Chemical Communication among Bacteria
Chemical Communication among Bacteria

Edited by

Stephen C. Winans
Department of Microbiology
Cornell University
Ithaca, New York

and

Bonnie L. Bassler
Howard Hughes Medical Institute
Chevy Chase, Maryland and
Department of Molecular Biology
Princeton University
Princeton, New Jersey

ASM PRESS
Washington, DC
Chemical communication among bacteria / edited by Stephen C. Winans and Bonnie L. Bassler.

Includes bibliographical references and index.
1. Quorum sensing (Microbiology) 2. Cellular signal transduction.
[DNLM: 1. Bacteria—chemistry. 2. Bacterial Physiology. 3. Cell Communication. 4. Inter cellular Signaling Peptides and Proteins. QW 52 C5166 2008]

Library of Congress Cataloging-in-Publication Data

QR96.5.C54 2008
571.74—dc22

10 9 8 7 6 5 4 3 2 1

All Rights Reserved
Printed in the United States of America

Cover: A Staphylococcus aureus-Pseudomonas aeruginosa co-culture biofilm. Aggregates of S. aureus (colored red from SYTO 62 staining) are surrounded by a monolayer of P. aeruginosa (green-GFP tagged) in this 24-h-old biofilm. How and when interspecies signaling occurs to form organized mixed species communities represent an emerging area. Photo courtesy of Dinding An and Matthew R. Parsek.
CONTENTS

Contributors ix
Preface xv

I. CELL-CELL SIGNALING DURING DEVELOPMENT AND DNA EXCHANGE 1

1. Intercompartmental Signal Transduction during Sporulation in Bacillus subtilis
 David Z. Rudner and Thierry Doan 3

2. Extracellular Peptide Signaling and Quorum Responses in Development, Self-Recognition, and Horizontal Gene Transfer in Bacillus subtilis
 Jennifer M.Auchtung and Alan D. Grossman 13

3. New Insights into Pheromone Control and Response in Enterococcus faecalis pCF10
 Heather A. H. Haemig and Gary M. Dunny 31

4. C-Signal Control of Aggregation and Sporulation
 Dale Kaiser 51

5. The Dif Chemosensory System Is Required for S Motility, Biofilm Formation, Chemotaxis, and Development in Myxococcus xanthus
 Lawrence J. Shinkets 65
6. Heterocyst Development and Pattern Formation
 M. Ramona Aldea, Krithika Kumar, and James W. Golden
 75

7. Diverse Cell-Cell Signaling Molecules Control Formation of Aerial Hyphae and Secondary Metabolism in Streptomyces
 Joanne M. Willey and Justin R. Nodwell
 91

8. Metabolites as Intercellular Signals for Regulation of Community-Level Traits
 Russell D. Monds and George A. O’Toole
 105

II. CELL-CELL SIGNALING IN MUTUALISTIC AND PATHOGENIC ASSOCIATIONS WITH HUMANS, ANIMALS, AND PLANTS
 131

9. LuxR-Type Proteins in Pseudomonas aeruginosa Quorum Sensing: Distinct Mechanisms with Global Implications
 Martin Schuster and E. P. Greenberg
 133

10. Quorum Sensing in Vibrio cholerae Pathogenesis
 Fiona R. Stirling, Zhi Liu, and Jun Zhu
 145

11. Signal Integration and Virulence Gene Regulation in Staphylococcus aureus
 Edward Geisinger and Richard P. Novick
 161

12. Quorum Sensing in the Soft-Rot Erwinias
 Sarah J. Coulthurst, Rita E. Monson, and George P. C. Salmond
 185

13. Role of Quorum-Sensing Regulation in Pathogenesis of Pantoea stewartii subsp. stewartii
 Susanne B. von Bodman, Aurelien L. Carlier, and Ann M. Stevens
 201

14. Cell-to-Cell Communication in Rhizobia: Quorum Sensing and Plant Signaling
 J. Allan Downie and Juan E. Gonzalez
 213

15. Quorum Signaling and Symbiosis in the Marine Luminous Bacterium Vibrio fischeri
 E. V. Stabb, A. Schaefer, J. L. Bose, and E. G. Ruby
 233
16. Acylated Homoserine Lactone Signaling in Marine Bacterial Systems
Elisha M. Cicirelli, Holly Williamson, Karen Tait, and Clay Fuqua

III. PRODUCTION, DETECTION, AND QUENCHING OF CHEMICAL SIGNALS

17. Acyl-Homoserine Lactone Biosynthesis: Structure and Mechanism
Mair E. A. Churchill and Jake P. Herman

18. Cell-Cell Signaling within Crown Gall Tumors
Stephen C. Winans

19. A New Look at Secondary Metabolites
Michael G. Surette and Julian Davies

20. Signal Integration in the Vibrio harveyi and Vibrio cholerae Quorum-Sensing Circuits
Brian Hammer and Bonnie L. Bassler

21. Signal Trafficking with Bacterial Outer Membrane Vesicles
Lauren Mashburn-Warren and Marvin Whiteley

22. Cooperative Regulation of Competence Development in Streptococcus pneumoniae: Cell-to-Cell Signaling via a Peptide Pheromone and an Alternative Sigma Factor
Marco R. Oggioni and Donald A. Morrison

23. The A Factor Regulatory Cascade That Triggers Secondary Metabolism and Morphological Differentiation in Streptomyces
Sueharu Horinouchi

24. Quorum Quenching: Impact and Mechanisms
Lian-Hui Wang, Yi-Hu Dong, and Lian-Hui Zhang

25. Quorum-Sensing Inhibition
Staffan Kjelleberg, Diane McDougald, Thomas Bovbjerg Rasmussen, and Michael Givskov
IV. EUKARYOTIC QUORUM SENSING AND INTERACTIONS WITH QUORUM-SENSING BACTERIA

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Interdomain Cross Talk</td>
<td>Carla Cugini, Roberto Kolter, and Deborah A. Hogan</td>
<td>419</td>
</tr>
<tr>
<td>27</td>
<td>Intercellular Signaling by Rhomboids in Eukaryotes and Prokaryotes</td>
<td>Matthew Freeman and Philip Rather</td>
<td>431</td>
</tr>
<tr>
<td>28</td>
<td>Quorum Sensing in Fungi</td>
<td>Claire C. Tseng and Gerald R. Fink</td>
<td>443</td>
</tr>
<tr>
<td>29</td>
<td>Quorum Sensing in Rotifers</td>
<td>Julia Kubanek and Terry W. Snell</td>
<td>453</td>
</tr>
<tr>
<td>30</td>
<td>“Quorum Sensing” in Honeybees: Pheromone Regulation of Division of Labor</td>
<td>Yves Le Conte, Zachary Huang, and Gene E. Robinson</td>
<td>463</td>
</tr>
</tbody>
</table>

Index 469
CONTRIBUTORS

M. Ramona Aldea
Department of Biology, Texas A&M University, College Station, TX 77843

Jennifer M. Auchtung
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139

Bonnie L. Bassler
Howard Hughes Medical Institute, Chevy Chase, MD, and Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014

J. L. Bose
Department of Microbiology, University of Georgia, Athens, GA 30602

Aurelien L. Carlier
Department of Plant Science, University of Connecticut, Storrs, CT 06269-4163

Mair E. A. Churchill
Department of Pharmacology and Program in Biomolecular Structure, The University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045

Elisha M. Cicirelli
Department of Biology, Indiana University, Bloomington, IN 47405

Sarah J. Coulthurst
Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom

Carla Cugini
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755

Julian Davies
Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
Thierry Doan
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115

Yi-Hu Dong
Institute of Molecular and Cell Biology, Singapore 138673

J. Allan Downie
John Innes Centre, Norwich NR4 7UH, United Kingdom

Gary M. Dunny
Department of Microbiology, University of Minnesota, Minneapolis, MN 55455

Gerald R. Fink
Whitehead Institute for Biomedical Research, Cambridge, MA 02142

Matthew Freeman
MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom

Clay Fuqua
Department of Biology, Indiana University, Bloomington, IN 47405

Edward Geisinger
Molecular Pathogenesis Program, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016

Michael Givskov
BioScience and Technology, Technical University of Denmark, Lyngby, Copenhagen, Denmark

James W. Golden
Department of Biology, Texas A&M University, College Station, TX 77843

Juan E. González
Department of Molecular & Cell Biology, University of Texas at Dallas, Richardson, TX

E. P. Greenberg
Department of Microbiology, University of Washington, Seattle, WA 98195

Alan D. Grossman
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139

Heather A. H. Haemig
Department of Microbiology, University of Minnesota, Minneapolis, MN 55455

Brian Hammer
Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014

Jake Herman
Department of Pharmacology, The University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045

Deborah A. Hogan
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755
CONTRIBUTORS

Sueharu Horinouchi
Department of Biotechnology, Graduate School of Agriculture and Life Sciences,
The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan

Zachary Huang
Department of Entomology, Michigan State University, East Lansing, MI 48824

Dale Kaiser
Departments of Biochemistry and Developmental Biology,
Stanford University School of Medicine, Stanford, CA 94305

Staffan Kjelleberg
Centre for Marine Biofouling and Bio-Innovation, The University of New South Wales,
New South Wales, Australia

Roberto Kolter
Department of Microbiology and Molecular Genetics, Harvard Medical School,
Boston, MA 02115

Julia Kubanek
School of Biology and School of Chemistry & Biochemistry,
Georgia Institute of Technology, Atlanta, GA 30332

Krithika Kumar
Department of Biology, Texas A&M University, College Station, TX 77843

Yves Le Conte
INRA, UMR.406 INRA/UAPV Ecologie des Invertébrés, Laboratoire Biologie et
Protection de l’Abeille, Site Agroparc, Domaine Saint-Paul,
84914 Avignon Cedex 9, France

Zhi Liu
Department of Microbiology, University of Pennsylvania School of Medicine,
Philadelphia, PA 19104-6076

Lauren Mashburn-Warren
Section of Molecular Genetics and Microbiology, The University of Texas at Austin,
Austin, TX 78712

Diane McDougald
Centre for Marine Biofouling and Bio-Innovation, The University of New South Wales,
New South Wales, Australia

Russell D. Monds
Department of Microbiology and Immunology, Dartmouth Medical School,
Hanover, NH 03755

Rita E. Monson
Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW,
United Kingdom

Donald A. Morrison
Laboratory for Molecular Biology, Department of Biological Sciences,
University of Illinois at Chicago, Chicago, IL 60607
Justin R. Nodwell
Department of Biochemistry, Health Sciences Centre, McMaster University, Hamilton, Ontario L8N 3Z5, Canada

Richard Novick
Molecular Pathogenesis Program, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016

Marco R. Oggioni
Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena, Italy

George A. O’Toole
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755

Thomas Bovbjerg Rasmussen
Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark

Philip Rather
Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322

Gene E. Robinson
Department of Entomology, Neuroscience Program, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801

E. G. Ruby
Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706

David Z. Rudner
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115

George P. C. Salmond
Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom

A. Schaefer
Department of Microbiology, University of Washington, Seattle, WA 98195

Martin Schuster
Department of Microbiology, Oregon State University, Corvallis, OR 97331

Lawrence J. Shimkets
Department of Microbiology, University of Georgia, Athens, GA 30602

Terry W. Snell
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

E. V. Stabb
Department of Microbiology, University of Georgia, Athens, GA 30602

Ann M. Stevens
Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
Fiona R. Stirling
Department of Microbiology, University of Pennsylvania School of Medicine,
Philadelphia, PA 19104-6076

Michaela G. Surette
Department of Microbiology and Infectious Diseases and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada

Karen Tait
Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom

Claire C. Tseng
Whitehead Institute for Biomedical Research, Cambridge, MA 02142

Susanne B. von Bodman
Departments of Plant Science and Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-4163

Lian-Hui Wang
Institute of Molecular and Cell Biology, Singapore 138673

Marvin Whiteley
Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX 78712

Joanne M. Willey
Department of Biology, Hofstra University, Hempstead, NY 11549

Holly Williamson
Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom

Stephen C. Winans
Department of Microbiology, Cornell University, Ithaca, NY 14853

Lian-Hui Zhang
Institute of Molecular and Cell Biology, Singapore 138673

Jun Zhu
Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6076
Although a few groups of bacteria have long been known to communicate via diffusible chemical signals, we are only now learning that this process is enormously widespread. We are now in a position to begin to appreciate the importance of cell–cell communication in areas as fundamental as bacterial physiology, ecology, evolution, and pathogenesis. Approximately one decade ago, ASM Press published the first comprehensive review of the topic of bacterial cell–cell communication, Cell-Cell Signaling in Bacteria, with chapters contributed by leaders in the then-nascent field. We hope readers of this new volume will agree that an enormous amount of information on major aspects of signaling has surfaced since that first book was published and that a fresh view of the topic is now appropriate and important for a diverse audience of researchers, educators, and clinicians.

The past decade has witnessed new insights about the chemical composition, synthesis, and turnover of a variety of bacterial signal molecules. First, the enzymes that synthesize signal molecules are far better understood than they were 10 years ago. At the close of the 20th century, no signal synthase had been studied at the structural level. Currently, the structures of three bacterial signal synthases have been solved, two of which produce AHLs (chapter 16) and one of which synthesizes AI-2 (chapter 19). In other developments, the Streptomyces coelicolor 15-residue SapB peptide, required for aerial fruiting body formation, is now known to be synthesized by a nonribosomal peptide synthase (chapter 6). We recently learned that at least one class of extremely hydrophobic signal travels as a component of vesicles derived from the cell outer membrane (chapter 20). This signal, designated PQS (Pseudomonas quorum signal) also has antimicrobial properties against gram-positive bacteria. Many new types of signal molecules with a variety of novel structures are under study, including polyamines, rhamnolipids, and metabolites such as indole and amino acids (chapters 3, 7, and 17). During the past decade, a variety of enzymes capable of degrading bacterial communication signals have been described, as well as natural and synthetic small molecules that agonize or antagonize signaling (chapters 10, 24, and 25). Future studies may help us understand whether the
substrates for which these enzymes were selected are signaling molecules or whether the destruction of signal molecules is incidental to the activity for which they were selected.

There has been an explosion of new information on signal receptors and mechanisms of signal transduction. Where 10 years ago there was no structural information about quorum sensing receptors, there now exists structural information for seven of these receptors (chapters 21, 13, 19, and 23) (2, 7). It is striking that at least five of these receptors (PrgX, CprB, TraR, LasR, and SdiA) fully or partially engulf their respective ligands, which contribute to the hydrophobic cores of these proteins. In the case of the cytoplasmic TraR, LasR, and SdiA receptors, ligand binding is required for protein folding and resistance to proteolysis, while PrgX and CprB function as apo-proteins, so their folding must occur in the absence of ligand. Quorum sensing structural studies have provided other surprises. For example, it was found that AI-2 bound to LuxP includes a boron atom and, perhaps equally surprising, that AI-2 bound to the homologous Lsr receptor lacks boron (chapter 19). Also surprising is that the LuxPQ structures provide a new mechanism for two-component signal transduction across the bacterial membrane that differs dramatically from that proposed for signal relay in chemotaxis systems. A cocrystal containing TraR and its antiactivator TraM provides insight into the mechanism for how TraM allosterically prevents TraR from binding DNA (3). Thus, studies of the molecular biology of cell-cell signaling are providing unexpected insights into other areas of molecular biology.

New discoveries about signal transduction pathways and the expression of target genes have also been made. For example, a decade ago we could not have guessed that at the heart of the Vibrio harveyi and Vibrio cholerae quorum sensing cascades would lie several redundant small RNAs. We could not have predicted that two autoinducers and two AI synthases in Vibrio fischeri would influence the activity of LuxR. Large sets of new target genes have been identified using global high throughput techniques such as proteomics and DNA microarrays (6) (chapter 8).

The repertoire of phenotypes affected by cell-cell communication has grown considerably. For example, it has long been appreciated that oligopeptides stimulate sporulation and competence for transformation in Bacillus subtilis, but only recently has it been reported that peptides also stimulate the conjugation of the integrative and conjugative element ICEBs1 (chapter 2). Expression of these genes is also induced by DNA damage, similar to the corresponding genes of the STX element of V. cholerae (1). A decade ago it was clear that communication is required for biofilm formation in Pseudomonas aeruginosa (4), but recently it has been discovered that communication has the opposite effect on biofilms in V. cholerae (chapter 9). The surprising finding that increases in population densities activate this trait in P. aeruginosa and inhibit the same trait in V. cholerae most likely defines the persistent versus acute diseases, respectively, caused by these pathogens.

Studies of P. aeruginosa have been especially fast-paced in this past decade. It was already known that this organism has two AHL signals, as well as a quinolone signal called PQS, and that there were two AHL synthases and two AHL receptors. We now know that a third AHL receptor exists that detects one of the known AHLs. The P. aeruginosa LasR protein has been extensively stud-
ied in vitro and binds both to canonical las box binding sites as well as to completely different sites (chapter 8). Binding to some sites is cooperative, while at other sites, the protein binds noncooperatively. Microarrays and random fusions have shown that hundreds of genes are controlled by one or more of these systems, including many genes that encode exported proteins. The crystal structure of the LasR N-terminal domain, complexed with the cognate AHL, was recently determined (2) and revealed interesting structural similarities to TraR of A. tumefaciens (chapter 13).

What discoveries might we anticipate in the coming decade? We will look for the elucidation of new classes of signaling molecules, such as the one described late in 2007 (5). We expect that the next 10 years will also witness advances in structural and biochemical studies of signal synthases and receptors, including structural determination of peptide signals complexed with their receptors. There will likely be surprises about the mechanisms of diffusion of different signals, perhaps aided by nanofabrication technologies. Genetic approaches and transcriptional profiling will likely lead to new understanding of network design principles that provide noise reduction, signal integration, and signal amplification. We will learn how bacterial regulatory circuits are wired to provide ordered temporal and spatial expression of large sets of target genes. We also will expect further collaborations between biologists and molecular modelers. We can be reasonably confident about progress in all of these areas. On the other hand, the most exciting discoveries will generally be the ones that no one can even begin to anticipate. To paraphrase a former U.S. Secretary of Defense, it is hard to predict the unknown, but much harder still to predict the unknown unknowns. If the rate of progress of the past decade is to continue at the present pace for another 10 years, we will be able to glimpse a body of knowledge about which we could not even have dreamt when the first ASM volume on this topic went to press just 10 years ago.

REFERENCES
2. Bottomley, M. J., E. Muraglia, R. Bazzo, and A. Carfi. 2007. Structure of the P. aeruginosa LasR ligand–binding domain bound to its autoinducer. Direct submission to protein Data Bank, submission number 2uv0.

STEPHEN C. WINANS
BONNIE L. BASSLER
December 2007
INDEX

<table>
<thead>
<tr>
<th>A factor, Streptomyces, 93, 363–376</th>
</tr>
</thead>
<tbody>
<tr>
<td>in ArpA dissociation, 371</td>
</tr>
<tr>
<td>biological activities of, 364–365</td>
</tr>
<tr>
<td>biosynthesis of, 367–370</td>
</tr>
<tr>
<td>homologues of, 365–366</td>
</tr>
<tr>
<td>in quorum sensing, 313, 444</td>
</tr>
<tr>
<td>receptor for, 370–371</td>
</tr>
<tr>
<td>regulation of, 370–373</td>
</tr>
<tr>
<td>in streptomycin production, 373</td>
</tr>
<tr>
<td>structure of, 368–370</td>
</tr>
<tr>
<td>A factor receptor protein (ArpA), in streptomycin production, 366–367, 370–371</td>
</tr>
<tr>
<td>AbrB protein, in ComK regulation, 22</td>
</tr>
<tr>
<td>Accessory genes, Staphylococcus aureus, see Staphylococcus aureus, virulon regulation of</td>
</tr>
<tr>
<td>AccR protein, in quorum sensing, 293</td>
</tr>
<tr>
<td>O-Acetylserine, 115–116</td>
</tr>
<tr>
<td>Acg proteins, in quorum sensing, 155</td>
</tr>
<tr>
<td>Acidification, of seawater, AHL signaling and, 253</td>
</tr>
<tr>
<td>Acr proteins, in biofilm formation, 113</td>
</tr>
<tr>
<td>Actinobacteria, see Streptomyces</td>
</tr>
<tr>
<td>Actinorhodin, 95</td>
</tr>
<tr>
<td>Acyl-homoserine lactone acylases, in quorum sensing quenching, 386–387</td>
</tr>
<tr>
<td>Acyl-homoserine lactone lactonases, in quorum sensing quenching, 383–385</td>
</tr>
<tr>
<td>Acyl-homoserine lactone oxidoreductases, in quorum sensing quenching, 387</td>
</tr>
<tr>
<td>Acyl-homoserine lactone synthases active sites of, 279, 281</td>
</tr>
<tr>
<td>families of, 275–277</td>
</tr>
<tr>
<td>list of, 278</td>
</tr>
<tr>
<td>LuxI type, 277–279</td>
</tr>
<tr>
<td>mechanisms of action of, 281</td>
</tr>
<tr>
<td>in quorum sensing</td>
</tr>
<tr>
<td>Agrobacterium tumefaciens, 291, 294–299</td>
</tr>
<tr>
<td>Vibrio harveyi, 323</td>
</tr>
<tr>
<td>structures of, 278–279</td>
</tr>
<tr>
<td>Acyl-homoserine lactones, 275–289</td>
</tr>
<tr>
<td>acyl chain lengths of, 252</td>
</tr>
<tr>
<td>analogs of, molecular design of, 399–404</td>
</tr>
<tr>
<td>antibiotic resistance and, 318</td>
</tr>
<tr>
<td>degradation of, 285</td>
</tr>
<tr>
<td>destruction of, 404–406</td>
</tr>
<tr>
<td>furanones and, 396–406</td>
</tr>
<tr>
<td>in one-way sensing, 420–426</td>
</tr>
<tr>
<td>in quorum sensing, 312–313</td>
</tr>
<tr>
<td>Aeromonas, 260</td>
</tr>
<tr>
<td>Agrobacterium tumefaciens, 254</td>
</tr>
<tr>
<td>Antarctobacter, 255</td>
</tr>
<tr>
<td>antibiotic-producing organisms, 314–316</td>
</tr>
<tr>
<td>Chromobacterium violaceum, 254</td>
</tr>
<tr>
<td>Delisea pulchra, 265</td>
</tr>
<tr>
<td>Dinoroseobacter shibae, 254, 257, 259</td>
</tr>
<tr>
<td>Environia, 185–195</td>
</tr>
<tr>
<td>Erythrobacter, 256</td>
</tr>
<tr>
<td>fish pathogens, 260–262</td>
</tr>
<tr>
<td>general models for, 251–252</td>
</tr>
<tr>
<td>Glaciecola polaris, 254</td>
</tr>
<tr>
<td>inhibitors of, 381–388</td>
</tr>
<tr>
<td>Jannaschia, 254, 257, 259</td>
</tr>
<tr>
<td>Laminaria digitata, 267</td>
</tr>
<tr>
<td>Lokanella, 255, 257, 260</td>
</tr>
<tr>
<td>marine algalae, 262–268</td>
</tr>
<tr>
<td>marine bacterial systems, 251–272</td>
</tr>
<tr>
<td>Marinobacter, 254</td>
</tr>
<tr>
<td>milky sea phenomenon, 265</td>
</tr>
<tr>
<td>Oceanibulbus, 255</td>
</tr>
<tr>
<td>Oceanicola, 257, 259, 260</td>
</tr>
<tr>
<td>Octadecabacter, 255</td>
</tr>
<tr>
<td>Pantoea stewartii, 202–210</td>
</tr>
</tbody>
</table>
Acyl-homoserine lactones (continued)
parameters for, 252–253
Phaeobacter, 254
Pseudalteromonas atlantica, 254
Pseudomonas aeruginosa, 133–140, 333
Rhizobium, 216–226
Rhodobacteriales bacterium, 257
Roseovarius, 254, 257, 259
Roseovivax, 255
Roseobacter, 254–260
Ruegeria, 255, 256
Salipiger, 255
Sagittula, 255, 257
Silicibacter, 255–257, 259
Staleya, 255, 256
Sulfitobacter, 254, 255, 257, 259
Ulva, 262–265
Vibrio, 256, 260–264
Vibrio fischeri, 233–244, 251–252, 254
Vibrio harveyi, 252, 265
screening for, 398–399
structures of, 275–280
synthase active sites in, 279, 281
synthesis of, 251–252, 277–278
enzymatic mechanism in, 281
intrinsic specificity of, 281–282
LuxI synthases in, 277–279
modulation of, 282–286
species differences and, 275–277
specificity and, 282–286
S-Adenosyl-L-methionine in acyl-homoserine lactone synthesis, 276, 279, 281
in AI-1 synthesis, 327
inhibitors of, 381
Adhesins, in biofilm formation, 107
AdpA protein
in aerial hypha formation and secondary metabolism, 93
in A factor regulation, 366, 371–373
AdsA protein, in aerial hypha formation and secondary metabolism, 93–94
Aeromonas hydrophila, quorum sensing in, 260
Aeromonas salmonicida, quorum sensing in, 260
AhpA protein, in butyrolactone synthesis, 364–370
Aggregatibacter actinomycetemcomitans, quorum sensing in, 338–339
Aggregation, Myxococcus xanthus, 58–59
Aggregation substance, in pheromone binding, 33, 45
Agr proteins, in virulon regulation, 167, 169–170
agr system, in virulon regulation, Staphylococcus aureus, 161–171
AgrA protein, 169–170
AgrB protein, 167
AgrC protein, 169
AgrD protein, 167
autoinducing peptide, 165–169
in vivo studies of, 170–171
pathogenicity of, 170–171
RNAIII, 170, 173, 175–176
specificity groups, 165, 167
Agrobacterium radiobacter, 292
Agrobacterium rhizogenes, 292
Agrobacterium rubi, 292
Agrobacterium tumefaciens acyl-homoserine lactone synthase of, 276
in biofilms, 114
cell-to-cell signaling in, 291–306
Ti plasmids and, 292–293
TraR in, 293–302
characteristics of, 292
genome of, 292
horizontal gene transfer in, 22
quorum sensing in, 138, 254, 291–306
inhibitors of, 405–407
quenching of, 384, 385, 387
Agrobacterium vitis, 292
Agrocinopines, in crown gall tumors, 291, 293
AhlM protein, in quorum quenching, 387
AHLs, see Acyl-homoserine lactones
AhrR1 protein, in quorum sensing, 260
AI-3, in co-opting, 423
AI-1 and AI-2 in quorum sensing, 313
furanones and, 397
Vibrio cholerae, 148, 152–153, 325–329
Vibrio fischeri, 237–240, 244
Vibrio harveyi, 323–324, 327–329
synthesis of, 327–329
AiiA protein, in quorum quenching, 383–385
Ain proteins, in quorum sensing
acyl-homoserine lactone synthesis and, 276
Vibrio fischeri, 237–241, 244
Akinetes, versus heterocysts, 84–85
Algae
quorum sensing inhibitors in, 423
signaling of, acyl-homoserine lactones in, 262–268
Alpha factor, in quorum sensing, 444
Alteration, in interdomain signaling, 423–424
Amanita muscaria, Streptomyces communication with, 424
Amf proteins, in aerial hypha formation and secondary metabolism, 93, 96–97
Ami proteins, Tat protein export system and, 435, 436
Amino acids, metabolites of, 115–116
Aminoglycosides, in biofilm formation, 107
Ammonia, in quorum sensing, 449
Ammonium, for nitrogen fixation, 76
Anabaena, heterocysts of, see Heterocysts
Anaerobic regulator, in quorum sensing, 136
ANR anaerobic regulator, in quorum sensing, 136
Antactobacter, quorum sensing in, 255
Anthramilate, in quorum quenching, 381
Antibiotics, 310–311
in biofilm formation, 112–115
definition of, 310
economic importance of, 310
Pseudomonas aeruginosa, 336–337
resistance to, 317–318
signaling activity of, 314–316
_ Streptomyces, 363–377_
subinhibitory, 106–109, 315–316
synthesis of, 308–310
AphA protein, in quorum sensing, 152, 154–155
AphD protein, in A factor regulation, 371
App protein, in sporulation regulation, 16
Aquatic animals, quorum sensing in, 453–462
Arabidopsis, salicylic acid effects on, 119
ArcA/ArcB system, in quorum sensing, 244
ArgC protein, in quorum sensing, 380
_ arlRS system, in virulon regulation, 164, 171–172_
Aro proteins, in quorum sensing, 448
ArpA protein
in aerial hypha formation and secondary metabolism, 93, 95
in streptomycin production, 366–367, 370–372
Arr protein, in biofilm formation, 107
Arthrobacter, quorum sensing in, 405–406
_control of, see Quorum-sensing inhibitors
Arthrobacter tumefaciens, 114
Arthrobacter ureafaciens, 114
Arthrobacter vasculus, 114
Arthrobacter quorum sensing in
Arthrobacter inhibitors of, 405–406
quenching of, 382, 384, 385
AsaRI protein, in quorum sensing, 260
Asg protein, in quorum sensing, 380
Aspergillus nidulans, quorum sensing in, 447
AstD protein, in biofilm formation, 113
AtnN protein, in quorum sensing, 384
Autoinducers, see also N-3-(Oxo-hexanoyl)-homoserine lactone
in co-opting, 423
inhibitors of, 380–381
Vibrio cholerae, 147–148
Vibrio harveyi, 147
Autoinducing peptide, in virulon regulation, 165–169
Autoregulation, of PrgX protein, 38–40
Auxin, in dimorphic transition, 118
Auxofurans, in two-way communication, 424
B factor, in secondary metabolite regulation, 373
Bacillus, quorum sensing in, quenching of, 382, 383–385
Bacillus cereus, quorum-sensing inhibitors of, 405
Bacillus mycoides, quorum-sensing inhibitors of, 405
Bacillus subtilis, 13–30
cell density phenomena in, 13–14
competence development in, 13–22
gene transfer in
horizontal, 22–23
regulation of, 23–24
population density signals of, 17–21
quorum sensing in, 14–17, 313
quenching of, 382
sporulation in, 3–16
cell density and, 13–14
forespore response in, 8–9
forespore signaling in, 4–6
mother cell response in, 6–7
quorum sensing and, 14–16
surfactin of, 97
Baillus thuringiensis, quorum sensing in inhibitors of, 405
quenching of, 382, 384–385
Bacteroids, in nodulation, 215
BaRA protein, in butyrolactone synthesis, 370
Bees, see Honeybees
Biofilms
Agrobacterium tumefaciens, 114
Bacillus subtilis, 15
Citrobacter koseri, 114
control of, see Quorum-sensing inhibitors
Escherichia coli, 107, 115
examples of, 394
formation of, 393–394
_ agr system in, 171_
amino acid metabolites in, 115–116
antibiotics in, 112–115
indole in, 112–115
quorum sensing in, 133–134
Klebsiella oxytoca, 114
membrane vesicles in, 341
Morganella morganii, 114
Myxococcus xanthus, 66–67
Pantoaea stewartii, 207–308
Persistece of, 407
Providencia stuartii, 114, 115
Pseudomonas aeruginosa, 107, 117–118, 394, 396, 398, 401–403, 405–410
Pseudomonas aureofaciens, 114
Pseudomonas fluorescens, 114
regulation of, Spo0 proteins in, 15
resistance to environmental effects, 393–394
Stephalococcus aureus, 171
Stephalococcus epidermidis, 107
Streptococcus, 355–356
Stephalococcus pneumoniae, 354–356
Vibrio cholerae, 110, 146, 152–157
Yersinia pestis, 109–110
Bioluminescence, Vibrio fischeri, 134, 138, 235, 241–244, 424
BisR protein, in quorum sensing, 216–217
BicC protein, in TraA regulation, 299
BofA protein, in sporulation, 8–9
Brachionus calyciflorus, quorum sensing in, 454
Brachionus calycolus, quorum sensing in, 454
Brachionus platyurus, quorum sensing in, 453–462
ecological consequences of, 458–459
evolutionary implications of, 459–460
historical perspective of, 454–459
Bradynobexin, in quorum sensing, 224–225
Bradyrhizobium japonicum, quorum sensing in, 220, 224–225
Brood pheromone, in regulation of labor in honeybees, 465–466
Burkholderia cenocepacia, quorum-sensing inhibitors of, 404
Burkholderia cepacia, quorum-sensing inhibitors of, 407
Burkholderia pseudomallei, quorum sensing in, 381
N-Butyryl homoserine lactone analogues of, for quorum-sensing inhibition, 401–402
in interdomain signaling, 420
in quorum sensing, 134, 136, 139

C signaling, in fruiting body development, 57–58
Caenorhabditis elegans
quorum-sensing inhibitors of, 408
rhomboid proteases of, 433
signaling mechanisms of, 422
CAI-1 protein, in quorum sensing
Vibrio anguillarum, 262
Vibrio cholerae, 148–150, 152–153, 325–327
Vibrio harveyi, 323–324
Calcium, in heterocyst development, 79–80
Candida albicans
Pseudomonas aeruginosa communication with, 424–426
quorum sensing in, 443, 445–449
Candida mogii, quorum sensing in, 449
Capsular polysaccharides
in quorum sensing, 201, 206
in virulon regulation, 162
Car proteins, production of, 186–189
Carbapenem, production of, 186–189
CcbP protein, in heterocyst development, 80
cCF10 pheromone
naming of, 32
PrgX binding to, 39, 40–43
regulation of, 32
synthesis of, 33–36
CcIA peptide, in pheromone regulation, 33
Cdc42 protein, in quorum quenching, 387
Cel protein, in quorum sensing, 192
Cell density factor, in quorum sensing, 224–225
Centrocystis ulmi, quorum sensing in, 449
Cfp protein, in sporulation, 4–5
CglB protein, in motility, 55
Chaplins, 96
Che proteins, in motility, 69, 71–72
CheA-like histidine kinase, in motility, 66
Chemosensory system, Dif, see Dif chemosensory system
Chemotaxis, 56–57, 67–70, 420–422
Chk1p protein, in quorum sensing, 447
Chlamydomonas reinhardtii, quorum sensing inhibitors in, 423
Cholera, see Vibrio cholerae
Cholera toxin, 325–327
Chromobacterium violaceum
quorum sensing in, 254
quorum-sensing inhibitors of, 397, 398
CinI protein, in quorum sensing, 217, 219–222
CinR protein, in quorum sensing, 219–222
Citrobacter koseri, in biofilms, 114
Closantel, in quorum quenching, 382
ClyA toxin, 339
CodY protein, in ComK regulation, 22
Coi proteins, in competence-stimulating peptide synthesis, 350, 351
Com proteins
in cell population regulation, 17–22
in competence-stimulating peptide synthesis, 346–351, 354–357
population regulation, 21–22
Commomamonas, quorum-sensing inhibitors of, 405–406
Competence
biofilms and, 354–356
versus cell density, 13–14
Com proteins in, 17–23
pheromones in, 346–353
phosphorelay in, 14–15
versus quorum sensing, 352–353
Rap-Phr signaling in, 15–17, 19–21
Streptococcus pneumoniae, 14, 345–362
Competence-stimulating peptide, Streptococcus pneumoniae
in biofilm formation, 354–356
gene clusters in, 348–349
in infections, 356–357
regulation of, 349–352
synthesis of, 346
transduction pathway for, 346–348
Conjugal opines, in crown gall tumors, 291–292
Conjugal transfer, in rhizobia, 215–225, see also Rhizobia, quorum sensing in
Co-opting of signals, 422–423
Corn flea beetle, as Pantoea stewartii vector, 201
CprB protein
in aerial hypha formation and secondary metabolism, 95
structure of, 371
Cpx protein, in swarming, 112
Cqs proteins
in CAI-1 synthesis, 148–140
in quorum sensing
Vibrio anguillarum, 262
Vibrio cholerae, 325–327
Vibrio fischeri, 240
Vibrio harveyi, 323–324
Crown gall tumors, cell-cell signaling within, 291–306
Ti plasmids and, 292–293
TraR in, 293–302
Crs proteins, in quorum sensing, 150, 325
Csr proteins
homologs of, in quorum sensing, 239
in quorum sensing
Escherichia coli, 193
Vibrio cholerae, 152
CtpB protein, in sporulation, 8–9
Cyanobacteria, heterocysts of, see Heterocysts
Cyanophycin, in heterocysts, 82
Cyclodextrins, in quorum quenching, 382
Cys proteins, in biofilms formation, 113, 115–116
Cysteine, metabolites of, 115
Cystic fibrosis, Pseudomonas aeruginosa infections in, 333, 337
Cytolysin, pCF10 synergism with, 45
Cytotoxins
 in quorum sensing, 243
 in virulon regulation, 162
Daughter cells, in sporulation, 3
DegU protein, in ComK regulation, 22
Delisea pulchra
 quorum-sensing inhibitors of, 408, 423
 signaling mechanisms of, 265
Desferrioxamine, in aerial hypha formation and secondary metabolism, 99
Dev proteins
 in heterocyst development, 79
 in heterocyst envelope synthesis, 82
Dictyostelium, fruiting body development in, 70
Dif chemosensory system, Myxococcus xanthus, 65–74
 in fruiting body development, 70
 function of, 70–72
 in lipid chemotaxis, 67–70
 in S motility, 65–66
4,5-Dihydroxy-2,3-pentanedione, in AI-1 synthesis, 327–328
Dinoroseobacter shibae, quorum sensing in, 254, 257
Division of labor in, honeybees, pheromones in, 465–466
Drosophila, rhomboid proteases of, 431–433
DsB protein, in quorum sensing, 194
Dsp protein, see Dif chemosensory system
Dynorphin A, in co-opting, 423
ECA proteins, in quorum sensing, 190, 194
Eep protein, in pheromone regulation, 34–35
Efflux pumps, amino acid, 115–116
EF-Ts protein, in quorum sensing, 221
Ehrlichia chaffeensis, quorum sensing in, quenching of, 382
Endogalacturonase, in quorum sensing, 185
Engulfment, in sporulation, 6–7
Enhancer-binding activator protein, Myxococcus xanthus, 59–60
Enterobacter agglomerans, quorum-sensing inhibitors of, 407
Enterococcus faecalis
 autoinducing peptide of, 168
 horizontal gene transfer in, 22–23
 pCF10 plasmid of, see PCF10 plasmid
 quorum sensing in, 313
Enterotoxins, in virulon regulation, 162, 173–175
Epidermal growth factor receptor, homologue of, in Drosophila, 432–433
Epinephrine, in co-opting, 423
Erwinia amylovora, quorum sensing in, 195
Erwinia carotovora
 acyl-homoserine lactone synthase of, 282
 quorum sensing in, 185–199
 inhibitors of, 404–405
 quenching of, 382
 virulence factors of, 189–193
Erwinia chrysanthemi, quorum sensing in, 138, 194, 195
Erwinia stewartii, see Pantoea stewartii
Erythrobacter, quorum sensing in, 256
esal/esaR system
 in acyl-homoserine lactone synthesis, 282, 284
 in quorum sensing, 202–208
esaR/RcsA system, in quorum sensing, 206–207
Escherichia coli
 acyl-homoserine lactone synthase of, 276
 in biofilms, 107, 112–115
 chemotaxis of, 69, 71–72
 ComX pheromone of, 17–19
 enterohemorrhagic, co-opting by, 422–423
 enterootoxigenic, membrane vesicles of, 339
 A factor homolog of, 368
 microcin of, 97
 nitrogen fixation in, 76
 polyamine transport system of, 109, 110
 quorum sensing in, 193
 inhibitors of, 396, 406, 407
 membrane vesicles in, 335, 338
 Tat protein export system of, 435, 436
Euprymna scolopes, Vibrio fischeri luminescence in, 235, 241–244, 424
Exfoliatsins, in virulon regulation, 162
Exopolysaccharides
 in pili, 65–66
 in quorum sensing
 Pantoea stewartii, 201–202, 205–208
 rhizobia, 215
ExpR proteins, in quorum sensing
 Erwinia carotovora, 189–192
 Erwinia chrysanthemi, 195
 rhizobia, 224
Extracellular matrix, Dif chemosensory system and, 65–68–72
Extracellular peptide signaling
 cell density and, 13–14
 in competence development, 17–22
 in gene transfer, 22–24
 in quorum sensing, 14–17
Factor C, in Streptomyces, 93, 98
FarA protein, in butyrolactone synthesis, 370
Farnesol, in quorum sensing, 425–426, 445–447
FibA protein
 in motility, 70
 Myxococcus xanthus, 68
Fibronectins, in virulon regulation, 163
Fimbrolides, Delisea pulchra, 395
Fis protein, in quorum sensing, 149–150, 327
Flavonoids, rhizobial recognition of, 213–214
Flo11 protein
 in dimorphic transition, 118
 in quorum sensing, 448
Forespores
 mother cell response to, 6–7
 response of, 8–9
 signal initiation by, 4–6
Frizzilator, in motility, 55–56
FruAP protein, in motility, 58–60
Fruit flies, rhomboid proteases of, 431–433
Fruiting bodies, Myxococcus xanthus
 aggregation of, 58–59
 appearance of, 51, 52
 development of, 56–60, 70
 solid surface for, 51
Frz proteins, in motility, 55–56, 67–68, 72–73
Fungi, see also specific fungi
 in quorum sensing, 443–452
 alcohols in, 445–449
 ammonia, 449
 mating pheromones in, 444–445
Furanones
 for animal infections, 407–408
 bacteria producing, 397–398
 Delisea pulchra, 395, 423
 discovery of, 395
 identification of, 398–399
 mode of action of, 396–397
 molecular design of, 399–404
 plant producing, 398
GabT protein, in biofilm formation, 113
GacA/GacS system, in quorum sensing, 137
Garlic, quorum-sensing inhibitors of, 398, 408–409
γ-Butyrolactones, in Streptomyces, 93–96, 363–365, see also A-factor
Gene transfer, in Bacillus subtilis, 22–24
GerE protein, 297
Glacibcola polaris, quorum sensing in, 254
Gln proteins, in nitrogen limitation detection, 76–77
GlpG protein, structure of, 437
Glutamine synthase, in nitrogen limitation detection, 76
Glycolipids, in heterocyst envelope synthesis, 81–82
Goadsporin, 96, 97
Growth factor signaling, in Drosophila, 431–433
Haemophilus influenzae, competence development in, 14
HAI-1 protein, in quorum sensing, 323–324
Halobacterium salinarum, phototaxis of, 72
Halofex volcanii, quorum sensing in, 447
HdtS proteins, in quorum sensing, acyl-homoserine lactone synthesis and, 276–277
Helicobacter pylori, membrane vesicles of, 339
Hemolysins
 pCF10 synergism with, 45
 in virulon regulation, 162
Hep proteins, in heterocyst envelope synthesis, 81–82
2-Heptyl-3-hydroxy-4-quinolone, in quorum sensing, 136, 334
Het proteins, in heterocyst development
 HetC, 80
 HetL, 80–81
 HetN, 84
 HetR, 78–79, 83–84
Heterocysts, 75–90
 development of
 envelope synthesis in, 81–82
 metabolic changes in, 82
 regulation of, 76–81
 metabolic changes in, 82
 nitrogen fixation process in, 82
 versus other developmental alternatives, 84–85
 pattern formation of, 82–84
Hgl proteins, in heterocyst envelope synthesis, 81–82
Histoplasma capsulatum, quorum sensing in, 449
H-NOX proteins, in nitric oxide signaling, 117
Honeybees, division of labor in, 463–468
 description of, 463–464
 social factors in, 464–465
Horizontal gene transfer, description of, 22–23
Hormesis, in secondary metabolites, 309, 314
Hormogonia, versus heterocysts, 85
HrpN protein, in quorum sensing, 194
Hydrogen cyanide, in quorum sensing, 136
Hydrophobins, 97
Hydroxycarboxylic acid core, of rhamnolipids, 111–112
iCEBe1 element, regulation of, 23–24
iCF10 peptide
 function of, 32
 PrGX binding to, 39, 40–43
 synthesis of, 33–36
IM-2 butyrolactone, 365
ImmR protein, in ICEBe1 regulation, 24
Indole, in biofilm formation, 112–115
Indole-3-acetic acid (auxin), in dimorphic transition, 118
Indole-3-acetic acid (auxin), in dimorphic transition, 118
Integrative and conjugative elements, regulation of, 23–24
Intercellular adhesins, in biofilm formation, 107
Interdomain signaling, 419–429
 co-opting in, 422–423
 modulation in, 423–424
one-way sensing, 420–422
two-way communication in, 424–426
types of, 419–420
Interferon-γ, in co-opting, 422–423
Intramembrane serine proteases, see Rhomboid proteases
IntS protein, in quorum sensing, 219
Isoflavonoids, rhizobial recognition of, 213–214
Jannaschia, quorum sensing in, 254, 257
KasO protein, in aerial hypha formation and second-ary metabolism, 95
Klebsiella oxytoca, in biofilms, 114
Klebsiella pneumoniae, quorum sensing inhibitors of, 405–406
quenching of, 384, 385
Kluyveromyces lactis, quorum sensing in, 449
Lactococcus plantarum, autoinducing peptide of, 168
Las protein furanone effects on, 396–397
in quorum sensing, 333
LasR–LasI system, in quorum sensing
acyl-homoserine lactone synthesis and, 275–276, 278–279, 282, 285
Pseudomonas aeruginosa, 134–140
Lectins, in co-opting, 422
Legionella pneumophila, nitric oxide signaling in, 117
Legumes, rhizobial communication with, see Rhizobia
Leukotoxins, in membrane vesicles, 338–339
Light organs, Vibrio fischeri in, see Vibrio fischeri
Lipopolysaccharide of membrane vesicles, 335, 339–341
in quorum sensing, 243
LitR protein, in quorum sensing, 239–241
Loktanella, quorum sensing in, 254, 257, 260
Lsr proteins, in quorum sensing, 329
Ltx proteins, in membrane vesicles, 338–339
Luminescence in milky sea phenomenon, 265
Vibrio fischeri, 134, 138, 235, 241–244, 424
Lux proteins in biofilm formation, 114–115
in quorum sensing, 379–380
acyl-homoserine lactone synthesis and, 275–276, 278–279
Erwinia carotovora, 186, 189–193
marine bacterial systems, 252, 254, 257–262
Pantoae stewartii, 195, 205
Pseudomonas aeruginosa, 134–140
Vibrio cholerae, 148–155, 325–327
Vibrio fischeri, 185, 234–244, 312–313
Vibrio harveyi, 323–325
regulation of, 396
LysR proteins, in quorum sensing, 214
Macroalgae, signaling of, acyl-homoserine lactones in, 262–268
Mannopine, in crown gall tumors, 296
Marine bacterial systems, acyl-homoserine lactone signaling in, 251–272
diversity of, 253
examples of, 253–262
fish pathogens, 260–262
LuxI-LuxR homologues in, 259–260
macroalgae zoospores, 262–268, 421–422
in milky sea phenomenon, 265
models for, 251–252
parameters for, 252–253
Marinobacter, quorum sensing in, 254
Mating pair formation apparatus, of pCF10, 43–44
Mating pheromones, fungal, 444–445
MbaA protein, in biofilm formation, 110
MecA protein, in ComK regulation, 22
Medicago truncatula, quorum sensing inhibitors in, 423–424
Membrane vesicles, signal trafficking with, 333–344
antimicrobial factors in, 336–337
in biofilms, 341
characteristics of, 335
delivery of cargo in, 335–339
DNA of, 338
formation of, 339–341
protective factors in, 337–338
Pseudomonas aeruginosa, 333–337
toxin production in, 338–339
Mesorhizobium, quorum sensing in, 225
Mesorhizobium loti, quorum sensing in, 216, 218–219
Mesorhizobium tianshanense, quorum sensing in, 221
Metabolites, 105–129, 307–322
of amino acids, 115–116
antibiotics, 106–109, 310–311, 314–318
auxin, 118
indole, 112–115
polyamines, 109–111
in quorum sensing, 311–314
receptors, 316–317
resistance to, 317–318
rhamnolipids, 111–112
salicylic acid, 118–119
secondary, see Secondary metabolites
signaling with criteria for, 120–123
versus current paradigm, 123–124
evolution of, 119–120
examples of, 116–119
Metalloproteases, in virulon regulation, 162
INDEX

Methionine, acetylated derivatives of, 115
Methyl-accepting chemosensory protein, 55, 66, 70–72
Methylenenomycin, production of, 366
Mex proteins, inhibition of, 381
Mgl proteins, in motility, 55
Microcin, 97–98
Milky sea phenomenon, 265
Mitochondrial rhomboids, 438
Mixis-inducing protein, in rotifers, see Rotifers, quorum sensing in
Modulation, in interdomain signaling, 423–424
Morganella morganii, in biofilms, 114
Mother cells
forespore response to, 8–9
forespore signaling to, 4–6
response of, 6–7
Mrt proteins, in quorum sensing, 225
Mucor mucedo, quorum sensing in, 444
Multicellularity, heterocysts as, see Heterocysts
Multimerization, in quorum sensing, 138
MvfR protein, in quorum sensing, 136
MXAN4899 enhancer-binding protein, Myxococcus xanthus, 60
Myxococcus xanthus, 51–63
aggregation of, 58–59
in biofilms, 66–67
chemotaxis of, 67–70
C-signaling in, 57–58
Dif chemosensory system of, 65–74
evolution of, 51
fruiting body development and, 56–57
gene alterations due to, 59–60
life cycle of, 51, 52
motility of, 51, 65–66
pilus engine of
description of, 51, 53, 65–66
reversal of, 53–57
slime engine of
description of, 53, 66
reversal of, 53–57
NADPH oxidase, in quorum sensing quenching, 387–388
NafA protein, in motility, 71
NarL protein, 297
NctA protein, in heterocyst development, 77–80
Necrosis-inducing protein, in quorum sensing, 194
Neisseria gonorrhoeae
competence development in, 14
membrane vesicles of, 338
pilus fibers of, 53
Nif proteins, in heterocysts, 82
Nip protein, in quorum sensing, 194
NirS protein, in nitric oxide signaling, 117
Nitrate, for nitrogen fixation, 76
Nitric oxide signaling
Pseudomonas aeruginosa, 116–118
Vibrio fisheri–Euprymna scolopes, 424
Nitrogen-fixing bacteria, heterocysts of, see Heterocysts
Nitrosomonas europaea, acyl-homoserine lactone synthase of, 276–277
Novarcia mediterranei, in rifampycin synthesis, 373
Nod proteins, in quorum sensing, 213–215, 424
Nodule formation, rhizobial, see Rhizobia
Nopaline-type Ti plasmids, 291–293
Norfloxacin, in biofilm formation, 107
Norpermidine, in biofilm formation, 110
Noto, heterocysts of, see Heterocysts
Noto punctiforme, nitric oxide signaling in, 117
Nozzles, for slime, 53–54, 65
NrrA protein, in heterocyst development, 79
NspS protein, in biofilm formation, 110
Ntr proteins, in nitrogen limitation detection, 76
OccR protein, in quorum sensing, 293
Oceanibulbus, quorum sensing in, 235
Oceanicola batensis, quorum sensing in, 257, 259, 260
Oceanicola granulosus, quorum sensing in, 257, 260
Octadecaacter, quorum sensing in, 255
Octopines, in crown gall tumors, 291–293
One-way sensing, 420–422
Optes, in crown gall tumors, 291–296
Opp protein, in sporulation regulation, 16
OpRf protein, in co-opting, 422
Organ of transfer, of pCF10, 44
Outer membrane vesicles, see Membrane vesicles
Oxidoreductases, in quorum sensing quenching, 387
N-3-(Oxo-decanoyl)-homoserine lactone
in interdomain signaling, 422
in quorum sensing, 140
N-3-(Oxo-dodecanoyl)-homoserine lactone
analogues of, for quorum-sensing inhibition, 401–404
destruction of, 406
in interdomain signaling, 422
in quorum sensing, 134–140
quenching of, 382–383
2-Oxoglutarate, in nitrogen fixation, 76–77
N-3-(Oxo-hexanoyl)-homoserine lactone
analogues of, for quorum-sensing inhibition, 399, 401, 402
destruction of, 404–406
in interdomain signaling, 422
in quorum sensing, 134–140
quenching of, 382–383
N-3-(Oxo-octanoyl)-homoserine lactone
in interdomain signaling, 422
in quorum sensing, 140
Pseudomonas aeruginosa, 134, 137–139
Vibrio fisheri, 235–238, 241–244
N-3-(Oxo-octanoyl)-homoserine lactone
in interdomain signaling, 420–422, 426
in quorum sensing
Pseudomonas aeruginosa, 202–203
Agrobacterium tumefaciens, 291, 294–299
Erwinia carotovora, 192
Pantoea stewartii, 202
Pseudomonas aeruginosa, 138–140
rhizobia, 216, 218, 220–221, 223
Vibrio fischeri, 236–244

PA-1 lectin, in co-opting, 422
pAD1 plasmid, pheromones and, 31–32, 35, 46–47
pAM373 plasmid, pheromones and, 32
Pamamycins, in aerial hypha formation and secondary metabolism, 99
Pantoea stewartii, 201–212
acyl-homoserine lactone synthase of, 278
in biofilms, 207–308
characteristics of, 201–202
pathogenicity of, 201–202
quorum sensing in, 138, 195, 202–210
esaI/esaR system in, 202–208
esaR/RcsA system in, 206–207
Paraoxonases, in quorum sensing quenching, 385–386
Parasites, rhomboids in, 438–439
PARLs (mitochondrial rhomboids), 438
Pat proteins, in heterocyst development, 80, 82–84
Patulin
production of, 397–398
in quorum quenching, 381
pCF10 plasmid, 31–49
conjugative transfer mechanism of, 32–33, 44–45
evolution of, 46–47
genesis of, 32–33
induction mechanism of, 36–40
overview of, 31–33
in pheromone synthesis and control, 33–36
pheromone-inducible functions of, 43–46
pheromone-sensing machinery of, 46–47
virulence traits of, 45–46
Pdc proteins, in quorum sensing, 448
PeeS protein, in quorum sensing, 195
Pectinases, in quorum sensing, 185
Penicillium
acid, production of, 397–398
resistance to, 317
Penicillin
in biofilm formation, 109–110
in swarming, 109
Polygalacturonases, in quorum sensing, 185
Polysaccharide intercellular adhesin, in biofilm formation, 107
Porphyromonas gingivalis, membrane vesicle effects on, 338
pPD1 plasmid, pheromones and, 32, 35, 46–47
P promotes, in PrqQ, 37
PqsR protein, in quorum sensing, 334
Presenilin, 437
Prevotella bocceii, membrane vesicle effects on, 338
PrgQ protein, in pheromone regulation, 36–38
PrgX protein
autoregulation of, 38–40
in pheromone binding, 33
in pheromone regulation, 36, 38–43
C-terminal arm in, 40–43
negative, 39–40
structure of, 38, 40–44
as target of cDF10 and iCF10, 39
tetramerization of, 40
PrgY protein, in pheromone regulation, 33, 35–36
PrgZ protein, in pheromone binding, 32–33
Propionibacterium acnes, quorum sensing in, 447
Proteases, in virulon regulation, 162

Escherichia coli, 17–19
fungal, 444–445
in regulation of labor in honeybees, 465–466
Streptococcus pneumoniae
gene clusters in, 348–349
regulation of, 349–352
synthesis of, 346
transduction pathway for, 346–348
Phosphatidylethanolamine, in chemotaxis, 67–69
Phosphorelay, in sporulation regulation, 14–15
Phr peptides
in ICEB1 regulation, 24
in sporulation, 14–17, 19–21
P1 factor, in secondary metabolite regulation, 373–374
Plasmid, rhomboids in, 348
Pneumococci, see **Streptococcus pneumoniae**
Polarity, **Myxococcus xanthus**, reversal of, 53–57
Polymines
in biofilm formation, 109–110
in swarming, 109
Polygalacturonases, in quorum sensing, 185
Polysaccharide intercellular adhesin, in biofilm formation, 107
Porphyromonas gingivalis, membrane vesicle effects on, 338
pPD1 plasmid, pheromones and, 32, 35, 46–47
P promoter, in PrqQ, 37
PqsR protein, in quorum sensing, 334
Presenilin, 437
Prevotella bocceii, membrane vesicle effects on, 338
PrgQ protein, in pheromone regulation, 36–38
PrgX protein
autoregulation of, 38–40
in pheromone binding, 33
in pheromone regulation, 36, 38–43
C-terminal arm in, 40–43
negative, 39–40
structure of, 38, 40–44
as target of cDF10 and iCF10, 39
tetramerization of, 40
PrgY protein, in pheromone regulation, 33, 35–36
PrgZ protein, in pheromone binding, 32–33
Pristinamycin, production of, 366
Proheterocysts, 75
Protoprobacterium acnes, quorum sensing in, 447
Proteases, in virulon regulation, 162
Proteus mirabilis
swarming in, 109
Tat protein export system of, 435
Providencia, rhomboids of, 438
Providencia stuartii
in biofilms, 114, 115
rhomboid proteases of, 433–436
Pseudoalteromonas atlantica, quorum sensing in, 254
Pseudomonas aeruginosa
acyl-homoserine lactone synthase of, 276, 278, 282, 283, 285
antibiotics isolated from, 336–337
in biofilms, 107, 117–118, 394, 396, 398, 401–403, 405–410
Candida albicans communication with, 424–426
characteristics of, 133
chemotaxis of, 67
co-opting by, 422–423
membrane vesicles of, 333–338
nitric oxide signaling in, 116–118
one-way sensing by, 420–422
pilus fibers of, 53–54
plant signaling with, 120
quorum sensing in, 133–144, 150–151
membrane vesicles in, 333–338
quenching of, 381, 382, 386–387
rhamnolipids of, 111–112
salicylic acid interactions with, 118–119
secondary metabolites of, 314–315
virulence factors of, 133
Pseudomonas aureofaciens, in biofilms, 114
Pseudomonas diminuta, quorum sensing in, quenching of, 387
Pseudomonas fluorescens
acyl-homoserine lactone synthase of, 276–277
in biofilms, 114
quorum sensing in, quenching of, 382
Pseudomonas quinolone signal in co-opting, 423
in quorum sensing, 334–336, 425–426
Putrescine
in biofilm formation, 109–110
in swarming, 109
PvdQ protein, in quorum quenching, 387
Pyocyanin
in biofilm formation, 107–108
in quorum quenching, 382
Qa RNA, in pheromone binding, 37, 40, 42–43
Qrr proteins, in quorum sensing, 324–325
Vibrio cholerae, 325, 329–330
Vibrio harveyi, 329–330
QS-box, in quorum sensing, 135
QscR protein, in quorum sensing, 134–136, 139–140
Queen mandibular pheromone, in regulation of labor in honeybees, 466
Quinolone signaling pathway, in quorum sensing, 136, 336
Quinuprisin-dalfopristin, in biofilm formation, 107
QuiP protein, in quorum quenching, 387
Quorum quenching, see also Quorum-sensing inhibitors
mode of action of, 380–383
blocking signal generation, 381
disturbing signal exchange, 381
enzymes in, 383–388
inactivating signals, 382
preventing signal recognition, 381–382
signal trapping, 382
Quorum sensing
acyl-homoserine lactones in, see Acyl-homoserine lactones
advantages of, 380
Aggregatibacter actinomycetemcomitans, 338–339
Agrobacterium tumefaciens, 291–306
quenching of, 384, 385, 387
Arthrobacter, quenching of, 382, 384, 385
Aspergillus nidulans, 447
Bacillus, quenching of, 382–385
Bacillus subtilis, 14–17, 313
quenching of, 382
Bacillus thuringiensis, quenching of, 382, 384–385
Brachionus plicatilis, 453–462
Bradyrhizobium japonicum, 220, 224–225
Burkholderia pseudomallei, 381
Candida albicans, 443, 445–449
Candida nagari, 449
Ceratocystis ulmi, 449
description of, 105
as drug targets, 406–407
Ehrlichia chaffeensis, quenching of, 382
Enterococcus faecalis, 313
Envernia amylovora, 195
Envernia catotovora, 185–199
quenching of, 382
Envernia chrysanthemi, 138, 194, 195
Escherichia coli, 193, 335, 338
fungi, 443–452
Halofenax volcanii, 447
Histoplasma capsulatum, 449
in honeybees, 463–468
inhibitors of, see Quorum quenching
interdomain signaling and, 419–429
interference with, see Quorum quenching
Klebsiella pneumoniae, quenching of, 384, 385
kluyveromyces lactis, 449
mechanisms of, 379–380
Mesorhizobium, 225
Mesorhizobium loti, 216, 218–219
Mucor mucedo, 444
Pantoea stewartii, 138, 195, 202–210
Propionibacterium acne, 447
Pseudomonas aeruginosa, 133–144, 150–151
membrane vesicles in, 333–338
quenching of, 381, 382, 386–387
Pseudomonas diminuta, quenching of, 387

INDEX

Pseudomonas fluorescens, quenching of, 382
Ralstonia, quenching of, 386–387
Rhizobia, 215–226
Rhizobium etli, 217, 220, 222
Rhizobium leguminosarum, 219–222
Rhodococcus, quenching of, 385
Rhodococcus erythropolis, quenching of, 387
Rhodospirillum toruloides, 444
rotifers, 453–462
Saccharomyces cerevisiae, 443–445, 447–449
Saccharomyces pombe, 443, 444
secondary metabolites, 311–314
Serratia liquefaciens, 224
Serratia marcescens, quenching of, 382
in sporulation control, 14–17
Staphylococcus aureus, 150–151, 313, 380, 444
quenching of, 382
Streptococcus pneumoniae, 313
versus competence, 352–353
quenching of, 381
Streptomyces, 313
quenching of, 386–387
Ustilago maydis, 444
Variovorax paradoxus, 224–225
quenching of, 386
Vibrio, 397
Vibrio anguillarum, 239–240
Vibrio cholerae, 147–158, 323, 325–330
Vibrio fischeri, 185, 233–250, 312–314
Vibrio parahaemolyticus, 323
Quorum-sensing inhibitors, 393–416, see also
Furanones
AHL destruction by, 404–406
for animal infections, 407–408
bacteria producing, 397–398
biofilm persistence and, 407
global effects of, 409–410
historical review of, 394–396
host immune system and, 408–409
identification of, 398–400
inhibitors of, in algae, 423
molecular design of, 399–404
homoserine lactone ring substitutions in, 401–402
non-AHL-based, 403–404
side chain substitutions, 399, 401
plants producing, 398
Rac2 protein, in quorum quenching, 387
Rai proteins, in quorum sensing, 221, 222
Ralstonia, quorum sensing in, quenching of, 386–387
RamiR protein, in aerial hypha formation and secondary metabolism, 97
Rap proteins
in ICEB1 regulation, 24
in quorum quenching, 387
in sporulation, 14–17, 19–21
RcsA protein, in quorum sensing, 205–207
RdS protein, in quorum sensing, 219
Receptors, for secondary metabolites, 316–317
Rpf proteins, in crown gall disease, 300–302
Resistance
antibiotic, 317–318
to beta-lactam antibiotics, 337–338
biofilm, 393–394
to secondary metabolite inhibitors, 317–318
RetS protein, in quorum sensing, 137
RghR protein, in ComA regulation, 20–21
Rhamnolipids, in swarming, 111–112
Rhi proteins, in quorum sensing, 221, 222
Rhizobia, 213–232, 424
caracteristics of, 292
conjugal transfer in, 215–225, see also Rhizobia, quorum sensing in
mechanisms of, 216
legume recognition of, 214–215
legume signals to recognition of, 213–214
nodulation induction in, 214
quorum sensing in, 215–226
Bradyrhizobium japonicum, 220, 224–225
mechanisms of, 216–219
Mesorhizobium, 225
Mesorhizobium loti, 216, 218–219
Rhizobium etli, 217, 220, 222
Rhizobium leguminosarum, 219–222
soil ecology of, 225–226
two-way communication in, 424
Rhizobium etli, quorum sensing in, 217, 220, 222
Rhizobium leguminosarum, quorum sensing in, 219–222
secondary metabolites of, 314
Rhl proteins
in acyl-homoserine lactone synthesis, 285
furanone effects on, 396–397
in quorum sensing, 259–260, 333–334
in swarming, 112
RhlR–RhlII system, in quorum sensing, 134–140
Rhodobacteraceae bacterium, quorum sensing in, 257
Rhodococcus, quorum sensing in inhibitors of, 405–406
quenching of, 385
Rhodococcus erythropolis, quorum sensing in, quenching of, 387
Rhodospirillum toruloides, quorum sensing in, 444
Rhomboid-1
Drosophila, 432–434
structure of, 438
Rhomboid proteases, 431–442
conservation of, 433
in Drosophila, 431–433
evolutionary implications of, 437–438
Rhomboid proteases (continued)
functions of, 431, 436–438
in P. stuartii, 433–436
in parasites, 438–439
structures of, 437–438
TatA system, 436
in yeasts, 438–439
Rht proteins, 116
Rifamycin, production of, 373
Rms proteins, in quorum sensing, 190–194
RNAIII, in virulon regulation, 170, 173, 175–176
Rok protein, in ComK regulation, 22
Roots, of legumes, rhizobial communication with, see Rhizobia
Roseobacter, quorum sensing in, 254, 255, 260
Roseobacter denitrificans, quorum sensing in, 256, 257
Roseobacter litoralis, quorum sensing in, 256
Roseovarius, quorum sensing in, 254
Roseovarius mucosus, quorum sensing in, 254
rot system, in virulon regulation, 162–164, 173
Rotifers, quorum sensing in, 453–462
ecological consequences of, 458–459
evolutionary implications of, 459–460
historical perspective of, 454–459
Rpo proteins
in nitrogen limitation detection, 77
in quorum sensing, 136–137
Rsm proteins, in quorum sensing, 137
Ruegeria, quorum sensing in, 255, 256
RWJ-49815, in quorum quenching, 382
Saccharomyces cerevisiae
dimorphic transition of, 118
quorum sensing in, 443–445, 447–449
rhomboids in, 438
Saccharomyces pombe, quorum sensing in, 255, 256
SadB protein, in swarming, 112
sacRS system, in virulon regulation, 162–163, 171
Sagittula, quorum sensing in, 255, 257
Salicylic acid, as virulence factor, 118–119
Salipiger, quorum sensing in, 255
Salmonella enterica serovar Typhimurium, subinhibitory antibiotic effects on, 108
Sap proteins, in aerial hypha formation and secondary metabolism, 92, 96–98
Sar proteins, in virulon regulation, 162–164, 173
SCB-1 protein, in aerial hypha formation and secondary metabolism, 95
SchR protein
in aerial hypha formation and secondary metabolism, 95
in butyrolactone synthesis, 370
SdiA protein, in biofilm formation, 114–115
Secondary metabolites, 307–322, see also Antibiotics
definition of, 308
A factor and, see A factor
functions of, 308–309
importance of, 310
in quorum sensing, 311–314
receptors, 316–317
resistance to, 317–318
Streptomyces, 363–377
synthesis of, 308–310
γ-Secretase, 437
Serine proteases, rhomboid, see Rhomboid proteases
Seratia liquefaciens, see Seratia marcescens
Seratia marcescens, quorum sensing in, 224
inhibitors of, 395, 407
quenching of, 382
Seratia proteamauclans, quorum-sensing inhibitors of, 407
Sexual reproduction, in rotifers, see Rotifers, quorum sensing in
SgmA protein, in aerial hypha formation and secondary metabolism, 94
Shigella, antibiotic resistance in, 317
Siderophores, in aerial hypha formation and secondary metabolism, 99
Sigma factor(s)
in aerial hypha formation and secondary metabolism, 94
in competence-stimulating peptide synthesis, 346–347, 351
in heterocyst development, 81
precursors of, 8–9
in sporulation, 4–9
in virulon regulation, 172–173
Sigma factor-54 activator proteins, Myxococcus xanthus, 59
Signal peptide peptidase, 437
Sill proteins, in quorum sensing, 257, 259
Silisbacter, quorum sensing in, 255, 256, 259
Sillisbacter pomeroyi, quorum sensing in, 257, 259, 260
Sin proteins, in quorum sensing, 224
Sinorhizobium meliloti acyl-homoserine lactone synthase of, 282
quorum sensing in, 215–216, 218, 220, 223–224
quorum sensing inhibitors in, 423–424
Site-2 protease
discovery of, 436–437
in sporulation, 8
SliB protein, Myxococcus xanthus
description of, 53, 66
reversal of, 53–57
Small bacteriocin, in quorum sensing, 219
SmaR protein, in quorum sensing, 189
Soft-rot erwinias, quorum sensing in, 185–199
SoxR protein, in biofilm formation, 108
Spe proteins, in biofilm formation, 109–110
Spitz ligand, Drosophila, 432
Spo0A protein
in ICEB1 regulation, 24
in sporulation, 4, 14–15
Spo0AP protein, in sporulation regulation, 15
Spo0B protein, in sporulation regulation, 15
Spo0F protein, in sporulation regulation, 15
Spo0FP protein, in sporulation regulation, 15–17
SpoIIAB protein, in sporulation, 7
SpoIIGA protein, in sporulation, 5–6
SpoIIQ protein, in sporulation, 7
SpoIIR protein, in sporulation, 5–6
SpoIVB protein, in sporulation, 8–9
SpoIVFA protein, in sporulation, 8–9
SpoIVFB protein, in sporulation, 8–9
Sporulation, 3–10, see also Fruiting bodies
in Bacillus subtilis, 3–16
benefits of, 14
cell density and, 13–14
costs of, 14
Factor C effects on, 98
forespore response in, 8–9
forespore signaling in, 4–6
mother cell response in, 6–7
quorum sensing and, 14–16
Streptomyces, 91, 98
Spr proteins, in aerial hypha formation and secondary metabolism, 94
srrAB system, in virulon regulation, 172
Streptomyces, 91–104
bald (bld) mutants of, 91–92, 97
cell-cell communication in, 92–93
density factors in, 98
desferrioxamine in, 99
factor C in, 98
γ-butyrolactones in, 93–96
hydrophobic peptides in, 96–98
pamamycins in, 99
characteristics of, 91–92, 363
A factor of, see A factor
fungal communication with, 424
γ-butyrolactones of, 363–365, see also A factor programmed death of, 98
quorum sensing in, 313
inhibitors of, 397, 405–406
quenching of, 386–387
white (whi) mutants of, 91
Streptomyces albidoflavus, 92
Streptomyces albogriseolus, 99
Streptomyces antibioticus, 368, 397
Streptomyces avermitilis, 96
Streptomyces bikiniensis, A factor homolog of, 365
Streptomyces coelicolor, 92–93, 95–97
A factor homolog of, 365–366, 368, 371
Streptomyces cyanofuscatus, A factor homolog of, 365
Streptomyces flavofungini, 92, 98
Streptomyces fradiae, 93–94
A factor homolog of, 366
Streptomyces griseus, 93–94, 96–99
A factor of, see A factor
Streptomyces lavendulae, 95
A factor homolog of, 365
Streptomyces lividans, 97
Streptomyces natalensis, in pimaricin production, 374
Streptococcus in biofilms, 354–356
competence in, 445
in biofilms, 354–356
development of, 14, 345–362
in infection, 353–354, 356–357
pheromones in, 346–353
versus quorum sensing, 352–353
quorum sensing in, 313
versus competence, 352–353
quenching of, 381
Streptococcus pyogenes, competence of, 347
Streptococcus sanguis, in biofilms, 355
Streptococcus, 91–104
bald (bld) mutants of, 91–92, 97
cell-cell communication in, 92–93
density factors in, 98
desferrioxamine in, 99
factor C in, 98
γ-butyrolactones in, 93–96
hydrophobic peptides in, 96–98
pamamycins in, 99
characteristics of, 91–92, 363
A factor of, see A factor
fungal communication with, 424
γ-butyrolactones of, 363–365, see also A factor programmed death of, 98
quorum sensing in, 313
inhibitors of, 397, 405–406
quenching of, 386–387
white (whi) mutants of, 91
Streptomyces albidoflavus, 92
Streptomyces albogriseolus, 99
Streptomyces antibioticus, 368, 397
Streptomyces avermitilis, 96
Streptomyces bikiniensis, A factor homolog of, 365
Streptomyces coelicolor, 92–93, 95–97
A factor homolog of, 365–366, 368, 371
Streptomyces cyanofuscatus, A factor homolog of, 365
Streptomyces flavofungini, 92, 98
Streptomyces fradiae, 93–94
A factor homolog of, 366
Streptomyces griseus, 93–94, 96–99
A factor of, see A factor
Streptomyces lavendulae, 95
A factor homolog of, 365
Streptomyces lividans, 97
Streptomyces natalensis, in pimaricin production, 374

Streptococcus
in biofilms, 354–356
competence in, 445
in biofilms, 354–356
development of, 14, 345–362
in infection, 353–354, 356–357
pheromones in, 346–353
versus quorum sensing, 352–353
quorum sensing in, 313
versus competence, 352–353
quenching of, 381
Streptococcus pyogenes, competence of, 347
Streptococcus sanguis, in biofilms, 355
Streptococcus, 91–104
bald (bld) mutants of, 91–92, 97
cell-cell communication in, 92–93
density factors in, 98
desferrioxamine in, 99
factor C in, 98
γ-butyrolactones in, 93–96
hydrophobic peptides in, 96–98
pamamycins in, 99
characteristics of, 91–92, 363
A factor of, see A factor
fungal communication with, 424
γ-butyrolactones of, 363–365, see also A factor programmed death of, 98
quorum sensing in, 313
inhibitors of, 397, 405–406
quenching of, 386–387
white (whi) mutants of, 91
Streptomyces albidoflavus, 92
Streptomyces albogriseolus, 99
Streptomyces antibioticus, 368, 397
Streptomyces avermitilis, 96
Streptomyces bikiniensis, A factor homolog of, 365
Streptomyces coelicolor, 92–93, 95–97
A factor homolog of, 365–366, 368, 371
Streptomyces cyanofuscatus, A factor homolog of, 365
Streptomyces flavofungini, 92, 98
Streptomyces fradiae, 93–94
A factor homolog of, 366
Streptomyces griseus, 93–94, 96–99
A factor of, see A factor
Streptomyces lavendulae, 95
A factor homolog of, 365
Streptomyces lividans, 97
Streptomyces natalensis, in pimaricin production, 374
Streptomyces pristinaespiralis, A factor homolog of, 366
Streptomyces scabies, 96
Streptomyces tanashiensis, 99
Streptomyces tendae, 96
Streptomyces venezuelae, A factor homolog of, 366
Streptomyces virginiae, A factor homolog of, 365–366, 368

Streptomycin production of, A factor in, see A factor resistance to, 317

StrR protein in aerial hypha formation and secondary metabolism, 93
in A factor regulation, 371, 373

Succinoglycan, in quorum sensing, 215

Sulfitobacter, quorum sensing in, 254, 255, 257, 259–260

Superantigens, in virulon regulation, 162–163, 173–175
Surfactants, rhamnolipids as, 111–112
Surfactin, 17, 97
Svx protein, in quorum sensing, 194

Swarming Myxococcus xanthus, 53
Proteus mirabilis, 109
rhamnolipids in, 111–112

Symbiosis two-way communication in, 424–426
Vibrio fischeri, 241–243

Synechocystis, pilus fibers of, 53

Tat protein export system AarA protein and, 434–436
signaling function of, 436
Tcp proteins, in quorum sensing, 151–152
Tendrils, in swarming, 111
Tet proteins, 95
tetracycline, in biofilm formation, 107
Tgl protein, in pili, 53–55
Ti plasmids, in crown gall tumors, 292–293
TnaB protein, in biofilm formation, 113
Tobramycin, in biofilm formation, 107
Tox proteins, in quorum sensing, 151–152
Toxic shock toxin–1, in virulon regulation, 162, 173–175

Toxin-coregulated pilus, Vibrio cholerae, 325–327
Toxins
in membrane vesicles, 338–339
Vibrio cholerae, 146–147
Toxoplasma, rhomboids in, 438
Tpklp2 protein, in quorum sensing, 448
Tra proteins
TraA folding of, 293–295

in pheromone binding, 33
in pheromone regulation, 37
in quorum sensing, 216–224
TraB, in pheromone regulation, 35
TraI, in quorum sensing, 291–292
TraM, in TraA regulation, 298
TraR, 293–302
activity of, posttranscriptional control of, 293–296
antiactivators of, 297–299
gene expression of, regulation of, 293, 300–302
in quorum sensing, 137–140, 299–300
structure of, 296–297
in transcription activation, 299–300

Tracheal cytotoxin, in quorum sensing, 243

Transcription factors, in virulon regulation, 164, 173–175
Triclosan, in quorum quenching, 381
TrHR protein, in TraA regulation, 298–299, 301–302
Tryptophanase, 112–114
Tryptophol, in quorum sensing, 446, 448–449
Twin–arginine-dependent translocation system (Tat protein system), AarA protein and, 434–436
Two-way communication, in interdomain signaling, 424–426
Tyl proteins, in aerial hypha formation and secondary metabolism, 94–95

Tylosin
in aerial hypha formation and secondary metabolism, 94–95
production of, 366

Tyrosol, in quorum sensing, 446–448

Ulua zoospores, signaling mechanisms of, 262–265, 421–422
Undecylprodigiosin, 95
Ustilago maydis, quorum sensing in, 444

Van proteins, in quorum sensing
acyl-homoserine lactone synthesis and, 276
Vibrio anguillarum, 261–262
Vibrio fischeri, 240
Var proteins, in quorum sensing, 150, 152, 325–327
Variovorax paradoxus, quorum sensing in, 224–225
inhibitors of, 405–406
quenching of, 386

Vellinella atypica, secondary metabolites of, 316
Vesicles, membrane, see Membrane vesicles
Vfr protein, in quorum sensing, 136
Vibrio, quorum sensing in, 254, 256, 397
Vibrio anguillarum
quorum sensing in, 239–240, 261–264, 421–422
quorum-sensing inhibitors of, 407
Vibrio cholerae, 145–160
in aquatic environment, 145–146, 155–157
in biofilms, 110, 146, 152–157
characteristics of, 145
as human pathogen, 145–146, 156–157
life cycle of, 155–157
phenotypes of, 150–155
quorum sensing in, 323, 325–330
inhibitors of, 407
life cycle and, 155–157
mechanisms of, 147–150
phenotypes and, 150–155
Vibrio fischeri
acyl-homoserine lactone of, 276
Euprymna scolopes communication with, 235, 241–244, 424
luminescence of, 134, 138, 235, 241–244, 424
quorum sensing in, 185, 233–250, 261, 312–313, 314
environmental control of, 243–244
in ES114 strain, 234–237
inhibitors of, 403–404
in light-organ symbiosis, 241–243
mechanistic model for, 237–241
in MJ1 strain, 234–237
models for, 251–252
parameters for, 252–253
Vibrio harveyi
acyl-homoserine lactone synthase of, 276
inhibitors of, 407
models for, 252
Vibrio parahaemolyticus, quorum sensing in, 323
Vibrio polysaccharide, in quorum sensing, 152–154
Vibrio vulnificus, quorum sensing in, 261
inhibitors of, 407
Vir proteins, in crown gall disease, 292, 301–302
Virginiamycin, production of, 366
VirR protein, in quorum sensing, 190–192
Virulence factors
in biofilms, 394
Erwinia carotovora, 189–193
pCF10 plasmid, 45–46
Pseudomonas aeruginosa, 118–119, 133, 135
salicylic acid, 118–119
Staphylococcus aureus, 161–183
Vibrio cholerae, 146–147
Vpr proteins, in quorum sensing, 152–154
Vps proteins, in quorum sensing, 327
VqmA protein, in quorum sensing, 150
Wce proteins, in quorum sensing, 205–207
Worker inhibitory pheromone, in regulation of labor in honeybees, 465
Wts proteins, in quorum sensing, 201
Wyx proteins, in quorum sensing, 206–207
Wyz proteins, in quorum sensing, 206–207
Wzx proteins, in quorum sensing, 207
Yap1 protein, in dimorphic transition, 118
YceP protein, in biofilm formation, 114
Yeast, rhomboids in, 438–439
Yersinia pestis, in biofilms, 109–110
Yersinia pseudotuberculosis, quorum-sensing inhibitors of, 404
Yfp protein, in sporulation, 4–5
YliH protein, in biofilm formation, 114
Zoospores, *Ulva*, signaling mechanisms of, 262–265, 421–422