No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Iron Acquisition Strategies of Bacterial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    312.65 Kb
  • XML
    318.86 Kb
  • PDF
    3.41 MB
  • Authors: Jessica R. Sheldon1, Holly A. Laakso2, David E. Heinrichs3
  • Editors: Indira T. Kudva4, Nancy A. Cornick5
    Affiliations: 1: Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1; 2: Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1; 3: Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1; 4: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA; 5: Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
  • Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0010-2015
  • Received 03 March 2015 Accepted 22 April 2015 Published 18 March 2016
  • David E. Heinrichs, [email protected]
image of Iron Acquisition Strategies of Bacterial Pathogens
    Preview this microbiology spectrum article:
    Zoom in

    Iron Acquisition Strategies of Bacterial Pathogens, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/2/VMBF-0010-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/2/VMBF-0010-2015-2.gif
  • Abstract:

    Iron is an essential micronutrient for both microbes and humans alike. For well over half a century we have known that this element, in particular, plays a pivotal role in health and disease and, most especially, in shaping host-pathogen interactions. Intracellular iron concentrations serve as a critical signal in regulating the expression not only of high-affinity iron acquisition systems in bacteria, but also of toxins and other noted virulence factors produced by some major human pathogens. While we now are aware of many strategies that the host has devised to sequester iron from invading microbes, there are as many if not more sophisticated mechanisms by which successful pathogens overcome nutritional immunity imposed by the host. This review discusses some of the essential components of iron sequestration and scavenging mechanisms of the host, as well as representative Gram-negative and Gram-positive pathogens, and highlights recent advances in the field. Last, we address how the iron acquisition strategies of pathogenic bacteria may be exploited for the development of novel prophylactics or antimicrobials.

  • Citation: Sheldon J, Laakso H, Heinrichs D. 2016. Iron Acquisition Strategies of Bacterial Pathogens. Microbiol Spectrum 4(2):VMBF-0010-2015. doi:10.1128/microbiolspec.VMBF-0010-2015.


1. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A. 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921. [PubMed][CrossRef]
2. Liu Z, Reba S, Chen W-D, Porwal SK, Boom WH, Petersen RB, Rojas R, Viswanathan R, Devireddy L. 2014. Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection. J Exp Med 211:1197–1213. [PubMed][CrossRef]
3. Devireddy LR, Hart DO, Goetz DH, Green MR. 2010. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141:1006–1017. [PubMed][CrossRef]
4. Vujić M. 2014. Molecular basis of HFE-hemochromatosis. Front Pharmacol 5:42. [CrossRef]
5. Pietrangelo A. 2015. Genetics, genetic testing and management of hemochromatosis: 15 years since hepcidin. Gastroenterology 149:1240–1251. [PubMed][CrossRef]
6. Babitt JL, Lin HY. 2011. The molecular pathogenesis of hereditary hemochromatosis. Semin Liver Dis 31:280–292. [PubMed][CrossRef]
7. Anderson GJ. 2001. Ironing out disease: inherited disorders of iron homeostasis. IUBMB Life 51:11–17. [PubMed][CrossRef]
8. Levi S, Finazzi D. 2014. Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Drug Metab Transp 5 :99. [PubMed][CrossRef]
9. Bartnikas TB. 2012. Known and potential roles of transferrin in iron biology. Biometals 25:677–686. [PubMed][CrossRef]
10. Miyajima H. 2015. Investigated and available therapeutic options for treating aceruloplasminemia. Expert Opin Orphan Drugs 3:1011–1020. [CrossRef]
11. Shamsian BS, Rezaei N, Arzanian MT, Alavi S, Khojasteh O, Eghbali A. 2009. Severe hypochromic microcytic anemia in a patient with congenital atransferrinemia. Pediatr Hematol Oncol 26:356–362. [PubMed][CrossRef]
12. Xiao Q, Jiang X, Moore KJ, Shao Y, Pi H, Dubail I, Charbit A, Newton SM, Klebba PE. 2011. Sortase independent and dependent systems for acquisition of haem and haemoglobin in Listeria monocytogenes. Mol Microbiol 80:1581–1597. [PubMed][CrossRef]
13. Sankaran VG,Weiss MJ. 2015. Anemia: progress in molecular mechanisms and therapies. Nat Med 21:221–230. [PubMed][CrossRef]
14. Edelstein SJ, Telford JN, Crepeau RH. 1973. Structure of fibers of sickle cell hemoglobin. Proc Natl Acad Sci USA 70:1104–1107. [PubMed][CrossRef]
15. Chan GC-F, Chan S, Ho P-L, Ha S-Y. 2009. Effects of chelators (deferoxamine, deferiprone and deferasirox) on the growth of Klebsiella pneumoniae and Aeromonas hydrophila isolated from transfusion-dependent thalassemia patients. Hemoglobin 33:352–360. [PubMed][CrossRef]
16. Schubert S, Autenrieth IB. 2000. Conjugation of hydroxyethyl starch to desferrioxamine (DFO) modulates the dual role of DFO in Yersinia enterocolitica infection. Clin Diagn Lab Immunol 7:457–462. [PubMed][CrossRef]
17. Arifin AJ, Hannauer M, Welch I, Heinrichs DE. 2014. Deferoxamine mesylate enhances virulence of community-associated methicillin resistant Staphylococcus aureus. Microbes Infect 16:967–972. [PubMed][CrossRef]
18. Escolar L, Pérez-Martin J, de Lorenzo V. 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229. [PubMed]
19. Hantke K. 2001. Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177. [PubMed][CrossRef]
20. White A, Ding X, vanderSpek JC, Murphy JR, Ringe D. 1998. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. Nature 394:502–506. [PubMed][CrossRef]
21. De Lorenzo V, Wee S, Herrero M, Neilands JB. 1987. Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation ( fur) repressor. J Bacteriol 169:2624–2630. [PubMed]
22. Boyd J, Oza MN, Murphy JR. 1990. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element ( dtxR) from Corynebacterium diphtheriae. Proc Natl Acad Sci USA 87:5968–5972. [PubMed][CrossRef]
23. Baichoo N, Helmann JD. 2002. Recognition of DNA by Fur: a reinterpretation of the fur box consensus sequence. J Bacteriol 184:5826–5832. [PubMed][CrossRef]
24. Carpenter BM, Whitmire JM, Merrell DS. 2009. This is not your mother’s repressor: the complex role of fur in pathogenesis. Infect Immun 77:2590–2601. [PubMed][CrossRef]
25. Fillat MF. 2014. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546:41–52. [PubMed][CrossRef]
26. Schmitt MP, Holmes RK. 1991. Iron-dependent regulation of diphtheria toxin and siderophore expression by the cloned Corynebacterium diphtheriae repressor gene dtxR in C. diphtheriae C7 strains. Infect Immun 59:1899–1904. [PubMed]
27. Troxell B, Hassan HM. 2013. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 3:59. [PubMed][CrossRef]
28. Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O. 2004. Iron-source preference of Staphylococcus aureus infections. Science 305:1626–1628. [PubMed][CrossRef]
29. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G. 2006. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305. [PubMed][CrossRef]
30. Gruss A, Borezée-Durant E, Lechardeur D. 2012. Environmental heme utilization by heme-auxotrophic bacteria. Adv Microb Physiol 61:69–124. [PubMed][CrossRef]
31. Los FCO, Randis TM, Aroian RV, Ratner AJ. 2013. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 77:173–207. [PubMed][CrossRef]
32. Cescau S, Cwerman H, Létoffé S, Delepelaire P, Wandersman C, Biville F. 2007. Heme acquisition by hemophores. Biometals 20:603–613. [PubMed][CrossRef]
33. Hanson MS, Pelzel SE, Latimer J, Müller-Eberhard U, Hansen EJ. 1992. Identification of a genetic locus of Haemophilus influenzae type b necessary for the binding and utilization of heme bound to human hemopexin. Proc Natl Acad Sci USA 89:1973–1977. [PubMed][CrossRef]
34. Wójtowicz H, Guevara T, Tallant C, Olczak M, Sroka A, Potempa J, Solà M, Olczak T, Gomis-Rüth FX. 2009. Unique structure and stability of HmuY, a novel heme-binding protein of Porphyromonas gingivalis. PLoS Pathog 5:e1000419. doi:10.1371/journal.ppat.1000419. [PubMed][CrossRef]
35. Létoffé S, Ghigo JM, Wandersman C. 1994. Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc Natl Acad Sci USA 91:9876–9880. [PubMed][CrossRef]
36. Arnoux P, Haser R, Izadi N, Lecroisey A, Delepierre M, Wandersman C, Czjzek M. 1999. The crystal structure of HasA, a hemophore secreted by Serratia marcescens. Nat Struct Biol 6:516–520. [PubMed][CrossRef]
37. Létoffé S, Ghigo JM, Wandersman C. 1994. Secretion of the Serratia marcescens HasA protein by an ABC transporter. J Bacteriol 176:5372–5377. [PubMed]
38. Wandersman C, Delepelaire P. 2012. Haemophore functions revisited. Mol Microbiol 85:618–631. [PubMed][CrossRef]
39. Izadi-Pruneyre N, Huche F, Lukat-Rodgers GS, Lecroisey A, Gilli R, Rodgers KR, Wandersman C, Delepelaire P. 2006. The heme transfer from the soluble HasA hemophore to its membrane-bound receptor HasR is driven by protein-protein interaction from a high to a lower affinity binding site. J Biol Chem 281:25541–25550. [PubMed][CrossRef]
40. Krieg S, Huche F, Diederichs K, Izadi-Pruneyre N, Lecroisey A, Wandersman C, Delepelaire P, Welte W. 2009. Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. Proc Natl Acad Sci USA 106:1045–1050. [PubMed][CrossRef]
41. Létoffé S, Deniau C, Wolff N, Dassa E, Delepelaire P, Lecroisey A, Wandersman C. 2001. Haemophore-mediated bacterial haem transport: evidence for a common or overlapping site for haem-free and haem-loaded haemophore on its specific outer membrane receptor. Mol Microbiol 41:439–450. [PubMed][CrossRef]
42. Létoffé S, Debarbieux L, Izadi N, Delepelaire P, Wandersman C. 2003. Ligand delivery by haem carrier proteins: the binding of Serratia marcescens haemophore to its outer membrane receptor is mediated by two distinct peptide regions. Mol Microbiol 50:77–88. [PubMed][CrossRef]
43. Wolff N, Izadi-Pruneyre N, Couprie J, Habeck M, Linge J, Rieping W, Wandersman C, Nilges M, Delepierre M, Lecroisey A. 2008. Comparative analysis of structural and dynamic properties of the loaded and unloaded hemophore HasA: functional implications. J Mol Biol 376:517–525. [PubMed][CrossRef]
44. Létoffé S, Wecker K, Delepierre M, Delepelaire P, Wandersman C. 2005. Activities of the Serratia marcescens heme receptor HasR and isolated plug and beta-barrel domains: the beta-barrel forms a heme-specific channel. J Bacteriol 187:4637–4645. [PubMed][CrossRef]
45. Bracken CS, Baer MT, Abdur-Rashid A, Helms W, Stojiljkovic I. 1999. Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function. J Bacteriol 181:6063–6072. [PubMed]
46. Burkhard KA, Wilks A. 2007. Characterization of the outer membrane receptor ShuA from the heme uptake system of Shigella dysenteriae: substrate specificity and identification of the heme protein ligands. J Biol Chem 282:15126–15136. [PubMed][CrossRef]
47. Simpson W, Olczak T, Genco CA. 2000. Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. J Bacteriol 182:5737–5748. [PubMed][CrossRef]
48. Ghigo JM, Létoffé S, Wandersman C. 1997. A new type of hemophore-dependent heme acquisition system of Serratia marcescens reconstituted in Escherichia coli. J Bacteriol 179:3572–3579. [PubMed]
49. Paquelin A, Ghigo JM, Bertin S, Wandersman C. 2001. Characterization of HasB, a Serratia marcescens TonB-like protein specifically involved in the haemophore-dependent haem acquisition system. Mol Microbiol 42:995–1005. [PubMed][CrossRef]
50. Benevides-Matos N, Wandersman C, Biville F. 2008. HasB, the Serratia marcescens TonB paralog, is specific to HasR. J Bacteriol 190:21–27. [PubMed][CrossRef]
51. Cwerman H, Wandersman C, Biville F. 2006. Heme and a five-amino-acid hemophore region form the bipartite stimulus triggering the has signaling cascade. J Bacteriol 188:3357–3364. [PubMed][CrossRef]
52. Rossi MS, Paquelin A, Ghigo JM, Wandersman C. 2003. Haemophore-mediated signal transduction across the bacterial cell envelope in Serratia marcescens: the inducer and the transported substrate are different molecules. Mol Microbiol 48:1467–1480. [CrossRef]
53. Biville F, Cwerman H, Létoffé S, Rossi M-S, Drouet V, Ghigo JM, Wandersman C. 2004. Haemophore-mediated signalling in Serratia marcescens: a new mode of regulation for an extra cytoplasmic function (ECF) sigma factor involved in haem acquisition. Mol Microbiol 53:1267–1277. [PubMed][CrossRef]
54. Rossi MS, Fetherston JD, Létoffé S, Carniel E, Perry RD, Ghigo JM. 2001. Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis. Infect Immun 69:6707–6717. [PubMed][CrossRef]
55. Cope LD, Thomas SE, Latimer JL, Slaughter CA, Müller-Eberhard U, Hansen EJ. 1994. The 100 kDa haem:haemopexin-binding protein of Haemophilus influenzae: structure and localization. Mol Microbiol 13:863–873. [PubMed][CrossRef]
56. Cope LD, Thomas SE, Hrkal Z, Hansen EJ. 1998. Binding of heme-hemopexin complexes by soluble HxuA protein allows utilization of this complexed heme by Haemophilus influenzae. Infect Immun 66:4511–4516. [PubMed]
57. Cope LD, Yogev R, Müller-Eberhard U, Hansen EJ. 1995. A gene cluster involved in the utilization of both free heme and heme:hemopexin by Haemophilus influenzae type b. J. Bacteriol 177:2644–2653. [PubMed]
58. Baelen S, Dewitte F, Clantin B, Villeret V. 2013. Structure of the secretion domain of HxuA from Haemophilus influenzae. Acta Crystallograph Sect F Struct Biol Cryst Commun 69:1322–1327. [PubMed][CrossRef]
59. Wong JC, Patel R, Kendall D, Whitby PW, Smith A, Holland J, Williams P. 1995. Affinity, conservation, and surface exposure of hemopexin-binding proteins in Haemophilus influenzae. Infect Immun 63:2327–2333. [PubMed]
60. Fournier C, Smith A, Delepelaire P. 2011. Haem release from haemopexin by HxuA allows Haemophilus influenzae to escape host nutritional immunity. Mol Microbiol 80:133–148. [PubMed][CrossRef]
61. Morton DJ, Seale TW, Madore LL, VanWagoner TM, Whitby PW, Stull TL. 2007. The haem-haemopexin utilization gene cluster ( hxuCBA) as a virulence factor of Haemophilus influenzae. Microbiology 153:215–224. [PubMed][CrossRef]
62. Cope LD, Love RP, Guinn SE, Gilep A, Usanov S, Estabrook RW, Hrkal Z, Hansen EJ. 2001. Involvement of HxuC outer membrane protein in utilization of hemoglobin by Haemophilus influenzae. Infect Immun 69:2353–2363. [PubMed][CrossRef]
63. Whitby PW, Sim KE, Morton DJ, Patel JA, Stull TL. 1997. Transcription of genes encoding iron and heme acquisition proteins of Haemophilus influenzae during acute otitis media. Infect Immun 65:4696–4700. [PubMed]
64. Gat O, Zaide G, Inbar I, Grosfeld H, Chitlaru T, Levy H, Shafferman A. 2008. Characterization of Bacillus anthracis iron-regulated surface determinant (Isd) proteins containing NEAT domains. Mol Microbiol 70:983–999. [PubMed]
65. Maresso AW, Garufi G, Schneewind O. 2008. Bacillus anthracis secretes proteins that mediate heme acquisition from hemoglobin. PLoS Pathog 4:e1000132. doi:10.1371/journal.ppat.1000132. [CrossRef]
66. Andrade MA, Ciccarelli FD, Perez-Iratxeta C, Bork P. 2002. NEAT: a domain duplicated in genes near the components of a putative Fe3+ siderophore transporter from Gram-positive pathogenic bacteria. Genome Biol 3:research0047.1– research0047.5.
67. Honsa ES, Maresso AW, Highlander SK. 2014. Molecular and evolutionary analysis of NEAr-iron Transporter (NEAT) domains. PloS One 9:e104794. doi:10.1371/journal.pone.0104794. [PubMed][CrossRef]
68. Grigg JC, Ukpabi G, Gaudin CF, Murphy ME. 2010. Structural biology of heme binding in the Staphylococcus aureus Isd system. J Inorg Biochem 104:341–348. [PubMed][CrossRef]
69. Honsa ES, Maresso AW. 2011. Mechanisms of iron import in anthrax. Biometals 24:533–545. [PubMed][CrossRef]
70. Grigg JC, Vermeiren CL, Heinrichs DE, Murphy ME. 2007. Haem recognition by a Staphylococcus aureus NEAT domain. Mol Microbiol 63:139–149. [PubMed][CrossRef]
71. Fabian M, Solomaha E, Olson JS, Maresso AW. 2009. Heme transfer to the bacterial cell envelope occurs via a secreted hemophore in the Gram-positive pathogen Bacillus anthracis. J Biol Chem 284:32138–32146. [PubMed][CrossRef]
72. Honsa ES, Fabian M, Cardenas AM, Olson JS, Maresso AW. 2011. The five near-iron transporter (NEAT) domain anthrax hemophore, IsdX2, scavenges heme from hemoglobin and transfers heme to the surface protein IsdC. J Biol Chem 286:33652–33660. [PubMed][CrossRef]
73. Malmirchegini GR, Sjodt M, Shnitkind S, Sawaya MR, Rosinski J, Newton SM, Klebba PE, Clubb RT. 2014. Novel mechanism of hemin capture by Hbp2, the hemoglobin-binding hemophore from Listeria monocytogenes. J Biol Chem 289:34886–34899. [PubMed][CrossRef]
74. Mukherjee S. 1985. The role of crevicular fluid iron in periodontal disease. J Periodontol 56:22–27. [PubMed][CrossRef]
75. Shizukuishi S, Tazaki K, Inoshita E, Kataoka K, Hanioka T, Amano A. 1995. Effect of concentration of compounds containing iron on the growth of Porphyromonas gingivalis. FEMS Microbiol Lett 131:313–317. [PubMed][CrossRef]
76. Smalley JW, Silver J, Marsh PJ, Birss AJ. 1998. The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the mu-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism. Biochem J 331:681–685. [PubMed][CrossRef]
77. Li N, Collyer CA. 2011. Gingipains from Porphyromonas gingivalis: complex domain structures confer diverse functions. Eur J Microbiol Immunol 1:41–58. [PubMed][CrossRef]
78. Smalley JW, Birss AJ, Szmigielski B, Potempa J. 2007. Sequential action of R- and K-specific gingipains of Porphyromonas gingivalis in the generation of the heam-containing pigment from oxyhaemoglobin. Arch Biochem Biophys 465:44–49. [PubMed][CrossRef]
79. Smalley JW, Birss AJ, Szmigielski B, Potempa J. 2008. Mechanism of methaemoglobin breakdown by the lysine-specific gingipain of the periodontal pathogen Porphyromonas gingivalis. Biol Chem 389:1235–1238. [PubMed][CrossRef]
80. Olczak T, Sroka A, Potempa J, Olczak M. 2008. Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization. Arch Microbiol 189:197–210. [PubMed][CrossRef]
81. Smalley JW, Byrne DP, Birss AJ, Wójtowicz H, Sroka A, Potempa J, Olczak T. 2011. HmuY haemophore and gingipain proteases constitute a unique syntrophic system of haem acquisition by Porphyromonas gingivalis. PLoS One 6:e17182. doi:10.1371/journal.pone.0017182. [CrossRef]
82. Sroka A, Sztukowska M, Potempa J, Travis J, Genco CA. 2001. Degradation of host heme proteins by lysine- and arginine-specific cysteine proteinases (gingipains) of Porphyromonas gingivalis. J Bacteriol 183:5609–5616. [PubMed][CrossRef]
83. Lewis JP, Plata K, Yu F, Rosato A, Anaya C. 2006. Transcriptional organization, regulation and role of the Porphyromonas gingivalis W83 hmu haemin-uptake locus. Microbiology 152:3367–3382. [PubMed][CrossRef]
84. Dautin N. 2010. Serine protease autotransporters of Enterobacteriaceae (SPATEs): biogenesis and function. Toxins 2:1179–1206. [PubMed][CrossRef]
85. Drago-Serrano ME, Parra SG, Manjarrez-Hernández HA. 2006. EspC, an autotransporter protein secreted by enteropathogenic Escherichia coli (EPEC), displays protease activity on human hemoglobin. FEMS Microbiol Lett 265:35–40. [PubMed][CrossRef]
86. Otto BR, van Dooren SJ, Nuijens JH, Luirink J, Oudega B. 1998. Characterization of a hemoglobin protease secreted by the pathogenic Escherichia coli strain EB1. J Exp Med 188:1091–1103. [PubMed][CrossRef]
87. Otto BR, van Dooren SJM, Dozois CM, Luirink J, Oudega B. 2002. Escherichia coli hemoglobin protease autotransporter contributes to synergistic abscess formation and heme-dependent growth of Bacteroides fragilis. Infect Immun 70:5–10. [PubMed][CrossRef]
88. Nikaido H. 1992. Porins and specific channels of bacterial outer membranes. Mol Microbiol 6:435–442. [PubMed][CrossRef]
89. Braun V, Günter K, Hantke K. 1991. Transport of iron across the outer membrane. Biol Met 4:14–22. [PubMed][CrossRef]
90. Schauer K, Rodionov DA, de Reuse H. 2008. New substrates for TonB-dependent transport: do we only see the “tip of the iceberg”? Trends Biochem Sci 33:330–338. [PubMed][CrossRef]
91. Noinaj N, Guillier M, Barnard TJ, Buchanan SK. 2010. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60. [PubMed][CrossRef]
92. Härle C, Kim I, Angerer A, Braun V. 1995. Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface. EMBO J 14:1430–1438. [PubMed]
93. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML. 2002. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 99:7072–7077. [PubMed][CrossRef]
94. Kim I, Stiefel A, Plantör S, Angerer A, Braun V. 1997. Transcription induction of the ferric citrate transport genes via the N-terminus of the FecA outer membrane protein, the Ton system and the electrochemical potential of the cytoplasmic membrane. Mol Microbiol 23:333–344. [PubMed][CrossRef]
95. Braun V, Mahren S, Ogierman M. 2003. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr Opin Microbiol 6:173–180. [PubMed][CrossRef]
96. Welz D, Braun V. 1998. Ferric citrate transport of Escherichia coli: functional regions of the FecR transmembrane regulatory protein. J Bacteriol 180:2387–2394. [PubMed]
97. Bradbeer C. 1993. The proton motive force drives the outer membrane transport of cobalamin in Escherichia coli. J Bacteriol 175:3146–3150. [PubMed]
98. Krewulak KD, Vogel HJ. 2011. TonB or not TonB: is that the question? Biochem Cell Biol Biochim Biol Cell 89:87–97. [PubMed][CrossRef]
99. Braun V. 1995. Energy-coupled transport and signal transduction through the Gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev 16:295–307. [PubMed][CrossRef]
100. Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N, Allaire M, Coulton JW. 2006. Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 312:1399–1402. [PubMed][CrossRef]
101. Shultis DD, Purdy MD, Banchs CN, Wiener MC. 2006. Outer membrane active transport: structure of the BtuB:TonB complex. Science 312:1396–1399. [PubMed][CrossRef]
102. Udho E, Jakes KS, Finkelstein A. 2012. TonB-dependent transporter FhuA in planar lipid bilayers: partial exit of its plug from the barrel. Biochemistry 51:6753–6759. [PubMed][CrossRef]
103. Schalk IJ, Mislin GLA, Brillet K. 2012. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. Curr Top Membr 69:37–66. [PubMed][CrossRef]
104. Davidson AL, Dassa E, Orelle C, Chen J. 2008. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364. [PubMed][CrossRef]
105. Tong Y, Guo M. 2009. Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys 481:1–15. [PubMed][CrossRef]
106. Berntsson RPA, Smits SHJ, Schmitt L, Slotboom D-J, Poolman B. 2010. A structural classification of substrate-binding proteins. FEBS Lett 584:2606–2617. [PubMed][CrossRef]
107. Borths EL, Locher KP, Lee AT, Rees DC. 2002. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc Natl Acad Sci USA 99:16642–16647. [PubMed][CrossRef]
108. Stojiljkovic I, Hantke K. 1994. Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica. Mol Microbiol 13:719–732. [PubMed][CrossRef]
109. Stojiljkovic I, Hantke K. 1992. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in Gram-negative bacteria. EMBO J 11:4359–4367. [PubMed]
110. Schneider S, Paoli M. 2005. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica. Acta Crystallograph Sect F Struct Biol Cryst Commun 61:802–805. [PubMed][CrossRef]
111. Hornung JM, Jones HA, Perry RD. 1996. The hmu locus of Yersinia pestis is essential for utilization of free haemin and haem-protein complexes as iron sources. Mol Microbiol 20:725–739. [PubMed][CrossRef]
112. Thompson JM, Jones HA, Perry RD. 1999. Molecular characterization of the hemin uptake locus ( hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization. Infect Immun 67:3879–3892. [PubMed]
113. Wyckoff EE, Duncan D, Torres AG, Mills M, Maase K, Payne SM. 1998. Structure of the Shigella dysenteriae haem transport locus and its phylogenetic distribution in enteric bacteria. Mol Microbiol 28:1139–1152. [PubMed][CrossRef]
114. Occhino DA, Wyckoff EE, Henderson DP, Wrona TJ, Payne SM. 1998. Vibrio cholerae iron transport: haem transport genes are linked to one of two sets of tonB, exbB, exbD genes. Mol Microbiol 29:1493–1507. [PubMed][CrossRef]
115. Ochsner UA, Johnson Z, Vasil ML. 2000. Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146:185–198. [PubMed][CrossRef]
116. Ho WW, Li H, Eakanunkul S, Tong Y, Wilks A, Guo M, Poulos TL. 2007. Holo- and apo-bound structures of bacterial periplasmic heme-binding proteins. J Biol Chem 282:35796–35802. [PubMed][CrossRef]
117. Mattle D, Zeltina A, Woo J-S, Goetz BA, Locher KP. 2010. Two stacked heme molecules in the binding pocket of the periplasmic heme-binding protein HmuT from Yersinia pestis. J Mol Biol 404:220–231. [PubMed][CrossRef]
118. Woo J-S, Zeltina A, Goetz BA, Locher KP. 2012. X-ray structure of the Yersinia pestis heme transporter HmuUV. Nat Struct Mol Biol 19:1310–1315. [PubMed][CrossRef]
119. Lewinson O, Lee AT, Locher KP, Rees DC. 2010. A distinct mechanism for the ABC transporter BtuCD-BtuF revealed by the dynamics of complex formation. Nat Struct Mol Biol 17:332–338. [PubMed][CrossRef]
120. ter Beek J, Guskov A, Slotboom DJ. 2014. Structural diversity of ABC transporters. J Gen Physiol 143:419–435. [PubMed][CrossRef]
121. Wyckoff EE, Lopreato GF, Tipton KA, Payne SM. 2005. Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity. J Bacteriol 187:5658–5664. [PubMed][CrossRef]
122. Tripathi S, O’Neill MJ, Wilks A, Poulos TL. 2013. Crystal structure of the Pseudomonas aeruginosa cytoplasmic heme binding protein, Apo-PhuS. J Inorg Biochem 128:131–136. [PubMed][CrossRef]
123. Beveridge TJ, Matias VRF. 2006. Ultrastructure of Gram-positive cell walls, p 3–11. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, 2nd ed. ASM Press, Washington, DC. [CrossRef]
124. Pishchany G, Sheldon JR, Dickson CF, Alam MT, Read TD, Gell DA, Heinrichs DE, Skaar EP. 2014. IsdB-dependent hemoglobin binding is required for acquisition of heme by Staphylococcus aureus. J Infect Dis 209:1764–1772. [PubMed][CrossRef]
125. Sheldon JR, Heinrichs DE. 2015. Recent developments in understanding the iron acquisition strategies of Gram positive pathogens. FEMS Microbiol Rev 39:592–630. [PubMed][CrossRef]
126. Mazmanian SK, Ton-That H, Su K, Schneewind O. 2002. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc Natl Acad Sci USA 99:2293–2298. [PubMed][CrossRef]
127. Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, Joachmiak A, Missiakas DM, Schneewind O. 2003. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299:906–909. [PubMed][CrossRef]
128. Torres VJ, Pishchany G, Humayun M, Schneewind O, Skaar EP. 2006. Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization. J Bacteriol 188:8421–8429. [PubMed][CrossRef]
129. Dryla A, Hoffmann B, Gelbmann D, Giefing C, Hanner M, Meinke A, Anderson AS, Koppensteiner W, Konrat R, von Gabain A, Nagy E. 2007. High-affinity binding of the staphylococcal HarA protein to haptoglobin and hemoglobin involves a domain with an antiparallel eight-stranded beta-barrel fold. J Bacteriol 189:254–264. [PubMed][CrossRef]
130. Muryoi N, Tiedemann MT, Pluym M, Cheung J, Heinrichs DE, Stillman MJ. 2008. Demonstration of the iron-regulated surface determinant (Isd) heme transfer pathway in Staphylococcus aureus. J Biol Chem 283:28125–28136. [PubMed][CrossRef]
131. Liu M, Tanaka WN, Zhu H, Xie G, Dooley DM, Lei B. 2008. Direct hemin transfer from IsdA to IsdC in the iron-regulated surface determinant (Isd) heme acquisition system of Staphylococcus aureus. J Biol Chem 283:6668–6676. [PubMed][CrossRef]
132. Tiedemann MT, Heinrichs DE, Stillman MJ. 2012. Multiprotein heme shuttle pathway in Staphylococcus aureus: iron-regulated surface determinant cog-wheel kinetics. J Am Chem Soc 134:16578–16585. [PubMed][CrossRef]
133. Grigg JC, Vermeiren CL, Heinrichs DE, Murphy ME. 2007. Heme coordination by Staphylococcus aureus IsdE. J Biol Chem 282:28815–28822. [PubMed][CrossRef]
134. Pluym M, Vermeiren CL, Mack J, Heinrichs DE, Stillman MJ. 2007. Heme binding properties of Staphylococcus aureus IsdE. Biochemistry 46:12777–12877. [PubMed][CrossRef]
135. Moriwaki Y, Terada T, Caaveiro JMM, Takaoka Y, Hamachi I, Tsumoto K, Shimizu K. 2013. Heme binding mechanism of structurally similar iron-regulated surface determinant near transporter domains of Staphylococcus aureus exhibiting different affinities for heme. Biochemistry 52:8866–8877. [PubMed][CrossRef]
136. Villareal VA, Pilpa RM, Robson SA, Fadeev EA, Clubb RT. 2008. The IsdC protein from Staphylococcus aureus uses a flexible binding pocket to capture heme. J Biol Chem 283:31591–31600. [PubMed][CrossRef]
137. Abe R, Caaveiro JMM, Kozuka-Hata H, Oyama M, Tsumoto K. 2012. Mapping ultra-weak protein-protein interactions between heme transporters of Staphylococcus aureus. J Biol Chem 287:16477–16487. [PubMed][CrossRef]
138. Grigg JC, Mao CX, Murphy MEP. 2011. Iron-coordinating tyrosine is a key determinant of NEAT domain heme transfer. J Mol Biol 413:684–698. [PubMed][CrossRef]
139. Reniere ML, Skaar EP. 2008. Staphylococcus aureus haem oxygenases are differentially regulated by iron and haem. Mol Microbiol 69:1304–1315. [PubMed][CrossRef]
140. Cheng AG, Kim HK, Burts ML, Krausz T, Schneewind O, Missiakas DM. 2009. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J 23:3393–3404. [PubMed][CrossRef]
141. Visai L, Yanagisawa N, Josefsson E, Tarkowski A, Pezzali I, Rooijakkers SH, Foster TJ, Speziale P. 2009. Immune evasion by Staphylococcus aureus conferred by iron-regulated surface determinant protein IsdH. Microbiology 155:667–679. [PubMed][CrossRef]
142. Pilpa RM, Fadeev EA, Villareal VA, Wong ML, Phillips M, Clubb RT. 2006. Solution structure of the NEAT (NEAr Transporter) domain from IsdH/HarA: the human hemoglobin receptor in Staphylococcus aureus. J Mol Biol 360:435–447. [PubMed][CrossRef]
143. Sharp KH, Schneider S, Cockayne A, Paoli M. 2007. Crystal structure of the heme-IsdC complex, the central conduit of the Isd iron/heme uptake system in Staphylococcus aureus. J Biol Chem 282:10625–10631. [PubMed][CrossRef]
144. Watanabe M, Tanaka Y, Suenaga A, Kuroda M, Yao M, Watanabe N, Arisaka F, Ohta T, Tanaka I, Tsumoto K. 2008. Structural basis for multimeric heme complexation through a specific protein-heme interaction: the case of the third neat domain of IsdH from Staphylococcus aureus. J Biol Chem 283:28649–28659. [PubMed][CrossRef]
145. Gaudin CFM, Grigg JC, Arrieta AL, Murphy MEP. 2011. Unique heme-iron coordination by the hemoglobin receptor IsdB of Staphylococcus aureus. Biochemistry 50:5443–5452. [PubMed][CrossRef]
146. Dryla A, Gelbmann D, von Gabain A, Nagy E. 2003. Identification of a novel iron regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity. Mol Microbiol 49:37–53. [PubMed][CrossRef]
147. Pilpa RM, Robson SA, Villareal VA, Wong ML, Phillips M, Clubb RT. 2009. Functionally distinct NEAT (NEAr Transporter) domains within the Staphylococcus aureus IsdH/HarA protein extract heme from methemoglobin. J Biol Chem 284:1166–1176. [PubMed][CrossRef]
148. Dickson CF, Krishna Kumar K, Jacques DA, Malmirchegini GR, Spirig T, Mackay JP, Clubb RT, Guss JM, Gell DA. 2014. Structure of the hemoglobin-IsdH complex reveals the molecular basis of iron capture by Staphylococcus aureus. J Biol Chem 289:6728–6738. [PubMed][CrossRef]
149. Krishna Kumar K, Jacques DA, Pishchany G, Caradoc-Davies T, Spirig T, Malmirchegini GR, Langley DB, Dickson CF, Mackay JP, Clubb RT, Skaar EP, Guss JM, Gell DA. 2011. Structural basis for hemoglobin capture by Staphylococcus aureus cell-surface protein, IsdH. J Biol Chem 286:38439–38447. [PubMed][CrossRef]
150. Bowden CFM, Verstraete MM, Eltis LD, Murphy MEP. 2014. Hemoglobin binding and catalytic heme extraction by IsdB near iron transporter domains. Biochemistry 53:2286–2294. [PubMed][CrossRef]
151. Pluym M. 2008. Heme binding in the NEAT domains of IsdA and IsdC of Staphylococcus aureus. J Inorg Biochem 102:480–488. [PubMed][CrossRef]
152. Fonner BA, Tripet BP, Eilers B, Stanisich J, Sullivan-Springhetti RK, Moore R, Liu M, Lei B, Copie V. 2014. Solution structure and molecular determinants of hemoglobin binding of the first NEAT domain of IsdB in Staphylococcus aureus. Biochemistry 53:3922–3933. [PubMed][CrossRef]
153. Spirig T, Malmirchegini GR, Zhang J, Robson SA, Sjodt M, Liu M, Krishna Kumar K, Dickson CF, Gell DA, Lei B, Loo JA, Clubb RT. 2013. Staphylococcus aureus uses a novel multidomain receptor to break apart human hemoglobin and steal its heme. J Biol Chem 288:1065–1078. [PubMed][CrossRef]
154. Zhu H, Li D, Liu M, Copié V, Lei B. 2014. Non-heme-binding domains and segments of the Staphylococcus aureus IsdB protein critically contribute to the kinetics and equilibrium of heme acquisition from methemoglobin. PLoS One 9:e100744. doi:10.1371/journal.pone.0100744. [CrossRef]
155. Haley KP, Janson EM, Heilbronner S, Foster TJ, Skaar EP. 2011. Staphylococcus lugdunensis IsdG liberates iron from host heme. J Bacteriol 193:4749–4757. [PubMed][CrossRef]
156. Zapotoczna M, Heilbronner S, Speziale P, Foster TJ. 2012. Iron-regulated surface determinant (Isd) proteins of Staphylococcus lugdunensis. J Bacteriol 194:6453–6467. [PubMed][CrossRef]
157. Brozyna JR, Sheldon JR, Heinrichs DE. 2014. Growth promotion of the opportunistic human pathogen, Staphylococcus lugdunensis, by heme, hemoglobin, and coculture with Staphylococcus aureus. MicrobiologyOpen 3:182–195. [PubMed][CrossRef]
158. Maresso AW, Chapa TJ, Schneewind O. 2006. Surface protein IsdC and Sortase B are required for heme-iron scavenging of Bacillus anthracis. J Bacteriol 188:8145–8152. [PubMed][CrossRef]
159. Tarlovsky Y, Fabian M, Solomaha E, Honsa E, Olson JS, Maresso AW. 2010. A Bacillus anthracis S-layer homology protein that binds heme and mediates heme delivery to IsdC. J Bacteriol 192:3503–3511. [PubMed][CrossRef]
160. Bates CS, Montañez GE, Woods CR, Vincent RM, Eichenbaum Z. 2003. Identification and characterization of a Streptococcus pyogenes operon involved in binding of hemoproteins and acquisition of iron. Infect Immun 71:1042–1055. [PubMed][CrossRef]
161. Drazek ES, Hammack CA, Schmitt MP. 2000. Corynebacterium diphtheriae genes required for acquisition of iron from haemin and haemoglobin are homologous to ABC haemin transporters. Mol Microbiol 36:68–84. [PubMed][CrossRef]
162. Ouattara M, Cunha EB, Li X, Huang Y-S, Dixon D, Eichenbaum Z. 2010. Shr of group A Streptococcus is a new type of composite NEAT protein involved in sequestering haem from methaemoglobin. Mol Microbiol 78:739–756. [PubMed][CrossRef]
163. Lei B, Liu M, Voyich JM, Prater CI, Kala SV, DeLeo FR, Musser JM. 2003. Identification and characterization of HtsA, a second heme-binding protein made by Streptococcus pyogenes. Infect Immun 71:5962–5969. [PubMed][CrossRef]
164. Dahesh S, Nizet V, Cole JN. 2012. Study of streptococcal hemoprotein receptor (Shr) in iron acquisition and virulence of M1T1 group A streptococcus. Virulence 3:566–575. [PubMed][CrossRef]
165. Allen CE, Schmitt MP. 2009. HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae. J Bacteriol 191:2638–2648. [PubMed][CrossRef]
166. Allen CE, Schmitt MP. 2011. Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA. J Bacteriol 193:5374–5385. [PubMed][CrossRef]
167. Allen CE, Schmitt MP. 2014. Utilization of host iron sources by Corynebacterium diphtheriae: multiple hemoglobin-binding proteins are essential for the use of iron from the hemoglobin/haptoglobin complex. J Bacteriol 197:553–562. [PubMed][CrossRef]
168. Allen CE, Burgos JM, Schmitt MP. 2013. Analysis of novel iron-regulated, surface-anchored hemin-binding proteins in Corynebacterium diphtheriae. J Bacteriol 195:2852–2863. [PubMed][CrossRef]
169. Wilks A. 2002. Heme oxygenase: evolution, structure, and mechanism. Antioxid Redox Signal 4:603–614. [PubMed][CrossRef]
170. Schmitt MP. 1997. Utilization of host iron sources by Corynebacterium diphtheriae: identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J Bacteriol 179:838–845. [PubMed]
171. Wilks A, Schmitt MP. 1998. Expression and characterization of a heme oxygenase (HmuO) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J Biol Chem 273:837–841. [PubMed][CrossRef]
172. Zhu W, Wilks A, Stojiljkovic I. 2000. Degradation of heme in Gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase. J Bacteriol 182:6783–6790. [PubMed][CrossRef]
173. Ratliff M, Zhu W, Deshmukh R, Wilks A, Stojiljkovic I. 2001. Homologues of neisserial heme oxygenase in Gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J Bacteriol 183:6394–6403. [PubMed][CrossRef]
174. Nambu S, Matsui T, Goulding CW, Takahashi S, Ikeda-Saito M. 2013. A new way to degrade heme: the Mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO. J Biol Chem 288:10101–10109. [PubMed][CrossRef]
175. Wilks A, Heinzl G. 2014. Heme oxygenation and the widening paradigm of heme degradation. Arch Biochem Biophys 544:87–95. [PubMed][CrossRef]
176. Wilks A, Ikeda-Saito M. 2014. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin. Acc Chem Res 47:2291–2298. [PubMed][CrossRef]
177. Anzaldi LL, Skaar EP. 2010. Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun 78:4977–4989. [PubMed][CrossRef]
178. West SE, Sparling PF. 1985. Response of Neisseria gonorrhoeae to iron limitation: alterations in expression of membrane proteins without apparent siderophore production. Infect Immun 47:388–394. [PubMed]
179. Campagnari AA, Shanks KL, Dyer DW. 1994. Growth of Moraxella catarrhalis with human transferrin and lactoferrin: expression of iron-repressible proteins without siderophore production. Infect Immun 62:4909–4914. [PubMed]
180. Schryvers AB, Gray-Owen S. 1992. Iron acquisition in Haemophilus influenzae: receptors for human transferrin. J Infect Dis 165:S103–S104. [PubMed][CrossRef]
181. Cornelissen CN, Biswas GD, Tsai J, Paruchuri DK, Thompson SA, Sparling PF. 1992. Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors. J Bacteriol 174:5788–5797. [PubMed]
182. Anderson JE, Sparling PF, Cornelissen CN. 1994. Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. J Bacteriol 176:3162–3170. [PubMed]
183. Boulton IC, Gorringe AR, Allison N, Robinson A, Gorinsky B, Joannou CL, Evans RW. 1998. Transferrin-binding protein B isolated from Neisseria meningitidis discriminates between apo and diferric human transferrin. Biochem J 334:269–273. [PubMed][CrossRef]
184. Irwin SW, Averil N, Cheng CY, Schryvers AB. 1993. Preparation and analysis of isogenic mutants in the transferrin receptor protein genes, tbpA and tbpB, from Neisseria meningitidis. Mol Microbiol 8:1125–1133. [PubMed][CrossRef]
185. Alcantara J, Yu RH, Schryvers AB. 1993. The region of human transferrin involved in binding to bacterial transferrin receptors is localized in the C-lobe. Mol Microbiol 8:1135–1143. [PubMed][CrossRef]
186. Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J, Boura E, Steere AN, Zak O, Aisen P, Tajkhorshid E, Evans RW, Gorringe AR, Mason AB, Steven AC, Buchanan SK. 2012. Structural basis for iron piracy by pathogenic Neisseria. Nature 483:53–58. [PubMed][CrossRef]
187. Calmettes C, Alcantara J, Yu R-H, Schryvers AB, Moraes TF. 2012. The structural basis of transferrin sequestration by transferrin-binding protein B. Nat Struct Mol Biol 19:358–360. [PubMed][CrossRef]
188. Steere AN, Byrne SL, Chasteen ND, Smith VC, MacGillivray RTA, Mason AB. 2010. Evidence that His349 acts as a pH-inducible switch to accelerate receptor-mediated iron release from the C-lobe of human transferrin. J Biol Inorg Chem 15:1341–1352. [PubMed][CrossRef]
189. Noto JM, Cornelissen CN. 2008. Identification of TbpA residues required for transferrin-iron utilization by Neisseria gonorrhoeae. Infect Immun 76:1960–1969. [PubMed][CrossRef]
190. Zarantonelli M-L, Szatanik M, Giorgini D, Hong E, Huerre M, Guillou F, Alonso J-M, Taha M-K. 2007. Transgenic mice expressing human transferrin as a model for meningococcal infection. Infect Immun 75:5609–5614. [PubMed][CrossRef]
191. Szatanik M, Hong E, Ruckly C, Ledroit M, Giorgini D, Jopek K, Nicola M-A, Deghmane A-E, Taha M-K. 2011. Experimental meningococcal sepsis in congenic transgenic mice expressing human transferrin. PloS One 6:e22210. doi:10.1371/journal.pone.0022210. [CrossRef]
192. Barber MF, Elde NC. 2014. Escape from bacterial iron piracy through rapid evolution of transferrin. Science 346:1362–1366. [PubMed][CrossRef]
193. Beddek AJ, Schryvers AB. 2010. The lactoferrin receptor complex in Gram negative bacteria. Biometals 23:377–386. [PubMed][CrossRef]
194. Schryvers AB, Morris LJ. 1988. Identification and characterization of the human lactoferrin-binding protein from Neisseria meningitidis. Infect Immun 56:1144–1149. [PubMed]
195. Bonnah RA, Yu R, Schryvers AB. 1995. Biochemical analysis of lactoferrin receptors in the Neisseriaceae: identification of a second bacterial lactoferrin receptor protein. Microb Pathog 19:285–297. [CrossRef]
196. Brooks CL, Arutyunova E, Lemieux MJ. 2014. The structure of lactoferrin-binding protein B from Neisseria meningitidis suggests roles in iron acquisition and neutralization of host defences. Acta Crystallogr Sect F Struct Biol Commun 70:1312–1317. [PubMed][CrossRef]
197. Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M. 1992. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73:472–479. [PubMed][CrossRef]
198. Morgenthau A, Livingstone M, Adamiak P, Schryvers AB. 2012. The role of lactoferrin binding protein B in mediating protection against human lactoferricin. Biochem Cell Biol 90:417–423. [PubMed][CrossRef]
199. Morgenthau A, Partha SK, Adamiak P, Schryvers AB. 2014. The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B. Biometals 27:923–933. [PubMed][CrossRef]
200. Noinaj N, Cornelissen CN, Buchanan SK. 2013. Structural insight into the lactoferrin receptors from pathogenic Neisseria. J Struct Biol 184:83–92. [PubMed][CrossRef]
201. Parker Siburt CJ, Mietzner TA, Crumbliss AL. 2012. FbpA: a bacterial transferrin with more to offer. Biochim Biophys Acta 1820:379–392. [PubMed][CrossRef]
202. Anderson DS, Adhikari P, Nowalk AJ, Chen CY, Mietzner TA. 2004. The hFbpABC transporter from Haemophilus influenzae functions as a binding-protein-dependent ABC transporter with high specificity and affinity for ferric iron. J Bacteriol 186:6220–6229. [PubMed][CrossRef]
203. Khun HH, Kirby SD, Lee BC. 1998. A Neisseria meningitidis fbpABC mutant is incapable of using nonheme iron for growth. Infect Immun 66:2330–2336. [PubMed]
204. Adhikari P, Berish SA, Nowalk AJ, Veraldi KL, Morse SA, Mietzner TA. 1996. The fbpABC locus of Neisseria gonorrhoeae functions in the periplasm-to-cytosol transport of iron. J Bacteriol 178:2145–2149. [PubMed]
205. Biville F, Brézillon C, Giorgini D, Taha M-K. 2014. Pyrophosphate-mediated iron acquisition from transferrin in Neisseria meningitidis does not require TonB activity. PLoS One 9:e107612. doi:10.1371/journal.pone.0107612. [PubMed][CrossRef]
206. Miethke M, Marahiel MA. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451. [PubMed][CrossRef]
207. Carrano CJ, Raymond KN. 1979. Ferric ion sequestering agents. 2. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. J Am Chem Soc 101:5401–5404. [CrossRef]
208. Hider RC, Kong X. 2010. Chemistry and biology of siderophores. Nat Prod Rep 27:637–657. [PubMed][CrossRef]
209. Crosa JH, Walsh CT. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249. [CrossRef]
210. Challis GL. 2005. A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chembiochem 6:601–11. [PubMed][CrossRef]
211. Cendrowski S, MacArthur W, Hanna P. 2004. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51:407–417. [PubMed][CrossRef]
212. Hannauer M, Sheldon JR, Heinrichs DE. 2015. Involvement of major facilitator superfamily proteins SfaA and SbnD in staphyloferrin secretion in Staphylococcus aureus. FEBS Lett 589:730–737. [PubMed][CrossRef]
213. Beasley FC, Marolda CL, Cheung J, Buac S, Heinrichs DE. 2011. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by staphyloferrin A, staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect Immun 79:2345–2355. [PubMed][CrossRef]
214. Zawadzka AM, Abergel RJ, Nichiporuk R, Andersen UN, Raymond KN. 2009. Siderophore-mediated iron acquisition systems in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin. Biochemistry 48:3645–3657. [PubMed][CrossRef]
215. Sandrini SM, Shergill R, Woodward J, Muralikuttan R, Haigh RD, Lyte M, Freestone PP. 2010. Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin. J Bacteriol 192:587–594. [PubMed][CrossRef]
216. Goetz DH, Holmes MA, Borregaard N, Blumh ME, Raymond KN, Strong RK. 2002. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043. [PubMed][CrossRef]
217. Goetz DH, Willie ST, Armen RS, Bratt T, Borregaard N, Strong RK. 2000. Ligand preference inferred from the structure of neutrophil gelatinase associated lipocalin. Biochemistry 39:1935–1941. [PubMed][CrossRef]
218. Hantke K, Nicholson G, Rabsch W, Winkelmann G. 2003. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci USA 100:3677–3682. [PubMed][CrossRef]
219. Crouch M-LV, Castor M, Karlinsey JE, Kalhorn T, Fang FC. 2008. Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol Microbiol 67:971–983. [PubMed][CrossRef]
220. Worst DJ, M. Gerrits M, Vandenbroucke-Grauls CMJE, Kusters JG. 1998. Helicobacter pylori ribBA-mediated riboflavin production is involved in iron acquisition. J Bacteriol 180:1473–1479. [PubMed]
221. Velayudhan J, Hughes NJ, McColm AA, Bagshaw J, Clayton CL, Andrews SC, Kelly DJ. 2000. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Microbiol 37:274–286. [PubMed][CrossRef]
222. Homuth M, Valentin-Weigand P, Rohde M, Gerlach G-F. 1998. Identification and characterization of a novel extracellular ferric reductase from Mycobacterium paratuberculosis. Infect Immun 66:710–716. [PubMed]
223. Coulanges V, Andre P, Ziegler O, Buchheit L, Vidon DJ. 1997. Utilization of iron-catecholamine complexes involving ferric reductase activity in Listeria monocytogenes. Infect Immun 65:2778–2785. [PubMed]
224. Deneer HG, Healey V, Boychuk I. 1995. Reduction of exogenous ferric iron by a surface-associated ferric reductase of Listeria spp. Microbiology 141:1985–1892. [PubMed][CrossRef]
225. Coulanges V, Andre P, Vidon DJ. 1998. Effect of siderophores, catecholamines, and catechol compounds on Listeria spp.: growth in iron-complexed medium. Biochem Biophys Res Commun 249:526–530. [PubMed][CrossRef]
226. Cowart RE. 2002. Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition. Arch Biochem Biophys 400:273–281. [PubMed][CrossRef]
227. Tiwari KB, Birlingmair J, Wilkinson BJ, Jayaswal RK. 2014. The role of the twin-arginine translocase ( tat) system in iron uptake in Listeria monocytogenes. Microbiology 161:264–271. [PubMed][CrossRef]
228. Zheng H, Chatfield CH, Liles MR, Cianciotto NP. 2013. Secreted pyomelanin of Legionella pneumophila promotes bacterial iron uptake and growth under iron-limiting conditions. Infect Immun 81:4182–4191. [PubMed][CrossRef]
229. Chatfield CH, Cianciotto NP. 2007. The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect Immun 75:4062–4070. [PubMed][CrossRef]
230. Kwok EY, Severance S, Kosman DJ. 2006. Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron uptake complex in the yeast plasma membrane. Biochemistry 45:6317–6327. [PubMed][CrossRef]
231. Hantke K. 2003. Is the bacterial ferrous iron transporter FeoB a living fossil? Trends Microbiol 11:192–195. [PubMed][CrossRef]
232. Kammler M, Schön C, Hantke K. 1993. Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175:6212–6219. [PubMed]
233. Carpenter C, Payne SM. 2014. Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability. J Inorg Biochem 133:110–117. [PubMed][CrossRef]
234. Hantke K. 1987. Ferrous iron transport mutants in Escherichia coli K12. FEMS Microbiol Lett 44:53–57. [CrossRef]
235. Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC. 2006. Feo: transport of ferrous iron into bacteria. Biometals 19:143–157. [PubMed][CrossRef]
236. Marlovits TC, Haase W, Herrmann C, Aller SG, Unger VM. 2002. The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria. Proc Natl Acad Sci USA 99:16243–16248. [PubMed][CrossRef]
237. Kim H, Lee H, Shin D. 2012. The FeoA protein is necessary for the FeoB transporter to import ferrous iron. Biochem Biophys Res Commun 423:733–738. [PubMed][CrossRef]
238. Weaver EA, Wyckoff EE, Mey AR, Morrison R, Payne SM. 2013. FeoA and FeoC are essential components of the Vibrio cholerae ferrous iron uptake system, and FeoC interacts with FeoB. J Bacteriol 195:4826–4835. [PubMed][CrossRef]
239. Hung K-W, Juan T-H, Hsu Y-L, Huang TH. 2012. NMR structure note: the ferrous iron transport protein C (FeoC) from Klebsiella pneumoniae. J Biomol NMR 53:161–165. [PubMed][CrossRef]
240. Kim H, Lee H, Shin D. 2013. The FeoC protein leads to high cellular levels of the Fe(II) transporter FeoB by preventing FtsH protease regulation of FeoB in Salmonella enterica. J Bacteriol 195:3364–3370. [PubMed][CrossRef]
241. Kim H, Lee H, Shin D. 2015. Lon-mediated proteolysis of the FeoC protein prevents Salmonella enterica from accumulating the Fe(II) transporter FeoB under high-oxygen conditions. J Bacteriol 197:92–98. [PubMed][CrossRef]
242. Ledala N, Sengupta M, Muthaiyan A, Wilkinson BJ, Jayaswal RK. 2010. Transcriptomic response of Listeria monocytogenes to iron limitation and Fur mutation. Appl Environ Microbiol 76:406–416. [PubMed][CrossRef]
243. Ledala N, Zhang B, Seravalli J, Powers R, Somerville GA. 2014. Influence of iron and aeration on Staphylococcus aureus growth, metabolism, and transcription. J Bacteriol 196:2178–2189. [PubMed][CrossRef]
244. Grosse C, Scherer J, Koch D, Otto M, Taudte N, Grass G. 2006. A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. Mol Microbiol 62:120–131. [PubMed][CrossRef]
245. Cao J, Woodhall MR, Alvarez J, Cartron ML, Andrews SC. 2007. EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7. Mol Microbiol 65:857–875. [PubMed][CrossRef]
246. Létoffé S, Delepelaire P, Wandersman C. 2006. The housekeeping dipeptide permease is the Escherichia coli heme transporter and functions with two optional peptide binding proteins. Proc Natl Acad Sci USA 103:12891–12896. [PubMed][CrossRef]
247. Turlin E, Débarbouillé M, Augustyniak K, Gilles A-M, Wandersman C. 2013. Staphylococcus aureus FepA and FepB proteins drive heme iron utilization in Escherichia coli. PloS One 8:e56529. doi:10.1371/journal.pone.0056529. [PubMed][CrossRef]
248. Biswas L, Biswas R, Nerz C, Ohlsen K, Schlag M, Schäfer T, Lamkemeyer T, Ziebandt AK, Hantke K, Rosenstein R, Götz F. 2009. Role of the twin-arginine translocation pathway in Staphylococcus. J Bacteriol 191:5921–5929. [PubMed][CrossRef]
249. Miethke M, Monteferrante CG, Marahiel MA, van Dijl JM. 2013. The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron. Biochim Biophys Acta 1833:2267–2278. [PubMed][CrossRef]
250. Brickman TJ, Armstrong SK. 2012. Iron and pH-responsive FtrABCD ferrous iron utilization system of Bordetella species: Bordetella ferrous iron transport system. Mol Microbiol 86:580–593. [PubMed][CrossRef]
251. Elhassanny AEM, Anderson ES, Menscher EA, Roop RM. 2013. The ferrous iron transporter FtrABCD is required for the virulence of Brucella abortus 2308 in mice. Mol Microbiol 88:1070–1082. [PubMed][CrossRef]
252. Rajasekaran MB, Nilapwar S, Andrews SC, Watson KA. 2010. EfeO-cupredoxins: major new members of the cupredoxin superfamily with roles in bacterial iron transport. Biometals 23:1–17. [PubMed][CrossRef]
253. Létoffé S, Heuck G, Delepelaire P, Lange N, Wandersman C. 2009. Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. Proc Natl Acad Sci USA 106:11719–11724. [PubMed][CrossRef]
254. Liu X, Du Q, Wang Z, Zhu D, Huang Y, Li N, Wei T, Xu S, Gu L. 2011. Crystal structure and biochemical features of EfeB/YcdB from Escherichia coli O157: ASP235 plays divergent roles in different enzyme-catalyzed processes. J Biol Chem 286:14922–14931. [PubMed][CrossRef]
255. Dailey HA, Septer AN, Daugherty L, Thames D, Gerdes S, Stabb EV, Dunn AK, Dailey TA, Phillips JD. 2011. The Escherichia coli protein YfeX functions as a porphyrinogen oxidase, not a heme dechelatase. mBio 2:e00248-11. doi:10.1128/mBio.00248-11. [PubMed][CrossRef]
256. Clarke SR, Brummell KJ, Horsburgh MJ, McDowell PW, Mohamad SA, Stapleton MR, Acevedo J, Read RC, Day NP, Peacock SJ, Mond JJ, Kokai-Kun JF, Foster SJ. 2006. Identification of in vivo-expressed antigens of Staphylococcus aureus and their use in vaccinations for protection against nasal carriage. J Infect Dis 193:1098–1108. [PubMed][CrossRef]
257. Kim HK, DeDent A, Cheng AG, McAdow M, Bagnoli F, Missiakas DM, Schneewind O. 2010. IsdA and IsdB antibodies protect mice against Staphylococcus aureus abscess formation and lethal challenge. Vaccine 28:6382–6392. [PubMed][CrossRef]
258. Ster C, Beaudoin F, Diarra MS, Jacques M, Malouin F, Lacasse P. 2010. Evaluation of some Staphylococcus aureus iron-regulated proteins as vaccine targets. Vet Immunol Immunopathol 136:311–318. [PubMed][CrossRef]
259. Stranger-Jones YK, Bae T, Schneewind O. 2006. Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci USA 103:16942–16947. [PubMed][CrossRef]
260. Kuklin NA, Clark DJ, Secore S, Cook J, Cope LD, McNeely T, Noble L, Brown MJ, Zorman JK, Wang XM, Pancari G, Fan H, Isett K, Burgess B, Bryan J, Brownlow M, George H, Meinz M, Liddell ME, Kelly R, Schultz L, Montgomery D, Onishi J, Losada M, Martin M, Ebert T, Tan CY, Schofield TL, Nagy E, Meineke A, Joyce JG, Kurtz MB, Caulfield MJ, Jansen KU, McClements W, Anderson AS. 2006. A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect Immun 74:2215–2223. [PubMed][CrossRef]
261. Harro CD, Betts RF, Hartzel JS, Onorato MT, Lipka J, Smugar SS, Kartsonis NA. 2011. The immunogenicity and safety of different formulations of a novel Staphylococcus aureus vaccine (V710): results of two phase I studies. Vaccine 30:1729–1736. [PubMed][CrossRef]
262. Fowler VG, Allen KB, Moreira ED, Moustafa M, Isgro F, Boucher HW, Corey GR, Carmeli Y, Betts R, Hartzel JS, Chan ISF, McNeely TB, Kartsonis NA, Guris D, Onorato MT, Smugar SS, DiNubile MJ, Sobanjo-ter Meulen A. 2013. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 309:1368–1378. [PubMed][CrossRef]
263. Gorringe AR, Borrow R, Fox AJ, Robinson A. 1995. Human antibody response to meningococcal transferrin binding proteins: evidence for vaccine potential. Vaccine 13:1207–1212. [PubMed][CrossRef]
264. West D, Reddin K, Matheson M, Heath R, Funnell S, Hudson M, Robinson A, Gorringe A. 2001. Recombinant Neisseria meningitidis transferrin binding protein A protects against experimental meningococcal infection. Infect Immun 69:1561–1567. [PubMed][CrossRef]
265. Lissolo L, Maitre-Wilmotte G, Dumas P, Mignon M, Danve B, Quentin-Millet MJ. 1995. Evaluation of transferrin-binding protein 2 within the transferrin-binding protein complex as a potential antigen for future meningococcal vaccines. Infect Immun 63:884–890. [PubMed]
266. Ferreirós CM, Ferrón L, Criado MT. 1994. In vivo human immune response to transferrin-binding protein 2 and other iron-regulated proteins of Neisseria meningitidis. FEMS Immunol Med Microbiol 8:63–68. [PubMed][CrossRef]
267. Johnson AS, Gorringe AR, Fox AJ, Borrow R, Robinson A. 1997. Analysis of the human Ig isotype response to individual transferrin binding proteins A and B from Neisseria meningitidis. FEMS Immunol Med Microbiol 19:159–167. [PubMed][CrossRef]
268. Price GA, Hobbs MM, Cornelissen CN. 2004. Immunogenicity of gonococcal transferrin binding proteins during natural infections. Infect Immun 72:277–283. [PubMed][CrossRef]
269. Price GA, Russell MW, Cornelissen CN. 2005. Intranasal administration of recombinant Neisseria gonorrhoeae transferrin binding proteins A and B conjugated to the cholera toxin B subunit induces systemic and vaginal antibodies in mice. Infect Immun 73:3945–3953. [PubMed][CrossRef]
270. Ji C, Juárez-Hernández RE, Miller MJ. 2012. Exploiting bacterial iron acquisition: siderophore conjugates. Future Med Chem 4:297–313. [PubMed][CrossRef]
271. Švarcová M, Krátký M, Vinšová J. 2015. Investigation of potential inhibitors of chorismate-utilizing enzymes. Curr Med Chem 22:1383–1399. [PubMed][CrossRef]
272. Stojiljkovic I, Kumar V, Srinivasan N. 1999. Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. Mol Microbiol 31:429–442. [PubMed][CrossRef]
273. Banin E, Lozinski A, Brady KM, Berenshtein E, Butterfield PW, Moshe M, Chevion M, Greenberg EP, Banin E. 2008. The potential of desferrioxamine-gallium as an anti- Pseudomonas therapeutic agent. Proc Natl Acad Sci USA 105:16761–16766. [PubMed][CrossRef]
274. Hood MI, Skaar EP. 2012. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10:525–537. [PubMed][CrossRef]
275. Carlson PE, Carr KA, Janes BK, Anderson EC, Hanna PC. 2009. Transcriptional profiling of Bacillus anthracis Sterne (34F2) during iron starvation. PloS One 4:e6988. doi:10.1371/journal.pone.0006988. [PubMed][CrossRef]
276. Brickman TJ, Vanderpool CK, Armstrong SK. 2006. Heme transport contributes to in vivo fitness of Bordetella pertussis during primary infection in mice. Infect Immun 74:1741–1744. [PubMed][CrossRef]
277. Torres AG, Redford P, Welch RA, Payne SM. 2001. TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69:6179–6185. [PubMed][CrossRef]
278. Rosadini CV, Wong SMS, Akerley BJ. 2008. The periplasmic disulfide oxidoreductase DsbA contributes to Haemophilus influenzae pathogenesis. Infect Immun 76:1498–1508. [PubMed][CrossRef]
279. Jin B, Newton SM, Shao Y, Jiang X, Charbit A, Klebba PE. 2006. Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes. Mol Microbiol 59:1185–1198. [PubMed][CrossRef]
280. Stojiljkovic I, Hwa V, de Saint Martin L, O’Gaora P, Nassif X, Heffron F, So M. 1995. The Neisseria meningitidis haemoglobin receptor: its role in iron utilization and virulence. Mol Microbiol 15:531–541. [PubMed][CrossRef]
281. Fisher M, Huang Y-S, Li X, McIver KS, Toukoki C, Eichenbaum Z. 2008. Shr is a broad-spectrum surface receptor that contributes to adherence and virulence in group A streptococcus. Infect Immun 76:5006–5015. [PubMed][CrossRef]
282. Oh MH, Lee SM, Lee DH, Choi SH. 2009. Regulation of the Vibrio vulnificus hupA gene by temperature alteration and cyclic AMP receptor protein and evaluation of its role in virulence. Infect Immun 77:1208–1215. [PubMed][CrossRef]
283. Gaddy JA, Arivett BA, McConnell MJ, López-Rojas R, Pachón J, Actis LA. 2012. Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect Immun 80:1015–1024. [PubMed][CrossRef]
284. Palyada K, Threadgill D, Stintzi A. 2004. Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186:4714–4729. [PubMed][CrossRef]
285. Enard C, Diolez A, Expert D. 1988. Systemic virulence of Erwinia chrysanthemi 3937 requires a functional iron assimilation system. J Bacteriol 170:2419–2426. [PubMed]
286. Russo TA, Olson R, Macdonald U, Metzger D, Maltese LM, Drake EJ, Gulick AM. 2014. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect Immun 82:2356–2367. [PubMed][CrossRef]
287. Lawlor MS, O’connor C, Miller VL. 2007. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 75:1463–1472. [PubMed][CrossRef]
288. Allard KA, Dao J, Sanjeevaiah P, McCoy-Simandle K, Chatfield CH, Crumrine DS, Castignetti D, Cianciotto NP. 2009. Purification of legiobactin and importance of this siderophore in lung infection by Legionella pneumophila. Infect Immun 77:2887–2895. [PubMed][CrossRef]
289. Rodriguez GM, Smith I. 2006. Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J Bacteriol 188:424–430. [PubMed][CrossRef]
290. Burbank L, Mohammadi M, Roper MC. 2015. Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogen Pantoea stewartii subsp. stewartii. Appl Environ Microbiol 81:139–148. [PubMed][CrossRef]
291. Himpsl SD, Pearson MM, Arewång CJ, Nusca TD, Sherman DH, Mobley HLT. 2010. Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis. Mol Microbiol 78:138–157. [PubMed][CrossRef]
292. Takase H, Nitanai H, Hoshino K, Otani T. 2000. Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun 68:1834–1839. [PubMed][CrossRef]
293. Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. 2010. The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol 192:117–126. [PubMed][CrossRef]
294. Yancey RJ, Breeding SA, Lankford CE. 1979. Enterochelin (enterobactin): virulence factor for Salmonella typhimurium. Infect Immun 24:174–180. [PubMed]
295. Lawlor KM, Daskaleros PA, Robinson RE, Payne SM. 1987. Virulence of iron transport mutants of Shigella flexneri and utilization of host iron compounds. Infect Immun 55:594–599. [PubMed]
296. Bobrov AG, Kirillina O, Fetherston JD, Miller MC, Burlison JA, Perry RD. 2014. The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. Mol Microbiol 93:759–775. [PubMed][CrossRef]
297. Baltes N, Hennig-Pauka I, Gerlach G-F. 2002. Both transferrin binding proteins are virulence factors in Actinobacillus pleuropneumoniae serotype 7 infection. FEMS Microbiol Lett 209:283–287. [PubMed][CrossRef]
298. Renauld-Mongénie G, Poncet D, Mignon M, Fraysse S, Chabanel C, Danve B, Krell T, Quentin-Millet M-J. 2004. Role of transferrin receptor from a Neisseria meningitidis tbpB isotype II strain in human transferrin binding and virulence. Infect Immun 72:3461–3470. [PubMed][CrossRef]
299. Cornelissen CN, Kelley M, Hobbs MM, Anderson JE, Cannon JG, Cohen MS, Sparling PF. 1998. The transferrin receptor expressed by gonococcal strain FA1090 is required for the experimental infection of human male volunteers. Mol Microbiol 27:611–616. [PubMed][CrossRef]
300. Naikare H, Palyada K, Panciera R, Marlow D, Stintzi A. 2006. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect Immun 74:5433–5444. [PubMed][CrossRef]
301. Stojiljkovic I, Cobeljic M, Hantke K. 1993. Escherichia coli K-12 ferrous iron uptake mutants are impaired in their ability to colonize the mouse intestine. FEMS Microbiol Lett 108:111–115. [PubMed][CrossRef]
302. Thomas-Charles CA, Zheng H, Palmer LE, Mena P, Thanassi DG, Furie MB. 2013. FeoB-mediated uptake of iron by Francisella tularensis. Infect Immun 81:2828–2837. [PubMed][CrossRef]
303. Robey M, Cianciotto NP. 2002. Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun 70:5659–5669. [PubMed][CrossRef]
304. Dashper SG, Butler CA, Lissel JP, Paolini RA, Hoffmann B, Veith PD, O’Brien-Simpson NM, Snelgrove SL, Tsiros JT, Reynolds EC. 2005. A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation. J Biol Chem 280:28095–28102. [PubMed][CrossRef]
305. Janakiraman A, Slauch JM. 2000. The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol Microbiol 35:1146–1155. [PubMed][CrossRef]
306. Pandey A, Sonti RV. 2010. Role of the FeoB protein and siderophore in promoting virulence of Xanthomonas oryzae pv. oryzae on rice. J Bacteriol 192:3187–3203. [PubMed][CrossRef]

Article metrics loading...



Iron is an essential micronutrient for both microbes and humans alike. For well over half a century we have known that this element, in particular, plays a pivotal role in health and disease and, most especially, in shaping host-pathogen interactions. Intracellular iron concentrations serve as a critical signal in regulating the expression not only of high-affinity iron acquisition systems in bacteria, but also of toxins and other noted virulence factors produced by some major human pathogens. While we now are aware of many strategies that the host has devised to sequester iron from invading microbes, there are as many if not more sophisticated mechanisms by which successful pathogens overcome nutritional immunity imposed by the host. This review discusses some of the essential components of iron sequestration and scavenging mechanisms of the host, as well as representative Gram-negative and Gram-positive pathogens, and highlights recent advances in the field. Last, we address how the iron acquisition strategies of pathogenic bacteria may be exploited for the development of novel prophylactics or antimicrobials.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


The host versus pathogen battle for iron. Cartoon representation of the various strategies used by the host to sequester iron from invading pathogens and the counter strategies used by pathogens to obtain host iron. On mucosal surfaces, lactoferrin sequesters iron, yet bacteria can obtain iron from lactoferrin by secreting siderophores (i to iii), directly binding lactoferrin (iv), or by secreting reductases (pink pill) that reduce iron from FeIII to FeII, releasing it from lactoferrin (v to viii). Bacteria can obtain iron bound to heme by secreting hemolysins which release intracellular hemoglobin and heme into the blood. While the host uses hemoglobin- and heme-scavenging proteins to sequester these iron sources, bacteria have mechanisms to counter these systems (1 to 12). Macrophages move iron from the phagosome and the cell using natural resistance macrophage protein 1 and ferroportin, respectively, to keep iron from intracellular pathogens. In response to binding by the iron homeostasis hormone hepcidin, membrane-bound ferroportin is degraded, thus withholding iron in intracellular compartments. FeII that is secreted is rapidly oxidized by ceruloplasmin (Cp), and the FeIII is quickly picked up by transferrin (a, b). Transferrin-bound iron is scavenged by bacteria using transferrin-binding proteins (c) or through secretion of siderophores (d to f). Bacteria can also obtain iron using the mammalian siderophore 2,5-DHBA (g). Neutrophils secrete NGAL (also known as siderocalin, lipocalin 2, or 24p3) (I) which serves to capture some bacterial siderophores (II, III). Some bacteria synthesize and secrete stealth siderophores which are not bound by NGAL and can remove transferrin-bound iron even in the presence of NGAL (IV to VI). Lf, lactoferrin; Tf, transferrin; sid, siderophore; Hp, haptoglobin; Hx, hemopexin; Hb, hemoglobin; Hm, heme; Cp, ceruloplasmin.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


Model of iron uptake mechanisms in Gram-negative and Gram-positive bacteria. Diagrams depicting the envelope proteins required for the uptake of iron, or iron scavenged from siderophores, heme, or transferrin. This is a composite diagram and represents mechanisms used by many pathogenic bacteria, as described in the text. OM, outer membrane; PG, peptidoglycan; CM, cytoplasmic membrane; sid, FeIII-siderophore; Hm, heme; Tf, transferrin; OMP, outer membrane porin; HO, heme oxygenase; Hb, hemoglobin; Hp, haptoglobin. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews Microbiology ( 274 ), copyright 2012.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view


Model of TonB-dependent transport in Gram-negative bacteria. An iron-siderophore complex (blue hexagon) entering through a TonB-dependent transporter (TBDT) in the outer membrane (OM). Although the transport of an iron siderophore complex is shown here, iron, or other iron complexes, use similar uptake mechanisms (e.g., FeIII, heme) (see Fig. 1 ). Movement through the TBDT requires an interaction of the TonB box (located near the N-terminus of the TBDT sequence) with the TonB protein, with the energy for conformational changes provided by the proton motive force captured by the ExbB and ExbD proteins. Once in the periplasm, the iron-loaded siderophore complex is recognized by a substrate-binding protein which delivers the complex to an ABC transporter in the cytoplasmic membrane (CM). Depending on the particular system, iron is released from the siderophore in the cytoplasm by either destruction of the siderophore or reduction on the metal (as shown). Intracellular iron, via Fur, negatively regulates transcription of genes encoding high-affinity iron acquisition systems. In some TBDTs, an N-terminal extension is present to provide an extra layer of control of gene expression, in addition to Fur. This involves an anti-σ factor and extracytoplasmic function σ-factor, allowing for gene expression in response to the uptake of particular iron chelates. Modified with permission from Annual Review of Microbiology, volume 64 © by Annual Reviews, http://www.annualreviews.org. See Noinaj et al. ( 91 ).

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view


Structure of a representative TBDT. A ribbon diagram of the ferric pyoverdine (FpvA) receptor, bound to pyoverdine. The structure (PDB 2W16) illustrates the 22-stranded β-barrel (green) surrounding the N-terminal “plug” domain (yellow), which is attached to the N-terminal extension signaling domain (red). Pyoverdine bound to the receptor is shown using orange space filling. The side and top views of the structure are illustrated. In the latter view, the pyoverdine has been removed.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view


Structure of BtuCDF. A ribbon diagram of the BtuCDF complex (PDB 2QI9), representative of the iron-siderophore/cobalamin family of cytoplasmic membrane transporters. The two lobes of the substrate-binding protein BtuF (magenta) are docked on top of the two permease domains (BtuC, monomers colored yellow and green) which are associated with ATP-binding proteins (BtuD, monomers colored red and blue).

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view


Structure of TbpB bound to iron-loaded human transferrin. Depicted is a ribbon diagram of PDB 3VE1 illustrating the binding of human transferrin (also illustrated with transparent surface; N lobe colored blue, C lobe colored yellow, iron depicted with red sphere) by TbpB colored from the N terminus (in blue) to the C terminus (in red). Some relevant domains are indicated. More detail on this structure can be found in Calmettes et al. ( 187 ).

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

Click to view


Structures of representative catechol-containing stealth and nonstealth siderophores. Stealth siderophores are not bound by mammalian siderocalin.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Click to view


Examples of heme acquisition systems essential for virulence

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0010-2015
Generic image for table

Click to view


Examples of siderophore and transferrin-binding protein-dependent iron acquisition systems essential for virulence

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0010-2015
Generic image for table

Click to view


Examples of inorganic iron uptake systems essential for virulence

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0010-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error