells. Mol Microbiol 83:67–84. [PubMed][CrossRef]
163. Bloch H, Segal W. 1956. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol 72:132–141. [PubMed]
164. Kolattukudy PE, Fernandes ND, Azad AK, Fitzmaurice AM, Sirakova TD. 1997. Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol 24:263–270. [PubMed][CrossRef]
165. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. [PubMed][CrossRef]
166. Liu K, Yu J, Russell DG. 2003. pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology 149:1829–1835. [PubMed][CrossRef]
167. Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S. 2010. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107:9819–9824. [PubMed][CrossRef]
168. McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR, Jr, Russell DG. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738. [PubMed][CrossRef]
169. Sassetti CM, Rubin EJ. 2003. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994. [PubMed][CrossRef]
170. de Carvalho LP, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY. 2010. Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17:1122–1131. [PubMed][CrossRef]
171. Raynaud C, Guilhot C, Rauzier J, Bordat Y, Pelicic V, Manganelli R, Smith I, Gicquel B, Jackson M. 2002. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol Microbiol 45:203–217. [PubMed][CrossRef]
172. Viana-Niero C, de Haas PE, van Soolingen D, Leao SC. 2004. Analysis of genetic polymorphisms affecting the four phospholipase C (plc) genes in Mycobacterium tuberculosis complex clinical isolates. Microbiology 150:967–978. [PubMed][CrossRef]
173. Trivedi OA, Arora P, Sridharan V, Tickoo R, Mohanty D, Gokhale RS. 2004. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428:441–445. [PubMed][CrossRef]
174. Jackson M, Stadthagen G, Gicquel B. 2007. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis 87:78–86. [PubMed][CrossRef]
175. Joshi SM, Pandey AK, Capite N, Fortune SM, Rubin EJ, Sassetti CM. 2006. Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci USA 103:11760–11765. [PubMed][CrossRef]
176. Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD. 2007. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA 104:1947–1952. [PubMed][CrossRef]
177. Yang X, Nesbitt NM, Dubnau E, Smith I, Sampson NS. 2009. Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. Biochemistry 48:3819–3821. [PubMed][CrossRef]
178. Munoz-Elias EJ, Upton AM, Cherian J, McKinney JD. 2006. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60:1109–1122. [PubMed][CrossRef]
179. Savvi S, Warner DF, Kana BD, McKinney JD, Mizrahi V, Dawes SS. 2008. Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol 190:3886–3895. [PubMed][CrossRef]
180. Russell DG, VanderVen BC, Lee W, Abramovitch RB, Kim MJ, Homolka S, Niemann S, Rohde KH. 2010. Mycobacterium tuberculosis wears what it eats. Cell Host Microbe 8:68–76. [PubMed][CrossRef]
181. Williams KJ, Boshoff HI, Krishnan N, Gonzales J, Schnappinger D, Robertson BD. 2011. The Mycobacterium tuberculosis beta-oxidation genes echA5 and fadB3 are dispensable for growth in vitro and in vivo. Tuberculosis 91:549–555. [PubMed][CrossRef]
182. Graham JE, Clark-Curtiss JE. 1999. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci USA 96:11554–11559. [PubMed][CrossRef]
183. Honer Zu Bentrup K, Miczak A, Swenson DL, Russell DG. 1999. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J Bacteriol 181:7161–7167. [PubMed]
184. Munoz-Elias EJ, McKinney JD. 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11:638–644. [PubMed][CrossRef]
185. Gould TA, van de Langemheen H, Munoz-Elias EJ, McKinney JD, Sacchettini JC. 2006. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol Microbiol 61:940–947. [PubMed][CrossRef]
186. Eoh H, Rhee KY. 2014. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci USA 111:4976–4981. [PubMed][CrossRef]
187. Nandakumar M, Nathan C, Rhee KY. 2014. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat Commun 5:4306. [PubMed][CrossRef]
188. Eoh H, Rhee KY. 2013. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 110:6554–6559. [PubMed][CrossRef]
189. Dixon GH, Kornberg HL, Lund P. 1960. Purification and properties of malate synthetase. Biochim Biophys Acta 41:217–233. [PubMed][CrossRef]
190. Quartararo CE, Blanchard JS. 2011. Kinetic and chemical mechanism of malate synthase from Mycobacterium tuberculosis. Biochemistry 50:6879–6887. [PubMed][CrossRef]
191. Kinhikar AG, Vargas D, Li H, Mahaffey SB, Hinds L, Belisle JT, Laal S. 2006. Mycobacterium tuberculosis malate synthase is a laminin-binding adhesin. Mol Microbiol 60:999–1013. [PubMed][CrossRef]
192. May EE, Leitao A, Tropsha A, Oprea TI. 2013. A systems chemical biology study of malate synthase and isocitrate lyase inhibition in Mycobacterium tuberculosis during active and NRP growth. Comput Biol Chem 47:167–180. [PubMed][CrossRef]
193. Bauza A, Quinonero D, Deya PM, Frontera A. 2014. Long-range effects in anion-pi interactions: their crucial role in the inhibition mechanism of Mycobacterium tuberculosis malate synthase. Chemistry 20:6985–6990. [PubMed][CrossRef]
194. Kratky M, Vinsova J, Novotna E, Mandikova J, Wsol V, Trejtnar F, Ulmann V, Stolarikova J, Fernandes S, Bhat S, Liu JO. 2012. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis 92:434–439. [PubMed][CrossRef]
195. Sriram D, Yogeeswari P, Senthilkumar P, Dewakar S, Rohit N, Debjani B, Bhat P, Veugopal B, Pavan VV, Thimmappa HM. 2009. Novel phthalazinyl derivatives: synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis isocitrate lyase enzyme. Med Chem 5:422–433. [PubMed][CrossRef]
196. Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F, Daffe M, Emile JF, Marchou B, Cardona PJ, de Chastellier C, Altare F. 2008. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4:e1000204. doi:10.1371/journal.ppat.1000204. [PubMed][CrossRef]
197. Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F. 2009. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10:943–948. [PubMed][CrossRef]
198. Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. 2011. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7:e1002093. doi:10.1371/journal.ppat.1002093. [PubMed][CrossRef]
199. Tailleux L, Waddell SJ, Pelizzola M, Mortellaro A, Withers M, Tanne A, Castagnoli PR, Gicquel B, Stoker NG, Butcher PD, Foti M, Neyrolles O. 2008. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PloS One 3:e1403. doi:10.1371/journal.pone.0001403. [PubMed][CrossRef]
200. Kim MJ, Wainwright HC, Locketz M, Bekker LG, Walther GB, Dittrich C, Visser A, Wang W, Hsu FF, Wiehart U, Tsenova L, Kaplan G, Russell DG. 2010. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2:258–274. [PubMed][CrossRef]
201. Podinovskaia M, Lee W, Caldwell S, Russell DG. 2013. Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function. Cell Microbiol 15:843–859. [PubMed][CrossRef]
202. Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao KV. 2012. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 12:669–681. [PubMed][CrossRef]
203. Neyrolles O. 2014. Mycobacteria and the greasy macrophage: getting fat and frustrated. Infect Immun 82:472–475. [PubMed][CrossRef]
204. Caire-Brandli I, Papadopoulos A, Malaga W, Marais D, Canaan S, Thilo L, de Chastellier C. 2014. Reversible lipid accumulation and associated division arrest of Mycobacterium avium in lipoprotein-induced foamy macrophages may resemble key events during latency and reactivation of tuberculosis. Infect Immun 82:476–490. [PubMed][CrossRef]
205. Schnupf P, Portnoy DA. 2007. Listeriolysin O: a phagosome-specific lysin. Microb Infect 9:1176–1187. [PubMed][CrossRef]
206. O’Brien DK, Melville SB. 2004. Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues. Infect Immun 72:5204–5215. [PubMed][CrossRef]
207. Bastiat-Sempe B, Love JF, Lomayesva N, Wessels MR. 2014. Streptolysin O and NAD-glycohydrolase prevent phagolysosome acidification and promote group a streptococcus survival in macrophages. mBio 5:e01690-14. doi:10.1128/mBio.01690-14. [PubMed][CrossRef]
208. Baba H, Kawamura I, Kohda C, Nomura T, Ito Y, Kimoto T, Watanabe I, Ichiyama S, Mitsuyama M. 2001. Essential role of domain 4 of pneumolysin from Streptococcus pneumoniae in cytolytic activity as determined by truncated proteins. Biochem Biophys Res Commun 281:37–44. [PubMed][CrossRef]
209. Rubins JB, Paddock AH, Charboneau D, Berry AM, Paton JC, Janoff EN. 1998. Pneumolysin in pneumococcal adherence and colonization. Microb Pathog 25:337–342. [PubMed][CrossRef]
210. Cockeran R, Anderson R, Feldman C. 2002. The role of pneumolysin in the pathogenesis of Streptococcus pneumoniae infection. Curr Opin Infect Dis 15:235–239. [PubMed][CrossRef]
211. Sitkiewicz I, Nagiec MJ, Sumby P, Butler SD, Cywes-Bentley C, Musser JM. 2006. Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2. Proc Natl Acad Sci USA 103:16009–16014. [PubMed][CrossRef]
212. Creasey EA, Isberg RR. 2012. The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc Natl Acad Sci USA 109:3481–3486. [PubMed][CrossRef]
213. Sitkiewicz I, Stockbauer KE, Musser JM. 2007. Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends Microbiol 15:63–69. [PubMed][CrossRef]
214. Russell AB, LeRoux M, Hathazi K, Agnello DM, Ishikawa T, Wiggins PA, Wai SN, Mougous JD. 2013. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496:508–512. [PubMed][CrossRef]
215. Livermore BP, Bey RF, Johnson RC. 1978. Lipid metabolism of Borrelia hermsi. Infect Immun 20:215–220. [PubMed]
216. Plaza H, Whelchel TR, Garczynski SF, Howerth EW, Gherardini FC. 1997. Purified outer membranes of Serpulina hyodysenteriae contain cholesterol. J Bacteriol 179:5414–5421. [PubMed]
217. Trott DJ, Alt DP, Zuerner RL, Wannemuehler MJ, Stanton TB. 2001. The search for Brachyspira outer membrane proteins that interact with the host. Anim Health Res Rev 2:19–30. [PubMed]
218. Haque M, Hirai Y, Yokota K, Oguma K. 1995. Lipid profiles of Helicobacter pylori and Helicobacter mustelae grown in serum-supplemented and serum-free media. Acta Med Okayama 49:205–211. [PubMed]
219. Hirai Y, Haque M, Yoshida T, Yokota K, Yasuda T, Oguma K. 1995. Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis. J Bacteriol 177:5327–5333. [PubMed]
220. Inamoto Y, Hamanaka S, Hamanaka Y, Nagate T, Kondo I, Takemoto T, Okita K. 1995. Lipid composition and fatty acid analysis of Helicobacter pylori. J Gastroenterol 30:315–318. [PubMed][CrossRef]
221. Rodwell AW. 1963. The steroid growth-requirement of Mycoplasma mycoides. J Gen Microbiol 32:91–101. [PubMed][CrossRef]
222. Razin S, Tully JG. 1970. Cholesterol requirement of mycoplasmas. J Bacteriol 102:306–310. [PubMed]
223. Wang M, Hajishengallis G. 2008. Lipid raft-dependent uptake, signalling and intracellular fate of Porphyromonas gingivalis in mouse macrophages. Cell Microbiol 10:2029–2042. [PubMed][CrossRef]
224. Kalischuk LD, Inglis GD, Buret AG. 2009. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts. Gut Pathog 1:2. [PubMed][CrossRef]
225. Konkel ME, Samuelson DR, Eucker TP, Shelden EA, O’Loughlin JL. 2013. Invasion of epithelial cells by Campylobacter jejuni is independent of caveolae. Cell Commun Signal 11:100. [PubMed][CrossRef]
226. Amer AO, Swanson MS. 2005. Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 7:765–778. [PubMed][CrossRef]
227. Houde M, Gottschalk M, Gagnon F, Van Calsteren MR, Segura M. 2012. Streptococcus suis capsular polysaccharide inhibits phagocytosis through destabilization of lipid microdomains and prevents lactosylceramide-dependent recognition. Infect Immun 80:506–517. [PubMed][CrossRef]
228. Yamaguchi M, Terao Y, Mori-Yamaguchi Y, Domon H, Sakaue Y, Yagi T, Nishino K, Yamaguchi A, Nizet V, Kawabata S. 2013. Streptococcus pneumoniae invades erythrocytes and utilizes them to evade human innate immunity. PloS One 8:e77282. doi:10.1371/journal.pone.0077282. [CrossRef]
229. Goluszko P, Popov V, Wen J, Jones A, Yallampalli C. 2008. Group B streptococcus exploits lipid rafts and phosphoinositide 3-kinase/Akt signaling pathway to invade human endometrial cells. Am J Obstet Gynecol 199:548.e-9. [PubMed]
230. Lemire P, Houde M, Segura M. 2012. Encapsulated group B Streptococcus modulates dendritic cell functions via lipid rafts and clathrin-mediated endocytosis. Cell Microbiol 14:1707–1719. [PubMed][CrossRef]
231. Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG. 2003. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 160:321–328. [PubMed][CrossRef]

Article metrics loading...



Intracellular bacteria use a number of strategies to survive, grow, multiply, and disseminate within the host. One of the most striking adaptations that intracellular pathogens have developed is the ability to utilize host lipids and their metabolism. Bacteria such as , , or can use host lipids for different purposes, such as a means of entry through lipid rafts, building blocks for bacteria membrane formation, energy sources, camouflage to avoid the fusion of phagosomes and lysosomes, and dissemination. One of the most extreme examples of lipid exploitation is , which not only utilizes the host lipid as a carbon and energy source but is also able to reprogram the host lipid metabolism. Likewise, spp. have also developed numerous mechanisms to reprogram lipids onto their intracellular inclusions. Finally, while the ability to exploit host lipids is important in intracellular bacteria, it is not an exclusive trait. Extracellular pathogens, including , , and , can recruit and metabolize host lipids that are important for their growth and survival.

Throughout this chapter we will review how intracellular and extracellular bacterial pathogens utilize host lipids to enter, survive, multiply, and disseminate in the host.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Structure of () cholesterol, () ceramide, () sphingomyelin, () phosphatidylcholine, and () GM1 ganglioside.

Source: microbiolspec December 2015 vol. 3 no. 6 doi:10.1128/microbiolspec.VMBF-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


Negative-stain transmission electron microscopy image showing the localization of lipid rafts in . Cholesterol glycolipids were detected by an antibody conjugated to 6-nm gold particles. From reference 137 . Bar represents 100 nm.

Source: microbiolspec December 2015 vol. 3 no. 6 doi:10.1128/microbiolspec.VMBF-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view


Schematic representation of the tricarboxylic acid and methyl citrate cycles. In green, the glyoxylate shunt, a variation of the tricarboxylic acid cycle.

Source: microbiolspec December 2015 vol. 3 no. 6 doi:10.1128/microbiolspec.VMBF-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Click to view


Bacterial pathogens that incorporate cholesterol

Source: microbiolspec December 2015 vol. 3 no. 6 doi:10.1128/microbiolspec.VMBF-0001-2014
Generic image for table

Click to view


Bacteria species that use lipid rafts to enter the host cell

Source: microbiolspec December 2015 vol. 3 no. 6 doi:10.1128/microbiolspec.VMBF-0001-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error