Enzyme-Mediated Resistance to Antibiotics
Mechanisms, Dissemination, and Prospects for Inhibition
Enzyme-Mediated Resistance to Antibiotics
Mechanisms, Dissemination, and Prospects for Inhibition

Editors

Robert A. Bonomo
Section of Infectious Diseases
Louis Stokes Cleveland Department of Veterans Affairs
Medical Center
Cleveland, OH 44106

Marcelo Tolmasky
Department of Biological Science
California State University-Fullerton
Fullerton, CA 92831
To Rita, to whom I owe everything
—R.A.B.

To Liliana and Ryan
—M.E.T.
Contents

Contributors ix
Preface xv

A Enzymes in Defense of the Bacterial Ribosome
1 Overview of Aminoglycosides and Enzyme-Mediated Bacterial Resistance: Clinical Implications 3
Robert A. Bonomo
2 Aminoglycoside Antibiotics 7
Kanchana Majumder, Lianhu Wei, Subhash C. Annedi, and Lakshmi P. Kotra
3 Structural Aspects of Aminoglycoside-Modifying Enzymes 21
Gerard D. Wright and Albert M. Berghuis
4 Aminoglycoside-Modifying Enzymes: Characteristics, Localization, and Dissemination 35
Marcelo E. Tolmasky
5 rRNA Methylases and Resistance to Macrolide, Lincosamide, Streptogramin, Ketolide, and Oxazolidinone (MLSKO) Antibiotics 53
Marilyn C. Roberts

B Enzymes in Defense of the Bacterial Cell Wall
6 β-Lactamases: Historical Perspectives 67
Karen Bush and Patricia A. Bradford
7 Resistance Mediated by Penicillin-Binding Proteins 81
Malcolm G. P. Page
Contents

8 Inhibition of Class A β-Lactamases 101
 Samy O. Meroueh, Jooyoung Cha, and Shahriar Mobashery

9 Class B β-Lactamases 115
 Gian Maria Rossolini and Jean-Denis Docquier

10 Crystal Structures of Class C β-Lactamases: Mechanistic Implications and Perspectives in Drug Design 145
 C. Bauvois and J. Wouters

11 Class D β-Lactamases 163
 Franck Danel, Malcolm G. P. Page, and David M. Livermore

12 Kinetics of β-Lactamases and Penicillin-Binding Proteins 195
 Moreno Galleni and Jean-Marie Frère

C Novel Approaches and Future Prospects

13 The Pharmaceutical Industry and Inhibitors of Bacterial Enzymes: Implications for Drug Development 217
 David M. Shlaes, Lefa Alksne, and Steven J. Projan

14 β-Lactamase Inhibitory Proteins 227
 Zhen Zhang and Timothy Palzkill

15 Active Drug Efflux in Bacteria 235
 Jürg Dreier

D Dissemination of Antibiotic Resistance and Its Biological Cost

16 Overview of Dissemination Mechanisms of Genes Coding for Resistance to Antibiotics 267
 Marcelo E. Tolmasky

17 Conjugative Transposons 271
 Louis B. Rice

18 The Dissemination of Antibiotic Resistance by Bacterial Conjugation 285
 Virginia L. Waters

19 Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics 313

20 Integrons and Superintegrons 331
 Robert A. Bonomo, Andrea M. Hujer, and Kristine M. Hujer

21 The Biological Cost of Antibiotic Resistance 339
 Dan I. Andersson, Sophie Maisnier Patin, Annika I. Nilsson, and Elisabeth Kugelberg

Index 349
Contributors

LEFA ALKSNE
Wyeth Research, Pearl River, NY 10965

JUAN C. ALONSO
Dept. of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain

DAN I. ANDERSSON
Dept. of Medical Biochemistry and Microbiology, Uppsala University, S-751 23 Uppsala, Sweden

SUBHASH C. ANNEDI
Dept. of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5G 1L7, Canada

DOLORS BALSA
Department of Pharmacological Biochemistry, Laboratorios SALVAT S.A., Barcelona, Spain

C. BAUVOS
Institut de Recherches Microbiologiques Wiame, Campus Ceria, 1 Ave. E. Gryzon, B-1070 Brussels, Belgium

ALBERT M. BERGHUIS
Dept. of Biochemistry and Dept. of Microbiology & Immunology, McGill University, Montreal, Quebec H3A 2B4 Canada

ROBERT A. BONOMO
Section of Infectious Diseases, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and School of Medicine, Case Western Reserve University, Cleveland, OH 44106
Contributors

PATRICIA A. BRADFORD
Wyeth Research, 401 Middletown Rd., Pearl River, NY 10965-1251

KAREN BUSH
Johnson & Johnson Pharmaceutical Research & Development, 1000 Route 202, Box 300, Raritan, NJ 08869-0602

JOOYOUNG CHA
Dept. of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

ITZHAACK CHERNY
Dept. of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

SUSANNE K. CHRISTENSEN
Dept. of Biochemistry and Molecular Biology, South Denmark University, Odense M, Denmark

FRANCK DANEL
Basilea Pharmaceutica AG, Grenzacherstrasse 487, CH-4005 Basel, Switzerland

JEAN-DENIS DOCQUIER
Centre d’Ingénierie des Protéines & Laboratoire d’Enzymologie, Université de Liège, Liège, B-4000, Belgium

JÜRG DREIER
Basilea Pharmaceutica AG, Grenzacherstrasse 487, CH-4005 Basel, Switzerland

MANUEL ESPINOSA
Dept. of Protein Science, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040-Madrid, Spain

DJORDJE FRANCUSKI
Institute for Chemistry and Biochemistry/Crystallography, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany

JEAN-MARIE FRÈRE
Center for Protein Engineering, University of Liège, Institut de Chimie B6, Sart Tilman, B-4000 Liège, Belgium

MORENO GALLENI
Center for Protein Engineering, University of Liège, Institut de Chimie B6, Sart Tilman, B-4000 Liège, Belgium

EHUD GAZIT
Dept. of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

KENN GERDES
Dept. of Biochemistry and Molecular Biology, South Denmark University, Odense M, Denmark

ED HITCHIN
Institute of Food Research, Norwich Research Park, Norwich, United Kingdom

ANDREA M. HUJER
Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106
Contributors

Kristine M. Hujer
Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106

Lakshmi P. Kotra
Center for Molecular Design and Preformulations (CMDP), Toronto General Research Institute, University Health Network, and University of Toronto, MaRS Center, TMDT 5-356, 101 College St., Toronto, Ontario M5G 1L7 Canada

Elisabeth Kugelberg
Dept. of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Stockholm, and Microbiology, Tumour and Cell Biology Center, Karolinska Institute, S-171 77 Stockholm, Sweden

David M. Livermore
Antibiotic Resistance Monitoring & Reference Laboratory, Centre for Infections, Health Protection Agency, 61 Colindale Ave., London NW9 5EQ, United Kingdom

Kanchana Majumder
Dept. of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5G 1L7, Canada

M. Teresa Martín
Dept. of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain

Samy O. Meroueh
Dept. of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

Shahriar Mobashery
Dept. of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

Concepción Nieto
Dept. of Protein Science, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040-Madrid, Spain

Annika I. Nilsson
Dept. of Medical Biochemistry and Microbiology, Uppsala University, S-751 23, Uppsala, Sweden

Karin Overweg
Institute of Food Research, Norwich Research Park, Norwich, United Kingdom

Malcolm G. P. Page
Basilea Pharmaceutica AG, Grenzacherstrasse 487, CH-4005 Basel, Switzerland

Timothy Palzkill
Dept. of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030

Sophie Maisnier Patin
Dept. of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Stockholm, and Microbiology, Tumour and Cell Biology Center, Karolinska Institute, S-171 77 Stockholm, Sweden
Contributors

Teresa Pellicer
Dept. of Pharmacological Biochemistry, Laboratorios SALVAT S.A., Barcelona, Spain

Steven J. Projan
Biological Technologies, Wyeth Research, Cambridge, MA 02140

Louis B. Rice
Louis Stokes Cleveland Dept. of Veterans Affairs Medical Center and Case Western Reserve University, Cleveland, OH 44106

Marilyn C. Roberts
Dept. of Pathobiology and Dept. of Environmental & Occupational Health Sciences, Box 357238, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195

Gian Maria Rossolini
Dipartimento di Biologia Molecolare, Università di Siena, Siena, I-53100, Italy

Wolfram Saenger
Institute for Chemistry and Biochemistry/Crystallography, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany

David M. Shlaes
Anti-infectives Consulting, 219 Montauk Ave., Stonington, CT 06378

Marcelo E. Tolmasky
Dept. of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd., Fullerton, CA 92831-3599

Virginia L. Waters
Dept. of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093-0640

Lianhu Wei
Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network and Dept. of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5G 1L7, Canada

Heinz Welfle
Max Delbrück Center for Molecular Medicine Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany

Karin Welfle
Max Delbrück Center for Molecular Medicine Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany

Jerry Wells
Swammerdam Institute for Life Sciences, University of Amsterdam, 1018 WV, Amsterdam, The Netherlands

J. Wouters
Dept. of Chemistry, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
CONTRIBUTORS

GERARD D. WRIGHT
Antimicrobial Research Centre, Dept. of Biochemistry, McMaster University,
1200 Main St. W, Hamilton, Ontario L8N 3Z5 Canada

ZHEN ZHANG
Structural & Computational Biology and Molecular Biophysics, Baylor College of
Medicine, One Baylor Plaza, Houston, TX 77030
AT THE PRECIPICE

A quick look at contemporary newspapers and journals will reveal startling reports about antibiotic-resistant bacteria, “superbugs.” A large number of common infectious diseases caused by bacteria were once easily treatable with antibiotics. Now many pathogens have become increasingly deadly due to antibiotic resistance. At the present time, vancomycin-resistant *Staphylococcus aureus* (VRSA), community-acquired methicillin-resistant *S. aureus* (CA-MRSA), hospital-acquired MRSA, vancomycin-resistant enterococci (VRE), penicillin-resistant *Streptococcus pneumoniae*, and multidrug-resistant (MDR) *Mycobacterium tuberculosis, Pseudomonas aeruginosa, Klebsiella pneumoniae*, and *Acinetobacter baumannii* represent a highly significant threat to children, hospitalized patients, immune-compromised individuals, and nursing home elderly. They are, in fact, a threat to us all. A recent commentary in *Nature* describes MDR *A. baumannii* as “a real danger” (1). Alarming drug resistance phenotypes in gram-negative bacteria like *P. aeruginosa* and *A. baumannii* include resistance to penicillins (piperacillin and ampicillin), extended-spectrum cephalosporins (ceftazidime and cefepime), β-lactam β-lactamase inhibitors (ampicillin/sulbactam, amoxicillin/clavulanate, and piperacillin/tazobactam), and carbapenems (meropenem and imipenem). Even resistance to colistin, a polymyxin-class antibiotic, has emerged. It is highly disturbing to the clinician to be faced with pathogens that have become resistant to all antibiotics. It is like being at the precipice…

The history of our most trusted antibiotic, penicillin, began in 1929 when Alexander Fleming published his seminal paper in the *British Journal of Experimental Pathology* on the “mold extract” from *Penicillium* as a germ-killing compound (8). This serendipitous discovery was further developed by Howard Florey, Ernst Chain, and Norman Heatley at Oxford University. Realizing the potential of Fleming’s discovery, this team developed methods for growing, extracting, and purifying enough penicillin to demonstrate its power against streptococcal and staphylococcal
infections. The success of the utilization of penicillin was so spectacular that it received the appellation of “miracle drug.” This early work was published in two landmark papers in Lancet in 1940 and 1941 (3, 5). Among the first fortunate patients to receive this “miracle” drug were the victims of the devastating Cocoanut Grove fire in Boston in November 1942 (6, 9). The high mortality of infections due to wounds sustained in battle (gangrene) and the burgeoning problem of gonorrhea and syphilis in World War II veterans also enhanced interest in the curative powers of penicillin.

Before this period of amazing discovery, E. P. Abraham and Ernst Chain reported in Nature (1940) the presence of an enzyme in Bacillus (Escherichia) coli able to inactivate penicillin (2). This significance of this report was not immediately realized. After the beginning of penicillin’s use to combat infections, S. aureus was among the first bacteria known to become resistant to penicillin. The clinical impact of this development was staggering. This pathogen not only caused serious illness (such as pneumonia, endocarditis, osteomyelitis, and toxic shock syndrome) but was also once more untreatable. The development of semisynthetic penicillins and the discovery of other natural products stemmed this threat, but our stay was only temporary.

In 1943 Selman Waksman and his group isolated streptomycin from the soil bacterium Streptomyces griseus (10). Streptomycin was first tested to be effective against M. tuberculosis, the scourge of ancient civilizations. The use of streptomycin and other antitubercular compounds led to a significant reduction of mortality due to tuberculosis in the United States, from 39.9 deaths per 100,000 population in 1945 to 9.1 per 100,000 in 1955 (4). Waksman and his group also created the concept of systematic screening of microbial culture products, developing a technology that has provided the foundation of the early antibiotic industry. Soon, new antibiotics were discovered that provided physicians with a large number of “weapons” to combat bacterial diseases.

In spite of more than half a century of tremendous commercial and scientific investment, bacterial infectious diseases were not completely eradicated by the use of antibiotics (7). Paradoxically, several diseases re-emerged, and many of the bacterial pathogens are becoming more and more resistant to treatment with antibiotics.

The central problem is that the use of antibiotics has contributed to the inexorable rise of antibiotic-resistant bacteria. A large number of factors, including human and nonhuman use of antibiotics, have contributed to the emergence, acquisition, and spread of resistance. These factors include the use of antibiotics in food-producing animals, which leads to the development of resistance in bacteria that find their way into the human food chain; the misuse and overuse of antibiotics in humans; the demand for antibiotics by patients when they are not appropriate; noncompliance by patients who often fail to finish the antibiotic prescription; and the over-the-counter availability of antibiotics in a large number of countries. The World Health Organization has estimated that bacteria resistant to antibiotics now account for about 60% of nosocomial infections. The Centers for Disease Control and Prevention estimate that of about 60,000 deaths that occur in the United States every year due to nosocomial infections, 14,000 are the result of antibiotic-resistant bacteria. The number of deaths related to antibiotic-resistant community-acquired infections is also growing.

Years of research demonstrated that bacteria have evolved a wealth of different ways to resist the action of antibiotics as well as to transfer these capabilities. Antibiotic resistance mechanisms include (i) changes in permeability that interfere with the penetration of the antibiotic into the cell; (ii) the presence of efflux mechanisms that expel the antibiotic; (iii) modification or substitution of the target of antibiotic action; and (iv) chemical modification of the antibiotic molecule. In addition, besides vertical transmission, once the resistance trait is acquired there
are several mechanisms of horizontal transfer that accelerate the dissemination of resistance.

An important component of the antibiotic resistance problem is represented by mechanisms mediated by enzymatic processes. Chemical modification of aminoglycosides and β-lactams is of great relevance in the clinical setting and is mediated by a large number of enzymes. These enzymes tend to be coded for by genes that are present in mobile elements (transposons, plasmids, etc.) that favor their quick dissemination. In this book we highlight the enzymatic capabilities of microorganisms to introduce chemical modifications that negate the biological activity of β-lactams (β-lactamases) or aminoglycoside antibiotics (aminoglycoside-modifying enzymes). These chemical modifications include destroying the β-lactam ring of β-lactamic antibiotics and introducing acetyl, nucleotidyl, or phosphate groups at different locations of the aminoglycoside molecules. We hope that the chapters describing different aspects and kinds of β-lactamases and aminoglycoside-modifying enzymes will provide the reader with a complete picture of the present state of knowledge about these important mechanisms of resistance. As an example of the existence of other enzymatic mechanisms that result in resistance, we have included a chapter on RNA methylases and resistance to erythromycin. We will illustrate the variety of scientific approaches important to their characterization and, we hope, inspire researchers to take up the still many unknowns that need to be clarified.

To complement this compilation, we will also illustrate the different ways bacteria share resistance determinants. Horizontal transfer is a big part of the problem of antibiotic resistance, and in our view, different mechanisms for dissemination of antibiotic resistance genes need to be included. In some cases, such as “transposable elements” or “plasmids,” the fields have become extremely big and a chapter would not do justice to all the material that needed to be included. Recent books have been entirely devoted to these elements. Therefore, this discussion has not been included here. However, some aspects of these elements can be found through chapters in the section “Dissemination of Antibiotic Resistance and Its Biological Cost” as well as in chapters in other sections of the book. The collection included here will permit the reader to acquire information about the history and recent developments in other areas such as dissemination at the cellular level and integrons. Since the acquisition of resistance does not come free to the bacterial cell, a chapter dealing with the biological cost of resistance has been included.

Finally, one might ask, “Why catalogue these enzymatic resistance mechanisms?” Clearly, rational approaches are needed to control the dissemination of resistance genes and to combat the highly versatile inactivating enzymes. A wide variety of methods are under development, as discussed in the section “Novel Approaches and Future Prospects.” It is our hope that the material included herein will inspire students of enzymology and antibiotic resistance to save us from falling over the edge.

Robert A. Bonomo
Marcelo Tolmasky

REFERENCES

Index

A
AACs (aminoglycoside N-acetyltransferases)
 action of, 12–13, 39
 distribution of, 12
 genes of, 39–42
 inhibition of, 16
 location of, 43
 modification of, 40–42
 naming of, 36
 structures of, 12–13, 27–30, 39–40
 subclasses of, 40–41
ABC transporters, 236, 237, 247–248
Acceptors, in enzyme kinetics, 205–206
Acinetobacter
 β-lactamases of
 clinical relevance of, 133–134, 190
 detection of, 167
 epidemiology of, 164–167
 geographic distribution of, 72–74
 integrons of, 336
 penicillin-binding proteins of, 84, 86
Acinetobacter baumannii
 β-lactamases of
 epidemiology of, 164–166
 integron structure of, 124–125
 substrate specificity of, 190
 efflux system of, 250, 252–253
 resistance of, transformation in, 291
Acinetobacter calcoaceticus, penicillin-binding proteins of, 84, 86
Acinetobacter haemolyticus, AAC enzyme of, 42
AcrAB, in efflux system, 242–247
ACT-1 enzyme, 146
Actinobacillus pleuropneumoniae, erm genes of, 57
Actinomycetes, aminoglycoside resistance in, 11
Active drug efflux, see Efflux systems
Acylation
 of β-lactamases, 176, 228
 of penicillin-binding proteins, 199–202
Aeromonas, β-lactamases of, 115, 132–133
 Aeromonas hydrophila, β-lactamases of
 epidemiology of, 166
 genes of, 116, 118
 substrate specificity of, 185, 187
 Aeromonas sobria, β-lactamases of, 166
 Agrobacterium tumefaciens, conjugation in,
 296–299, 302, 307
Alcaligenes xylosoxidans, integrons of, 336
Amikacin
 AAC enzyme of, 40–42
 ANT enzyme of, 26
 in enzyme inhibition, 16
 resistance to, 46
 enzymatic, 11
 epidemiology of, 16
 molecular mechanisms in, 11
Aminoglycoside(s), see also specific aminoglycosides
 antibiotic effects of, 8
 biochemical properties of, 8
 clinical uses of, 16–17, 21, 35
 in combination therapy, 4–5
 discovery of, 7, 35–36
 list of, 3
 mechanism of action of, 4–5, 9–10, 36
 overview of, 3–5
 pharmacodynamics of, 35
 resistance to
 enzymatic, see Aminoglycoside-modifying enzymes; specific enzymes
 epidemiology of, 15–16
 mechanisms of, 10–11, 23–24, 36
 nonenzymatic, 14–15
 overview of, 23–24
 semisynthetic, 36
 spectrum of activity of, 3–4
 structures of, 7–8, 21–23
 toxicity of, 9
Aminoglycoside adenyllyltransferases, see ANTs (aminoglycoside nucleotidyltransferases)
Aminoglycoside-modifying enzymes
 AAC group, see AACs (aminoglycoside N-acetyltransferases)
 ANT group, see ANTs (aminoglycoside nucleotidyltransferases)
 APH group, see APHs (aminoglycoside phosphotransferases)
 classification of, 11
 detection of, 16
 genes of, 43–46
 inhibition of, 16, 46–47
 integrons and, 335
 location of, 43
 overview of, 36
 structures of, 24–30
 subcellular location of, 43
 terminology of, 36
m-Aminophenylboronic acid, β-lactamase complex with, 154
Amoxicillin, β-lactamases of, 184, 188
AmpC β-lactamases
 boronic acid inhibition of, 154–156
 discovery of, 145
 extended-spectrum, 149–151
 noncovalent inhibitors of, 156–157
 structures of
β-lactam inhibitors based on, 111–112
β-lactamases and, 178
leaving group expulsion from, 206–207
Cephalosporinases, 101
action of, 184
discovery of, 69
new, 70
Cephalothin
β-lactamases of, 179, 180
AmpC, 149–150
kinetic parameters of, 184, 188, 189
penicillin-binding protein susceptibility to, 84
Cfi A/CcrA enzyme, 132
Chloramphenicol
Ciprofloxacin, resistance to, AAC enzyme in,
Chryseobacterium indologenes
Chryseobacterium gleum
Citrobacter freundii
Class A
Clarithromycin, see Citrobacter
Clindamycin
Corilagin, for resistant staphylococci, 92
Corynebacterium striatum, APH enzyme of, 37
Costs, see Biological costs
Coupling proteins, in bacterial conjugation, 296, 300
Cpha/imi enzyme, Aeromonas, 132–133
CTn7853 transposon, 278
CTn12256 transposon, 278
CTnBst transposon, 278
CTnDOT transposon family, 277–279
CTnERL transposon family, 278, 279
CTnERM1 transposon, 278, 279
CTns, see Conjugal transposons
CTnXBU4422 transposon family, 278
Cycle of resistance and antibiotic development, 289–290
Cytochalasin D, 292
Decacylation, of β-lactamases, 176–178, 228
2-Deaminoo-2-nitro neamine, 16
2-Deoxystreptamine moiety, in aminoglycosides, 7–8, 21–22
Dibekacin
AAC enzyme of, 13, 40–41
in enzyme inhibition, 16
resistance to, 11, 46
3'-Dideoxykanamycin A, resistance to, 46
3',4'-Dideoxykanamycin B, see Dibekacin
Diffusion assay, for β-lactamases, 135
DinJ-YaqQ system, 315
Dirrhithromycin, see MLSKO antibiotic group
Disk diffusion assay, for erm genes, 59
Dissemination of resistance, see also Bacterial conjugation; Conjugal transposons mechanisms for, 287–288
overview of, 267–270
DNA
conjugal transfer of, see Bacterial conjugation; Conjugal transposons in Holliday junctions, 332
mutation of, in resistance dissemination, 290–291
in plasmids, see Plasmid(s)
replication of, 300–302
strandedness of, in conjugative transfer, 293
DNA gyrase, CcdB effects on, 314
DNA hybridization assays, for erm genes, 59
DNA microarray analysis, for erm genes, 60
Dog rose products, for resistant staphylococci, 92
Drug development, 217–225
approaches to, 217
class C β-lactamase complexes and, 153–159
cycle of, 289–290
difficulties with, 217–218, 289–290
targets for
conjugative transposons, 282
dissemination mechanisms, 289–290
essential pathways, 219
protein-protein interactions, 219–220
screening of, 218–219
toxin-antitoxin systems, 321–325
virulence, 220–223
Drug efflux systems, see Efflux systems

E
Efflux systems, 235–264
ABC transporters, 236, 237, 247–248
in antiseptics, 251
bacterial conjugation in, 295
in biocides, 250
biofilm formation and, 251–252
classification of, 235–236
clinical relevance of, 249–253
conjugative transposition in, 286–287
detection of, 238–239
epidemiology of, 236, 238
examples of, 237
MATE family, 236, 237, 247
MFS family, 235, 237, 239–241, 249–250
multidrug, 248–249
overcoming, 252–253
regulation of, 236
RND family, 236, 237, 241–247
SMR family, 236, 237, 241
EmRE, in efflux system, 241
Enterobacter, resistance of, 287
Enterobacter aerogenes
β-lactamases of, 72–73
efflux system of, 253
Enterobacter cloacae
β-lactamases of, 69
AmpC, 146, 147, 149, 150, 152
genes of, 122
genealogical distribution of, 72–74
integron structure of, 126
resistance of, biologic costs of, 342
Enterobacteriaceae
AAC enzymes of, 42
APH enzymes of, 38
β-lactamases of, 69, 119, 120, 122
AmpC, 146
clinical relevance of, 133–134, 190
detection of, 134–136
epidemiology of, 164
conjugative transposons of, 272, 274, 278, 280–281
efflux system of, 250
Enterococcus
APH enzyme of, 37
erm genes of, 57
penicillin-binding proteins of, 82
resistance of, 55, 288
Enterococcus faecalis
AAC enzyme of, 41
conjugative transposons of, 272–273
drug targets in, 218
efflux system of, 253
erm genes of, 58
penicillin-binding proteins of, 81, 83, 87
Enterococcus faecium
AAC enzyme of, 27–28
Axe-Txe system of, see Axe-Txe system
penicillin-binding proteins of, 87–89
resistance to, conjugative transposons in, 273
YefM-YoeB system of, 313, 315, 317–318
Enterococcus hirae
penicillin-binding proteins of, 87
Erythromycin, 218
Ertapenem, 107–108
Florfenicol-chloramphenicol resistance marker
Florfenicol, resistance to, conjugative transposons in, 272
Florfenicol-chloramphenicol resistance marker (FloR), 240, 250
Fluorescence resonance energy transfer (FRET) assay, 222, 324–325
Fluoroquinolones, resistance to, biologic costs of, 341, 344
Fosfomycin, resistance to, 346
FRET (fluorescence resonance energy transfer) assay, 222, 324–325
Fritillaria verticillata extract, in sortase inhibition, 222
Fusidic acid, resistance to, 342
Fusobacterium nucleatum, β-lactamases of, 177
G
Genes
as drug targets, 218–219
exchange of, see Bacterial conjugation;
Conjugative transposons
“Genetic addiction,” 267, see also Toxin-antitoxin systems
Gentamicin
AAC enzyme of, 40–41
ANT enzyme of, 26
mechanism of action of, 9–10
resistance to biologic costs of, 341
conjugative transposons in, 273
enzymatic, 12
molecular mechanisms in, 11
structure of, 8, 10, 22
Gentamicin B
APH enzyme of, 13
in enzyme inhibition, 16
Geraniol, for resistant staphylococci, 92
Glycylboronic acids,
Glycerol-3-phosphate antiporter (GlpT), 240
GlpT (glycerol-3-phosphate antiporter), 240
GIM enzymes, 121, 134
Glycylcyclines, efficacy of, 252
H
Haemophilus, penicillin-binding proteins of, 86
Haemophilus influenzae
β-lactamases of, 68
efflux system of, 249, 250, 253
penicillin-binding proteins of, 89
resistance of history of, 285
mechanisms of, 286, 287
transformation in, 291
Helicobacter pylori
efflux system of, 251
penicillin-binding proteins of, 86, 88, 89
Microbiological assays, for β-lactamases, 68
Microdilution test, for β-lactamases, 135
Minimum inhibitory concentration, measurement of, in efflux detection, 239
Minocycline, resistance to, conjugative transposons in, 272–273
MLSKO antibiotic group, 53–63
clinical uses of, 53–54
efficacy of, 252
mechanisms of action of, 54–55
resistance to
biologic costs of, 341, 343
detection of, 59–60
evolutionary aspects of, 58
geographic distribution of, 55–57
mechanisms of, 55
mobile elements in, 57–58
molecular mechanisms of, 58–59
Mobile elements, in MLSKO resistance, 57–58
Monobactams, 108–109
Moraxella catarrhalis
Monobactams, 108–109
MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), 220–222
msr genes and proteins
in efflux system, 250
in MLSKO antibiotic resistance, 55
Multidrug and toxic compound extrusion (MATE) family efflux system, 236, 237, 247
Multidrug binding sites, 248–249
Multiple drug resistance, 250–251
bacterial conjugation in, 295
history of, 285–289
integrons and, 333–334
Mutation
vs. conjugation, 295
dNA, in resistance dissemination, 290–291
Mycobacterium
penicillin-binding proteins of, 87
rRNA methylase of, 55
Mycobacterium bovis, resistance of, 342
Mycobacterium leprae, AAC enzyme of, 40
Mycobacterium smegmatis
AAC enzyme of, 40
resistance of, mechanisms of, 288
Mycobacterium tuberculosis
AAC enzyme of, 28–29, 39–40
efflux system of, 251
resistance of
biologic costs of, 340–345
mechanisms of, 287–288
N
Nalidixic acid, resistance to, biologic costs of, 341, 343
Natural transformation, 291
das drug target, 289–290
Streptococcus pyogenes, 286
NBU (nonreplicating bacteroides unit), 303
Neisseria
erm genes of, 57
resistance of, transformation in, 291
Neisseria cinerea, penicillin-binding proteins of, 84
Neisseria deminutica, penicillin-binding proteins of, 84
Neisseria flavescens, penicillin-binding proteins of, 84
Neisseria gonorhoeae conjugation in, 299
erm genes of, 58
penicillin-binding proteins of, 84
resistance of
history of, 285
mechanisms of, 286
Neisseria lactamica, penicillin-binding proteins of, 84
Neisseria meningitidis
erm genes of, 58
penicillin-binding proteins of, 84, 89
resistance of
biologic costs of, 341, 343
history of, 285
Neomycin
AAC enzyme of, 40
APH enzyme of, 13–14, 24
resistance to, enzymatic, 12
structure of, 8
Netilmicin
AAC enzyme of, 40–42
in enzyme inhibition, 16
resistance to, 46
Nick sites, of plasmids, in bacterial conjugation, 296–297, 301–302
Nitrocefin
in acylation studies, 199–200
in assay for β-lactamase detection, 68–69
β-lactamases of, 188
hydrolysis of, 209–210
NMC-A (non metallo-carbapenemase A), 108
Non metallo-carbapenemase A (NMC-A), 108
Nonreplicating bacteroids unit (NBU), 303
Nonretractable pili, in conjugation, 307
NorA, in efflux system, 250, 253
NorM, in efflux system, 247
Nucleophiles, transition-state analogs action against, 109–111
Nucleotide-binding domain, in ABC transporters, 247–248
O
ω-ε-ζ system
biophysical analysis of, 318
description of, 313–314
mechanisms of, 316
structures of, 320–321
Open reading frames
in Bacteroides conjugative transposons, 278
in integrons, 331, 335
of Tra916 transposon, 275–277
Opr proteins, in efflux system, 243–247, 252
OXA enzymes, see Class D β-lactamases
Oxacillin, β-lactamases of, 178–182, 184, 188, 189
Oxacillinases, see Class D β-lactamases
Oxalate transporter (OxIT), 240
Oxalobacter formigenes, efflux system of, 240
Oxazolidinones, see MLSKO antibiotic group
P
Pandoraeae pnomenusa, β-lactamases of, 166
ParD-ParE system, 314, 317
Paromomycin
AAC enzyme of, 40
APH enzyme of, 13–14
clinical use of, 9
mechanism of action of, 9–10
resistance to, in ribosomal defects, 15
structure of, 8, 10, 21–22
PasA-PasB system, 314
PBPs, see Penicillin-binding proteins
PenMK system, 313, 315
Penam sulfones, 103–106
Penicillanic acid derivatives, 103–106
Penicillin, resistance to, 340
biologic costs of, 341
conjugative transposons in, 272
history of, 285–286
mechanisms of, 286
Penicillin-binding proteins, 81–99
actions of, 81
acylation of, 199–202
antibiotic susceptibility of, 84
clinical relevance of, 82, 84–87
detection of, 87
epidemiology of, 82, 84–87
inhibition of, new products for, 90–92
kinetics of, see under Kinetics
molecular mechanisms of
kinetic, 87–88
resistant mutants and, 88, 89, 91–92
nomenclature of, 81–82
non-penicillin-binding domains of, 81
in resistance, 82, 83
structures of, 88, 89
Pernet classification, of β-lactamases, 168
Ph-Doc system, 313–314, 317
Phenorhizenes, for resistant staphylococci, 92
Phosphate transition-state analogs, 109–111
Pili, in bacterial conjugation, 299, 304–307
Piperacillin
β-lactamases of, 179, 180, 184, 188, 189
penicillin-binding protein susceptibility to, 84
Plasmid(s)
in conjugative transfer, see Bacterial conjugation
discovery of, 267
replication-specific incompatibility of, 292–293
toxin-antitoxin systems of, see
Toxin-antitoxin systems
types of, 292–293
“Plasmid addiction,” 267; see also Toxin-antitoxin systems
Plasmid F
in bacterial conjugation, 295–296, 306–307
CcdA-CcdB system of, see CcdA-CcdB system
Plasmid pC221, replication in, 302
Plasmid R100, PemIK system of, 313, 315
Plasmid RP4, in conjugative transfer, 293
Plasmid R1162, replication in, 302
Plasmid R27, in conjugative transfer, 293
Plasmid R 100, PemIK system of, 313, 315
Plasmid addiction, 267; see also Toxin-antitoxin systems
Plasmid F
in bacterial conjugation, 295–296, 306–307
CcdA-CcdB system of, see CcdA-CcdB system
Plasmid pC221, replication in, 302
Plasmid R27, in conjugative transfer, 293
Plasmid R1162, replication in, 302
Plasmid R 100, PemIK system of, 313, 315
Plasmid RP4, in conjugative transfer, 293
Plasmid R 1162, replication in, 302
Plasmid R27, in conjugative transfer, 293
Plasmid pC221, replication in, 302
Plasmid R1162, replication in, 302
Plasmid R 100, PemIK system of, 313, 315
Plasmid RP4, in conjugative transfer, 293
Plasmid R 1162, replication in, 302
Plasmid R27, in conjugative transfer, 293
Plasmid pC221, replication in, 302
Plasmid R1162, replication in, 302
Plasmid R 100, PemIK system of, 313, 315
Plasmid RP4, in conjugative transfer, 293
Plasmid R 1162, replication in, 302
Plasmid R27, in conjugative transfer, 293
Plasmid pC221, replication in, 302
Plasmid R1162, replication in, 302
Plasmid R 100, PemIK system of, 313, 315
Plasmid RP4, in conjugative transfer, 293
Plasmid R 1162, replication in, 302
Plasmid R27, in conjugative transfer, 293
Plasmid pC221, replication in, 302
Plasmid R1162, replication in, 302
Plasmid R 100, PemIK system of, 313, 315
Plasmid RP4, in conjugative transfer, 293
Plasmid R 1162, replication in, 302
Plasmid R27, in conjugative transfer, 293
Primases, in bacterial conjugation, 298
Prophage P1, Phd-Doc system of, 313–314, 317
Protein(s)
interactions between, 219–220, 229–230
synthesis of, inhibition of, MLSKO antibiotics in, 54–55
Proteus mirabilis
β-lactamases of, 72–73, 164
penicillin-binding proteins of, 86
Proteus rettgeri
conjugative transposons of, 272, 274
Inc-J family elements of, 278, 280–281
Proteus vulgaris, APH enzyme of, 37
Proteus
AAC enzyme of, 40
conjugative transposons of, 274
Propionibacterium rettgeri, APH enzyme of, 37
Providencia
AAC enzyme of, 40
conjugative transposons of, 274
Providencia stuartii, APH enzyme of, 37
Providencia rettgeri, APH enzyme of, 37
Pseudomonas
Pseudomonas aeruginosa
AAC enzyme of, 40
aminoglycoside resistance in, 11, 13
β-lactamases of, 69–70, 119–122
AmpC, 145–146
clinical relevance of, 133, 190
detection of, 136, 167
epidemiology of, 164–166
genetic distribution of, 72–74
integron structure of, 124–126
substrate specificity of, 180, 183–185, 190
conjugation in, 299
conjugative transposons of, 304
drug targets in, 218
efflux system of, 244–247, 250–253
integrins of, 335, 336
penicillin-binding proteins of, 83, 84
resistance of biologic costs of, 341, 343
transformation in, 291
Pseudomonas alcaligenes, superintegron of, 237–238
Pseudomonas fluorescens
AAC enzyme of, 41
efflux system of, 249
resistance of, biologic costs of, 341
Pseudomonas putida
β-lactamases of, 72–74, 124–125
integrins of, 336
resistance of, biologic costs of, 341
Psychrobacter immolitis, β-lactamases of, 146, 149
Q
qac genes, in integrons, 333
Qac proteins, in efflux system, 249, 253
R
“R factors,” 267
R391 mobile element, 278, 280–281
R997 mobile element, 280
Ralstonia pickettii, β-lactamases of, 164–166, 190
RecA protein, in bacterial conjugation, 298
Recombinases, types of, 332
Relaxes, in bacterial conjugation, 296–297
Relaxosomes, 296–298, 300
RelBE2 system, 313, 315, 316
Release factor 1, in toxin-antitoxin action, 316
Reporter constructs, in drug screening, 218
Reporter substrate method, 201–202
Reserpine
in efflux detection, 219
for resistant staphylococci, 92
Resistance integrons
Class 1, 334–336
genetics of, 331–334
vs. superintegrons, 331
Resistance nodulation cell division (RND) family, 236, 237, 241–247
Resolution, 44
Resistance energy transfer techniques, 222, 324–325
Retractible pili, in conjugation, 307
Retrotransfer, in conjugation, 293
Ribosomes
defects of, aminoglycoside resistance in, 14–15
function of, aminoglycoside effects on, 9–10
Ribostamycin
AAC enzyme of, 30, 40
APH enzyme of, 13
Rifampicin
resistance to, 341–343
RNA, bacterial, aminoglycoside binding to, 9–10
RND (resistance nodulation cell division) family efflux system, 236, 237, 241–247
inner membrane transporter of, 241–242
outer membrane factor of, 243–244
periplasmic adaptor protein of, 242–243
tripartite, 244–247
Rolling-circle replication, in bacterial conjugation, 296, 301–302
Roxithromycin, see MLSKO antibiotic group
rps genes
in aminoglycoside resistance, 14–15
mutations of, biologic costs of, 342–343
rRNA methylases
antibiotics targeting, 54–55
geographic distribution of, 72–74
epidemiology of, 165–166
detection of, 136, 167
function of, aminoglycoside effects on, 9–10
S
Salmonella
Salmonella enterica
AAC enzyme of, 30, 40
APH enzyme of, 37
β-lactamases of, 69–70, 119–122
AmpC, 145–146
clinical relevance of, 133, 190
detection of, 136, 167
epidemiology of, 164–166
genetic distribution of, 72–74
integron structure of, 124–126
substrate specificity of, 180, 183–185, 190
conjugation in, 299
conjugative transposons of, 304
drug targets in, 218
efflux system of, 244–247, 250–253
integrins of, 335, 336
penicillin-binding proteins of, 83, 84
resistance of biologic costs of, 341, 343
transformation in, 291
Salmonella enterica serovar Typhi
plasmid R27 of, 293
resistance of, mechanisms of, 287
Salmonella enterica serovar Typhimurium
efflux system of, 247–248, 253
resistance of biologic costs of, 340–344
transformation in, 291
Serine recombinases, 332
Serreia marcescens
AAC enzyme of, 28, 41
ANT enzyme of, 12, 39
β-lactamases of, clinical relevance of, 133–134
geographic distribution of, 72–74
integron structure of, 124, 126
Ser-XXX-Lys element, of β-lactamases, 178
Ser-XXV-Val element, of β-lactamases, 178
Set proteins, in conjugation, 280
Shewanella
β-lactamases of, 165–166
superintegron of, 337
Shewanella oneidensis, β-lactamases of, 166
Shigella
β-lactamases of, 146
resistance of, mechanisms of, 287
Shigella dysenteriae
efflux systems of, 238
resistance of, plasmids and, 267
Shigella flexneri
efflux systems of, 238
resistance of, 289
SHV-β-lactamases, 101, 232
Sichuan pepper product, for resistant staphylococci, 92
Sigma replication, DNA, 301–302
Silver ions, efflux systems for, 251
Single-to double-stranded replication, DNA, 301–302
Single-stranded binding protein, in bacterial conjugation, 298
Sisomicin
AAC enzyme of, 13, 40–41
in enzyme inhibition, 16
Small multidrug resistance (SMR) family efflux system, 236, 237, 241
SME-1 β-lactamase, BLIP inhibition of, 232
SMR (small multidrug resistance) family efflux system, 236, 237, 241
Sortase, 220–222
Sox, in efflux system, 251
Spectinomycin
APH enzyme of, 38
in enzyme inhibition, 16
Small multidrug resistance (SMR) family efflux system, 236, 237, 241
SME-1 β-lactamase, BLIP inhibition of, 232
SMR (small multidrug resistance) family efflux system, 236, 237, 241
Spectroscopy, for β-lactamases, 135–136
SPhM enzymes, 120–121, 134
Staphylococcus
erm genes of, 57
penicillin-binding proteins of, 82
resistance in, inhibition of, 92, 93
Staphylococcus aureus
ANT enzyme of, 26–27, 39
β-lactamases of, 68, 147
efflux system of, 247, 249, 250, 252, 253
mecillinam-resistant carbapenems for, 91
cephalosporins for, 90
penicillin-binding proteins of, 83, 84, 86
kinetics of, 87–88
structure of, 58, 89
resistance of, 322
biologic costs of, 341, 342, 345
history of, 285
mechanisms of, 286, 287
in MLSKO antibiotics, 53
transduction in, 292
sortase of, 220–222

Streptococcus mitis, efflux system of, 250

Streptococcus gordonii

Streptococcus faecalis

Stenotrophomonas maltophilia

Steady-state conditions, in enzyme kinetics, 195–197, 202–203

Streptococcus pyogenes

Streptococcus pneumoniae

conjugation in, 299

conjugative transposition in, 272–273, 286–287

drug targets in, 218

efflux system of, 238, 249, 250, 253

erm genes of, 57, 58–59

penicillin-binding proteins of, 83, 87

kinetics of, 87–88

mutants of, 88, 89, 91, 93

structure of, 88, 89, 91

RelBE system of, 313, 315, 316

resistance of, 322–323, 340

biologic costs of, 341

in macrolides, 55

structures of, 227–228

tet genes

clinical relevance of, 249

epidemiology of, 236, 238

in MF superfamily, 239–240

mutations of, 252

transposons and, 272–273

Bacteroides, 278

Tn916 family, 275–277

Tetracycline

efflux systems for, 236, 238

clinical relevance of, 249

MF superfamily, 239–240

resistance to, conjugative transposons in, 272–273, 278

Theta replicating DNA, 301

Thienamycin, 106

Ticarcillin

Thiocycline, 247–248

Transmembrane domain, in ABC transporters, 247–248

Transposase, 44

Transposons in aminoglycoside-modifying enzymes, 44–46

conjugative, see Conjugative transposons nonreplicative, 303

types of, 268

Treponema denticola, erm genes of, 57

Triclosan, efflux systems for, 251

Trimethoprim, resistance to, conjugative transposons in, 272

Vaccines, 290

Vancomycin, resistance to conjugative transposons in, 272–273

mechanisms of, 288

VceC, in efflux system, 244

Vegetative replication, DNA, 300–302

VgaA, in efflux system, 248

Vibrio

conjugative transposons of, 274

penicillin-binding proteins of, 86

resistance of, mechanisms of, 287

Vibrio cholerae

APH enzyme of, 37

β-lactamases of, geographic distribution of, 72

conjugative transposons of, 272

efflux system of, 247

Inc-J family elements of, 278, 280–281

integrases of, 337

superintegron of, 268, 336–337

Vibrio parahaemolyticus, efflux system of, 247

Vibrio vulnificus, integrases of, 336

Sulfonamide, resistance to biologic costs of, 341, 343

control of, 346

Superintegrons, 268

SYN-1012 (methyldene penem), 108

in enzyme inhibition, 16

resistance to enzymatic, 11

molecular mechanisms in, 11

in ribosome defects, 15

structure of, 21–22

ToC, in efflux system, 243–247, 253

Toxin(s), encoded by mobile genetic elements, 292

Toxin-antitoxin systems, 313–329

biophysical analysis of, 316–318

description of, 313–316

inhibitors of identification of, 323–325

potential targets for, 321–323

mechanisms of, 316

regulation of, 314

structures of, 314–315, 318–321

Tra proteins, in bacterial conjugation, 297, 300

Transfer, in resistance dissemination, 291–292

Transfer replication, DNA, 300–301

Transformation, natural, 291

as drug target, 289–290

Streptococcus pyogenes, 286

Transient-state conditions, in enzyme kinetics, 196–198

Transition-state analogs, 109–111

Transfer membrane domain, in ABC transporters, 247–248

Transposase, 44

Transposons in aminoglycoside-modifying enzymes, 44–46

conjugative, see Conjugative transposons nonreplicative, 303

types of, 268

Tetramethylpentadiene, erm genes of, 57

Triclosan, efflux systems for, 251

Trimethoprim, resistance to, conjugative transposons in, 272

Tuberculosis, see Mycobacterium tuberculosis

Type IV secretion systems, 296, 298–299, 307

Tyrosine recombinases, 332; see also Integrase

V

Vaccines, 290

Vancomycin, resistance to conjugative transposons in, 272–273

mechanisms of, 288

VceC, in efflux system, 244

Vegetative replication, DNA, 300–302

VgaA, in efflux system, 248

Vibrio

conjugative transposons of, 274

penicillin-binding proteins of, 86

resistance of, mechanisms of, 287

Vibrio cholerae

APH enzyme of, 37

β-lactamases of, geographic distribution of, 72

conjugative transposons of, 272

efflux system of, 247

Inc-J family elements of, 278, 280–281

integrases of, 337

superintegron of, 268, 336–337

Vibrio parahaemolyticus, efflux system of, 247

Vibrio vulnificus, integrases of, 336
Index

VIM enzymes, 122
 clinical relevance of, 133, 134
 distribution of, 120
 kinetic parameters of, 127, 129
Virginiamycin, 54
Virulence
 efflux systems and, 251–252
 inhibitors of, 220–223

X
 Xis proteins, in conjugation, 276–277
 X-nan Huangqin product, for resistant staphylococci, 92

Y
 YdhE, in efflux system, 247
 YefM-YoeB system, 313, 315, 317–318

Z
 Zinc center, of β-lactamases, 130–132, 210
 ZipA protein, FtsZ protein interactions with, 220
 Zymomonas mobilis, penicillin-binding proteins of, 84