Enterobacter sakazakii
Emerging Issues in Food Safety
SERIES EDITOR, Michael P. Doyle

Microbiology of Fresh Produce
Edited by Karl R. Matthews

Microbial Source Tracking
Edited by Jorge W. Santo Domingo and Michael J. Sadowsky

Microbial Risk Analysis of Foods
Edited by Donald W. Schaffner

Enterobacter sakazakii
Edited by Jeffrey M. Farber and Stephen Forsythe

ALSO IN THIS SERIES

Edited by Michael P. Doyle and M. C. Erickson
Enterobacter sakazakii

EDITED BY

Jeffrey M. Farber
Bureau of Microbial Hazards
Food Directorate
Health Canada
Ottawa, Ontario, Canada

AND

Stephen J. Forsythe
School of Biomedical and Natural Sciences
Nottingham Trent University
Clifton Lane
Nottingham, United Kingdom
Contents

Contributors vii
Series Editor’s Foreword ix
Preface xi

1 Taxonomy and Physiology of Enterobacter sakazakii 1
Catherine Dauga and Pieter Breeuwer

2 Isolation and Identification of Enterobacter sakazakii 27
Séamus Fanning and Stephen J. Forsythe

3 The Neonatal Intestinal Microbial Flora, Immunity, and Infections 61
Stacy Townsend and Stephen J. Forsythe

4 Enterobacter sakazakii Disease and Epidemiology 101
Anna B. Bowen and Christopher R. Braden

5 Pathogenicity of Enterobacter sakazakii 127
Franco Pagotto, Jeffrey M. Farber, and Raquel Lenati
6 Production of Powdered Infant Formulae and Microbiological Control Measures 145
Jean-Louis Cordier

7 Use of Nonsterile Nutritionals for Neonates in the Hospital and after Hospital Discharge: Control Measures Currently Instituted at One Tertiary Care Institution 187
Deborah L. O’Connor, Joan Brennan, Susan Dello, and Laurie Streitenberger

8 Powdered Infant Formula in Developing and Other Countries—Issues and Prospects 221
S. Estuningsih and N. Abdullah Sani

9 Regulatory Aspects 235
Jeffrey M. Farber, Franco Pagotto, and Jean-Louis Cordier

10 Enterobacter sakazakii—Personal Perspectives and Reminiscences from a 32-Year History 255
J. J. Farmer III

Index 265
Contributors

N. Abdullah Sani
Food Science Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Anna B. Bowen
Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Christopher R. Braden
Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Pieter Breeuwer
Applied Science and Quality Assurance Department, Nestlé Product Technology Center Konolfingen, Nestlé Strasse 3, CH-3510, Konolfingen, Switzerland

Joan Brennan
Department of Clinical Dietetics, The Hospital for Sick Children, Toronto, Ontario, Canada

Jean-Louis Cordier
Nestlé Nutrition, Avenue Reller 22, CH-1800 Vevey, Switzerland

Catherine Dauga
Plateforme 4, Génopole, Institut Pasteur, 75724 Paris cedex 15, France
Contributors

 SUSAN DELLO
 Department of Food and Nutritional Services, The Hospital for Sick Children, Toronto, Ontario, Canada

 S. ESTUNINGSIH
 Department of Clinical, Reproduction, and Veterinary Pathology, Bogor Agricultural University, Jalan Agatis, IPB Campus, Darmaga, 16681, Bogor, Indonesia

 SÉAMUS FANNING
 Centre for Food Safety, School of Agriculture, Food Science, and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland

 JEFFREY M. FARBER
 Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada

 JOHN J. FARMER III
 Silver Hill Associates, 1781 Silver Hill Road, Stone Mountain, GA 30087

 STEVE FORSYTHE
 School of Biomedical and Natural Sciences, Nottingham Trent University, Nottingham, United Kingdom

 RAQUEL LENATI
 Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada

 DEBORAH L. O’CONNOR
 Department of Clinical Dietetics, The Hospital for Sick Children, and Department of Nutritional Sciences, The University of Toronto, Toronto, Ontario, Canada

 FRANCO PAGOTTO
 Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada

 LAURIE STREITENBERGER
 Department of Infection Prevention and Control, The Hospital for Sick Children, Toronto, Ontario, Canada

 STACY TOWNSEND
 School of Biomedical and Natural Sciences, Nottingham Trent University, Clifton Lane, Nottingham, United Kingdom NG11 8NS
Enterobacter sakazakii emerged as a major concern for manufacturers of infant formula because of its association with deaths of infants, largely premature or in intensive care units (ICUs), fed contaminated, reconstituted powdered infant formula that was typically temperature abused in ICUs. For these infants, the mortality rate was high, ranging from 40 to 80%. Since its recognition as a severe pathogen for specific high-risk populations, a wealth of information regarding the detection, ecology, survival characteristics, and pathogenicity of *E. sakazakii* has been generated.

Jeffrey Farber and Steve Forsythe, two leaders in studying the food-associated aspects of *E. sakazakii*, have combined forces with many internationally recognized *E. sakazakii* experts to provide an impressive compilation of the state-of-the-science surrounding this pathogen. Topics that are addressed include taxonomy, isolation and identification, epidemiology, pathogenicity, production and use practices of infant formula that influence *E. sakazakii* contamination and growth, and regulatory issues. I know of no other source that provides as much relevant, up to date information on the food safety aspects of *E. sakazakii* than this book. It is an invaluable resource for those of us interested in the microbiological safety of foods.

Michael P. Doyle, Series Editor
Emerging Issues in Food Safety
Preface

Enterobacter sakazakii is an emerging opportunistic pathogen that has caused much concern in the food industry, as well as in regulatory and academic communities. In fact, there has been more work done in the last 2 to 3 years than in the past 25 years. As an example, in the last 2 years alone there have been at least 85 publications on this organism.

Our experience indicated that there was no single source that had all the up-to-date information on this very unique pathogen. Thus, we have set out to compile the latest information on E. sakazakii, all under one cover.

This bacterium is unique in the sense that it is widespread in the environment and for the most part affects only a small subset of the population, i.e., infants under 1 year of age, although cases do occur in adults and the incidence of disease caused by this organism is underreported. It also survives the drying process very well and thus can be found in dry food products such as skimmed milk powder, lactose, starch, lecithin, orange powder, and banana powder, all ingredients that can be added to powdered infant formula. In addition, because the organism affects the youngest and most vulnerable segment of our population, the issue has been raised to the highest levels of attention and effort.

As mentioned above, the research community has made great strides in almost all areas associated with the biology of this organism. In addition, the powdered infant formula industry has done a tremendous job in reducing the incidence of contaminated formulae in the marketplace. Advances in methodology have been quite dramatic, and we are now able to more readily detect this organism than ever before. However, advancements will still need to be made to detect the increasingly lower levels of this organism that we will see in the future in powdered infant formula. There are various collaborative studies under way, and these will help to further advancements in this area. One can also already see rapid advances being made in understanding
the pathogenesis of this organism, and in this area we think there will be tremendous progress.

At the international level, attention also has been drawn to this issue, and two major risk assessment meetings have taken place, which have resulted in two publications. In the Codex Alimentarius, the Committee on Food Hygiene (CCFH) has been involved in terms of trying to draft a revised document on hygienic practices for powdered formulae for infants and young children, which is currently at Step 3 in the Codex process. In addition, WHO has recently published a guidance document for the safe preparation, storage, and handling of powdered infant formula.

In the next 5 to 10 years, our understanding of this organism and how and why it causes human illness will increase dramatically, and regulatory agencies will be able to use the outputs of this information to devise better risk management strategies that are based on sound science. For example, bacterial taxonomy is being revolutionized by the use of DNA sequence analysis, which may not always agree with past divisions according to sugar fermentation profiles, etc. The family Enterobacteriaceae originally was defined according to such phenotyping, and therefore the application of DNA sequence analysis is revising our perspective of this family. The genus Enterobacter is comprised of a phenotypically diverse group of bacteria, and thus it is not surprising that it has been recently proposed that E. sakazakii actually should be taken out of the genus Enterobacter and placed into a new genus, “Cronobacter,” consisting of four new species and one genomospecies. All the species would still be considered pathogenic for neonates. Thus, from a regulatory point of view, not much would change. However, in the future, if the proposed nomenclature changes are accepted, this may allow us to more specifically target the species of concern. For example, if we find out that there are differences in virulence in some of the new species, different microbiological criteria possibly could be set. Work in this area also could lead to the identification of other members of the Enterobacteriaceae that are able to cause disease in infants when present in sufficient numbers in powdered infant formula.

This book, which we trust you will enjoy, hopefully will be a useful reference tool for many years to come for regulators, industry members, and academics who are interested in this organism or who are involved in some way with powdered infant formula used for the feeding of infants.

Jeffrey M. Farber
Stephen J. Forsythe
Index

A
Agars, *E. sakazakii* growth on, 37, 38, 41
American Dietetic Association, 199
preparation of powdered infant formula and, 110, 111
Anaerobes, strict, cultivation and identification of, 74
Animal models, of *E. sakazakii*, 132–139
designs for assessing, 134–135
Antibiotics, susceptibility of *E. sakazakii* to, 19–20
Antibodies, passive immunity provided, 71–72
Arachidonic acid, 198

B
B cells, 71–72
Bacteremia, characteristics of infants with, 104
E. sakazakii, 104–105
Bacteria, first, in vaginally delivered neonates, 76
intestinal, metabolic activities of, 73
pathogenesis of, and necrotizing enterocolitis, 82–85
Bead capture and detection of *E. sakazakii*, 41–42
Bifidobacteria, in breast-fed full-term infants, 77–78
Biochemical identification kits, 42–43
Biochemical profiling methods, 42
Bolus feedings, 212
Breast-feeding, in developing countries, 224, 225–228
as preferred method of feeding, 189
by North American women, 190
cognitive development and, 189
compatibility of medications with, 190
definition of, 188
employment and, 227
Breast milk, preferred source of infant nutrition, 76, 228
expressed, 76
delivery of, and bedside management of infant feeding using, 211–213
frozen, thawing of, 212
handling of, 209–211
storage of, 210
feeding of. See Breast-feeding mechanical expression of, 209–210
passive immunity and, 72

C
Carbohydrate, in cow-milk-based standard-term formula, 198
in human milk, 196
Carnitine, 201
Central nervous system infection, 104
Chicks, in study of *E. sakazakii*, 132
Chromogens, for detection of *E. sakazakii*, 39–41
Citrobacter, 3
and *Enterobacter*, relationships, 8–10
Citrobacter amalonaticus, 3
Citrobacter freundii, 43
Citrobacter koseri, 3, 43, 65, 129, 132–133, 140
Citrobacter meningitis, 132, 133
Clostridia, 85
Coagulase-negative staphylococci (CoNS), 80
as causative agent in neonatal infections, 89–90
Codex Alimentarius Commission, 175, 236, 237–239
Code of Hygienic Practice and, 176, 177
standard for infant formula, 145
Cognitive development, breast-feeding and, 189
Complement system, proteins of, 67–68
Cow milk, proteins in whey fraction of, 198
unmodified, 194–197
mineral content of, 196–197
protein content of, 196
Cow-milk-based formulas, 197–200
lactose-free, 200
Cow–milk-based iron-fortified formula, commercially prepared, 190, 194–195
Cytokines, 68–70

D
Dietary supplements, 206
DNA sequence analysis of housekeeping genes, 43–45
Docosahexanoic acid, 198
Druggan–Forsythe–Iversen (DFI) agar, 39

E
Encephalomalacia, following E. sakazakii meningitis, 104, 105
Enteral feeding(s), definition of, 188–189
in-hospital, guidelines for, 212–213
preparation of, 206–211
equipment, utensils, and supplies for, 208–209
physical facilities and personnel for, 207–208
staff for, 208
neonatal infection through, 86
preparation at home, 213, 214
Enterobacter, and neighboring genera, biochemical differentiation of, 11
biochemical characteristics to distinguish, 11–14
clinical significance of, 1–3
phenotypic tests for, 10–14
species of, 1
taxonomic consideration of, 1–3
Enterobacter aerogenes, 87, 88
Enterobacter asburiae, 1, 14
Enterobacter asburiae, 1, 14
Enterobacter cloacae, 1–2, 5, 14, 43, 87–89
“yellow-pigmented.” See Enterobacter sakazakii
Enterobacter dissolvens, 2
Enterobacter gergoviae, 2, 14
Enterobacter hormaechei, 2, 3
Enterobacter kobei, 2, 14
Enterobacter ludwigii, 2, 14
Enterobacter nimipressuralis, 2, 5, 14
Enterobacter sakazakii, acid resistance of, 19
and Enterobacteriaceae, relationship between, 177
animal models of, 132–139
designs for assessing, 134–135
antimicrobial resistance of, 19–21, 109
as cause of illness in infants, 238, 239
as hazard for restricted populations, 127
bead capture and detection of, 41–42
biotypes of, 43, 44
classification of, 257–258
control measures for infant formula and, 154
conventional cultural detection of, 35
discovery of, 254–256
distinguishing characteristics of, 258–259
division into clusters, 8
DNA–DNA hybridization data on, 255
DNA relatedness of strains of, 8, 9
ecology of hospital infections and, 259–261
detection using PCR, 45–47
enrichment broths, 36
environmental levels of, unavoidable, 173, 174
evaluation of eight food strains of, 129
flagella stain of type strain of, 259
gene expression of, 130
genus determination in, 8–10
growth of, 16–17
heat resistance of, 17–19

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Mon, 29 Jul 2019 21:06:35
Index 267

high thermal resistance of, 150
host factors for, in different age groups, 139
human infections with, 259–261
identification of, 42–47, 258–259
in developing countries, 231–233
in environment, 4, 27–30, 40
in foods, 27
in non–hospital environments, 107–108
in powdered infant formula. See Powdered infant formula
incubation and carriage of, 108
infections caused by, 104–106
isolation and identification of, 27–59
isolation using chromogenic and fluorogenic media, 39–41
management of, control measures for, 165–173
meningitis caused by, 104, 105, 128, 259–261
minimum infectious dose of, 138
molecular subtyping of, 47–52
natural habitat of, 29–30
neighbor-joining tree of, 4
nonprofit foundation to further research of, 261
nosocomial sources of, 107–108
pathogenicity of, 127–144
future work in, 139
personal perspectives, from 32-year history, 255–264
phylogenetic position among environmental strains, 3–5
phylogenetic position among other Enterobacteriaceae, 4
physiology of, 15–21
pronunciation of, 256–257
proposed model for pathogenesis of, 141
reservoirs and transmission of, 106–108
selective and differential agars for, 37, 38
similarity between hsp60 sequences and, 10
sources of, 28–29
species delineation of, 8
survival and growth characteristics of, 15–19
taxonomy and physiology of, 1–26
tissue culture studies of, 130–132
translocation through chordus plexus, 129
uncertainties in classification of, 8–10
variation in virulence expression of, 129–130
vertical transmission of, 107
virulence factors of, 129
Enterobacter sakazakii disease, clinical presentation and course of, 104–106
diagnosis of, 108
epidemiology of, 101–125
in adults, 103
in Belgium in 2001, 117–119
in France in 2004, 120–121
in Greece in 1987, 114–115
in Iceland in 1989, 115–116
in Israel in 2001, 119
in New Zealand in 2004, 121–122
in The Netherlands in 1983, 114
in United Kingdom in 1961, 112
in United States, 240
in United States in 1989, 116–117
in United States in 2002, 119–120
invasive infant cases, and in older age groups, 102
by year, 102
characteristics of, 102–103
outbreaks of, review of, 112–122
powdered infant formulas as cause of, 187
prevention of, 110–112
treatment of, 109
Enterobacter species, as opportunistic pathogens, 128
Enterobacteriaceae, 1
and E. sakazakii, relationship between, 177
causing outbreaks in NICUs, 86–89
cultured from infant formulations, 31
environmental, in processing environments, 168
environmental levels of, unavoidable, 168–173
in sugar, 153
mean concentrations in powdered infant formula, 170–171
minimization in high-hygiene area, 165, 166
survival of, 167
temperatures for survival of, 18
Enterobacterial repetitive intergenomic consensus (ERIC) repeat, 49–50
Enterotoxins, 85
Escherichia coli, 65, 78, 79
Escherichia coli K1, 130, 132
meningitis, 133
European Food Safety Authority (EFSA), 240–242
European Union, 31–32
concerns of infant formula contamination
and, 240–242
sampling plans for finished products,
33–34

F
Fat-soluble vitamins, 192
Fatty acids, in human milk and in formula,
198
short-chain (SCFA), 73
short-chain (SCFA) butyrate, 82–84
Feeding of infants, optimal, guidelines for,
189–190
patterns and trends in, 146–147
Feeds, infant, preparation and handling of,
242–250
Fluorogens, for detection of *E. sakazakii*,
39
Food allergy, in infants, American Academy
of Pediatric’s feeding recommen-
dations for, 203, 204
Food and Agriculture Organization of the
United Nations (FAO), 127
Food and Drug Administration (FDA),
Federal Food, Drug, and Cosmetic
Act of, 197
Infant Formula Act of, 197
Formula(s), commercially prepared cow-
milk-based iron-fortified, 190,
194–196
cow-milk-based, 197–200
cow-milk-based standard-term, carbohy-
drate in, 198
fatty acids added to, 198
infant, commercially available, 197
on market, 194–206
lactose-free cow-milk-based, 200
liquid concentrates, 200
metabolic, 205
postdischarge, 205
powdered infant. See Powdered infant
formula
premature, 203–205
carbohydrate fraction of, 205
fat blend of, 204
protein-hydrolysate- and amino-acid-
based, 202–203
soy-protein-based, 201–202
Fortifiers, powdered, 192–194
Free fatty acids, for food preservation, 20

G
Galactosemia, 201
Gastrointestinal tract, 72–73
Gavage feedings, 212
Genotypic methods, 43–47
Gerbils, in study of *E. sakazakii*, 132–138
in study of *Helicobacter pylori*, 135
Glucose polymer nutrient modular, 206
Gut flora, of neonate, 73–75
gyrB sequence analysis, 5, 6

H
HIV, in developing countries, powdered
infant formula and, 223–224
transmission of, 223–224
The Hospital for Sick Children (SickKids),
187–188, 199
hsp60 sequence analysis, 5–8

I
IgG antibodies, 68
IgM antibodies, 68
Immune deficiencies, of premature neonate,
78, 79
Immune status, of neonates and infants, 72
Immune system, innate, 62–70
Immunity, adaptive, 70–72
neonatal, 61–62
Inborn errors of metabolism, 190, 205–206
Indonesia, infant feeding in, 225, 226,
227–228
powdered infant formula use in, 222
Infant formula, liquid, heat-treated, 150
powdered. See Powdered infant formula
spray drying of, 151
Infant Formula Act in United States (FDA),
145
Infants, nutritional assessment of, 193–194
sick and/or low-birth-weight, nutrient
requirements of, 190–192
Infections, bloodstream, 81–82
caused by *Enterobacter sakazakii*, 104–106
central nervous system, 104
neonatal, 61–62, 80–90
Staphylococcus aureus and CoNS as
causative agents in, 89–90
through parenteral and enteral feeding,
86
wound, 106
Intensive care units, neonatal, *Enterobacteri-
aceae* causing outbreaks in, 86–89
International Commission on Microbiological Specifications for Foods (ICMSF), 31, 127, 235
sampling plans for finished products, 33–34
Intestinal bacteria, metabolic activities of, 73
Intestinal flora of breast-fed and formula-fed neonates, 75–80
Intestinal microbial flora, 61–62
human, 72–80
Isoflavone, 201

K
Klebsiella, 78, 79

L
Lactase deficiency, congenital, 200
Lactose, in human milk, 196
Lactose deficiency, hereditary, 201
Lactose-free cow-milk-based formulas, 200
Lipopolysaccharide, 82, 85
Low-birth-weight infants, nutrient requirements of, 190–192

M
Malaysia, infant feeding in, 226, 232
Malnutrition, in developing countries, 224–225
Maltodextrins, 198, 206
Medications, compatibility of, with breastfeeding, 190
Membrane attack complex (MAC), 67–68
Meningitis, characteristics of infants with, 104
Citrobacter, 132, 133
E. sakazakii, 104, 128
encephalomalacia following, 104, 105
E. sakazakii as cause of, 259–261
Escherichia coli K1, 133
pathogens associated with, 140
Metabolic formulas, 205
Metaseiulus occidentalis, 4
Methicillin-resistant Staphylococcus aureus, 86
Methylobacillus flagellatus, 17
Microbial contamination, minimizing of, while maximizing benefit of nutritional products, 188
Microbiological criteria for powdered infant formula, in various countries, 242, 243–249
Microbiological sampling plans, for foods for infants and children, 235, 236
Microlipid, 206
Milk preparation room, for preparation of enteral feedings, 208
supplies in, 209
Milk proteins, 202
Mineral content, of unmodified cow milk, 196–197
Molecular subtyping, of E. sakazakii, 47–52
Multilocus sequence typing, 51–52
Myrmeleon mobilis, 4

N
Natural killer cells, 65
Necrotizing enterocolitis (NEC), 62, 80
bacterial pathogenesis and, 82–85
clinical stages of, 82, 83
pathogenesis of, 84–85
Neonate(s), adaptive immunity of, 70–72
bloodstream infections of, 81–82
breast-fed and formula-fed, intestinal flora of, 75–80
cytokine secretion in, 68–70
gut flora of, 73–75
immune status of, 72
immunity of, 61–62
in hospital and after hospital discharge, nonsterile nutritionals for, 187–220
increase in numbers of CD4+ lymphocytes in, 70–71
infections in, 61–62, 80–90
Staphylococcus aureus and CoNS as causative agents in, 89–90
through parenteral and enteral feeding, 86
innate immune system of, 62–70
mechanical barriers of, 63
phagocytic cells and, 63
intestinal microbial flora of, 61–62
low-birth-weight, E. sakazakii infections in, 78
premature, immune deficiencies of, 78, 79
Neutrophils, 64
bactericidal deficiencies in, 64–65
Nigeria, infant feeding in, 226
Nostoc commune, 15–16
Nutrient enrichment, breast-fed infant requiring, 192–194
Nutrient modulars, 206
Nutrient requirements, of sick and/or low-birth-weight infant, 190
Nutrition, benefits of breast-feeding for infant, 189
Nutritional assessment, of infants, 193–194
Nutritional products, maximizing benefit of, and minimizing risk of contamination, 188
nonsterile, for neonates in hospital and after hospital discharge, 187–220

O
Opsonization, 67–68
Osteomyelitis, 106
Overnutrition, 192

P
Pantoea agglomerans, 50
Parenteral feeding, neonatal infection through, 86
PCR-denaturing gradient gel electrophoresis (PCR-DGGE), 74–75
Phenotypic methods, 42–43
Phenylketonuria, 190, 205–206
Phytoestrogen, 201
Platelet-activating factor (PAF), 82–85
Polymerase chain reaction assays, for end detection of E. sakazakii, 45–47
real-time, 74–75
Polymorphonuclear leukocytes, 64
Postdischarge formulas, 205
Powdered fortifiers, 192–194
Powdered infant formula as cause of E. sakazakii disease, 187
as reservoir of E. sakazakii, 106–107
attraction of, 199
control measures and, 154–173
definitions associated with, 145
development of, 221
E. sakazakii in, 30–33
cultural isolation of, 34–42
in developing countries, 232
routes of entry of, 31
surveys of, 32
educating caregivers concerning, 110
for special nutritional needs, 145
guidelines for preparing, 110, 111
heat treatment of, 155
historical development of, and evolution in composition of, 147
in developing countries, 221–234
labeling requirements for, 222
marketing of, 222–223
mean concentrations of Enterobacteriaceae in, 170
microbial flora cultured from, 33
microbiological criteria for, in various countries, 242, 243–249
microbiological specifications for, 173–176
microorganisms in, 127
milk-based, 149
preparation and handling of, 176
preparation and storage of, 229–231
preparation of, in hospital, 231
product categories of, 145–147
product recalls of, 222
production of, and control measures, 145–185
dry-mix ingredients and, 152–154
dry-processing steps in, 151–154
methods of, 148–154
wet-processing steps in, 148–151
promotion of, HIV in developing countries and, 223–224
reconstitution of, recommendations on, 176, 229–230
safety of, factors affecting, 228–231
preventive measures and, 154
Salmonella and. See Salmonella, prevention of formula contamination with size of markets for, 146
use in developing countries, 225–228
vegetative microorganisms in, causes of, 155
worldwide production of, 147
Premature infants, formulas for, 203–205
Protein content, of unmodified cow milk, 196, 198
Protein-hydrolysate- and amino-acid-based formulas, 202–203
Proteins, milk, 202
of complement system, 67–68
Pseudomonas aeruginosa, 80
Pulsed-field gel electrophoresis (PFGE), 47–48, 50
subtyping of, 48–49
Pumps, mechanical hospital-grade, 210

R
Random amplification of polymorphic DNA (RAPD), 47–48, 50
Rats, in study of E. sakazakii, 132, 138–139
Recommended International Code of Hygienic Practice for Foods for Infants and Children, 238, 239
R&F Enterobacter sakazakii chromogenic medium (ESPM), 39
Ribotyping, based on DNA polymorphism, 51

S
Sakazaki, Riichi, 256–257
Salmonella, as epidemiologically relevant pathogen, 235
control of, basic measures for, 156
environmental samples of, 162
improved hygiene measures and, 156–158
infant formula and, 155
line samples from equipment surfaces and, 163
management of, in dairy-based products, 155–173
prevention of formula contamination with, air filtration and, 160
factory design and construction in, 159
factory zoning in, 159–160
samples analyzed in, 161–163
processing equipment sampling and, 162
sporadic outbreaks of disease caused by, 164
Salmonella enterica, 156
as cause of illness in infants, 238, 239
Senegal, infant feeding in, 226–227
Serratia marcescens, 89
Short-chain fatty acids (SCFA), 73
Short-chain fatty acids (SCFA) butyrate, 82–84
Soy formulas, in vegetarian-based diet, 202
Soy-protein-based formula, 201–202

Staphylococcus aureus, 80, 81
as causative agent in neonatal infections, 89–90
methicillin-resistant, 86
Staphylococcus epidermidis, 78
Suckling mouse, in study of E. sakazakii, 139
in study of E. sakazakii, 136

T
T cells, 70
Taurine, 201
Thailand, powdered infant formula use in, 224
Thymus-independent antigens, 72
Tissue culture studies, 130–132
Toll-like receptors (TLR), 65, 67
Tube feedings, 212

U
United States, E. sakazakii outbreak in, 240

V
Virulence factors, investigation of, 131

W
Water, as factor in Enterobacteriaceae levels, 167, 168
for reconstitution of powdered formula, 222, 228–229
White blood cell count, elevated, at birth, 64
World Health Organization (WHO), 127
Wound infections, 106

Z
Zambia, infant health in, 224