No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Staying Alive: ’s Cycle of Environmental Survival, Transmission, and Dissemination

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    2.47 MB
  • XML
    283.74 Kb
  • HTML
    284.86 Kb
  • Authors: Jenna G. Conner1, Jennifer K. Teschler2, Christopher J. Jones3, Fitnat H. Yildiz4
  • Editors: Indira T. Kudva5, Tracy L. Nicholson6
    Affiliations: 1: Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064; 2: Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064; 3: Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064; 4: Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064; 5: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA; 6: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA
  • Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0015-2015
  • Received 19 March 2015 Accepted 30 April 2015 Published 04 March 2016
  • Fitnat H. Yildiz, [email protected]
image of Staying Alive: <span class="jp-italic">Vibrio cholerae</span>’s Cycle of Environmental Survival, Transmission, and Dissemination
    Preview this microbiology spectrum article:
    Zoom in

    Staying Alive: ’s Cycle of Environmental Survival, Transmission, and Dissemination, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/2/VMBF-0015-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/2/VMBF-0015-2015-2.gif
  • Abstract:

    Infectious diseases kill nearly 9 million people annually. Bacterial pathogens are responsible for a large proportion of these diseases, and the bacterial agents of pneumonia, diarrhea, and tuberculosis are leading causes of death and disability worldwide. Increasingly, the crucial role of nonhost environments in the life cycle of bacterial pathogens is being recognized. Heightened scrutiny has been given to the biological processes impacting pathogen dissemination and survival in the natural environment, because these processes are essential for the transmission of pathogenic bacteria to new hosts. This chapter focuses on the model environmental pathogen to describe recent advances in our understanding of how pathogens survive between hosts and to highlight the processes necessary to support the cycle of environmental survival, transmission, and dissemination. We describe the physiological and molecular responses of to changing environmental conditions, focusing on its survival in aquatic reservoirs between hosts and its entry into and exit from human hosts.

  • Citation: Conner J, Teschler J, Jones C, Yildiz F. 2016. Staying Alive: ’s Cycle of Environmental Survival, Transmission, and Dissemination. Microbiol Spectrum 4(2):VMBF-0015-2015. doi:10.1128/microbiolspec.VMBF-0015-2015.


1. World Health Organization. 2012. TDR Global Report for Research on Infectious Diseases of Poverty. http://www.who.int/tdr/publications/global_report/en/.
2. Ali M, Lopez AL, You YA, Kim YE, Sah B, Maskery B, Clemens J. 2012. The global burden of cholera. Bull World Health Organ 90:209–218A. [PubMed][CrossRef]
3. Kaper JB, Morris JG, Levine MM. 1995. Cholera. Clin Microbiol Rev 8:48–86. [PubMed]
4. Charles RC, Ryan ET. 2011. Cholera in the 21st century. Curr Opin Infect Dis 24:472–477. [PubMed][CrossRef]
5. Chin C-S, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P, Paxinos EE, Yamaichi Y, Calderwood SB, Mekalanos JJ, Schadt EE, Waldor MK. 2011. The origin of the Haitian cholera outbreak strain. N Engl J Med 364:33–42. [PubMed][CrossRef]
6. Nguyen BM, Lee JH, Cuong NT, Choi SY, Hien NT, Anh DD, Lee HR, Ansaruzzaman M, Endtz HP, Chun J, Lopez AL, Czerkinsky C, Clemens JD, Kim DW. 2009. Cholera outbreaks caused by an altered Vibrio cholerae O1 El Tor biotype strain producing classical cholera toxin B in Vietnam in 2007 to 2008. J Clin Microbiol 47:1568–1571. [PubMed][CrossRef]
7. Mason PR. 2009. Zimbabwe experiences the worst epidemic of cholera in Africa. J Infect Dev Ctries 3:148–151. [PubMed][CrossRef]
8. Alam M, Sultana M, Nair GB, Sack RB, Sack DA, Siddique AK, Ali A, Huq A, Colwell RR. 2006. Toxigenic Vibrio cholerae in the aquatic environment of Mathbaria, Bangladesh. Appl Environ Microbiol 72:2849–2855. [PubMed][CrossRef]
9. Faruque SM, Albert MJ, Mekalanos JJ. 1998. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62:1301–1314. [PubMed]
10. Huq A, Sack RB, Nizam A, Longini IM, Nair GB, Ali A, Morris JG, Khan MNH, Siddique AK, Yunus M, Albert MJ, Sack DA, Colwell RR. 2005. Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl Environ Microbiol 71:4645–4654. [PubMed][CrossRef]
11. Weil AA, Khan AI, Chowdhury F, Larocque RC, Faruque ASG, Ryan ET, Calderwood SB, Qadri F, Harris JB. 2009. Clinical outcomes in household contacts of patients with cholera in Bangladesh. Clin Infect Dis 49:1473–1479. [PubMed][CrossRef]
12. Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK, Camilli A. 2002. Host-induced epidemic spread of the cholera bacterium. Nature 417:642–645. [PubMed][CrossRef]
13. Chowdhury F, Khan AI, Harris JB, LaRocque RC, Chowdhury MI, Ryan ET, Faruque ASG, Calderwood SB, Qadri F. 2008. A comparison of clinical and immunologic features in children and older patients hospitalized with severe cholera in Bangladesh. Pediatr Infect Dis J 27:986–992. [PubMed][CrossRef]
14. Harris JB, LaRocque RC, Chowdhury F, Khan AI, Logvinenko T, Faruque ASG, Ryan ET, Qadri F, Calderwood SB. 2008. Susceptibility to Vibrio cholerae infection in a cohort of household contacts of patients with cholera in Bangladesh. PLoS Negl Trop Dis 2:e221. doi:10.1371/journal.pntd.0000221. [CrossRef]
15. Harris JB, Khan AI, LaRocque RC, Dorer DJ, Chowdhury F, Faruque ASG, Sack DA, Ryan ET, Qadri F, Calderwood SB. 2005. Blood group, immunity, and risk of infection with Vibrio cholerae in an area of endemicity. Infect Immun 73:7422–7427. [PubMed][CrossRef]
16. Holmner A, Mackenzie A, Krengel U. 2010. Molecular basis of cholera blood-group dependence and implications for a world characterized by climate change. FEBS Lett 584:2548–2555. [PubMed][CrossRef]
17. Glass RI, Holmgren J, Haley CE, Khan MR, Svennerholm AM, Stoll BJ, Belayet Hossain KM, Black RE, Yunus M, Barua D. 1985. Predisposition for cholera of individuals with O blood group. Possible evolutionary significance. Am J Epidemiol 121:791–796. [PubMed]
18. Barua D, Paguio AS. 1977. ABO blood groups and cholera. Ann Hum Biol 4:489–492. [PubMed][CrossRef]
19. Mukhopadhyay AK, Takeda Y, Nair GB. 2014. Cholera outbreaks in the El Tor biotype era and the impact of the new El Tor variants, p 17–47. In Nair, GB, Takeda, Y (ed), Cholera Outbreaks. Springer, Heidelberg, Germany. [CrossRef]
20. Faruque AS, Fuchs GJ, Albert MJ. 1996. Changing epidemiology of cholera due to Vibrio cholerae O1 and O139 Bengal in Dhaka, Bangladesh. Epidemiol Infect 116:275–278. [PubMed][CrossRef]
21. Faruque SM, Chowdhury N, Kamruzzaman M, Ahmad QS, Faruque ASG, Salam MA, Ramamurthy T, Nair GB, Weintraub A, Sack DA. 2003. Reemergence of epidemic Vibrio cholerae O139, Bangladesh. Emerg Infect Dis 9:1116–1122. [PubMed][CrossRef]
22. Safa A, Nair GB, Kong RYC. 2010. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 18:46–54. [PubMed][CrossRef]
23. Grim CJ, Hasan NA, Taviani E, Haley B, Chun J, Brettin TS, Bruce DC, Detter JC, Han CS, Chertkov O, Challacombe J, Huq A, Nair GB, Colwell RR. 2010. Genome sequence of hybrid Vibrio cholerae O1 MJ-1236, B-33, and CIRS101 and comparative genomics with V. cholerae. J Bacteriol 192:3524–3533. [PubMed][CrossRef]
24. Kanungo S, Sah BK, Lopez AL, Sung JS, Paisley AM, Sur D, Clemens JD, Nair GB. 2010. Cholera in India: an analysis of reports, 1997–2006. Bull World Health Organ 88:185–191. [PubMed][CrossRef]
25. Siddique AK, Nair GB, Alam M, Sack DA, Huq A, Nizam A, Longini IM, Qadri F, Faruque SM, Colwell RR, Ahmed S, Iqbal A, Bhuiyan NA, Sack RB. 2010. El Tor cholera with severe disease: a new threat to Asia and beyond. Epidemiol Infect 138:347–352. [PubMed][CrossRef]
26. Piarroux R, Barrais R, Faucher B, Haus R, Piarroux M, Gaudart J, Magloire R, Didier R. 2011. Understanding the cholera epidemic, Haiti. Emerg Infect Dis 17:1161–1167. [PubMed][CrossRef]
27. Wai SN, Mizunoe Y, Takade A, Kawabata SI, Yoshida SI. 1998. Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol 64:3648–3655. [PubMed]
28. Beyhan S, Yildiz FH. 2007. Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signalling pathway. Mol Microbiol 63:995–1007. [PubMed][CrossRef]
29. Matz C, McDougald D, Moreno AM, Yung PY, Yildiz FH, Kjelleberg S. 2005. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc Natl Acad Sci USA 102:16819–16824. [PubMed][CrossRef]
30. Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR. 1990. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol 56:1977–1980. [PubMed]
31. Tamayo R, Patimalla B, Camilli A. 2010. Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect Immun 78:3560–3569. [PubMed][CrossRef]
32. Huq A, Xu B, Chowdhury MA, Islam MS, Montilla R, Colwell RR. 1996. A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries. Appl Environ Microbiol 62:2508–2512. [PubMed]
33. Colwell RR, Huq A, Islam MS, Aziz KMA, Yunus M, Khan NH, Mahmud A, Sack RB, Nair GB, Chakraborty J, Sack DA, Russek-Cohen E. 2003. Reduction of cholera in Bangladeshi villages by simple filtration. Proc Natl Acad Sci USA 100:1051–1055. [PubMed][CrossRef]
34. Faruque SM, Biswas K, Udden SMN, Ahmad QS, Sack DA, Nair GB, Mekalanos JJ. 2006. Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc Natl Acad Sci USA 103:6350–6355. [PubMed][CrossRef]
35. Nielsen AT, Dolganov NA, Rasmussen T, Otto G, Miller MC, Felt SA, Torreilles S, Schoolnik GK. 2010. A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine. PLoS Pathog 6:e1001102. doi:10.1371/journal.ppat.1001102. [PubMed][CrossRef]
36. Watnick PI, Kolter R. 1999. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595. [PubMed][CrossRef]
37. Utada AS, Bennett RR, Fong JCN, Gibiansky ML, Yildiz FH, Golestanian R, Wong GCL. 2014. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat Commun 5:4913. [PubMed][CrossRef]
38. Yildiz FH, Schoolnik GK. 1999. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96:4028–4033. [PubMed][CrossRef]
39. Lauga E, DiLuzio WR, Whitesides GM, Stone HA. 2006. Swimming in circles: motion of bacteria near solid boundaries. Biophys J 90:400–412. [PubMed][CrossRef]
40. Kojima S, Yamamoto K, Kawagishi I, Homma M. 1999. The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. J Bacteriol 181:1927–1930. [PubMed]
41. Reichhardt C, Fong JCN, Yildiz F, Cegelski L. 2015. Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach. Biochim Biophys Acta 1848:378–383. [PubMed][CrossRef]
42. Berk V, Fong JCN, Dempsey GT, Develioglu ON, Zhuang X, Liphardt J, Yildiz FH, Chu S. 2012. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337:236–239. [PubMed][CrossRef]
43. Fong JCN, Karplus K, Schoolnik GK, Yildiz FH. 2006. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J Bacteriol 188:1049–1059. [PubMed][CrossRef]
44. Fong JCN, Yildiz FH. 2007. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol 189:2319–2330. [PubMed][CrossRef]
45. Seper A, Fengler VHI, Roier S, Wolinski H, Kohlwein SD, Bishop AL, Camilli A, Reidl J, Schild S. 2011. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol Microbiol 82:1015–1037. [PubMed][CrossRef]
46. Fong JCN, Syed KA, Klose KE, Yildiz FH. 2010. Role of Vibrio polysaccharide ( vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology 156:2757–2769. [PubMed][CrossRef]
47. Yildiz F, Fong J, Sadovskaya I, Grard T, Vinogradov E. 2014. Structural characterization of the extracellular polysaccharide from Vibrio cholerae O1 El-Tor. PLoS One 9:e86751. doi:10.1371/journal.pone.0086751. [PubMed][CrossRef]
48. Johnson TL, Fong JC, Rule C, Rogers A, Yildiz FH, Sandkvist M. 2014. The type II secretion system delivers matrix proteins for biofilm formation by Vibrio cholerae. J Bacteriol 196:4245–4252. [PubMed][CrossRef]
49. Beyhan S, Bilecen K, Salama SR, Casper-Lindley C, Yildiz FH. 2007. Regulation of rugosity and biofilm formation in Vibrio cholerae: comparison of VpsT and VpsR regulons and epistasis analysis of vpsT, vpsR, and hapR. J Bacteriol 189:388–402. [PubMed][CrossRef]
50. Yildiz FH, Dolganov NA, Schoolnik GK. 2001. VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPS(ETr)-associated phenotypes in Vibrio cholerae O1 El Tor. J Bacteriol 183:1716–1726. [PubMed][CrossRef]
51. Yildiz FH, Liu XS, Heydorn A, Schoolnik GK. 2004. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53:497–515. [PubMed][CrossRef]
52. Krasteva PV, Fong JCN, Shikuma NJ, Beyhan S, Navarro MVAS, Yildiz FH, Sondermann H. 2010. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327:866–868. [PubMed][CrossRef]
53. Zamorano-Sánchez D, Fong JCN, Kilic S, Erill I, Yildiz FH. 2015. Identification and characterization of VpsR and VpsT binding sites in Vibrio cholerae. J Bacteriol 197:1221–1235. [PubMed][CrossRef]
54. Yang M, Frey EM, Liu Z, Bishar R, Zhu J. 2010. The virulence transcriptional activator AphA enhances biofilm formation by Vibrio cholerae by activating expression of the biofilm regulator VpsT. Infect Immun 78:697–703. [PubMed][CrossRef]
55. Hammer BK, Bassler BL. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50:101–104. [PubMed][CrossRef]
56. Zhu J, Mekalanos JJ. 2003. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5:647–656. [PubMed][CrossRef]
57. Waters CM, Lu W, Rabinowitz JD, Bassler BL. 2008. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190:2527–2536. [PubMed][CrossRef]
58. Tsou AM, Liu Z, Cai T, Zhu J. 2011. The VarS/VarA two-component system modulates the activity of the Vibrio cholerae quorum-sensing transcriptional regulator HapR. Microbiology 157:1620–1628. [PubMed][CrossRef]
59. Lenz DH, Bassler BL. 2007. The small nucleoid protein Fis is involved in Vibrio cholerae quorum sensing. Mol Microbiol 63:859–871. [PubMed][CrossRef]
60. Shikuma NJ, Fong JCN, Odell LS, Perchuk BS, Laub MT, Yildiz FH. 2009. Overexpression of VpsS, a hybrid sensor kinase, enhances biofilm formation in Vibrio cholerae. J Bacteriol 191:5147–5158. [PubMed][CrossRef]
61. Liang W, Pascual-Montano A, Silva AJ, Benitez JA. 2007. The cyclic AMP receptor protein modulates quorum sensing, motility and multiple genes that affect intestinal colonization in Vibrio cholerae. Microbiology 153:2964–2975. [PubMed][CrossRef]
62. Liu Z, Hsiao A, Joelsson A, Zhu J. 2006. The transcriptional regulator VqmA increases expression of the quorum-sensing activator HapR in Vibrio cholerae. J Bacteriol 188:2446–2453. [PubMed][CrossRef]
63. Liu Z, Stirling FR, Zhu J. 2007. Temporal quorum-sensing induction regulates Vibrio cholerae biofilm architecture. Infect Immun 75:122–126. [PubMed][CrossRef]
64. Stonehouse EA, Hulbert RR, Nye MB, Skorupski K, Taylor RK. 2011. H-NS binding and repression of the ctx promoter in Vibrio cholerae. J Bacteriol 193:979–988. [PubMed][CrossRef]
65. Wang H, Ayala JC, Silva AJ, Benitez JA. 2012. The histone-like nucleoid structuring protein (H-NS) is a repressor of Vibrio cholerae exopolysaccharide biosynthesis ( vps) genes. Appl Environ Microbiol 78:2482–2488. [PubMed][CrossRef]
66. Beyhan S, Tischler AD, Camilli A, Yildiz FH. 2006. Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J Bacteriol 188:3600–3613. [PubMed][CrossRef]
67. Cockerell SR, Rutkovsky AC, Zayner JP, Cooper RE, Porter LR, Pendergraft SS, Parker ZM, McGinnis MW, Karatan E. 2014. Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals independent of their transport. Microbiology 160:832–843. [PubMed][CrossRef]
68. Beyhan S, Odell LS, Yildiz FH. 2008. Identification and characterization of cyclic diguanylate signaling systems controlling rugosity in Vibrio cholerae. J Bacteriol 190:7392–7405. [PubMed][CrossRef]
69. Koestler BJ, Waters CM. 2014. Bile acids and bicarbonate inversely regulate intracellular cyclic di-GMP in Vibrio cholerae. Infect Immun 82:3002–3014. [PubMed][CrossRef]
70. Townsley L, Yildiz FH. 2015. Temperature affects c-di-GMP signaling and biofilm formation in Vibrio cholerae. Environ Microbiol. [Epub ahead of print.] doi:10.1111/1462-2920.12799. [CrossRef]
71. Pratt JT, Tamayo R, Tischler AD, Camilli A. 2007. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J Biol Chem 282:12860–12870. [PubMed][CrossRef]
72. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR. 2008. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413. [PubMed][CrossRef]
73. Srivastava D, Hsieh M-L, Khataokar A, Neiditch MB, Waters CM. 2013. Cyclic di-GMP inhibits Vibrio cholerae motility by repressing induction of transcription and inducing extracellular polysaccharide production. Mol Microbiol 90:1262–1276. [PubMed][CrossRef]
74. Liang W, Silva AJ, Benitez JA. 2007. The cyclic AMP receptor protein modulates colonial morphology in Vibrio cholerae. Appl Environ Microbiol 73:7482–7487. [PubMed][CrossRef]
75. Fong JCN, Yildiz FH. 2008. Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J Bacteriol 190:6646–6659. [PubMed][CrossRef]
76. Das B, Pal RR, Bag S, Bhadra RK. 2009. Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene. Mol Microbiol 72:380–398. [PubMed][CrossRef]
77. Raskin DM, Judson N, Mekalanos JJ. 2007. Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae. Proc Natl Acad Sci USA 104:4636–4641. [PubMed][CrossRef]
78. He H, Cooper JN, Mishra A, Raskin DM. 2012. Stringent response regulation of biofilm formation in Vibrio cholerae. J Bacteriol 194:2962–2972. [PubMed][CrossRef]
79. Kapfhammer D, Karatan E, Pflughoeft KJ, Watnick PI. 2005. Role for glycine betaine transport in Vibrio cholerae osmoadaptation and biofilm formation within microbial communities. Appl Environ Microbiol 71:3840–3847. [PubMed][CrossRef]
80. Shikuma NJ, Yildiz FH. 2009. Identification and characterization of OscR, a transcriptional regulator involved in osmolarity adaptation in Vibrio cholerae. J Bacteriol 191:4082–4096. [PubMed][CrossRef]
81. Shikuma NJ, Davis KR, Fong JNC, Yildiz FH. 2013. The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae. Environ Microbiol 15:1387–1399. [PubMed][CrossRef]
82. Mueller RS, Beyhan S, Saini SG, Yildiz FH, Bartlett DH. 2009. Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol 191:3504–3516. [PubMed][CrossRef]
83. Hung DT, Zhu J, Sturtevant D, Mekalanos JJ. 2006. Bile acids stimulate biofilm formation in Vibrio cholerae. Mol Microbiol 59:193–201. [PubMed][CrossRef]
84. Houot L, Chang S, Pickering BS, Absalon C, Watnick PI. 2010. The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J Bacteriol 192:3055–3067. [PubMed][CrossRef]
85. Ymele-Leki P, Houot L, Watnick PI. 2013. Mannitol and the mannitol-specific enzyme IIB subunit activate Vibrio cholerae biofilm formation. Appl Environ Microbiol 79:4675–4683. [PubMed][CrossRef]
86. Igarashi K, Kashiwagi K. 2000. Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564. [PubMed][CrossRef]
87. McGinnis MW, Parker ZM, Walter NE, Rutkovsky AC, Cartaya-Marin C, Karatan E. 2009. Spermidine regulates Vibrio cholerae biofilm formation via transport and signaling pathways. FEMS Microbiol Lett 299:166–174. [PubMed][CrossRef]
88. Karatan E, Duncan TR, Watnick PI. 2005. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 187:7434–7443. [PubMed][CrossRef]
89. Kierek K, Watnick PI. 2003. Environmental determinants of Vibrio cholerae biofilm development. Appl Environ Microbiol 69:5079–5088. [PubMed][CrossRef]
90. Bilecen K, Yildiz FH. 2010. Identification of a calcium-controlled negative regulatory system affecting Vibrio cholerae biofilm formation. Environ Microbiol 11:2015–2029. [PubMed][CrossRef]
91. Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. 1983. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283. [PubMed]
92. Islam MS, Jahid MIK, Rahman MM, Rahman MZ, Islam MS, Kabir MS, Sack DA, Schoolnik GK. 2007. Biofilm acts as a microenvironment for plankton-associated Vibrio cholerae in the aquatic environment of Bangladesh. Microbiol Immunol 51:369–379. [PubMed][CrossRef]
93. Meibom KL, Li XB, Nielsen AT, Wu C-Y, Roseman S, Schoolnik GK. 2004. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 101:2524–2529. [PubMed][CrossRef]
94. Kirn TJ, Jude BA, Taylor RK. 2005. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438:863–866. [PubMed][CrossRef]
95. Meibom KL, Blokesch M, Dolganov NA, Wu C-Y, Schoolnik GK. 2005. Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827. [PubMed][CrossRef]
96. Blokesch M. 2012. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ Microbiol 14:1898–1912. [PubMed][CrossRef]
97. Broza M, Gancz H, Halpern M, Kashi Y. 2005. Adult non-biting midges: possible windborne carriers of Vibrio cholerae non-O1 non-O139. Environ Microbiol 7:576–585. [PubMed][CrossRef]
98. Nahar S, Sultana M, Naser MN, Nair GB, Watanabe H, Ohnishi M, Yamamoto S, Endtz H, Cravioto A, Sack RB, Hasan NA, Sadique A, Huq A, Colwell RR, Alam M. 2011. Role of shrimp chitin in the ecology of toxigenic Vibrio cholerae and cholera transmission. Front Microbiol 2:260. [PubMed]
99. Li X, Roseman S. 2004. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci USA 101:627–631. [PubMed][CrossRef]
100. Yamamoto S, Mitobe J, Ishikawa T, Wai SN, Ohnishi M, Watanabe H, Izumiya H. 2014. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae. Mol Microbiol 91:326–347. [PubMed][CrossRef]
101. Dalia AB, Lazinski DW, Camilli A. 2014. Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. MBio 5:e01028-13. doi:10.1128/mBio.01028-13. [PubMed][CrossRef]
102. Yamamoto S, Izumiya H, Mitobe J, Morita M, Arakawa E, Ohnishi M, Watanabe H. 2011. Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J Bacteriol 193:1953–1965. [PubMed][CrossRef]
103. Lo Scrudato M, Blokesch M. 2013. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res 41:3644–3658. [PubMed][CrossRef]
104. Wong E, Vaaje-Kolstad G, Ghosh A, Hurtado-Guerrero R, Konarev P V, Ibrahim AFM, Svergun DI, Eijsink VGH, Chatterjee NS, van Aalten DMF. 2012. The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog 8:e1002373. doi:10.1371/journal.ppat.1002373. [CrossRef]
105. Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, Nandy RK, Bhadra RK, Chatterjee NS. 2008. Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun 76:4968–4977. [PubMed][CrossRef]
106. Mondal M, Nag D, Koley H, Saha DR, Chatterjee NS. 2014. The Vibrio cholerae extracellular chitinase ChiA2 is important for survival and pathogenesis in the host intestine. PLoS One 9:e103119. doi:10.1371/journal.pone.0103119. [CrossRef]
107. Bourassa L, Camilli A. 2009. Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Mol Microbiol 72:124–138. [PubMed][CrossRef]
108. Kamp HD, Patimalla-Dipali B, Lazinski DW, Wallace-Gadsden F, Camilli A. 2013. Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle. PLoS Pathog 9:e1003800. doi:10.1371/journal.ppat.1003800. [PubMed][CrossRef]
109. Baker CS, Morozov I, Suzuki K, Romeo T, Babitzke P. 2002. CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 44:1599–1610. [PubMed][CrossRef]
110. Pratt JT, Ismail AM, Camilli A. 2010. PhoB regulates both environmental and virulence gene expression in Vibrio cholerae. Mol Microbiol 77:1595–1605. [PubMed][CrossRef]
111. Pratt JT, McDonough E, Camilli A. 2009. PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae. J Bacteriol 191:6632–6642. [PubMed][CrossRef]
112. Von Krüger WMA, Lery LMS, Soares MR, de Neves-Manta FS, Batista e Silva CM, Neves-Ferreira AGDC, Perales J, Bisch PM. 2006. The phosphate-starvation response in Vibrio cholerae O1 and phoB mutant under proteomic analysis: disclosing functions involved in adaptation, survival and virulence. Proteomics 6:1495–1511. [PubMed][CrossRef]
113. Von Kruger WMA, Humphreys S, Ketley JM. 1999. A role for the PhoBR regulatory system homologue in the Vibrio cholerae phosphate-limitation response and intestinal colonization. Microbiology 145:2463–2475. [PubMed][CrossRef]
114. Jahid IK, Silva AJ, Benitez JA. 2006. Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl Environ Microbiol 72:7043–7049. [PubMed][CrossRef]
115. Mey AR, Wyckoff EE, Kanukurthy V, Fisher CR, Payne SM. 2005. Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect Immun 73:8167–8178. [PubMed][CrossRef]
116. Wyckoff EE, Mey AR, Leimbach A, Fisher CF, Payne SM. 2006. Characterization of ferric and ferrous iron transport systems in Vibrio cholerae. J Bacteriol 188:6515–6523. [PubMed][CrossRef]
117. Andrews SC, Robinson AK, Rodríguez-Quiñones F. 2003. Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237. [PubMed][CrossRef]
118. Crosa JH, Walsh CT. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249. [CrossRef]
119. Keating TA, Marshall CG, Walsh CT. 2000. Reconstitution and characterization of the Vibrio cholerae vibriobactin synthetase from VibB, VibE, VibF, and VibH. Biochemistry 39:15522–15530. [PubMed][CrossRef]
120. Li N, Zhang C, Li B, Liu X, Huang Y, Xu S, Gu L. 2012. Unique iron coordination in iron-chelating molecule vibriobactin helps Vibrio cholerae evade mammalian siderocalin-mediated immune response. J Biol Chem 287:8912–8919. [PubMed][CrossRef]
121. Occhino DA, Wyckoff EE, Henderson DP, Wrona TJ, Payne SM. 1998. Vibrio cholerae iron transport: haem transport genes are linked to one of two sets of tonB, exbB, exbD genes. Mol Microbiol 29:1493–1507. [PubMed][CrossRef]
122. Butterton JR, Stoebner JA, Payne SM, Calderwoodl SB. 1992. Cloning, sequencing, and transcriptional regulation of viuA, the gene encoding the ferric vibriobactin receptor of Vibrio cholerae. J Bacteriol 174:3729–3738. [PubMed]
123. Wyckoff EE, Valle A, Smith SL, Payne SM. 1999. A multifunctional ATP-binding cassette transporter system from Vibrio cholerae transports vibriobactin and enterobactin. J Bacteriol 181:7588–7596. [PubMed]
124. Mey AR, Wyckoff EE, Oglesby AG, Rab E, Taylor RK, Payne SM. 2002. Identification of the Vibrio cholerae enterobactin receptors VctA and IrgA: IrgA is not required for virulence. Infect Immun 70:3419–3426. [PubMed][CrossRef]
125. Butterton JR, Calderwoodl SB. 1994. Identification, cloning, and sequencing of a gene required for ferric vibriobactin utilization by Vibrio cholerae. J Bacteriol 176:5631–5638. [PubMed]
126. Sigel SP, Stoebner JA, Payne SM. 1985. Iron-vibriobactin transport system is not required for virulence of Vibrio cholerae. Infect Immun 47:360–362. [PubMed]
127. Wyckoff EE, Payne SM. 2011. The Vibrio cholerae VctPDGC system transports catechol siderophores and a siderophore-free iron ligand. Mol Microbiol 81:1446–1458. [PubMed][CrossRef]
128. Acosta N, Pukatzki S, Raivio TL. 2015. The Vibrio cholerae Cpx envelope stress response senses and mediates adaptation to low iron. J Bacteriol 197:262–276. [PubMed][CrossRef]
129. Stoebner JA, Payne SM. 1988. Iron-regulated hemolysin production and utilization of heme and hemoglobin by Vibrio cholerae. Infect Immun 56:2891–2895. [PubMed]
130. Henderson DP, Payne SM. 1994. Characterization of the Vibrio cholerae outer membrane heme transport protein HutA: sequence of the gene, regulation of expression, and homology to the family of TonB-dependent proteins. J Bacteriol 176:3269–3277. [PubMed]
131. Mey AR, Payne SM. 2001. Haem utilization in Vibrio cholerae involves multiple TonB-dependent haem receptors. Mol Microbiol 42:835–849. [PubMed][CrossRef]
132. Pflughoeft KJ, Kierek K, Paula I, Watnick PI. 2003. Role of ectoine in Vibrio cholerae osmoadaptation. Appl Environ Microbiol 69:5919–5927. [PubMed][CrossRef]
133. Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque ASG, Colwell R. 2000. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci 97:1438–1443. [PubMed][CrossRef]
134. Lama JR, Seas CR, León-Barúa R, Gotuzzo E, Sack RB. 2004. Environmental temperature, cholera, and acute diarrhoea in adults in Lima, Peru J Health Popul Nutr 22:399–403. [PubMed]
135. Louis VR, Russek-Cohen E, Choopun N, Rivera ING, Gangle B, Jiang SC, Rubin A, Patz JA, Huq A, Colwell RR. 2003. Predictability of Vibrio cholerae in Chesapeake Bay. Appl Environ Microbiol 69:2773–2785. [PubMed][CrossRef]
136. Lipp EK, Huq A, Colwell RR. 2002. Effects of global climate on infectious disease: the cholera model. Clin Microbiol Rev 15:757–770. [PubMed][CrossRef]
137. Stauder M, Vezzulli L, Pezzati E, Repetto B, Pruzzo C. 2010. Temperature affects Vibrio cholerae O1 El Tor persistence in the aquatic environment via an enhanced expression of GbpA and MSHA adhesins. Environ Microbiol Rep 2:140–144. [PubMed][CrossRef]
138. Weber GG, Kortmann J, Narberhaus F, Klose KE. 2014. RNA thermometer controls temperature-dependent virulence factor expression in Vibrio cholerae. Proc Natl Acad Sci USA 111:14241–14246. [PubMed][CrossRef]
139. Datta PP, Bhadra RK. 2003. Cold shock response and major cold shock proteins of Vibrio cholerae. Appl Environ Microbiol 69:6361–6369. [CrossRef]
140. Asakura H, Ishiwa A, Arakawa E, Makino S, Okada Y, Yamamoto S, Igimi S. 2007. Gene expression profile of Vibrio cholerae in the cold stress-induced viable but non-culturable state. Environ Microbiol 9:869–879. [PubMed][CrossRef]
141. Colwell RR, Brayton PR, Grimes DJ, Roszak DB, Huq SA, Palmer LM. 1985. Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Nat Biotechnol 3:817–820. [CrossRef]
142. Ayrapetyan M, Williams TC, Oliver JD. 2014. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol 23:7–13. [PubMed][CrossRef]
143. Faruque SM, Islam MJ, Ahmad QS, Faruque ASG, Sack DA, Nair GB, Mekalanos JJ. 2005. Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc Natl Acad Sci USA 102:6119–6124. [PubMed][CrossRef]
144. Jubair M, Morris JG, Ali A. 2012. Survival of Vibrio cholerae in nutrient-poor environments is associated with a novel “persister” phenotype. PLoS One 7:e45187. doi:10.1371/journal.pone.0045187. [PubMed][CrossRef]
145. Chaiyanan S, Huq A, Maugel T, Colwell RR. 2001. Viability of the nonculturable Vibrio cholerae O1 and O139. Syst Appl Microbiol 24:331–341. [PubMed][CrossRef]
146. Hood MA, Guckert JB, White DC, Deck F. 1986. Effect of nutrient deprivation on lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. Appl Envir Microbiol 52:788–793. [PubMed]
147. Kamruzzaman M, Udden SMN, Cameron DE, Calderwood SB, Nair GB, Mekalanos JJ, Faruque SM. 2010. Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae. Proc Natl Acad Sci USA 107:1588–1593. [PubMed][CrossRef]
148. Colwell RR, Brayton P, Herrington D, Tall B, Huq A, Levine MM. 1996. Viable but non-culturable Vibrio cholerae O1 revert to a cultivable state in the human intestine. World J Microbiol Biotechnol 12:28–31. [PubMed][CrossRef]
149. Wai SN, Moriya T, Kondo K, Misumi H, Amako K. 1996. Resuscitation of Vibrio cholerae O1 strain TSI-4 from a viable but nonculturable state by heat shock. FEMS Microiology Lett 136:187–191. [PubMed][CrossRef]
150. Oh YT, Park Y, Yoon MY, Bari W, Go J, Min KB, Raskin DM, Lee K-M, Yoon SS. 2014. Cholera toxin production during anaerobic trimethylamine N-oxide respiration is mediated by stringent response in Vibrio cholerae. J Biol Chem 289:13232–13242. [PubMed][CrossRef]
151. Zheng J, Ho B, Mekalanos JJ. 2011. Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One 6:e23876. doi:10.1371/journal.pone.0023876. [PubMed][CrossRef]
152. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ. 2006. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103:1528–1533. [PubMed][CrossRef]
153. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. 2007. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 104:15508–15513. [PubMed][CrossRef]
154. MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S. 2010. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA 107:19520–19524. [PubMed][CrossRef]
155. Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ. 2012. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:182–186. [PubMed][CrossRef]
156. Brooks TM, Unterweger D, Bachmann V, Kostiuk B, Pukatzki S. 2013. Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem 288:7618–7625. [PubMed][CrossRef]
157. Miyata ST, Kitaoka M, Brooks TM, McAuley SB, Pukatzki S. 2011. Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun 79:2941–2949. [PubMed][CrossRef]
158. Miyata ST, Unterweger D, Rudko SP, Pukatzki S. 2013. Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathog 9:e1003752. doi:10.1371/journal.ppat.1003752. [PubMed][CrossRef]
159. Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ. 2013. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci USA 110:2623–2628. [PubMed][CrossRef]
160. Unterweger D, Miyata ST, Bachmann V, Brooks TM, Mullins T, Kostiuk B, Provenzano D, Pukatzki S. 2014. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun 5:3549. [PubMed][CrossRef]
161. Unterweger D, Kitaoka M, Miyata ST, Bachmann V, Brooks TM, Moloney J, Sosa O, Silva D, Duran-Gonzalez J, Provenzano D, Pukatzki S. 2012. Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS One 7:e48320. doi:10.1371/journal.pone.0048320. [CrossRef]
162. Kitaoka M, Miyata ST, Brooks TM, Unterweger D, Pukatzki S. 2011. VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae. J Bacteriol 193:6471–6482. [PubMed][CrossRef]
163. Dong TG, Mekalanos JJ. 2012. Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. Nucleic Acids Res 40:7766–7775. [PubMed][CrossRef]
164. Zheng J, Shin OS, Cameron DE, Mekalanos JJ. 2010. Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci USA 107:21128–21133. [PubMed][CrossRef]
165. Ishikawa T, Rompikuntal PK, Lindmark B, Milton DL, Wai SN. 2009. Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS One 4:e6734. doi:10.1371/journal.pone.0006734. [PubMed][CrossRef]
166. Shao Y, Bassler BL. 2014. Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae. Mol Microbiol 92:921–930. [PubMed][CrossRef]
167. Borgeaud S, Metzger LC, Scrignari T, Blokesch M. 2015. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347:63–67. [PubMed][CrossRef]
168. Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJF, Yildiz F, Klose KE. 2009. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol 191:6555–6570. [PubMed][CrossRef]
169. Bernard CS, Brunet YR, Gavioli M, Lloubès R, Cascales E. 2011. Regulation of type VI secretion gene clusters by sigma54 and cognate enhancer binding proteins. J Bacteriol 193:2158–2167. [PubMed][CrossRef]
170. Liu Z, Miyashiro T, Tsou A, Hsiao A, Goulian M, Zhu J. 2008. Mucosal penetration primes Vibrio cholerae for host colonization by repressing quorum sensing. Proc Natl Acad Sci USA 105:9769–9774. [PubMed][CrossRef]
171. Ishikawa T, Sabharwal D, Bröms J, Milton DL, Sjöstedt A, Uhlin BE, Wai SN. 2012. Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect Immun 80:575–584. [PubMed][CrossRef]
172. Fu Y, Waldor MK, Mekalanos JJ. 2013. Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 14:652–663. [PubMed][CrossRef]
173. Ma AT, Mekalanos JJ. 2010. In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci USA 107:4365–4370. [PubMed][CrossRef]
174. Sun S, Kjelleberg S, McDougald D. 2013. Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists. PLoS One 8:e56338. doi:10.1371/journal.pone.0056338. [PubMed][CrossRef]
175. Sun S, Tay QXM, Kjelleberg S, Rice SA, McDougald D. 2015. Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms. ISME J 9:1812–1820. [PubMed][CrossRef]
176. Vaitkevicius K, Lindmark B, Ou G, Song T, Toma C, Iwanaga M, Zhu J, Tuck S, Wai SN, Andersson A, Hammarstro M. 2006. A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing. Proc Natl Acad Sci USA 103:9280–9285. [PubMed][CrossRef]
177. Erken M, Weitere M, Kjelleberg S, McDougald D. 2011. In situ grazing resistance of Vibrio cholerae in the marine environment. FEMS Microbiol Ecol 76:504–512. [PubMed][CrossRef]
178. Lutz C, Erken M, Noorian P, Sun S, McDougald D. 2013. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae. Front Microbiol 4:375. [PubMed][CrossRef]
179. Jensen MA, Faruque SM, Mekalanos JJ, Levin BR. 2006. Modeling the role of bacteriophage in the control of cholera outbreaks. Proc Natl Acad Sci USA 103:4652–4657. [PubMed][CrossRef]
180. Faruque SM, Naser I Bin, Islam MJ, Faruque ASG, Ghosh AN, Nair GB, Sack DA, Mekalanos JJ. 2005. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci USA 102:1702–1707. [PubMed][CrossRef]
181. Nelson EJ, Chowdhury A, Flynn J, Schild S, Bourassa L, Shao Y, LaRocque RC, Calderwood SB, Qadri F, Camilli A. 2008. Transmission of Vibrio cholerae is antagonized by lytic phage and entry into the aquatic environment. PLoS Pathog 4:e1000187. doi:10.1371/journal.ppat.1000187. [PubMed][CrossRef]
182. Zahid MSH, Udden SMN, Faruque ASG, Calderwood SB, Mekalanos JJ, Faruque SM. 2008. Effect of phage on the infectivity of Vibrio cholerae and emergence of genetic variants. Infect Immun 76:5266–5273. [PubMed][CrossRef]
183. Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A. 2012. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 8:e1002917. doi:10.1371/journal.ppat.1002917. [CrossRef]
184. Waldor MK, Mekalanos JJ. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914. [PubMed][CrossRef]
185. Angelichio MJ, Spector J, Waldor MK, Camilli A. 1999. Vibrio cholerae intestinal population dynamics in the suckling mouse model of infection. Infect Immun 67:3733–3739. [PubMed]
186. Miller CJ, Drasar BS, Feachem RG. 1984. Response of toxigenic Vibrio cholerae 01 to physico-chemical stresses. J Hyg 93:475–495. [PubMed][CrossRef]
187. Swenson GJ, Stochastic J, Bolander FF, Long RA. 2012. Acid stress response in environmental and clinical strains of enteric bacteria. Front Biol 7:495–505. [CrossRef]
188. Merrell DS, Camilli A. 1999. The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol Microbiol 34:836–849. [PubMed][CrossRef]
189. Kovacikova G, Lin W, Skorupski K. 2010. The LysR-type virulence activator AphB regulates the expression of genes in Vibrio cholerae in response to low pH and anaerobiosis. J Bacteriol 192:4181–4191. [PubMed][CrossRef]
190. Merrell DS, Hava DL, Camilli A. 2002. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol 43:1471–1491. [PubMed][CrossRef]
191. Angelichio MJ, Merrell DS, Camilli A. 2004. Spatiotemporal analysis of acid adaptation-mediated Vibrio cholerae hyperinfectivity. Infect Immun 72:2405–2407. [PubMed][CrossRef]
192. Lundberg JO, Weitzberg E, Lundberg JM, Alving K. 1994. Intragastric nitric oxide production in humans: measurements in expelled air. Gut 35:1543–1546. [PubMed][CrossRef]
193. Fang FC. 1997. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 99:2818–2825. [PubMed][CrossRef]
194. Davies BW, Bogard RW, Dupes NM, Gerstenfeld TA, Simmons LA, Mekalanos JJ. 2011. DNA damage and reactive nitrogen species are barriers to Vibrio cholerae colonization of the infant mouse intestine. PLoS Pathog 7:e1001295. doi:10.1371/journal.ppat.1001295. [PubMed][CrossRef]
195. Qadri F, Raqib R, Ahmed F, Rahman T, Wenneras C, Kumar Das S, Alam NH, Mathan MM, Svennerholm AM. 2002. Increased levels of inflammatory mediators in children and adults infected with Vibrio cholerae O1 and O139. Clin Vaccine Immunol 9:221–229. [CrossRef]
196. Stern AM, Hay AJ, Liu Z, Desland FA, Zhang J, Zhong Z, Zhu J. 2012. The NorR regulon is critical for Vibrio cholerae resistance to nitric oxide and sustained colonization of the intestines. MBio 17:e00013-12. doi:10.1128/mBio.00013-12. [PubMed][CrossRef]
197. Begley M, Gahan CGM, Hill C. 2005. The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651. [PubMed][CrossRef]
198. Nesper J, Lauriano CM, Klose KE, Kapfhammer D, Kraiss A, Reidl J. 2001. Characterization of Vibrio cholerae O1 El Tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun 69:435–445. [PubMed][CrossRef]
199. Nesper J, Schild S, Lauriano CM, Kraiss A, Klose KE, Reidl J. 2002. Role of Vibrio cholerae O139 surface polysaccharides in intestinal colonization. Infect Immun 70:5990–5996. [PubMed][CrossRef]
200. Heinrichs DE, Yethon JA, Whitfield C. 1998. Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 30:221–232. [PubMed][CrossRef]
201. Bina JE, Mekalanos JJ. 2001. Vibrio cholerae tolC is required for bile resistance and colonization. Infect Immun 69:4681–4685. [PubMed][CrossRef]
202. Bina JE, Provenzano D, Wang C, Bina XR, Mekalanos JJ. 2006. Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 186:171–181. [PubMed][CrossRef]
203. Colmer JA, Fralick JA, Hamood AN. 1998. Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae. Mol Microbiol 27:63–72. [PubMed][CrossRef]
204. Wibbenmeyer JA, Provenzano D, Landry CF, Klose KE, Delcour AH. 2002. Vibrio cholerae OmpU and OmpT porins are differentially affected by bile. Infect Immun 70:121–126. [PubMed][CrossRef]
205. Koestler BJ, Waters CM. 2013. Exploring environmental control of cyclic di-GMP signaling in Vibrio cholerae by using the ex vivo lysate cyclic di-GMP assay (TELCA). Appl Environ Microbiol 79:5233–5241. [PubMed][CrossRef]
206. Abuaita BH, Withey JH. 2009. Bicarbonate induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect Immun 77:4111–4120. [PubMed][CrossRef]
207. Lowden MJ, Skorupski K, Pellegrini M, Chiorazzo MG, Taylor RK, Kull FJ. 2010. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes. Proc Natl Acad Sci USA 107:2860–2865. [PubMed][CrossRef]
208. Thomson JJ, Plecha SC, Withey JH. 2015. A small unstructured region in Vibrio cholerae ToxT mediates the response to positive and negative effectors and ToxT proteolysis. J Bacteriol 197:654–668. [PubMed][CrossRef]
209. Yang M, Liu Z, Hughes C, Stern AM, Wang H, Zhong Z, Kan B, Fenical W, Zhu J. 2013. Bile salt-induced intermolecular disulfide bond formation activates Vibrio cholerae virulence. Proc Natl Acad Sci USA 110:2348–2353. [PubMed][CrossRef]
210. Hay AJ, Zhu J. 2015. Host intestinal signal-promoted biofilm dispersal induces Vibrio cholerae colonization. Infect Immun 83:317–323. [PubMed][CrossRef]
211. Matson JS, Yoo HJ, Hakansson K, Dirita VJ. 2010. Polymyxin B resistance in El Tor Vibrio cholerae requires lipid acylation catalyzed by MsbB. J Bacteriol 192:2044–2052. [PubMed][CrossRef]
212. Ménard S, Förster V, Lotz M, Gütle D, Duerr CU, Gallo RL, Henriques-Normark B, Pütsep K, Andersson M, Glocker EO, Hornef MW. 2008. Developmental switch of intestinal antimicrobial peptide expression. J Exp Med 205:183–193. [PubMed][CrossRef]
213. Pestonjamasp VK, Huttner KH, Gallo RL. 2001. Processing site and gene structure for the murine antimicrobial peptide CRAMP. Peptides 22:1643–1650. [PubMed][CrossRef]
214. Hankins JV, Madsen JA, Giles DK, Childers BM, Klose KE, Brodbelt JS, Trent MS. 2011. Elucidation of a novel Vibrio cholerae lipid A secondary hydroxy-acyltransferase and its role in innate immune recognition. Mol Microbiol 81:1313–1329. [PubMed][CrossRef]
215. Hankins JV, Madsen JA, Giles DK, Brodbelt JS, Trent MS. 2012. Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in Gram-positive and Gram-negative bacteria. Proc Natl Acad Sci USA 109:8722–8727. [PubMed][CrossRef]
216. Herrera CM, Crofts AA, Henderson JC, Pingali SC, Davies BW, Stephen M. 2014. The Vibrio cholerae VprA-VprB two-component system controls virulence through endotoxin modification. MBio 5:e02283. doi:10.1128/mBio.02283-14. [CrossRef]
217. Bilecen K, Fong JCN, Cheng A, Jones CJ, Zamorano-Sánchez D, Yildiz FH. 2015. Polymyxin B resistance and biofilm formation in Vibrio cholerae is controlled by the response regulator CarR. Infect Immun 83:1199–1209. [PubMed][CrossRef]
218. Bina XR, Provenzano D, Nguyen N, Bina JE. 2008. Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine. Infect Immun 76:3595–3605. [PubMed][CrossRef]
219. Mathur J, Davis BM, Waldor MK. 2007. Antimicrobial peptides activate the Vibrio cholerae sigmaE regulon through an OmpU-dependent signalling pathway. Mol Microbiol 63:848–858. [PubMed][CrossRef]
220. Mathur J, Waldor MK. 2004. The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect Immun 72:3577–3583. [PubMed][CrossRef]
221. Ding Y, Davis BM, Waldor MK. 2004. Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol Microbiol 53:345–354. [PubMed][CrossRef]
222. Yamamoto T, Yokota T. 1988. Electron microscopic study of Vibrio cholerae 01 adherence to the mucus coat and villus surface in the human small intestine. Infect Immun 56:2753–2759. [PubMed]
223. Robbe C, Capon C, Coddeville B, Michalski J. 2004. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J 316:307–316. [PubMed][CrossRef]
224. Silva AJ. 2003. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. Microbiology 149:1883–1891. [PubMed][CrossRef]
225. Jude BA, Martinez RM, Skorupski K, Taylor RK. 2009. Levels of the secreted Vibrio cholerae attachment factor GbpA are modulated by quorum-sensing-induced proteolysis. J Bacteriol 191:6911–6917. [PubMed][CrossRef]
226. Liu Z, Wang Y, Liu S, Sheng Y, Rueggeberg K-G, Wang H, Li J, Gu FX, Zhong Z, Kan B, Zhu J. 2015. Vibrio cholerae represses polysaccharide synthesis to promote motility in mucosa. Infect Immun 83:1114–1121. [PubMed][CrossRef]
227. Thelin KH, Taylor RK. 1996. Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect Immun 64:2853–2856. [PubMed]
228. Ganguly NK, Kaur T. 1996. Mechanism of action of cholera toxin & other toxins. Indian J Med Res 104:28–37. [PubMed]
229. Herrington BYDA, Hall RH, Losonsky G, Mekalanos JJ, Taylor IRK, Levine MM. 1988. Toxin, toxin co-regulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168:1487–1492. [PubMed][CrossRef]
230. Häse CC, Mekalanos JJ. 1998. TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 95:730–734. [PubMed][CrossRef]
231. Dirita VJ, Parsott C, Jander G, Mekalanos JJ. 1991. Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci USA 88:5403–5407. [PubMed][CrossRef]
232. Skorupski K, Taylor RK. 1999. A new level in the Vibrio cholerae ToxR virulence cascade: AphA is required for transcriptional activation of the tcpPH operon. Mol Microbiol 31:763–771. [PubMed][CrossRef]
233. Kovacikova G, Skorupski K. 1999. A Vibrio cholerae LysR homolog, AphB, cooperates with AphA at the tcpPH promoter to activate expression of the ToxR virulence cascade. J Bacteriol 181:4250–4256. [PubMed]
234. Haas BL, Matson JS, DiRita VJ, Biteen JS. 2014. Single-molecule tracking in live Vibrio cholerae reveals that ToxR recruits the membrane-bound virulence regulator TcpP to the toxT promoter. Mol Microbiol 96:4–13. [PubMed][CrossRef]
235. Beck NA, Krukonis ES, DiRita VJ. 2004. TcpH influences virulence gene expression in Vibrio cholerae by inhibiting degradation of the transcription activator TcpP. J Bacteriol 186:8309–8316. [PubMed][CrossRef]
236. Nye MB, Pfau JD, Skorupski K, Taylor RK. 2000. Vibrio cholerae H-NS silences virulence gene expression at multiple steps in the ToxR regulatory cascade. J Bacteriol 182:4295–4303. [PubMed][CrossRef]
237. Dey AK, Bhagat A, Chowdhury R. 2013. Host cell contact induces expression of virulence factors and VieA, a cyclic di-GMP phosphodiesterase, in Vibrio cholerae. J Bacteriol 195:2004–2010. [PubMed][CrossRef]
238. Nielsen AT, Dolganov NA, Otto G, Miller MC, Wu CY, Schoolnik GK. 2006. RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog 2:e109. [PubMed][CrossRef]
239. Mandlik A, Livny J, Robins WP, Ritchie JM, Mekalanos JJ, Waldor MK. 2011. RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10:165–174. [PubMed][CrossRef]
240. Schild S, Tamayo R, Nelson EJ, Qadri F, Calderwood SB, Camilli A. 2007. Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe 2:264–277. [PubMed][CrossRef]
241. Lee SH, Butler SM, Camilli A. 2001. Selection for in vivo regulators of bacterial virulence. Proc Natl Acad Sci USA 98:6889–6894. [PubMed][CrossRef]
242. Butler SM, Nelson EJ, Chowdhury N, Faruque SM, Calderwood SB, Camilli A. 2006. Cholera stool bacteria repress chemotaxis to increase infectivity. Mol Microbiol 60:417–426. [PubMed][CrossRef]

Article metrics loading...



Infectious diseases kill nearly 9 million people annually. Bacterial pathogens are responsible for a large proportion of these diseases, and the bacterial agents of pneumonia, diarrhea, and tuberculosis are leading causes of death and disability worldwide. Increasingly, the crucial role of nonhost environments in the life cycle of bacterial pathogens is being recognized. Heightened scrutiny has been given to the biological processes impacting pathogen dissemination and survival in the natural environment, because these processes are essential for the transmission of pathogenic bacteria to new hosts. This chapter focuses on the model environmental pathogen to describe recent advances in our understanding of how pathogens survive between hosts and to highlight the processes necessary to support the cycle of environmental survival, transmission, and dissemination. We describe the physiological and molecular responses of to changing environmental conditions, focusing on its survival in aquatic reservoirs between hosts and its entry into and exit from human hosts.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Role of biofilms in survival, transmission, and dissemination. () Biofilms play an important role in environmental protection, transmission into the human host, and dissemination to new hosts and back into environmental reservoirs. can be readily found growing in biofilms in the aquatic environment, often in association with zooplankton, phytoplankton, detritus, sediment, or oceanic chitin rain. This growth mode provides protection from a number of environmental stressors, including nutrient limitation and predation, and allows to survive in the aquatic environment year-round. The manual removal of biofilms and plankton-associated biofilms from the environment has been shown to decrease transmission during seasonal outbreaks. Additionally, the ingestion of grown in biofilms allows for the delivery of both higher numbers of bacteria and hyperinfectious cells. Though the role of biofilms during host infection is still being studied, biofilm-like aggregates have been observed in patient stool and also exhibit a hyperinfectious phenotype, suggesting that biofilms play a role not only in transmission from the environment to the host, but also in the spread of cholera from host to host. () VpsR and VpsT are the master positive regulators of biofilm genes and positively regulate one another’s expression and genes involved in biofilm formation. VpsR additionally activates the expression of a master virulence regulator, AphA, which in turn activates VpsT expression. VpsT activity is dependent on its interaction with the small signaling molecule, c-di-GMP, which is synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). The quorum sensing regulator, HapR, represses expression of VpsR, VpsT, and AphA in response to high cell density. At low cell density, HapR is inactivated and biofilm formation is upregulated. H-NS (histone-like nucleoid structuring protein) is an additional negative regulator of biofilm formation. Its repressive function is silenced by VpsT. () An electron scanning microscopy image of a biofilm shows cells encased in biofilm matrix.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


regulation of nutrient acquisition. utilizes various uptake systems to acquire nutrients from the external environment. () During chitin utilization, chitin oligomers enter the periplasm through chitoporins in the outer membrane. Once in the periplasm, chitin oligomers bind to the chitin binding protein (CBP), allowing it to release from and relive repression of the histidine kinase, ChiS, which is part of a two-component system (TCS). Once active, ChiS activates an as yet unidentified response regulator, ChiR, which upregulates genes involved in chitin catabolism and utilization. While ChiS is thought also to play a role in TfoS activation, the mechanism has not been identified. However, it is known that TfoS binds to chitin oligomers in the periplasm and dimerizes to become active. Once in its active conformation, TfoS upregulates the expression of the small RNA (sRNA), , which in turn, activates translation of mRNA. TfoX goes on to upregulate genes involved in competency, including the chitin regulated pilus and QstR. The activation of both the chitin catabolism and competency pathways are also dependent on the cAMP-CRP complex and in the absence of this complex are repressed. () Glycogen storage is activated in response to nitrogen limitation. The first reaction in glycogen synthesis is catalyzed by the ADP-glucose pyrophosphorylase enzymes GlgC1 and GlgC2, which generate ADP-glucose from ATP and glucose-1-phosphate. Subsequently, the enzymes GlgA and GlgB build glycogen by forming α-1,4 and α-1,6 linkages, respectively, between ADP-glucose monomers. Glycogen breakdown is initiated by three enzymes: the glycogen debranching GlgX, the maltodextrin phosphorylase GlgP, and the 4-α-glucanotransferase MalQ. Additionally, in response to unknown environmental stimuli, the TCS VarSA is activated and has been shown to enhance glycogen storage and posttranscriptionally repress the global transcriptional regulator, CsrA. () Environmental inorganic phosphate (Pi) levels regulate a number of cell processes in . When Pi is high, initiates the biosynthesis of large amounts of inorganic polyphosphate (poly-P), composed of long chains of linked Pi, via the polyphosphate kinase, PPK. When Pi is limited, the TCS PhoBR is activated and regulates a number of cellular processes, including virulence, motility, biofilm formation, and Pi uptake. () uses a number of mechanisms to facilitate iron acquisition. Iron uptake is regulated by the iron-dependent regulator, Fur. When iron levels are high, Fur complexes with ferrous iron (Fur-Fe) and directly binds to conserved regions on the genome, called Fur boxes, to regulate the transcription of target genes. The Fur-Fe complex upregulates genes involved in iron storage, metabolism, and antioxidant defense and represses iron uptake genes, including the genes encoding the Feo and Fbp transport systems, which facilitate uptake of ferrous and ferric iron, respectively. Under iron-limited conditions, produces and secretes the siderophore vibriobactin via the VibBDEFH system. Ferric vibriobactin is imported back into the cell via the outer membrane protein ViuA and both of ’s TonB-ExbBD complexes. Ferric vibriobactin is then transported through the periplasm to the inner membrane by the periplasmic binding protein, ViuP, and then across the inner membrane by two transport systems, ViuPDGC and VctPDGC. The cytoplasmic esterase, ViuB, processes ferric vibriobactin and removes the iron from the siderophore so that it may be used within the cell. can import siderophores produced by other bacteria, including enterobactin, which is recognized by two enterobactin receptors, IrgA and VctA, and then transported across the outer membrane with energy supplied by the TonB2-ExbBD complex, followed by shuttling across the inner membrane by the transport systems ViuPDGC and VctPDGC. The enzyme responsible for processing ferric enterobactin in has not been identified.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view


Regulation of type VI secretion system (T6SS). The T6SS plays an important role in the life cycle of this pathogen, enhancing inter- and intraspecies competition, protection from predators, and virulence. In strains where this system is not constitutively active, the T6SS is regulated in response to a number of environmental signals. Though it is unknown what signal TsrA responds to, this regulator represses the T6SS and the master virulence regulator ToxT, while activating HapA expression, which is involved in mucin degradation. Low osmolarity results in activation of the osmoregulator, OscR, which represses the T6SS. Quorum sensing also regulates the T6SS in response. At low cell density, LuxO is phosphorylated and activates the expression of quorum regulatory small RNAs (Qrr sRNAs), which repress the T6SS both through direct binding to the promoter regions of T6SS genes and through their inhibition of the positive regulator of T6SS, HapR. At high cell density, both HapR and the cAMP-CRP complex activate T6SS. HapR also actives QstR, which upregulates T6SS in response to growth on chitin. Flagellar regulatory genes are known to repress the T6SS through an unknown mechanism. Additionally, VasH, which is encoded by the T6SS pathogenicity island, is known to activate T6SS genes, potentially through its interaction with the alternative sigma factor RpoN, which appears to coregulate T6SS genes in a cAMP-CRP-dependent manner. Intriguingly, RpoN is also known to activate Qrr sRNAs, which repress the T6SS.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view


adaptation to low pH and radical nitrogen species (RNS). After ingestion, must adapt to low pH and RNS encountered in the stomach and small intestine. CadC, a ToxR-like transcriptional regulator, mediates the acid tolerance response and is known to be activated in response to low pH and by the LysR-type regulator AphB. CadC activates the expression of a lysine decarboxylase, CadA, which is thought to pump H+ ions out of the cell, thus raising internal pH. The glutathione synthetase, GshB, is also known to increase acid tolerance, likely through its regulation of the Kef system, which is responsible for potassium ion transport and plays a role in pH homeostasis. Low pH also contributes to the production of RNS, because acidified nitrite generated in response to low pH can be reduced to RNS. Inducible NO synthase (iNOS) produced by epithelial cells is also used to generate RNS. exposure to RNS can result in DNA damage that may be counteracted through the expression of RecO, a protein involved in daughter strand gap repair, Nfo, an endonuclease involved in base excision repair, and MutS, a DNA mismatch repair protein. Additionally, activation of HmpA, an enzyme responsible for destroying nitric oxide (NO), via the transcriptional regulator NorR contributes to resistance to RNS stress.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view


adaptation to host signals in the small intestine. () In the intestinal lumen, encounters antimicrobial peptides and high concentrations of bile. Efflux pumps promote bile and AMP resistance by removing these compounds from the cell. Multiple porins, including OmpU and OmpT, contribute to AMP resistance. OmpU promotes bile resistance, because its relatively small channel size prevents bile compounds from entering the cell. Bile acids trigger an increase in the concentration of intracellular c-di-GMP; this response may be partially quenched by the low concentration of bicarbonate present in the intestinal lumen. Bile acids also interfere with the ability of the major virulence regulator ToxT to bind DNA, thus encumbering expression of virulence genes in the lumen. () Upon contacting the mucus layer, encounters mucins and high concentrations of bicarbonate. Mucins promote production of the GlcNac-binding protein GbpA, which is expressed on the cell surface and facilitates adhesion to the mucus layer. Mucins also promote production of Hap (hemagglutinin/protease), which breaks up mucus, thus facilitating penetration through the mucus layer. Hap downregulates GbpA, which may prevent the cell from continuing to adhere to the mucus layer as it penetrates through it. Additionally, mucins promote motility and downregulate genes, which may further foster movement through the mucus layer toward the epithelium. High cell density leads to activation of HapR, which downregulates GbpA production directly, as well as indirectly by promoting production of Hap. Virulence genes are activated when the high concentration of bicarbonate in the mucus layer enhances ToxT activity, as well as when the bile salt taurocholate promotes activation of TcpP.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view


Regulation of virulence cascade and mucosal escape. () When contacts host epithelial cells, expression of the PDE VieA is upregulated, resulting in a decrease in intracellular c-di-GMP concentration. In turn, low c-di-GMP concentration induces expression of , which controls the production of ’s major virulence factors, toxin coregulated pilus (TCP) and cholera toxin (CT). Production of TCP and CT also depends on two transmembrane transcriptional regulators, ToxR and TcpP, as well as the cytoplasmic regulators AphAB and ToxT. TCP is a type IV pilus that facilitates colonization of the intestinal epithelium, while CT is a secreted toxin that causes constitutive cyclic AMP production in host epithelial cells, leading to profuse secretion of chloride and water into the gut lumen. () During later stages of infection, as the population density increases and cells reach the stationary phase, production of the starvation/stationary phase alternative sigma factor RpoS and the quorum sensing master regulator HapR are induced. These regulators trigger flagellar assembly and chemotaxis, which foster exit from the host. Additionally, the population of cells in the small intestine becomes bifurcated; half of the cells continue to show high expression of virulence genes (represented by the bottom cell), while the other half shows downregulation of virulence genes.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error