Diagnostic Microbiology of the Immunocompromised Host
Diagnostic Microbiology of the Immunocompromised Host

Edited by

Randall T. Hayden
St. Jude Children's Research Hospital
Memphis, Tennessee

Karen C. Carroll
The Johns Hopkins Hospital
Baltimore, Maryland

Yi-Wei Tang
Vanderbilt University School of Medicine
Nashville, Tennessee

Donna M. Wolk
The University of Arizona
Tucson, Arizona

ASM Press
Washington, DC
CONTENTS

Contributors • vii
Foreword David H. Persing • x
Preface • xii

I. Hosts and Infections

1. Overview of Infections in the Immunocompromised Host • 3
Lesia K. Dropulic and Howard M. Lederman

II. Laboratory Diagnosis: Specific Etiologic Agents • 45

2. Human Immunodeficiency Virus • 47
Yun F. (Wayne) Wang, Molly E. Eaton, Audrey N. Schuetz, and Steven R. Nesheim

3. Cytomegalovirus • 69
Cari R. Sloma, Thomas E. Grys, and Raymund R. Razonable

4. Epstein-Barr Virus and Human Herpesvirus 8 • 91
David T. Rowe, Frank J. Jenkins, and Heather R. Hensler

5. Herpes Simplex Virus, Varicella-Zoster Virus, Human Herpesvirus 6, and Human Herpesvirus 7 • 113
Paula A. Revell, James H. Clark III, and Beverly B. Rogers

6. Adenovirus • 129
Michael G. Ison and Randall T. Hayden

7. RNA Respiratory Viruses • 141
Michael G. Ison and Eric S. Rosenberg

8. Enteroviruses • 161
James J. Dunn

9. Parvovirus • 183
Marie Louise Landry

10. Filamentous Fungi • 195
Gary W. Procop, Randall T. Hayden, and Glenn D. Roberts

11. Yeasts • 221
Justin A. Bishop and William G. Merz

12. Mycobacteria • 253
Nancy G. Warren and Gail L. Woods

13. Aerobic Actinomycetes • 269
Michael A. Saubolle

14. Parasites • 283
Lynne S. Garcia

III. Laboratory Diagnosis: an Organ Systems Approach • 331

15. Lower Respiratory Tract Infections • 333
Karen C. Carroll

16. Genitourinary Tract Infections • 357
Barbara L. Haller
17. Gastrointestinal Infections • 379
Irving Nachamkin

18. Central Nervous System Infections • 391
Igen Hongo, Karen C. Bloch, and Yi-Wei Tang

Cathy A. Petti, Hafsa Hassan, and L. Barth Reller

20. Soft Tissue and Prosthetic Device Infections • 419
Xiang Y. Han

21. Hospital-Associated Infections • 429
Fann Wu, Susan Whittier, and Phyllis Della-Latta

IV. Future Trends

22. Future Trends in Diagnosis of Infections in the Immunocompromised Population • 443
Elizabeth M. Marlowe and Donna M. Wolk

Index • 463
CONTRIBUTORS

Justin A. Bishop
Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287

Karen C. Bloch
Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232

Karen C. Carroll
Division of Medical Microbiology, The Johns Hopkins Hospital, Meyer B1-193, 600 N. Wolfe St., Baltimore, MD 21287

James H. Clark III
Department of Pathology, Children’s Medical Center Dallas, 1935 Motor St., Dallas, TX 75235

Phyllis Della-Latta
Clinical Microbiology Services, Columbia University Medical Center, New York-Presbyterian Hospital, 622 West 168th St., CHC 3-325, New York, NY 10032

Lesia K. Dropulic
Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892

James J. Dunn
Department of Pathology, Cook Children’s Medical Center, 801 Seventh Ave., Fort Worth, TX 76104

Molly E. Eaton
Department of Medicine, Emory University School of Medicine, 341 Ponce de Leon Avenue, Atlanta, GA 30308

Lynne S. Garcia
LSG & Associates, 512 12th Street, Santa Monica, CA 90402-2908

Thomas E. Grys
Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic and Mayo Clinic College of Medicine, Rochester, MN 55905

Barbara L. Haller
San Francisco General Hospital, 1001 Potrero Ave., San Francisco, CA 94110-3518

Xiang Y. Han
Department of Laboratory Medicine, Unit 84, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030

Hafsa Hassan
Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84312

Randall T. Hayden
Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105

Heather R. Hensler
Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15213

Igen Hongo
Department of Internal Medicine, Musashino Red Cross Hospital, Tokyo 180-8610, Japan

Michael G. Ison
Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
Frank J. Jenkins
Departments of Pathology and Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15213

Mary Louise Landry
Department of Laboratory Medicine, Yale University School of Medicine, P.O. Box 208035, New Haven, CT 06520-8035

Howard M. Lederman
Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205

Elizabeth M. Marloue
Southern California Permanente Medical Group, Regional Reference Laboratories, North Hollywood, CA 91605

William G. Merz
Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287

Irving Nachamkin
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4823

Steven R. Nesheim
Department of Pediatrics, Emory University School of Medicine, 341 Ponce de Leon Avenue, Atlanta, GA 30308

Cathy A. Petti
Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84312

Gary W. Procop
Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136

Raymond R. Razonable
Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic and Mayo Clinic College of Medicine, Rochester, MN 55905

L. Barth Reller
Department of Pathology, Duke University School of Medicine, Durham, NC 27710

Paula A. Revell
Department of Pathology, Children’s Medical Center Dallas, 1935 Motor St., Dallas, TX 75235

Glenn D. Roberts
Division of Clinical Microbiology, Mayo Clinic, Rochester, MN 55905

Beverly B. Rogers
Department of Pathology, Children’s Medical Center Dallas, 1935 Motor St., Dallas, TX 75235

Eric S. Rosenberg
Department of Medicine, Massachusetts General Hospital, Boston, MA 02114

David T. Rowe
Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213

Michael A. Saubolle
Division of Infectious Diseases, Laboratory Sciences of Arizona, University of Arizona College of Medicine, Phoenix, AZ 85006

Audrey N. Schuetz
Department of Pathology & Laboratory Medicine, Emory University School of Medicine, 1440 Clifton Road N.E., Atlanta, GA 30322

Cari R. Sloma
Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic and Mayo Clinic College of Medicine, Rochester, MN 55905

Yi-Wei Tang
Departments of Pathology and Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232

Yun F. (Wayne) Wang
Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Grady Memorial Hospital, P.O. Box 26248, 80 Jesse Hill Jr. Dr., Atlanta, GA 30303

Nancy G. Warren
Bureau of Laboratories, Pennsylvania Department of Health, 110 Pickering Way, Lionville, PA 19353

Susan Whittier
Clinical Microbiology Services, Columbia University Medical Center, New York-Presbyterian Hospital, 622 West 168th St., CHC 3-325, New York, NY 10032

Donna M. Wolk
Department of Pathology & Laboratory Medicine, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724-0001
Gail L. Woods
Department of Pathology and Laboratory Services,
University of Arkansas for Medical Sciences, Mail
Slot 502, 4301 W. Markham Street, Little Rock, AR
72205

Fann Wu
Clinical Microbiology Services, Columbia University
Medical Center, New York-Presbyterian Hospital,
622 West 168th St., CHC 3-325, New York, NY
10032
The subject matter of this book is focused on the implementation of diagnostic techniques for a special purpose, that of accurately and rapidly diagnosing infections of the immunocompromised host. In addition to the usual litany of pathogens that threaten all of us, patients with a compromised immune status are susceptible to normally harmless microbial cohabitants. Such infections may become invasive and life-threatening, in recent years affecting growing numbers of patients. This book provides a timely, up-to-date, and comprehensive summary of the ever-expanding array of technologies used to diagnose these infections and to monitor the effectiveness of specific therapies. For immunocompromised patients, the timing could not be better.

Many innovations in diagnostics over the past few decades have been fueled by the needs of specific patient populations. Immunocompromised patients are especially vulnerable to diagnostic delays because the time to intervention can have a dramatic impact on therapeutic efficacy. Only a few years ago, blood culture bottles were tested in “first morning batches” by Gram stain and culture, necessitating long delays in some cases. Differential counts were tallied by hand. In many pathology departments in the 1960s, immunoassays were performed in batches, perhaps once per week, within specialized laboratories built for containment of the radioisotopes used to label antibodies. Rabbit antisera, sometimes collected from local farm animals, was radioiodinated with Bolton-Hunter reagent to generate the key diagnostic ingredient.

Fortunately, in clinical laboratories, as elsewhere in medicine, times have changed. Nonisotopic immunoassays were developed that could be automated, and more recently, random access immunoassay systems have been developed to eliminate batching requirements and improve turnaround time. Stat immunoassays for a variety of indications are now a reality, if not the standard of practice. Blood culture systems have been developed to allow continuous monitoring for the presence of microbial growth; these systems have largely replaced batch systems that require blind subculture. The fundamental impact of this technology is that it allows for delivery of “real-time” results. For immunocompromised patients, this need for speed is especially critical because infections in these patients often evolve quickly into life-threatening events. Earlier diagnoses can translate into earlier specific therapeutic interventions, which are more likely to result in favorable patient outcomes.

Nucleic acid amplification techniques occupy an increasingly important role in diagnosis and monitoring of infection in immunocompromised patients, and many chapters of this book are appropriately focused on detection of nucleic acid targets. Though the pathogens themselves come from entirely different phylogenetic domains, they are all similar in that they harbor genetic signatures in their genomes that can be used to identify them, quantify infectious burdens, determine virulence, and assess susceptibility or resistance to available drugs. Clumsy, contamination-prone techniques have largely been replaced with real-time detection technology performed in closed systems, and DNA sequencing and microarray technologies developed under the auspices of the human genome project are making steady inroads into clinical practice. Diagnosticians have taken great leaps forward in their level of overall sophistication and familiarity with this technology. Phylogenetic analysis and identification of bacteria, fungi, and viruses by direct DNA sequencing are quickly entering the mainstream and will require us to add a few new words, such as “bootstrapping” and “parsimonious,” to our vocabulary. Microarray technology has yet to enter into routine diagnostic use for infectious disease applica-
tions, but it is only a matter of time until that happens.

As promising and important as it is, however, the practice of molecular diagnostics is currently more akin to that of the radioimmunoassay laboratory of the 1960s. Despite the speed of the underlying detection technologies, the requirements of specimen processing impose practical limits on turnaround time. As molecular methods evolve, the technology needs to keep up with requirements for optimal clinical management. For example, febrile patients who are immunocompromised would benefit greatly from rapid, on-demand testing of bacterial and fungal causes of sepsis, without the need to wait for initial blood culture results. Proof of concept of this approach has now been provided by at least one system, which is designed to detect and differentiate 23 pathogens by using broad-range PCR. As technologies like this become available, and as they evolve from batch mode to on-demand formats, they will have an ever greater impact on patient treatment and management. As real-time molecular diagnostic technology improves, so should the delivery of real-time patient results.

Few challenges are as urgent as determining definitively the cause of fever in an immunocompromised patient, given the sheer range of diagnostic possibilities. Fortunately, practitioners have filled this apparent diagnostic void with user-developed assays, and diagnostic companies themselves appear to be rising to the task. Hopefully, this trend will continue. Meeting the diagnostic challenges of immunocompromised patients will ultimately have broader implications; as described in this book, there is the potential to improve access to this technology for all patients, where and when they need it most.

David H. Persing
Cepheid, Sunnyvale, California
Over the past quarter century, health care of immunocompromised patients has grown progressively in importance. These individuals require high-intensity services and specialized care, often for a prolonged period of time. They are susceptible to a wide range of infectious diseases, which may manifest quite differently from those in an immunocompetent host. There are marked differences in how health care is delivered to such high-risk patients. Proper care depends on the etiology and degree of immune suppression as well as on underlying patient characteristics, such as demographics, nutritional status, and ongoing disease processes. Differences in clinical care include aspects of infection control practices, infectious disease prophylaxis, immune modulation, and pharmacologic therapy. In addition, the use and interpretation of laboratory tests, particularly tests for microorganisms, must be tailored carefully to fit these patients. Evidence-based diagnostic algorithms for the immunocompromised are evolving; however, many clinicians and laboratory professionals are challenged to best utilize the growing array of diagnostic tools at their disposal. Certainly there are books containing information on clinical testing; however, no standard laboratory reference focuses heavily on issues unique to the immunocompromised population. It is the goal of the authors to consolidate such discussions in a single, easily referenced text that can be used by clinical health care providers and laboratory professionals alike.

This book provides several approaches to the topic. The stage is set in the first section, wherein the essence of the problem is defined. That is, what are the causes of immune suppression, who are the populations at risk for infections, and to which infections are they prone? In Section II, the application of laboratory diagnostic methods is discussed, primarily in an organism-by-organism fashion, while in Section III, discussions are based on the organ system involved. Readers will find that these two approaches are complementary.

While in many cases the clinician may be more comfortable with an organ system approach, a focus on individual pathogens may be more useful in deciding upon screening strategies or follow-up of a known infection. Although laboratory professionals may turn most frequently to chapters on individual infectious agents, the systemic perspective will bring added value in making decisions on which new diagnostic methods to introduce in the laboratory. These sections will also be useful for a review of specimen-specific culture workup and exceptions to the rules, which may apply to immunocompromised patient units or clinics. In addition, many chapters include flow charts suggesting diagnostic pathways. We hope that these sections will provide a way to help to synthesize the material presented in the text into practical, user-friendly algorithms that can be applied to everyday patient care challenges. The concluding segment of the book pushes the envelope of current diagnostics, with a look at future trends in the diagnosis of infectious diseases in the immunocompromised patient. We hope that this section will enable health care facilities that treat these patients to plan for the future and to assess new technology from a global cost-benefit perspective as they attempt to wisely use scarce resources in the future.

This book is intended to have broad appeal to laboratory professionals, infectious disease physicians, oncologists, and other health care providers who play important roles in the health care of immunocompromised patients. The editorial board, as well as the contributors, comprise a diverse group of both clinical infectious disease practitioners and laboratory-based diagnosticians. We hope that this book will fill a void in many health care providers’ libraries and contribute positively to the care of...
these increasingly complex patients. By sharing this information and working effectively together with a patient-focused approach, it is our hope that we can help to face the challenges of providing optimal diagnostic services to the immunocompromised patients in our care.

We extend our heartfelt thanks to all of the chapter authors, who devoted so much of their time and expertise to this project. Working with such a fine group of professionals has been our pleasure. We are also grateful for the support and patience of our families while we immersed ourselves in this project. We dedicate this work to all of them and to the immunocompromised patients whom we hope this book will serve.

Randall T. Hayden, Karen C. Carroll, Yi-Wei Tang, and Donna M. Wolk
INDEX

Acanthamoeba, 310–312
 central nervous system infections, 393
 clinical aspects, 311–312
 diagnosis, 386, 312
 epidemiology and control, 312
 organism description, 311
 overview, 310–311
 therapy, 312

Acinetobacter
 A. baumannii, 435
 catheter-associated infections, 426
 hospital-associated infections, 432, 435

Acremonium, 198–199

Actinomadura
culture, 278
description, 271–272
epidemiology, 274
microscopy and direct visualization, 277

Actinomycetes, aerobic, 269–281
 clinical significance, 279
culture, 277–278
 Actinomadura, 278
 Amycolata, 278
 Amycolatopsis, 278
 Dermatophilus, 278
 Gordonia, 278
 Nocardia, 278
 Nocardiopsis, 278
 Pseudonocardia, 278
 Rhodococcus, 278
 Streptomyces, 278
 Tsukamurella, 278
diagnosis
 antigen testing, 277
culture, 277–278
 identification, 278–279
 microscopy and direct visualization, 276–279
 specimen collection, 275–276
epidemiology, 272–275
 Actinomadura, 274
 Amycolata, 274
 Amycolatopsis, 274
 Dermatophilus, 274
 Dietzia, 274
 Gordonia, 274
 Nocardia, 272–273
 Nocardiopsis, 274–275
 Pseudonocardia, 274
 Rhodococcus, 273–274
 Streptomyces, 275
 Tsukamurella, 274

Adalimumab, infection risk with use of, 18

Adaptive immunity components
 B lymphocytes, 5–6
 T lymphocytes, 6

Adenovirus
diagnosis, 130–137
 antigen detection, 132
 approach to, 136–137
 culture, 131–132
 electron microscopy, 132–133
 histopathology, 133, Color Plate 6
 interpretation of results, 134–136
 nucleic acid detection, 133–134
 overview, 130–131
 rapid tests, 132
 serology, 134
 gastrointestinal infections, 384, 386
 genitourinary tract infections, 357, 360, 370–371
 in hematopoietic stem cell transplant recipients, 129–130
 hospital-associated infections, 436
 lower respiratory infections, 338–339, 342

laboratory testing goals, 275–276
microscopy and direct visualization
 Actinomadura, 277
 Amycolata, 277
 Amycolatopsis, 277
 Dermatophilus, 277
 Dietzia, 277
 Gordonia, 276
 Nocardia, 276
 Nocardiopsis, 277
 Pseudonocardia, 277
 Rhodococcus, 276
 Streptomyces, 277
 Tsukamurella, 277

nomenclature and description, 269–272
 Actinomadura, 271–272
 Amycolata, 272
 Amycolatopsis, 272
 Gordonia, 270–271
 Nocardia, 269–270, 271
 Nocardiopsis, 272
 Pseudonocardia, 272
 Rhodococcus, 270
 Streptomyces, 272
 Tsukamurella, 271

overview, 269
susceptibility testing, 280
therapy, 279–280
 Nocardia, 279–280
 Rhodococcus, 280
Biomarkers
detection of protein, 453–454
stat, 444–445
BK virus, genitourinary tract infections by, 357, 365, 366, 371
Blastomyces dermatitidis, genitourinary tract infections by, 357
Blastoschizomyces, infections by, 225
Blood-brain barrier, 391
Blood culture, 345, 410–412
Bloodstream infections
hospital-associated infections, 429–435
antimicrobial resistance, 430–433
fungi, 432–433
gram-negative bacteria, 432
gram-positive bacteria, 431–432
laboratory diagnostic modalities, 433–434
pathogens, 430–433
surveillance activity, 434–435
laboratory diagnosis, 409–415, 433–434
bacterial infection, 411, 412–413
candidemia, 411
culture-dependent methods, 410–412
fungal infection, 411–412, 413
hospital-associated infections, 433–434
interpretation of positive blood culture, 412
mycobacteremia, 412
PCR, 412–413
principles of blood culture collection, 410–411
rapid diagnosis from blood culture bottles, 412
type of blood culture systems, 410
urine antigen detection, 413
management, 413–414
predisposing factors, 409–410
B lymphocytes
deficiency
enteroviruses and, 164–165
Epstein-Barr virus infection and, 92–93
description, 5–6
multiple myeloma, 26–27
Bone marrow examination, for parvovirus diagnosis, 188
Bone marrow transplantation
enteroviruses and, 165–166
human herpesvirus 6 (HHV-6), 120
human herpesvirus 7 (HHV-7), 123
prevention and treatment of GVHD in, 17
Bordetella, 346
Borrelia burgdorferi, central nervous system infections by, 398
Brachybacterium conorii, 307
Breast implants, 422–423
Bronchial washings and brushings, 348–349
Bronchoscopy, fiber-optic, 348
Burkholderia cepacia, hospital-associated infections by, 430
Burkitt’s lymphoma, Epstein-Barr virus and, 95
Burn patients
filamentous fungi, infections by, 203
immunosuppression and, 29
Calcineurin inhibitor, immunosuppression by, 15–16
Campylobacter
central nervous system infections, 395
fluoroquinolone resistance, 448
gastrointestinal infections, 381–382, 385
soft tissue infections, 420
Cancer
Cryptosporidium infection, 300
fungi, filamentous, 202
genitourinary tract infections, 363
mycobacterial infection, 257
soft tissue infections, 420
Candida
antigen detection, 235–236
enolase, 235–236
heat shock proteins, 236
latex agglutination, 235
bloodstream infections, 410, 411, 413
peptide nucleic acid fluorescence in situ hybridization (PNA FISH), 449–450, Color Plate 7
soft tissue infections, 420
C. beigelii, 236
C. bracarensis, 223
C. dubliniensis, 223, 228, 230, 232, 382
C. guilliermondii, 237, 241
C. haemulonii, 223
C. kefyr, 223, 232, 237, 241
C. lusitaniae, 223, 232, 237, 241
C. metapsilosis, 223
C. orthopsilosis, 223
C. pelliculosa, 223
C. rugosa, 237
Candida, 411
central nervous system infections, 393
chromogenic media for, 227–229
diagnosis of infections, 227–241
algorithm, 242
culture-dependent assays, 227–233
chromogenic media, 227–229
commercial panels, 229
drawbacks of, 233
in vitro susceptibility testing, 229–230
molecular identification, 227–233
rapid trehalose assays, 229
non-culture-based methods, 233–241
antigen detection, 235–236
beta-D-glucan (BDG) detection, 236–237, 238
Candida antigen detection, 235–236
clinical studies, 240–241
d-arabinitol detection, 237
direct microscopic examination, 234
nucleic acid detection, 239–241

table of assays, 234

PCR, 231–233

automated PCR, 232

flow cytometry, 233

length polymorphism analysis of ITS region, 231

microarrays, 231

probe hybridization, 231

real-time PCR, 232

RFLP analysis, 231

SCCP analysis, 231

sequencing, 232–233

gastrointestinal infections, 379, 382

genitourinary tract infections, 357, 362, 363, 369

hospital-associated infections, 430, 431, 432–433, 434

infections by, 222–223

Capnocytophaga, bloodstream infections by, 409

Castleman’s disease, 100, 102

CD4+ T lymphocytes, HIV and, 25, 47–48, 56–57, 63

Cell-mediated immunity

evaluation of immunodeficiency, 32

lower respiratory tract infections and defects of, 335

CEMA (chronic enterovirus meningoencephalitis of agammaglobulinemia), 164–165

Central nervous system infections, 391–403

diagnostic approaches, 395–403

algorithms, 401–403

culture, 397

direct microscopic examination, 396–397

interpretation and reporting of results, 398–401

microbiological, 396–398

molecular assays, 398

nonmicrobiological, 395–396

rapid antigen testing, 397

sample collection and processing, 396

serology, 397–398

disease spectrum, 391–393

treatment, 399–400

mass/space-occupying lesions, 393

meningitis, 392, 399–400, 401

myelitis, 394, 400

immunocompromising conditions, 393–396

HIV/AIDS, 393–394

steroid use, 395

transplantation, 394–395

pathophysiology of infection, 391

prognostic factors, 395

Chagas’ disease. See *Trypanosoma cruzi*

Chemotherapeutic agents, immunodeficiency associated with use of, 11–13

Chicken pox. See Varicella-zoster virus (VZV)

Children, immunodeficiency and, 28

Chlamydia trachomatis, genitourinary tract infections by, 357, 360, 361

Chlamyphila pneumoniae, lower respiratory tract infections by, 333, 338, 346, 350, 351

CHROMagar, 228, 449

Chromogenic media

multiple-pathogen detection with, 448–449

for yeast identification, 227–229

Chronic active hepatitis, immunodeficiency and, 29–30

Chronic disease, immunodeficiency and, 29–30

Chronic fatigue syndrome, Epstein-Barr virus infection and, 92

Cirrhosis, immunodeficiency and, 29–30

CLL, immunodeficiency associated with, 26

Clostridium difficile, gastrointestinal infections by, 382, 385, 387

CMV. See Cytomegalovirus

Coagulase-negative staphylococci (CoNS)

bloodstream infections, 410

heart valve infections, 422

hospital-associated infections, 430–431

Coccidia

Cryptosporidium, 301–302

Cyclospora cayetanensis, 302–303

Isospora (Cystoisospora) belli, 303–304

Sarcocystis, 304–305

Coccidioidomycosis

central nervous system infections, 401

gastrointestinal infection, 383

Collagen vascular diseases, lower respiratory tract infections and, 342–343

Common variable immunodeficiency (CVID)

description, 8

Epstein-Barr virus infection and, 93

Complement system

activation, 5

disorders of, 9–10

evaluation of immunodeficiency, 32

overview, 5

Computed tomography (CT)

central nervous system infection diagnosis, 395, 403

genitourinary tract infection diagnosis, 364–365

lower respiratory tract infections, 344

Congenital infection, cytomegalovirus, 83–84

Coronavirus

background and clinical information, 150–151

diagnosis, 151

result interpretation, 151

Corticosteroids

central nervous system infections, 395

filamentous fungi, infections by, 203

immunosuppression from use, 10

Corynebacterium urealyticum, genitourinary tract infections by, 357

Coxsackievirus. See Enterovirus

CPE. See Cytopathic effect

Critically ill patients, infections by filamentous fungi in, 203–204

Cryptococcal polysaccharide capsule antigen, 234–235

Cryptococcus

C. albidos, 224

C. gattii, 224

C. laurentii, 224

C. neoformans, 221, 224, 392, 397

bloodstream infections, 413

genitourinary tract infections, 357

lower respiratory tract infections, 334, 336, 344, 345, 346
central nervous system infections, 392, 394, 397, 400
diagnosis of infections
 antigen detection, 234–235, 397
 microscopic examination, 234
 molecular identification of, 233
 SSCP analysis, 231
gastrointestinal infections, 383
infections by, 224
Cryptosporidium, 299–302
 C. hominis, 384
 C. parvum, 384
clinical aspects, 284, 300–301
 biliary tract disease, 300
 immunocompetent individuals, 300
 immunocompromised individuals with AIDS, 300
 immunocompromised individuals with malignant
disease, 301
 immunocompromised individuals with primary
immunodeficiency diseases, 300–301
 intestinal disease, 300
 pancreatitis, 300
 respiratory tract disease, 300
diagnosis, 287, 301, 386
epidemiology and control, 301–302
gastrointestinal infections, 384, 386
organism description, 299–300
overview, 299
therapy, 301
CSF (cerebrospinal fluid), central nervous system infec-
tions and, 391–393, 396–402
CT. See Computed tomography
Culture. See also Tissue culture; Viral culture
 blood, 410–412
 fungal, 207–208, 369
 in genitourinary tract infections, 367–369
 hospital-associated infections, 436–437
Leishmania, 318
mycobacteria, 259
CVID. See Common variable immunodeficiency
Cyclophosphamide, immunosuppression by, 17
Cyclospora cayetanensis, 302–303
clinical aspects, 284, 302
diagnosis, 287–288, 302
epidemiology and control, 303
gastrointestinal infections, 384
organism description, 302
overview, 302
therapy, 302–303
Cyclosporine, immunosuppression by, 15
Cystitis, 360, 364. See also Urinary tract infection
(UUT)
Cytomegalovirus (CMV), 69–86
 in AIDS patients, 70, 80–81
 central nervous system infections, 392, 393, 394, 395, 398
 clinical application and interpretation of data, 80–84
 in AIDS patients, 80–81
 congenital infection, 83–84
 gastrointestinal disease, 81
 in hematopoietic stem cell transplant patients, 81–83
pneumonitis, 81
polymadiculopathy and ventriculoencephalitis, 80–81
retinitis, 80
in solid organ transplant recipients, 82–83
cytopathic effect, 73, 74
epidemiology and clinical manifestations, 69–71
 in AIDS patients, 70
 in hematopoietic stem cell transplant recipients, 70–71
 in newborns and infants, 71
 risk factors, 70
 in solid organ transplant recipients, 70
gastrointestinal infections, 379, 381, 383, 385–386
goals and algorithms of laboratory testing, 77–80
diagnosis, 79, 80
monitoring therapeutic response, 79
prognostication and risk assessment, 78–79
screening, surveillance, and prevention, 77–78
in hematopoietic stem cell transplant recipients, 70–71,
81–83
laboratory methods for detection, 71–77
antigenemia, 74–75
fluorescent antibody detection, Color Plate 1
 histopathology, 77, Color Plate 2, Color Plate 3
 hybrid capture assay, 77
 molecular methods, 75–77
 NASBA, 76–77
 PCR assay, conventional, 75
 quantitative PCR, 75–76
 real-time PCR, 76
 serology, 73–74
 table of methods, 72–73
viral culture, 71
lower respiratory tract infections, 334, 336, 337, 338, 343
pathogenesis, 69
 in solid organ transplant recipients, 70, 82–83
 structure, 69
susceptibility testing, 84–85
therapeutic considerations, 84
Cytopathic effect (CPE)
cytomegalovirus (CMV), 73, 74, Color Plate 2
enteroviruses, 171
herpes simplex virus (HSV), 114
human metapneumovirus (hMPV), 149
influenza, 144
respiratory syncytial virus (RSV), 147
rhinovirus, 150
Dacelizumab, immunosuppression by, 17
da-Arabinotol detection, for yeast infection diagnosis, 237
Dematiaceous molds, 200
Dermatophilus culture, 278
epidemiology, 274
microscopy and direct visualization, 277
DFA. See Direct fluorescent antibody
Diabetes mellitus
genitourinary tract infections, 363–364
infection risk with, 27
mycobacterial infection, 258
Diagnosis, future trends in, 443–454
bioinformatics, 450–451
genotyping and molecular epidemiology, 451–452
molecular testing of drug resistance, 452–453
multiple-organism detection, 445–449
multiplex analysis via PCR-MS, 448–449
multiplex PCR with microarrays, 446–448
real-time multiplex PCR with fluorescent probe detection, 446
proteomics, 453–454
sequence-based identification methods, 449–450
DNA sequencing, 449
fluorescence in situ hybridization (FISH), 449–450
stat biomarkers, 444–445
stat-PCR, 443–444
therapy-driven diagnostics, 445

Dietzia
epidemiology, 274
microscopy and direct visualization, 277

Dimorphic molds, 198
Direct fluorescent antibody (DFA)
coronavirus, 151
herpes simplex virus (HSV), 115
influenza, 144–145
respiratory syncytial virus (RSV), 147
varicella-zoster virus (VZV), 118
DNA probes, for mycobacterial identification, 261
DNA sequencing. See Sequencing
Drug resistance, molecular testing of, 452–453

EBV. See Epstein-Barr virus
EIA. See Enzyme immunoassay
Electron microscopy, of adenovirus, 132–133
ELISA. See Enzyme-linked immunosorbent assay
Elizabethkingiae meningoseptica, lower respiratory tract infections by, 334
Encephalitis, 392–393, 399–400
Encephalitozoon, 306–307, 384
End-stage renal disease (ESRD), immunodeficiency and, 30
Enolase, 235–236
Entamoeba histolytica, 291–296
clinical aspects, 284, 292–294
AIDS patients, 293–294
asymptomatic infection, 292
extraintestinal amebiasis, 293
intestinal disease, 292–293
diagnosis, 285, 294–295, 386
extraintestinal disease, 295
histology, 295
intestinal disease, 294–295
epidemiology and control, 295–296
organism description, 291–292
overview, 291
therapy, 295

Enterococcus
E. faecalis
hospital-associated infections, 434, 435
peptide nucleic acid fluorescence in situ hybridization (PNA FISH), 449–450
vancomycin-resistant enterococci (VRE), 448

E. faecium
hospital-associated infections, 431, 434, 435
vancomycin-resistant enterococci (VRE), 448
genitourinary tract infections, 357, 361, 368, 369, 376
vancomycin-resistant enterococci (VRE), 448

Enterocytozoon bieneusi, 306
gastrointestinal infections, 384
lower respiratory tract infections, 335
Enterovirus, 161–174
central nervous system infections, 397, 398
classification and biology, 161, 162
detection with GeneXpert technology, 444
diagnosis, 169–174
culture, 171–172
nucleic acid detection, 169–171
test selection, application, and interpretation, 173–174
epidemiology and clinical manifestations, 161–164
infections in specific host populations, 164–169
HIV/AIDS, 168
malignancy, 166–167
neonates, 167–168
primary B-cell-associated immunodeficiencies, 164–165
transplant recipients, 165–166
VAPP, 168–169
susceptibility testing, 173
treatment, 169

Enzyme immunoassay (EIA)
Epstein-Barr virus (EBV), 96–97
genitourinary tract infections, 371–372
HIV, 50–53, 54, 55
human metapneumovirus (hMPV), 149
yeast infection diagnosis, 231

Enzyme-linked immunosorbent assay (ELISA)
coronavirus, 151
Epstein-Barr virus (EBV), 96
human herpesvirus 8 (HHV8), 101–102
lower respiratory tract infections, 350
parvovirus, 187–188
Toxoplasma gondii, 316
varicella-zoster virus (VZV), 118

Epipidymitis, 357

Epstein-Barr virus (EBV)
background and clinical information, 91–92
central nervous system infections, 392, 394, 398
diagnosis, 96–99
in situ techniques, 99
PCR, viral load measurements by, 97–99
serology, 96
gastrointestinal infections, 383, 386
immunomodulation from, 25–26
infections and immune dysregulation, 92
infections in acquired immunodeficiency, 93–96
Burkitt’s lymphoma, 95
Hodgkin’s lymphoma, 94–95, 98
lymphoproliferative disorders (LPDs), 93–94, 98
NK/T-cell lymphoma, 95–96
non-Hodgkin’s lymphoma, 96
infections in genetically immunocompromised individuals, 92–93
common variable immunodeficiency (CVID), 93
NK/T-cell lymphoproliferative disease (chronic active EBV), 93
X-linked agammaglobulinemia (XLA), 92
X-linked hyper-IgM syndrome, 92–93
X-linked lymphoproliferative syndrome (XLP), 93
lower respiratory infections, 338
Erythema infectiosum. See Parvovirus
Escherichia coli
detection methods, 385
gastrointestinal infections, 385
genitourinary tract infections, 357, 358–359, 361, 362, 368
ESRD (end-stage renal disease), immunodeficiency and, 30
Etanercept, infection risk with use of, 18
Fiber-optic bronchoscopy, 348
Fifth disease. See Parvovirus
Fine needle aspirate, 421–422
Flow cytometry, for yeast infection diagnosis, 233
Fluorescence in situ hybridization (FISH)
diagnosis of bloodstream infection, 412
diagnosis of yeast infection, 230, Color Plate 7
future trends, 449–450
PNA (peptide nucleic acid) FISH, 434, Color Plate 7
Fluorescence microscopy, for mycobacteria, 259
Fluorescent-antibody membrane antigen (FAMA) assay, for varicella-zoster virus (VZV), 118
Fluorescent-antibody (FA) testing. See also Direct fluorescent antibody (DFA); Indirect fluorescent antibody (IFA)
adenovirus, 132
human metapneumovirus (hMPV), 149
rhinovirus, 150
Foley catheters, 426
Formol gel test, 319
Fungi. See also Fungi, filamentous; Yeast
bloodstream infections, 411–412, 413
central nervous system infections, 392–393, 399
culture in genitourinary tract infections, 369
gastrointestinal infections, 382–383, 385
hospital-associated infections, 432–433
Fungi, filamentous, 195–212
antifungal susceptibility, 205
epidemiology, 200, 202–204
cancer patients, 202
corticosteroid use, 203
critically ill patients, 203–204
graft-versus-host disease, 202
HIV-associated disease, 202
neutropenics patients, 202
solid organ transplant recipients, 202–203
stem cell transplant recipients, 202
etiologic agents, 195–200
Acremonium, 198–199
Aspergillus, 196
dematiaceous molds, 200
Fusarium, 196–197
Histoplasma capsulatum, 198
hyalohyphomycosis, 196–199
Paeclomyces, 199
Penicillium marneffei, 198
Pseudallescheria boydii (Scedosporium apiospermum), 197
Scopulariopsis, 199
table of agents, 201
zygomycosis (mucormycosis), 199–200
laboratory testing, 207–212
anatomic pathology, 208–209
antigen detection assays, 209–211
culture, 207–208
nucleic acid amplification-based assays, 211
serology, 211–212
laboratory testing goals, 205–207
diagnosis and prognostication, 206
screening and prevention, 205–206
treatment and monitoring, 206–207
morbidity and mortality, 204
overview, 195
prognostication, 204–205, 206
spectrum of disease, 204
therapy, 205, 206–207
Fusarium, 196–197
bloodstream infections, 411–412, 413
lower respiratory tract infections, 335
soft tissue infections, 420
Future trends in diagnosis. See Diagnosis, future trends in
Galactomannan testing, 209–211, 350
Gastrointestinal infections, 379–387
agents
bacteria, 381–382
fungi, 382–383
parasites, 384
table of, 380
viruses, 81, 383–384
diagnostic approaches, 384–386
algorithm, 386
for bacteria, 384–385
for fungi, 385
for parasites, 386
for viruses, 385–386
overview, 379, 381
risk factors, 379, 381
GenBank, 450
GeneXpert technology, 444
Genitourinary infections, 357–373
agents, 357–358
diagnostic approaches, 364–366
microbiological, 365–372
radiography, 364–365
surgical pathology, 365
host factors and patient groups, 361–364
aplastic anemia, 362–363
cancer, 363
diabetes mellitus, 363–364
hematological malignancies, 363
hematopoietic stem cell transplants, 363
HIV/AIDS, 361
primary immunodeficiencies, 362
solid organ transplant recipients, 361–362
microbiology, 365–372
adenoviruses, 370–371
antimicrobial susceptibility testing, 368–369
bacterial culture, 367–368
BK virus, 371
fungal culture, 369
herpes simplex virus (HSV), 369–370
human papillomavirus (HPV), 370
overview, 365–366
rapid screening methods, 366–367
sample collection, 366
serology, 371–372
viral detection, 369–371
monitoring, 372–373
pathophysiology, 358–359
prognostic factors, 364, 372–373
syndromes, 359–361
therapeutic considerations, 364, 372–373
Genotyping
molecular epidemiology, 451–452
mycobacteria, 261
for susceptibility testing in HIV infection, 59–61, 62–63
Giardia lamblia, 296–299
clinical aspects, 284, 297
diagnosis, 286, 297–298, 386
antigen detection, 298
epidemiology and control, 299
histology, 298
routine procedures, 297–298
therapy, 298
gastrointestinal infections, 384, 386
organism description, 297
overview, 296–297
Glucocorticoids, central nervous system infections and, 395
Gordonia
culture, 278
description, 270–271
epidemiology, 274
microscopy and direct visualization, 276
Graft versus host disease (GVHD)
filamentous fungi, infections by, 202
in hematopoietic stem cell transplantation, 21, 23–24
prevention and treatment of, 17
Granulomatous amebic encephalitis (GAE), 308, 310–312
Group B streptococcus, detection with GeneXpert technology, 444
GVHD. See Graft versus host disease
Haemophilus ducreyi, genital tract infections by, 361
Haemophilus influenzae
hospital-associated infections, 435
lower respiratory tract infections, 333, 335, 336, 338, 342
HandyLab, 444
Heart transplantation, 339
Heart valves, prosthetic, 422
Heat shock proteins, Cándida antigen detection and, 236
Helicobacter pylori, 379, 382
Helminths, 323–324
Hematogenous spread, soft tissue infections from, 420
Hematologic malignancies, immunodeficiency associated with, 26–27
Hematopoietic stem cell transplantation (HSCT)
adenovirus, 129–130
cytomegalovirus, 70–71, 81–82
enteroviruses, 174
filamentous fungi, infections by, 202
genitourinary tract infections, 358, 360–361, 363, 370–371
immunosuppression and, 20–25
influenza, 143
lower respiratory tract infections and, 339–342
mycobacterial infection, 256–257
nonmyeloablative conditioning regimens, 24–25
postengraftment phase, 23–25
preengraftment phase, 20–23
timeline of infections after, 21, 22
Herpes simplex virus (HSV)
central nervous system infections, 392, 397, 398, 400
diagnostic testing, 114–116, 124
direct antigen detection, 115
direct smear, 114
molecular detection, 115–116
serology, 115
viral culture, 114–115
epidemiology, 114
gastrointestinal infections, 383, 385, 386
genitourinary tract infections, 357, 360, 365, 366, 369–370
lower respiratory infections, 338
organism, 113
pathogenesis, 113–114
therapy, 116
Histology/histopathology
adenovirus, 133, Color Plate 6
cytomegalovirus, 77, Color Plate 2, Color Plate 3
Entamoeba histolytica, 295
filamentous fungi, infections by, 208–209
genitourinary tract infection diagnosis, 365
Giardia lamblia, 298
Histoplasma capsulatum, 198
bloodstream infections, 410, 413
gastrointestinal infections, 382–383
genitourinary tract infections, 357
HIV. See Human immunodeficiency virus
HLA antigens, 23
Hodgkin’s lymphoma, Epstein-Barr virus and, 94–95, 98
Hospital-associated infections, 429–438
bloodstream infections, 429–435
antimicrobial resistance, 430–433
fungi, 432–433
gram-negative bacteria, 432
gram-positive bacteria, 431–432
laboratory diagnostic modalities, 433–434
pathogens, 430–433
surveillance activity, 434–435
pneumonia, 334–335
respiratory tract infections, 435–438
antimicrobial resistance, 435–436
laboratory diagnostic methods, 436–438
pathogens, 435–436
surveillance activity, 438
Host defense
adaptive immunity, 5–6
B lymphocytes, 5–6
T lymphocytes, 6
innate immunity, 3–5
complement system, 5
NK cells, 5
phagocytes, 4–5
physical barriers, 3
HSCT. See Hematopoietic stem cell transplantation
HSV. See Herpes simplex virus
Human herpesvirus 4 (HHV-4). See Epstein-Barr virus (EBV)
Human herpesvirus 6 (HHV-6)
central nervous system infections, 392, 398
diagnostic testing, 121–123, 124
immunohistochemistry, 122–123
in situ hybridization, 122–123
molecular detection, 121–122
serology, 121
viral culture, 121
epidemiology, 120–121
gastrointestinal infections, 383–384, 386
lower respiratory infections, 342
organism, 119
pathogenesis, 119–120
therapy, 122–123
Human herpesvirus 7 (HHV-7)
central nervous system infections, 393
diagnostic testing, 123, 124
epidemiology, 123
organism, 123
pathogenesis, 123
therapy, 123
Human herpesvirus 8 (HHV-8)
background, clinical information, epidemiology, 99–100
diagnosis, 101–103, Color Plate 4, Color Plate 5
detection of viral antibodies, 101–102
detection of viral DNA, 102–103
gastrointestinal infections, 383
pathogenesis, 100
risk stratification, 100–101
therapy, 100
Human immunodeficiency virus (HIV), 47–64
background and clinical information, 47–49
central nervous system infections and, 393–394
course of infection, 47–49
diagnosis, 49
of acute or primary infection, 56
algorithm, 51
CDC recommendations for testing, 49–50
enzyme immunoassay (EIA), 50–53, 54, 55
general approaches, 49–50
indirect immunofluorescence assay (IFA), 55
in infants, 50, 54–55, 59
interpretation of test results, 56
latex aggregation assay, 55
nucleic acid amplification testing (NAAT), 54–55, 58, 59
rapid tests, 53–54
table of methods, 52
viral culture, 55–56
Western blot, 53, 55
drug resistance detection, 452–453
enteroviruses and, 168
genitourinary tract infections, 361
genotyping, 452–453
global epidemiology of HIV variants, 50
immunodeficiency from, 25
lower respiratory tract infections and, 336
microarray detection, 447
monitoring infection, algorithm for, 63
prognostication, 56–57
stages, 25
susceptibility testing, 59–63
by genotyping methods, 59–61
by phenotyping methods, 61–62
summary, 62–63
viral load assays, 57–59
Human metapneumovirus (hMPV)
background and clinical information, 149
diagnosis, 149
result interpretation, 149
Human papillomavirus, 357, 365, 370
Human T-lymphocytic virus type 1 (HTLV-1), 393
Humoral immunity
evaluation of deficiency, 31–32
lower respiratory tract infections and impairment, 335
Hyaloaphyomycosis, 196–199
Hybrid capture assay, cytomegalovirus, 77

IFA. See Indirect fluorescent antibody
IgA deficiency
from phenytoin, 18
selective, 8
Immune risk phenotype (IRP), Epstein-Barr virus and, 92
Immunoblot assay
HHV8 detection, 101
Trypanosoma cruzi, 322
Immunodeficiency
causes of secondary, 10–13
age effects, 28
allograft rejection therapies, 14–17
antilymphocyte antibody therapies, 13–14
chronic disease, 29–30
corticosteroid use, 10
hematologic malignancies, 26–27
hematopoietic stem cell transplantation and, 20–25
metabolic diseases, 27–28
neoplasia therapy, 10–13
rheumatic disease therapy, 17–18
solid organ transplantation and, 18–20
surgery trauma, 28–29
viral infection, 25–26
primary, 6–10
common variable immunodeficiency (CVID), 8
complement disorders, 9–10
genitourinary tract infections, 362
illness patterns associated with, 6–7
phagocyte disorders, 9
selective IgA deficiency, 8
severe combined immunodeficiency (SCID), 8–9
T-cell disorders, 9
X-linked agammaglobulinemia (XLA), 7–8
screening for suspected, 30–33
cell-mediated immunity evaluation, 32
complement system evaluation, 32
humoral/immunity evaluation, 31–32
peripheral blood smear, 30–31
phagocytic cells evaluation, 32–33

Immunohistochemistry
adenovirus, 132
enteroviruses, 172
human herpesvirus 6 (HHV-6), 122–123

Immunoperoxidase assay
cytomegalovirus, Color Plate 3
rhinovirus, 150

Indirect fluorescent antibody (IFA)
coronavirus, 151
HIV, 55
human herpesvirus 8 (HHV8), 101–102
influenza, 144
microsporidia, 307–308
respiratory syncytial virus (RSV), 147
Toxoplasma gondii, 316

Infants
cytomegalovirus in, 71
immunodeficiency and, 28

Infliximab, infection risk with use of, 18

Influenza virus, 142–146
background and clinical information, 142–143
diagnosis, 143–146
antigen detection, 144–145
interpretation of results, 145–146
nucleic acid testing, 145
rapid tests, 144
specimen collection, 143–144
tissue culture, 144
lower respiratory infections, 338, 342
prevention, 143
resistance to antivirals, 143
susceptibility testing, 145
therapeutic monitoring, 146
therapy, 143

Innate immunity components, 3–5
complement system, 5
NK cells, 5
phagocytes, 4–5

In situ hybridization. See also Fluorescence in situ hybridization (FISH)
toenteroviruses, 171
to human herpesvirus 6 (HHV-6), 122–123

Intensive care unit patients, infections by filamentous fungi, 203–204
Intravenous catheters, infections and, 423–425, 426
Intravenous immunoglobulin (IVIG), parvovirus and, 185, 186, 189–190
Isospora (Cystoisospora) belli, 303–304
clinical aspects, 284, 304
diagnosis, 304
epidemiology and control, 304
gastrointestinal infections, 384
organism description, 303–304
overview, 303
therapy, 304

JC virus, central nervous system infections by, 392, 398, 400

Kaposi's sarcoma, 100
Kaposi's sarcoma-associated virus. See human herpesvirus 8 (HHV-8)
Kidney transplantation, 339

Klebsiella granulomatis
-genitourinary tract infections, 361

Klebsiella pneumoniae
-genitourinary tract infections, 362, 368
-hospital-associated infections, 432, 435
-lower respiratory tract infections, 333, 340, 343

Lab-in-a-tube (Liat), 444
Latex aggregation assay, for HIV, 55

Leflunomide, for rheumatoid arthritis, 17–18

Legionella
-bloodstream infections, 411, 413
-hospital-associated infections, 436–438
-L. bozemanae, 436, 438
-L. micdadei, 436, 438
-L. pneumophila, 436

Leishmania, 316–320
clinical aspects, 284, 317–318
diagnosis, 289, 318–319
-blood, 318
culture and animal inoculation, 318
-Formol gel test, 319
-PCR, 318
-serology, 319
tissue aspirates, 318
epidemiology and control, 319–320
gastrointestinal infections, 384
organism description, 317
overview, 316–317
therapy, 319

Length polymorphism analysis of ITS region, for yeast infection diagnosis, 231

Leptotrichia, bloodstream infections by, 409

Listeria
-central nervous system infections, 392, 394–395, 397, 399
gastrointestinal infections, 382, 385
genitourinary tract infections, 362
Liver disease, immunodeficiency and, 29–30
Liver transplantation, 339
Lower respiratory tract infections, 333–353
diagnostic approaches, 344–352
 BAL, 349–351
 blood cultures, 345
 bronchial washings and brushings, 348–349
 complications of bronchoscopic techniques, 352
 fiber-optic bronchoscopy, 348
 induced sputum, 347–348
 radiography, 344–345
 respiratory specimens, 346–347
 serology, 346
 SLB (surgical lung biopsy), 352
 TBB (transbronchial biopsy), 349, 350
 urinary antigen studies, 345–346
host factors and subgroups, 335–344
 alcoholism, 343
 anti-TNF agents, 343
 cellular immunity defects, 335
 collagen vascular diseases, 342–343
 hematopoietic stem cell transplantation, 339–342
 HIV/AIDS, 336
 humoral immunity impairment, 335
 lymphocyte-depleting monoclonal antibodies, 343
 neutropenia, 335
 noninfectious pulmonary disorders, 343–344
 solid organ transplant recipients, 336–339
 pneumonia
 community-acquired, 333–334
 nosocomial, 334–335
 Lung transplantation, 337–339
Lymphoproliferative disorders (LPDs), Epstein-Barr virus associated, 93–94, 98
Magnetic resonance imaging (MRI)
 central nervous system infection diagnosis, 395
 genitourinary tract infection diagnosis, 364–365
 Malassezia, infections by, 226
 Malignancy, enteroviruses and, 166–167
 Mass/space-occupying lesions, in central nervous system infections, 393, 399
 Mass spectrometry (MS), diagnostic identification and,
 448, 453–454
 Measles virus, immunomodulation from, 26
 Meningitis, 392, 399–400, 401
 Microarrays
 multiplex PCR and, 446–448
 electronic arrays, 447–448
 liquid microarray detection of amplicons, 447
 printed arrays, 447
 solid microarray detection of amplicons, 447–448
 synthesized arrays, 447
 for yeast infection diagnosis, 231
 Microscopic examination
 central nervous system infections, 396–397
 mycobacteria, 258–259
 yeast infection diagnosis, 234
 Microsporidia, 305–308
 clinical aspects, 284, 306–307
 Brachiola connori, 307
 Encephalitozoon, 306–307

Enterocytozoon bieneusi, 306
 Pleistophora, 307
 Trachipleistophora, 307
 diagnosis, 288–289, 307–308
 epidemiology and control, 308
 gastrointestinal infections, 384
 overview, 305–306
 therapy, 308
Molds. See Fungi, filamentous
 Molecular epidemiology, genotyping and, 451–452
 Moraxella pneumoniae, 333
MRI. See Magnetic resonance imaging
 MRSA (methicillin-resistant Staphylococcus aureus),
 431–435, 444, 448–449, 452
 Multidrug resistance (MDR) pathogens, hospital-associated infections and, 430, 432, 434, 435–436, 438
 Multiple myeloma, immunodeficiency associated with, 26–27
 Multiple-organism detection, 445–449
 multiplex analysis via PCR-MS, 448–449
 multiplex PCR with microarrays, 446–448
 real-time multiplex PCR with fluorescent probe detection, 446
 Multiple sclerosis, Epstein-Barr virus infection and, 92
 Multiplex PCR, 445–449
 with microarrays, 446–448
 electronic arrays, 447–448
 liquid microarray detection of amplicons, 447
 printed arrays, 447
 solid microarray detection of amplicons, 447–448
 synthesized arrays, 447
 multiplex analysis via PCR-MS, 448–449
 real-time with fluorescent probe detection, 446
Mycobacterium (mycobacteria), 253–265
 bloodstream infections, 412
 breast implant infections, 423
 central nervous system infections, 392, 398
 description of pathogens, 253–255
 Mycobacterium abscessus, 255
 Mycobacterium avium complex (MAC), 254
 Mycobacterium chelonae, 255, 412
 Mycobacterium fortuitum, 255
 Mycobacterium genavense, 255
 Mycobacterium haemophilum, 254–255, 412
 Mycobacterium intracellulare, 254
 Mycobacterium kansasii, 254
 Mycobacterium tuberculosis complex (MTBC),
 253–254
 nontuberculous mycobacteria (NTM), 254–255
 rapidly growing mycobacteria, 255
 table of phenotypic characteristics, 254
 interpretation of test results, 262–265
 M. tuberculosis-positive specimens, 262–263
 NTM-positive specimens, 263
 smears for acid-fast bacilli, 262
 susceptibility testing, 263–265
 laboratory diagnostics, 258–262
 algorithm for testing, 260
 conventional versus new-technology test method, 262
culture, 259
direct detection in clinical specimens, 259
genotyping, 261
identification of mycobacteria, 259, 261
microscopy, 258–259, Color Plate 10
serology, 258
turnaround times for laboratory tests, 262
lower respiratory tract infections, 334, 336
M. avium-intracellulare complex (MAC)
bloodstream infections, 410
gastrointestinal infections, 382
lower respiratory tract infections, 334, 336
soft tissue infections, 420
M. tuberculosis
bloodstream infections, 410, 412
central nervous system infections, 394, 398
gastrointestinal infections, 382
lower respiratory tract infections, 334, 336, 338, 348, 351
microarray detection, 447
microarray detection, 447
spectrum of disease in immunocompromised hosts, 255–258
diabetes, 258
HIV/AIDS, 255–256
TNF-α antagonists, treatment with, 257–258
transplantation, 256–257
urothelial bladder cancer, 257
MycoPhenolate mofetil (MMF), immunosuppression by, 14–15
Mycoplasma
genitourinary tract infections, 357, 362
lower respiratory tract infections, 333, 335, 350, 351
Myelitis, 394, 400
Naegleria fowleri, 309–310
clinical aspects, 309–310
diagnosis, 285, 310
organism description, 309
overview, 309
Nasopharyngeal aspirates, 346
NAT. See Nucleic acid testing
NCBI taxonomy database, 450
Neisseria gonorrhoeae, 357, 361, 362
Neisseria meningitidis, bloodstream infections by, 409
Neonates
enteroviruses and, 167–168
immunodeficiency and, 28
Neoplasia
immunodeficiency associated with treatment for, 10–13
immunodeficiency from hematologic malignancies, 26–27
Nephrotic syndrome, immunodeficiency and, 27
Neuraminidase inhibitors, for influenza therapy, 143, 145, 146
Neutropenia
filamentous fungi, infections by, 202
lower respiratory tract infections and, 335
Newborns, cytomegalovirus in, 71
NK cells, 5
NK/T-cell lymphomas, Epstein-Barr virus and, 95–96
NK/T-cell lymphoproliferative disease (chronic active EBV), 93
Nocardia
central nervous system infections, 393, 394
culture, 278
description, 269–270, 271
epidemiology, 272–273
genitourinary tract infections, 362
lower respiratory tract infections, 334, 336, 341, 350
microscopy and direct visualization, 276, Color Plate 8, Color Plate 9
pyrosequencing for diagnostics, 449
soft tissue infections, 420
susceptibility testing, 280
therapy, 279–280
Nocardiosis
culture, 278
description, 272
epidemiology, 274–275
microscopy and direct visualization, 277
Non-Hodgkin’s lymphomas, Epstein-Barr virus and, 96
Norovirus, 384, 386
Nosocomial infections. See Hospital-associated infections
Nucleic acid amplification testing (NAAT)
HIV, 54–55, 58, 59
lower respiratory tract infections, 350–351
mycobacteria, 259
Nucleic acid sequence-based amplification (NASBA),
cytomegalovirus, 76–77
Nucleic acid testing
adenovirus, 133–134
coronavirus, 151
enteroviruses, 169–171
fungi, filamentous, 211
human metapneumovirus (hMPV), 149
influenza, 145
parainfluenza virus, 148
respiratory syncytial virus (RSV), 147
rhinovirus, 150
RNA respiratory viruses, 152–153
yeast infection diagnosis, 239–241
OKT3 (muromonab-CD3), immunosuppression by, 15–16
Paecilomyces, 199
Pap smear, 365
Parainfluenza virus
background and clinical information, 148
diagnosis, 148
lower respiratory infections, 338, 342
result interpretation, 148–149
Parasitology, 283–325
arthropods, 324–325
Sarcocystis scabiei, 324–325
central nervous system infections, 392–393, 399
clinical findings in immunocompetent and immunocompromised patients, 284
diagnostic options, table of, 285–290
gastrointestinal infections, 384, 386
helminths, intestinal and tissue, 323–324
Strongyloides stercoralis, 323–324
overview, 283–284
protozoa, blood, 316–323
Leishmania, 316–320
Trypanosoma cruzi, 320–323
protozoa, intestinal and tissue, 291–316
Acanthamoeba, 310–312
Balamuthia mandrillaris, 312–314
Cryptosporidium, 299–302
Cyclospora cayetanensis, 302–303
Entamoeba histolytica, 291–296
Giardia lamblia, 296–299
Isospora (Cystoisospora) belli, 303–304
microsporidia, 305–308
Naegleria fowleri, 309–310
Sarcocystis, 304–305
Toxoplasma gondii, 314–316
Parvovirus, 183–190
clinical and epidemiologic features of infection, 184–186
immunocompetent patients, 184–185
immunocompromised patients, 185
morbidity and mortality, 186
description, 183
diagnosis, 187–189
antigen detection, 189
bone marrow examination, 188
culture, 189
interpretation of test results, 189
nucleic acid detection, 188, 189
serology, 187–188
table of methods, 187
laboratory testing goals, 186–187
diagnosis and prognostication, 186
screening and prevention, 186
treatment and monitoring, 186–187
pathophysiology of infection, 183–184
therapy, 189–190
monitoring response, 190
options, 189
PCR
adenovirus, 134, 135, 136
Balamuthia mandrillaris, 313
central nervous system infections, 398, 402
coronavirus, 151
cytomegalovirus, 75–76
Entamoeba histolytica, 295
tenteroviruses, 169–171, 173
Epstein-Barr virus (EBV), viral load measurements of, 97–99
fungi, filamentous, 211
genitourinary tract infections, 370–371
herpes simplex virus (HSV), 115–116
HIV, 54–55, 58–59
human herpesvirus 6 (HHV-6), 121–123
human herpesvirus 7 (HHV-7), 123
human herpesvirus 8 (HHV8), 102–103
human metapneumovirus (hMPV), 149
influenza, 145
Leishmania, 318
lower respiratory tract infections, 350–351
microsporidia, 308
multiple-organism detection, 445–449
multiplex analysis via PCR-MS, 448–449
multiplex PCR with microarrays, 446–448
real-time multiplex PCR with fluorescent probe detection, 446
mycobacteria, 259
parainfluenza virus, 148
parvovirus, 186–187, 188–190
rep-PCR, 451–452
respiratory syncytial virus (RSV), 147–148
rhinovirus, 150
RNA respiratory viruses, 152–153
stat, 443–444
Toxoplasma gondii, 316
Trypanosoma cruzi, 322
varicella-zoster virus (VZV), 118–119
yeast infection diagnosis, 231–233
automated PCR, 232
clinical studies, 240–241
detection and amplification methods, 239–240
flow cytometry, 233
length polymorphism analysis of ITS region, 231
microarrays, 231
probe hybridization, 231
real-time PCR, 232
RFLP analysis, 231
sample preparation, 239
SCCP analysis, 231
sequencing, 232–233
target selection, 239
Penicillium marneffei, 198, 383
Peptide nucleic acid fluorescence in situ hybridization (PNA FISH), 449–450
Peripheral blood lymphocyte coculture, for HIV, 55–56
Peripheral blood smear, examination for immunodeficiency, 30–31
PFGE (pulsed-field gel electrophoresis), 451
Phagocytes
disorders of, 9
evaluation of, 32–33
overview of function, 4–5
Phenotyping, for susceptibility testing in HIV infection, 61–63
Phenytoin, IgA deficiency from, 18
Physical barriers to infection, 3
Pichia, infections by, 225
Pleistophora, 307
Plesiomonas shigelloides, gastrointestinal infections by, 382
PNA (peptide nucleic acid) FISH, 434, Color Plate 7
Pneumocystis jirovecii FISH, 434, Color Plate 7
Pneumocystis jirovecii
gastrointestinal infections, 383
genitourinary tract infections, 362
lower respiratory tract infections, 334–337, 339, 341, 344, 347, 350
Pneumonia. See also Lower respiratory tract infections community-acquired, 333–334
nosocomial, 334–335
ventilator-associated (VAP), 426, 435, 436
Pneumonitis, cytomegalovirus, 81
Polio virus. See Enterovirus
Polyradiculopathy, cytomegalovirus, 80–81
Posttransplant LPDs (PTLDs), Epstein-Barr virus and, 94, 95, 98
Primary amebic meningoencephalitis (PAM), 308–310
Procalcitonin (PCT), 444–445, 454
Prostatitis, 357, 359, 360
Prosthetic devices, 422–426
breast implants, 422–423
dotracheal tubes, 426
Foley catheters, 426
heart valves, 422
intravenous catheters, 423–425, 426
Protein-losing enteropathy, immunodeficiency and, 27
Proteomics, 453–454
Protozoa
blood
Leishmania, 316–320
Trypanosoma cruzi, 320
central nervous system infections, 392–393, 399
intestinal and tissue
Acanthamoeba, 310–312
Balamuthia mandrillaris, 312–314
Cryptosporidium, 299–302
Cyclospora cayetanensis, 302–303
Entamoeba histolytica, 291–296
Giardia lambia, 296–299
Isospora (Cystoisospora) belli, 303–304
microsporidia, 305–308
Naegleria fowleri, 309–310
Sarcocystis, 304–305
Toxoplasma gondii, 314–316
Pseudallescheria boydii (Scedosporium apiospermum), 197
Pseudomonas aeruginosa
catheter-associated infections, 426
genitourinary tract infections, 357, 362
hospital-associated infections, 432, 435
lower respiratory tract infections, 333, 336, 340, 345
soft tissue infections, 420
Pseudomonas fluorescens, hospital-associated infections, 429
Pseudomonas spp.
culture, 278
description, 272
epidemiology, 274
microscopy and direct visualization, 277
Pulsed-field gel electrophoresis (PFGE), 451
Pure red cell anemia, parvovirus and, 185, 186–187
Pyelonephritis, 360
Pyrosequencing, 449
Quantitative PCR
adenovirus, 134
cytomegalovirus, 75–76
lower respiratory tract infections, 350
Radiography
central nervous system infection diagnosis, 395–396
genitourinary tract infection diagnosis, 364
lower respiratory tract infections, 341, 344–345
Rapamycin, immunosuppression by, 16
Real-time PCR
cytomegalovirus, 76
enteroviruses, 170–171
genitourinary tract infections, 370
multiple-organism detection with fluorescent probe detection, 446
for yeast infection diagnosis, 232
Rep-PCR, 451–452
Respiratory syncytial virus (RSV), 146–148
background and clinical information, 146
diagnosis
antigen detection, 147
interpretation of results, 147–148
nucleic acid testing, 147
rapid tests, 147
specimen collection, 146
tissue culture, 147
hospital-associated infections, 436
lower respiratory tract infections, 334–335, 338, 342, 346–347
Retinitis, cytomegalovirus, 80
RFLP analysis, for yeast infection diagnosis, 231
Rheumatic diseases
agents for the treatment of, 17–18
rheumatoid arthritis and Epstein-Barr virus infection, 92
Rhinovirus
background and clinical information, 149–150
diagnosis, 150
result interpretation, 150
Rhodococcus
culture, 278
description, 270
epidemiology, 273–274
microscopy and direct visualization, 276
therapy, 280
Rhodotorula, infections by, 227
Ribosomal Database Project, 450
Ribosomal Differentiation of Microorganisms (RIDOM) project, 450
Rituximab
enterovirus infection following, 166–167
immunodeficiency associated with, 13
RNA respiratory viruses, 141–153
coronaviruses, 150–151
diagnostic approach, 141, 142
epidemiology, 142
human metapneumovirus (hMPV), 149
human rhinovirus (HRV), 149–150
influenza virus, 142–146
multipathogen testing, 151–153
antigen detection, 152
nucleic acid testing, 152–153
tissue culture, 151–152
overview, 141–142
parainfluenza virus (PIV), 148–149
respiratory syncytial virus (RSV), 146–148
RSV. See Respiratory syncytial virus
RT-PCR
enteroviruses, 169–171, 173
for HIV, 60
Saccharomyces, infections by, 225–226
Salmonella
central nervous system infections, 392
lower respiratory tract infections, 334
Sarcocystis, 304–305
clinical aspects, 284, 305
diagnosis, 288, 305
epidemiology and control, 305
organism description, 305
overview, 304–305
therapy, 305
Sarcoptes scabiei, 324–325
clinical aspects, 284, 325
diagnosis, 290, 325
organism description, 325
overview, 324–325
therapy, 325
SARS-CoV, 150–151
Severe combined immunodeficiency (SCID), 8–9
Shigella, 382
Shingles. See Varicella-zoster virus (VZV)
Sixth disease. See Human herpesvirus 6 (HHV-6)
SLB (surgical lung biopsy), 352
SLE, immunodeficiency and, 29
Soft tissue infections, 419–422
agents, 419–421
diagnosis by fine needle aspirate, 421–422
from hematogenous spread, 420
wounds, 420
Solid organ transplantation
adenovirus, 130
central nervous system infections, 394–395
Cryptosporidium infection, 300
cytomegalovirus, 70, 82–83
enteroviruses, 174
filamentous fungi, infections by, 202–203
genitourinary tract infections, 361–362
human herpesvirus 6 (HHV-6), 120
immunosuppression and, 18–20
first month after transplantation, 18–20
more than six months after transplantation, 30
one-to-six months after transplantation, 20
lower respiratory tract infections and, 336–339
mycobacterial infection, 256–257
timeline of infections after, 19
Spindle cell pseudotumor, Color Plate 10
Spleen, absence of, 27–28
Sporobolomyces, infections by, 227
Sputum, sampling in lower respiratory tract infections,
347–348
Staphylococcus
cogulase-negative staphylococci (CoNS), 410, 422,
430–431
genitourinary tract infections, 357, 362
S. aureus
bloodstream infections, 409
breast implant infections, 423
detection with GeneXpert technology, 444
heart valve infections, 422
hospital-associated infections, 429–433, 435
IV catheter infections, 424–425
lower respiratory tract infections, 334, 336, 338,
339, 343, 345
MRSA (methicillin-resistant), 431–435, 444,
448–449, 452
S. epidermidis hospital-associated infections, 429,
431
S. intermedius soft tissue infections, 420
S. lugdunensis hospital-associated infections, 430
S. saprophyticus genitourinary tract infections, 357,
367, 368
Stem cells. See Hematopoietic stem cell transplantation
(HSCT)
Stenotrophomonas maltophilia, lower respiratory tract
infections by, 334, 335
Streptococcus
S. pneumoniae
bloodstream infections, 413
central nervous system infections, 397
hospital-associated infections, 435
lower respiratory tract infections, 333, 335–337, 339,
342, 343, 345, 351
S. pyogenes soft tissue infections, 420
Streptomyces
culture, 278
description, 272
epidemiology, 275
microscopy and direct visualization, 277
Strongyloides stercoralis, 323–324
central nervous system infections, 392
clinical aspects, 284, 324
diagnosis, 290, 324, 386
epidemiology and prevention, 324
gastrointestinal infections, 384, 386
genitourinary tract infections, 357
lower respiratory tract infections, 335
organism description, 323
overview, 323
treatment, 324
Surgery patients, infections by filamentous fungi, 203
Susceptibility testing
adenovirus, 134
bloodstream infections, 413–414
cytomegalovirus, 84–85
enteroviruses, 173
fungi, filamentous, 205
influenza, 145
mycobacteria, 263–265
Mycobacterium tuberculosis complex, 263–265
nontuberculous mycobacteria, 265
yeast, 229–230

Table of agents, 201
Tacrolimus, immunosuppression by, 15
TBB (transbronchial biopsy), 349, 350
Tem-PCR, 447
Therapy-driven diagnostics, 445
Tissue culture. See also Viral culture
coronavirus, 151
human metapneumovirus (hMPV), 149
influenza, 144
multipathogen testing, 151–152
parainfluenza virus, 148
respiratory syncytial virus (RSV), 147
rhinovirus, 150
RNA respiratory viruses, 151–152
T lymphocytes
CD4+ cells, 25, 47–48, 56–57, 63
deficiencies and Epstein-Barr virus infection, 93
description, 6
disorders of, 9
reduction with protein-losing enteropathy, 27
TNF antagonists
infection risk with use of, 18
mycobacterial infection and, 257–258
Toxoplasma gondii, 314–316
central nervous system infections, 393–394, 395, 400
clinical aspects, 284, 314–315
diagnosis, 286–287, 315–316
epidemiology and control, 316
lower respiratory tract infections, 334, 335, 337
organism description, 314
overview, 314
pathogenesis, 314
therapy, 316
Trachipleistophora, 307

Transplantation
central nervous system infections, 394–395
mycobacterial infection, 256–257
Trauma
immunosuppression and, 28–29
infections by filamentous fungi, 203
Trehalose assay, rapid, 229
Treponema pallidum
central nervous system infections, 397, 400–401
gastrointestinal infections, 382
genitourinary tract infections, 361
Trichomonas, genitourinary tract infections by, 357
Trichosporon, infections by, 226–227
Trypanosoma cruzi, 320–323
clinical aspects, 284, 321–322
diagnosis, 289, 322
epidemiology and control, 322–323
organism description, 321
overview, 320
therapy, 322
Tsukamurella
culture, 278
description, 271
epidemiology, 274
microscopy and direct visualization, 277
Tzanck smear, 365

Ureaplasma urealyticum, genitourinary tract infections by, 357, 362
Urinary antigen studies, for lower respiratory tract infections, 345–346
Urinary tract infection (UTI), 357–369, 372–373
Urothelial bladder cancer, mycobacterial infection and, 257

Vaccine-associated paralytic poliomyelitis (VAPP), 168–169
Vancomycin-resistant enterococci (VRE), 448, 452
Varicella-zoster virus (VZV)
central nervous system infections, 392, 394, 398
diagnostic testing, 117–119, 124
direct antigen detection, 118
molecular detection, 118–119
serology, 118
viral culture, 118
epidemiology, 117
gastrointestinal infections, 383, 386
organism, 116
pathogenesis, 116–117
therapy, 119
Ventilator-associated pneumonia (VAP), 426, 435, 436
Ventriculoencephalitis, cytomegalovirus, 80–81
Vibrio vulnificus, bloodstream infections by, 409
Viral culture. See also Tissue culture
adenovirus, 131–132
cytomegalovirus, 71
enteroviruses, 171–172
herpes simplex virus (HSV), 114–115
HIV, 55–56
human herpesvirus 6 (HHV-6), 121
INDEX 479

parainfluenza virus, 148
parvovirus, 189
varicella-zoster virus (VZV), 118

Viral load assays
Epstein-Barr virus (EBV), 97–99
HIV, 57–59

Viruses. See also specific viruses
 central nervous system infections, 392–393, 399–400
gastrointestinal infections, 383–384, 385–386
VRE (vancomycin-resistant enterococci), 448, 452
VZV. See Varicella-zoster virus

Western blot, for HIV, 53, 55
West Nile virus, central nervous system infections by, 392–393, 397, 398, 400
Wounds, 420

X-linked (Bruton’s) agammaglobulinemia (XLA), 7–8, 92
X-linked hyper-IgM syndrome
 enteroviruses and, 165
 Epstein-Barr virus infection and, 92–93
X-linked lymphoproliferative syndrome (XLP), 93

Yeast, 221–243
 association with host immune defects, 221–222
diagnosis of infections, 227–241
 algorithm, 242
culture-dependent assays, 227–233
 chromogenic media, 227–229
 commercial panels, 229
drawbacks of, 233
 in vitro susceptibility testing, 229–230
 molecular identification, 227–233
 rapid trehalose assays, 229
 molecular identification, 227–233
 of Cryptococcus, 233
 FISH, 230
 PCR, 231–233
 non-culture-based methods, 233–241
 antigen detection, 234–236

beta-1,3-glucan (BDG) detection, 236–237, 238
Candida antigen detection, 235–236
cryptococcal polysaccharide capsule antigen, 234–235
d-arabinitol detection, 237
direct microscopic examination, 234
nucleic acid detection, 239–241
table of assays, 234
PCR, 231–233
 automated PCR, 232
 flow cytometry, 233
 length polymorphism analysis of ITS region, 231
 microarrays, 231
 probe hybridization, 231
 real-time PCR, 232
 RFLP analysis, 231
 SCCP analysis, 231
 sequencing, 232–233
infectious agents, 222–227
 ascomycetous yeasts, 225–226
 basidiomycetous yeasts, 226–227
 Blastoschizomyces, 225
 Candida, 222–223
 Cryptococcus, 224
 Malassezia, 226
 non-Candida, non-Cryptococcus, 224–227
 Pichia, 225
 Rhodotorula, 227
 Saccharomyces, 225–226
 Sporobolomyces, 227
 Trichosporon, 226–227
taxonomy, 221
types of infection associated with, 221–222
Ziehl-Neelsen stain, 258–259
Zygomycosis (mucormycosis), 199–200
central nervous system infections, 393, 395
gastrointestinal infections, 383
lower respiratory tract infections, 335

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Thu, 22 Aug 2019 11:03:49