Pneumococcal Vaccines

The Impact of Conjugate Vaccine
Pneumococcal Vaccines

The Impact of Conjugate Vaccine

Edited by

George R. Siber
Wyeth Vaccines Research (retired),
Pearl River, New York

Keith P. Klugman
Rollins School of Public Health,
Emory University, Atlanta, Georgia,
and University of the Witwatersrand,
Johannesburg, South Africa

P. Helena Mäkelä
National Public Health Institute,
Helsinki, Finland
Contents

Section Editors ix
Contributors xi
Dedication: Robert Austrian, M.D. xvii
Jeffrey N. Weiser, M.D.

Preface xix

I. History

1 The History of Pneumococcal Disease 3
 Barry M. Gray and Daniel M. Musher

2 History of Pneumococcal Immunization 19
 P. Helena Mäkelä and Jay C. Butler

II. Biological Basis

3 Genetics, Biosynthesis, and Chemistry of Pneumococcal Capsular
 Polysaccharides 33
 Janet Yother, Stephen D. Bentley, and John P. Hennessey, Jr.

4 Animal Models of Invasive Pneumococcal Disease 47
 David E. Briles, Susan K. Hollingshead, and Ingileif
 Jonsdottir

5 Animal Models of Pneumococcal Colonization 59
 Richard Malley and Jeffrey N. Weiser
Contents

6 The Immunobiology of Polysaccharide and Conjugate Vaccines 67
 DAVID GOLDBLATT, TRACY ASSARI, AND CLIFFORD SNAPPER

7 Interactions of *Streptococcus pneumoniae* with Complement Proteins 83
 MARGARET K. HOSTETTER

III. Clinical Disease and Epidemiology

8 Epidemiology, Diagnosis, and Treatment of Serious Pneumococcal Infections in Children 95
 SHABIR A. MADHI AND STEPHEN I. PELTON

9 Pneumococcal Pneumonia in Adults: Epidemiology, Clinical Features, Diagnosis, and Therapy 117
 JEFFREY B. RUBINS, DAVID R. BOULWARE, AND EDWARD N. JANOFF

10 Pneumococcal Serotype Epidemiology 139
 WILLIAM P. HAUSDORFF, ANGELA B. BRUEGGEMANN, JILL G. HACKELL, AND J. ANTHONY G. SCOTT

IV. Manufacturing and Product Release Issues

11 Conjugation Chemistry 163
 ANDREW LEES, VELUPILLAI PUVANESARAJAH, AND CARL E. FRASCH

12 Pneumococcal Vaccines: Manufacture and Quality Control for Product Release 175
 MILAN S. BLAKE

13 Licensing of Pneumococcal Conjugate Vaccines for Children and Adults: Regulatory Perspective from the European Medicines Agency and the U.S. Food and Drug Administration 183
 MARION F. GRUBER, DOUGLAS PRATT, AND MANFRED HAASE

V. Immunogenicity

14 Quantitation of Anti-Pneumococcal Capsular Antibody in Ligand-Binding Assays 199
 DACE V. MADORE, SALLY A. QUATAERT, AND MERJA VAKEVAINEN

15 Functional Assays for Pneumococcal Antibody 213
 MOON H. NAHM AND SANDRA ROMERO-STEINER

16 Immunogenicity and Reactogenicity of Pneumococcal Conjugate Vaccines in Infants and Children 227
 HELENA KÄYHTY, STEPHEN LOCKHART, AND LODGE SCHUERMAN

17 Immunogenicity and Safety in Adults 245
 LISA A. JACKSON AND GEORGE R. SIBER

18 Immunogenicity in High-Risk and Immunocompromised Children and Adults 261
 NEIL FRENCH, SHARON NACHMAN, AND STEPHEN I. PELTON
VI. Efficacy and Safety

19 Nasopharyngeal Carriage 279
 Katherine L. O’Brien, Ron Dagan, and P. Helena Mäkelä

20 Acute Otitis Media and Its Sequelae 301
 Terhi Kilpi and Lode Schuerman

21 Meta-Analysis of the Efficacy of Conjugate Vaccines against Invasive
 Pneumococcal Disease 317
 Keith P. Klugman, Felicity Cutts, Richard A. Adegbola,
 Steven Black, Shabir A. Madhi, Katherine L. O’Brien,
 Mathuram Santosham, Henry Shinefield, and
 Jonathan A. C. Sterne

22 Efficacy and Safety of Conjugate Pneumococcal Vaccine in the
 Prevention of Pneumonia 327
 Shabir A. Madhi and Keith P. Klugman

23 Establishing Immune Correlates of Protection 339
 Robert C. Kohberger, Jukka Jokinen, and George R. Siber

VII. Public Health Impact

24 Direct and Indirect Effectiveness and Safety of Pneumococcal
 Conjugate Vaccine in Practice 353
 Cynthia G. Whitney and Matthew R. Moore

25 Impact of Conjugate Pneumococcal Vaccine on Antibiotic
 Resistance 369
 Ron Dagan and Keith P. Klugman

26 Pharmacoeconomics of Pneumococcal Conjugate Vaccines 387
 Anushua Sinha and G. Thomas Ray

27 Opportunities and Challenges for Pneumococcal Conjugate Vaccines
 in Low- and Middle-Income Countries 405
 Orin S. Levine and Brian Greenwood

VIII. Where Next

28 Protein Vaccines 421
 James C. Paton and John W. Boslego

 Conclusions 437
 George R. Siber, Keith P. Klugman, and P. Helena Mäkelä

Index 441
Section Editors

JOHN W. BOSLEGO
PATH, 1800 K Street, N.W., Suite 800, Washington, DC 20006

CARL E. FRASCH
Frasch Biologics Consulting, P. O. Box 986, Martinsburg, WV 25402

HELENA KÄYHTY
National Public Health Institute, Mannerheimintie 166, 00300 Helsinki, Finland

KEITH P. KLUGMAN
Rollins School of Public Health, Emory University, Atlanta, GA 30322

P. HELENA MÄKELÄ
National Public Health Institute, 00300 Helsinki, Finland

STEPHEN I. PELTON
Boston University Schools of Medicine and Public Health, Boston Medical Center, Boston, MA 02118

GEORGE R. SIBER
Wyeth Vaccines Research (retired), Pearl River, NY 10965

CYNTHIA G. WHITNEY
Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop C23, Atlanta, GA 30333
Contributors

RICHARD A. ADEGBOLA
Bacterial Diseases Programme, Medical Research Council (UK) Laboratories, Atlantic Boulevard, Fajara, The Gambia

TRACY ASSARI
Institute of Child Health, University College London, 30 Guilford St., London, WC1N 1EH, United Kingdom

STEPHEN D. BENTLEY
Sanger Institute, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom

STEVEN BLACK
Dept. of Pediatric Infectious Diseases, Stanford University, Palo Alto, CA 94304

MILAN S. BLAKE
Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccine Research and Review/Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 29 Lincoln Dr., Bethesda, MD 20892

JOHN W. BOSLEGO
PATH, 1800 K St., N.W., Suite 800, Washington, DC 20006

DAVID R. BOULWARE
Infectious Disease & International Medicine, Dept. of Medicine, University of Minnesota, MMC 250, 420 Delaware St. SE, Minneapolis, MN 55455

DAVID E. BRILES
Dept. of Microbiology and Dept. of Pediatrics, 658 Bevill Biomedical Sciences Building, University of Alabama at Birmingham, Birmingham, AL 35294
ANGELA B. BRUEGGEMANN
Dept. of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom

JAY C. BUTLER
Alaska Division of Public Health, Anchorage, AK 99508

FELICITY CUTTS
Medical Research Council (UK) Laboratories, Atlantic Boulevard, Fajara, The Gambia

RON DAGAN
Pediatric Infectious Disease Unit, Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 151, Beer-Sheva 84101, Israel

CARL E. FRASCH
Frasch Biologics Consulting, P.O. Box 986, Martinsburg, WV 25402

NEIL FRENCH
Infectious Disease Epidemiology Unit, London School of Hygiene & Tropical Medicine, London, United Kingdom, and Karonga Prevention Study, Box 46, Chilumba, Malawi

DAVID GOLDBLATT
Institute of Child Health, University College London, 30 Guilford St., London, WC1N 1EH, United Kingdom

BARRY M. GRAY
Pediatric Infectious Diseases, University of Illinois College of Medicine at Peoria, 530 NE Glen Oak Ave., Peoria, IL 61637

BRIAN GREENWOOD
London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom

MARION F. GRUBER
Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, WOC I, 360 North, Rockville, MD 20852

MANFRED HAASE
Division of Bacteriology, Paul-Ehrlich-Institute, P.O. Box 1740, D-63207 Langen, Germany

JILL G. HACKELL
New York, NY 10956

WILLIAM P. HAUSDORFF
GlaxoSmithKline Biologicals, Rue de l’Institut, 89, B-1330 Rixensart, Belgium

JOHN P. HENNESSEY, JR.
Bioprocess Research & Development, Merck Research Laboratories, West Point, PA 19486

SUSAN K. HOLLINGSHEAD
Dept. of Microbiology, 654 Bevill Biomedical Sciences Building, University of Alabama at Birmingham, Birmingham, AL 35294
CONTRIBUTORS

MARGARET K. HOSTETTER
Dept. of Pediatrics, Yale School of Medicine, 333 Cedar St., P.O. Box 208064, New Haven, CT 06520-8064

LISA A. JACKSON
Group Health Center for Health Studies, 1730 Minor Ave., Suite 1600, Seattle, WA 98101

EDWARD N. JANOFF
Division of Infectious Diseases, Colorado Center for AIDS Research, University of Colorado at Denver and Health Sciences Center, Denver Veterans Affairs Medical Center, Denver, CO 80220

JUKKA JOKINEN
Dept. of Vaccines, National Public Health Institute, FIN-00300 Helsinki, Finland

INGILEIF JONSDOTTIR
Landspitali University Hospital and Faculty of Medicine, University of Iceland, Dept. of Immunology, Hringbraut, 101 Reykjavik, Iceland

HELENA KÄYHTY
National Public Health Institute, Mannerheimintie 166, 00300 Helsinki, Finland

TERHI KILPI
National Public Health Institute, FIN-00300 Helsinki, Finland

KEITH P. KLUGMAN
Hubert Dept. of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, and Medical Research Council, University of the Witwatersrand Respiratory and Meningeal Pathogens Research Unit, Johannesburg, South Africa

ROBERT C. KOHBERGER
Blair and Company, Greenwich, CT 06831

ANDREW LEES
Fina BioSolutions LLC, 9610 Medical Center Dr., Suite 200, Rockville, MD 20850

ORIN S. LEVINE
GAVI's Pneumococcal Vaccines Accelerated Development and Introduction Plan (PneumoADIP), and Dept. of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205

STEPHEN LOCKHART
Wyeth Vaccine Research, Taplow, Maidenhead, Berkshire SL6 0PH, United Kingdom

SHABIR A. MADHI
Respiratory and Meningeal Pathogens Research Unit, Medical Research Council/University of the Witwatersrand, and Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Bertsham, Gauteng, South Africa
Contributors

Dace V. Madore
1 Schoen Rd., Pittsford, NY 14534-1125

P. Helena Mäkelä
Dept. of Vaccines, National Public Health Institute, FIN-00300 Helsinki, Finland

Richard Malley
Division of Infectious Diseases, Children's Hospital, 300 Longwood Ave.,
Boston, MA 02115

Matthew R. Moore
Centers for Disease Control and Prevention, 1600 Clifton Rd. N.E.,
Atlanta, GA 30333

Daniel M. Musher
Infectious Disease Section, Veterans Affairs Medical Center, 2002 Holcombe Blvd., Houston, TX 77030

Sharon Nachman
Dept. of Pediatrics, SUNY Health Science Center at Stony Brook,
Stony Brook, NY 11794-8111

Moon H. Nahm
Depts. of Pathology and Microbiology, University of Alabama at Birmingham,
845 19th St. South (BBRB 614), Birmingham, AL 35294-2170

Katherine L. O’Brien
Center for American Indian Health, Dept. of International Health,
Johns Hopkins Bloomberg School of Public Health, 621 N. Washington St.,
Baltimore, MD 21205

James C. Paton
School of Molecular and Biomedical Science, University of Adelaide,
Adelaide, S.A., 5005, Australia

Stephen I. Pelton
Pediatrics and Epidemiology, Boston University Schools of Medicine and Public Health, Maxwell Finland Laboratory for Infectious Diseases, Boston, MA 02118

Douglas Pratt
Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, WOC I, 308 North, Rockville, MD 20852

Velupillai Puvanesarajah
Sanofi-Aventis, Swiftwater, PA 18370

Sally A. Quataert
University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642

G. Thomas Ray
Division of Research, Kaiser Permanente, 2000 Broadway, Oakland, CA 94612
Sandra Romero-Steiner
Division of Bacterial Diseases, Centers for Disease Control and Prevention,
Bldg. 18, Room B105, MS A-36, 1600 Clifton Rd., Atlanta, GA 30333

Jeffrey B. Rubins
Division of Pulmonary Medicine, Veterans Affairs Medical Center, and
University of Minnesota, Minneapolis, MN 55417

Mathuram Santosham
Center for American Indian Health, Dept. of International Health, Johns
Hopkins Bloomberg School of Public Health, Baltimore, MD 21205

Lode Schuerman
GlaxoSmithKline Biologicals, Rue de l'Institut 89, 1330 Rixensart, Belgium

J. Anthony G. Scott
Wellcome Trust/KEMRI Centre for Geographic Medicine, Research,
Coast, Kilifi, Kenya, and Nuffield Dept. of Medicine, University of Oxford,
John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom

Henry Shinefield
Dept. of Pediatrics, University of California-San Francisco,
San Francisco, CA 94143

George R. Siber
Wyeth Vaccines Research (retired), Pearl River, NY 10965

Anushua Sinha
Dept. of Preventive Medicine and Community Health, New Jersey Medical
School–UMDNJ, 185 South Orange Ave., Newark, NJ 07103

Clifford Snapper
Dept. of Pathology, Uniformed Services University of the Health Sciences,
Bethesda, MD 20814

Jonathan A. C. Sterne
Dept. of Social Medicine, University of Bristol, Canynge Hall, Whiteladies
Road, Clifton, Bristol, BS8 2PR, United Kingdom

Merja Vakevainen
Dept. of Vaccines, National Public Health Institute, Mannerheimintie 166,
FIN-00300 Helsinki, Finland

Jeffrey N. Weiser
University of Pennsylvania, 402A Johnson Pavilion,
Philadelphia, PA 19104-6076

Cynthia G. Whitney
Centers for Disease Control and Prevention, 1600 Clifton Rd. N.E., Mailstop
C23, Atlanta, GA 30333

Janet Yother
Dept. of Microbiology, University of Alabama at Birmingham,
Birmingham, AL 35242
Robert Austrian, M.D., died on March 25, 2007, just before his ninety-first birthday. Since it was largely through his efforts that pneumococcal disease was recognized to be a continuing problem in the antibiotic era, and that the first licensed pneumococcal vaccine was developed, it seems fitting that this book be dedicated in his honor. Dr. Austrian had a remarkable career. His nearly 7-decade assault on the pneumococcus was best summarized by the words of Lewis Thomas, M.D., in the forward to Dr. Austrian’s book, *Life with the Pneumococcus*.

The major figures in American biomedical research come in several quite different classes. There are those who shift swiftly from problem to problem, sometimes leaping freely from one biological discipline to another and then back again, lighting finally on a soluble problem as though by accident. There are others who meditate on a single puzzle for years at a time, scarcely moving, and then, obsessed overnight by the idea of a lifetime, swoop down like nightowls on the single answer.

And there are those who pick out the one problem that will preoccupy them for an entire career of hard work and then just keep at it, year after year. This may seem the safest way to live a life in science, but it is actually, in real life, the chanciest of all gambles, like putting all your chips on a single number, play after play, until all your money runs out.

Robert Austrian’s career has been this last kind. He became fascinated by a single microorganism, *Streptococcus pneumoniae*, long ago, and simply stuck with it. As the years went by, some of his colleagues came to believe that he was simply stuck with it. Finally, not as a result of good luck or any nocturnal revelation or unforeseen laboratory accident, but as the uncommon reward for steady, meticulous, logical experimentation, he got what he was after: a polyvalent vaccine against pneumococcal infection.
The papers in this book are a nice historical record of how science goes when it is going slowly but going well. They are also a lesson in what most savvy investigators take on faith: if you can learn enough new things about living things at a fundamental level, sooner or later you may have the chance, as Austrian has had, to turn basic science onto applied science and, at last, into a useful product.

In fact, after this passage was written and the book appeared in 1985, Dr. Austrian spent another 22 years, until the day prior to his death, monitoring the evolution of pneumococcal types. It was my pleasure to work with him at the same institution over the last 15 of these years while he continued his work as an emeritus professor. While there are many treasured memories and lessons gained from interacting with this grand gentleman of medicine, one seems especially fitting for this book. Dr. Austrian’s career spanned the use of serum therapy, chemotherapy, antibiotics, and two generations of vaccines, each of which was initially believed to offer a final solution to the problem. The pneumococcus, however, has proven to be a particularly elusive and adaptable foe. Dr. Austrian would caution us to neither underestimate it nor be overly confident that the quest is complete.

Jeffrey N. Weiser, M.D.
University of Pennsylvania
Preface

The first pneumococcal conjugate vaccine (PCV) was licensed 7 years ago in the United States and has now been introduced into general use in many countries in Europe and the rest of the world. Its dramatic impact on the target population was anticipated by the results of efficacy trials. The magnitude of herd immunity provided to unimmunized individuals of all ages was not, and has enormously enhanced the public health impact of the vaccine.

The introduction of this exciting vaccine has invigorated the field and stimulated a great many studies in multiple areas including animal models; immunologic mechanisms; conjugation methods; epidemiology of pneumococcal disease; serotype distributions and antibiotic resistance in many geographic areas; diagnostic methods; antibody response measurements; PCV immunogenicity in healthy and high-risk individuals; impact on colonization, invasive disease, otitis media, and pneumonia; and effectiveness studies of direct and indirect protective effects.

This book seeks to summarize, for professionals in academia, public health, government, or industry, the current state of the art of pneumococcal vaccines, with particular emphasis on the years after introduction of the conjugate vaccine.

George R. Siber
Keith P. Klugman
P. Helena Mäkelä
Index

A
Absorbent, for ELISA, 202–203
Active Bacterial Core Surveillance program, 356, 373, 378
Adjuvants, 72–75, 180
Advance Market Commitment, for vaccine financing, 413–414
Advisory Committee on Immunization Practices, 26
Age, see also Children and infants; Elderly persons
vs. serotypes, in carriage population, 280
aliA gene, of capsular polysaccharide, 37–39
Alternative pathway, of complement activation, 85, 88–89
Alum, for conjugate vaccines, 72, 238
American Type Culture Collection, 176, 202
Anemia, vaccine efficacy in, 410
Animal models, 47–58
for bacteremia, 48–49
biohazards in, 55
diversity of, 53
importance of, 47
inclusion criteria for, 54
for meningitis, 52–53
for otitis media, 52
for pneumonia, 52
for sepsis, 49–52
statistical comparisons in, 54–55
strain selection for, 53–54
technical considerations for, 53–55
Antibiotics, see also specific antibiotics and groups
historical view of, 10–13
inappropriate use of, 370
resistance to, see Resistance
usage decisions for, conjugate vaccine effects on, 379–380
Antibody(ies), capsular polysaccharide assays for, 199–211
to colonized organisms, 281–282
immunoassays for, 199–211
kinetics of response, 251–252
opsonophagocytosis assays for, 213–226
persistence of, 236
in pneumonia, 108
vs. serotype, 251
Antigens
for ELISA, 202
polysaccharide, 67–69, 122–123
Asplenia, immunogenicity in, 267, 269
Aventis Pasteur, vaccines of, 247
Avidity assessment, 205–206
Azithromycin, resistance to, conjugate vaccine effects on, 370
B
B cells, polysaccharide antigen interactions with, 68
Bacteremia
animal models for, 48–49
in children, 95–98
clinical features of, 95–96
epidemiology of, 96–98, 405, 407
occult, 96–98
in pneumonia, 119, 124
Bile salts, for organism inactivation, 177
Binax NOW test, for capsular polysaccharide, 122
Biohazards, in animal studies, 55
Bioluminescent pneumococci, 54
Blood clearance assay, in bacteremia, 48–49
Blood culture, in pneumonia, 107, 122, 333
Bone marrow transplantation, immunogenicity in, 265, 267, 269–270
Booster dose
abdominal pain, 283
bacteremia population after, 283, 288
otitis media and, 229–230
response to, 235–236
Breath sounds, in pneumonia, 118
C
C3 convertase, in complement activation, 85–86
Cancer, immunogenicity in, 271
Capsular polysaccharides, 33–46
activation of, 166–167
antibodies to, see Antibody(ies), capsular polysaccharide
antigens of immune response to, 67–69
in pneumonia, 122–123
biosynthesis of, 39–42
chemical identity of, 33–34
in colonization promotion, 281
common, 164
complement interactions with, 88
contaminating finished vaccine, 171
fragments of, 164–166
functionalization of, 167
genetic factors in, 34–39
isolation of, in manufacture, 177–178
moisture content of, 178–179
physical evaluation of, 34
reduction of size, 164–166
regulation of, 39–42
serologic identity of, 33
Capsular polysaccharides (Continued)
types of, see Serotype(s)
Carriage/colonization, 279–300
acquired immunity in, 281–282
acquisition of, 280–281
animal models of, 59–66
clearing of, 280
conjugate vaccine effects on, 282–294,
355–356
antibiotic resistance and, 289, 291
with booster dose, 283, 288
in children, 370–379
clinical trials of, 283–291
duration, 293
factors influencing, 283
indirect, 290–291, 394–395
in infants, 283
in late-childhood administration, 288
long-term, 288
mechanisms of, 292–293
methodology for, 282–283
modeling of, 293–294
of nonpneumococcal organisms, 289
nonvaccine type organisms in, 291–292,
377
observational studies of, 286–287, 289
in otitis media, 310
replacement carriage, 291–292
universal vaccination and, 291
determinants of, 279–280
epidemiology of, 95
immune correlate models for, 346–348
mechanisms of, 280–281
in nonvaccinated community members,
290
phases of, 293–294
prevalence of, 279–280
protection against, 281–282
serotypes and, 140–141
Carrier proteins, in conjugate vaccines, 247;
see also specific vaccines, e.g.,
PCV-CPM
characterization of, 179–180
contaminating finished vaccine, 171
growth of, 179
immunogenicity and, 237–238
inactuation of, 179
interactions of, 71–72
manufacturing steps involving, 179–180
purification of, 179
selection of, 165–166
Case fatality rate, in meningitis, 100–104
CBPs (choline-binding proteins), for
vaccines, 423–425
CD32, in opsonophagocytosis, 214
CD64, in opsonophagocytosis, 214
Cefotaxime-ceftriaxone, for meningitis, 105
Ceftriaxone, 379
Cerebrospinal fluid analysis, in meningitis,
98
Cetyltrimethylammonium bromide, in
polysaccharide isolation, 178
Chemical structure, of capsular
polysaccharides, 33–34
Chest pain
in empyema, 109
in pneumonia, 118

Chest radiography, in pneumonia, 109, 119–
120, 328–329
Chest wall injection, in animal models,
51–52
Children and infants
animal models for, 51–52
bacteremia in, 95–98
carriage in, 355–356, 408–411
antibiotic resistance and, 370–379
prevalence of, 279–280
herd protection in, 361–362
immunocompromised, vaccine
immunogenicity in, 261–275
invasive disease in, vaccine efficacy in,
228, 317–326
meningitis in, 98–106
diagnosis of, 98–106
empyema in, 109
epidemiology of, 98–104, 107
mortality in, 104–105
neurologic sequelae of, 104–105
treatment of, 105–106
otitis media in, see Otitis media
pneumonia in
diagnosis of, 106–109
epidemiology of, 106
mortality in, 405–408
serotypes and, 145–146
vaccine immunogenicity in, 228
poly saccharide antigen immune response
in, 67–69
replacement diseases in, 362–363
serotypes in, 140, 143–146
vaccines for, 143–144
antibody elicitation in, 215–216
efficacy of, 27–28, 228, 317–326
immunogenicity of, 227–243, 261–275
licensing of, 186–192
need for, 27–28
opsonophagocytosis assays and, 218–
219
protein, 429
Chloramphenicol
for meningitis, 105
resistance to, 370
Cholera toxin, in conjugate vaccines, 71
Choline-binding proteins, for vaccines,
237–238
Chronic illness, serotype distribution in,
148
Chronic obstructive pulmonary disease,
immunogenicity in, 269
Classical pathway, of complement
activation, 85, 88–89
Clinical features
of bacteremia, 95–96
of pneumonia, 117–119
Clinical trials
of carriage/colonization, 283–291
in HIV infection, 218, 228
influenza pandemic of 1918 and, 23
in low-income countries, 407–408
opsonophagocytosis assays in, 218–221
in otitis media prevention, 228–230
regulations on, 185, 186
results of, 187–191
Clp proteins, for vaccines, 428
Code of Federal Regulations, 184
Colonization, see Carriage/colonization
Committee for Proprietary Medicinal
Products, 191
Common capsular polysaccharides, 164
Community-acquired pneumonia,
epidemiology of, 117
Complement proteins, 83–92
activation of
immunodeficiencies related to, 88–89
interference with, 86–87
pathways for, 84–85
deficiencies of, 88–89
degradation of, 86
discovery of, 83
efficacy of, 85–86
ligands of, interference with, 87–88
in phagocytosis, 86, 214–215
pneumococcal interactions with, 86–88
poly saccharide interactions with, 88
types of, 83
Conformational epitopes, 34
Conjugate vaccines, 69–75
adjuvants for, 72–74
animal studies on, 69
antibiotic resistance and, 369–385
carriage effects of, 282–294, 355–356
carrier protein interactions with, 71–72
for children, immunogenicity of, 227–243
clinical trials of, opsonophagocytosis
assays in, 218–221
dosing schedule for, 412–413
in elderly persons, 70
formulations for, 246–247
Haemophilus influenzae, see Haemophilus
influenzae, conjugate vaccines for
immunogenicity of
in adults, 245–259
aluminum adjuvant and, 238
antibody persistence and, 236
booster dose response and, 229–230,
235–236
carrier-mediated interactions in,
237–238
in children, 227–243
experimental, 236–237
in invasive disease, 228
number of doses and, 233–235
in otitis media, 228–230
in pneumonia, 228
population variation in, 230–233
immunologic basis of, 69–70
importance of, for low- and middle-
income countries, 405–408
in invasive disease, 356–359
direct effects of, 372–374
immunogenicity of, 228
meta-analysis of, 317–326
manufacture of, 163–174, 175–196
monovalent bulk, 180
mucosal delivery of, 74–75
in otitis media, 302–312
in children, 228–230
herd effect in, 311
with immunization after first year,
307–308
with immunization in first year,
303–307
microbial balance and, 310
microbial population composition and,
310–311
Hic protein, in complement interference,
Hexavalent vaccines, conjugated
Hepatitis V vaccine, conjugated
Hematopoietic transplantation,
Halicrysdaldehyde-3-phosphate dehydrogenase,
Gram stain, of sputum, 121–122
Gram, Hans Christian, 4
Group Health Cooperative study, 362
Hepatitis B virus, conjugate vaccines
Glycolysyltransferase, in capsular polysaccharide, 38
Good Laboratory Environment, 176
Gram stain, of sputum, 121–122
Group Health Cooperative study, 362
Hiv protein, in complement interference
Hodgkin's disease, immunogenicity in, 269, 271
Human immunodeficiency virus infection in children, 263, 266
immunocompromise in, 262–264, 266–267
invasive disease in, meta-analysis of, 317–326
invasive pneumonia in, 106, 107, 119, 329, 332
poly saccharide antibody persistence in, 236
replacement disease in, 363–364
serotype distribution in, 148
vaccine efficacy in, 263, 266, 410
vaccine trials in, 218, 228, 407–408
Hyaluronidase, for vaccines, 427
Hyporesponsiveness, induced by prior vaccination, 250–251
I
I. G. Farbenindustrie, antibiotic discovery by, 10
IgA1 protease, for vaccines, 427
Immune correlates of protection, 193, 339–3492
measurements for, 340
statistical models for, 340–342
for colonization, 346–348
for invasive disease, 342–344
for otitis media, 343, 345
for pneumococia, 346
Immune response
to colonization, 281–282
to polysaccharide antigens, 67–69
Immunoadsabs, for capsular polysaccharide antibodies, 199–211; see also Enzyme-linked immunosorbent assay (ELISA)
avidity assessment, 205–206
comparison of, 206
early methods for, 200
Luminex multiple-analyte technology for, 205
Immunochromatographic test, in pneumonia, 122
Immunocompromise, 261–275; see also Human immunodeficiency virus infection
in asplenia, 267, 269
in bone marrow transplantation, 265, 267, 269–270
in cancer, 271
causes of, 261
in chronic obstructive pulmonary disease, 269, 271
in complement deficiency, 88–89
in Hodgkin's disease, 269, 271
immunogenicity measurement in, 262–263
in organ transplantation, 265, 268–270
in otitis media, 265, 270
pneumococcal disease in, 5
in polysaccharide nonresponders, 270–271
serotype distribution in, 148
in sickle cell disease, 262, 264–265, 267
Immunogenicity of vaccines
in adults, 245–259
aluminum adjuvant and, 238
antibody kinetics in, 251–252
antibody persistence and, 236
booster dose response and, 235–236
carrier-mediated interactions in, 237–238
in children, 227–243
duration of, 24
ELISA evaluation of, 246, 248–250
experimental, 236–237
hyporesponsiveness in, 250–251
in immunocompromise, 261–275
immunoglobulin G subclasses in, 252
in invasive disease, 228
number of doses and, 233–235
opsonophagocytosis assays of, 250
in otitis media, 228–230
in pneumonia, 228
pneumococcal vaccine challenge in, 252, 254–257
population variations in, 230–233
with second dose, 252–253
serotype and, 251
single-dose studies of, 246, 249
Immunoglobulin(s)
complement binding to, 85
in conjugate vaccine response, 68–69, 74–75
Immunoglobulin G, subclasses of, 252
Infanrix hexa, 191
Infants, see Children and infants
Infection control, 8
Influenza pandemic of 1918, vaccine trials prompted by, 23
Information, on licensing regulations, 184
Interleukins, as vaccine adjuvants, 75
Interferons, as vaccine adjuvants, 75
Intranasal challenge, in animal models, 50–51
Intraperitoneal challenge, in animal models, 50
Intravenous challenge, in animal models, 50
Invasive disease, see also Bacteremia; Meningitis; Pneumonia
animal models for, 48–53
carriagge vaccine effects on, 372–374
immune correlate models for, 342–343
nonvaccine type organisms in, 373–374
serotype replacement and, 362–364
vaccine efficacy in, 317–326, 356–359
in children, 228
pharmacoeconomics evaluation and, 395
Invasive odds ratios, 142
Invasiveness
animal models for, 54
of genotypes, 141–142
of serotypes, 141–142
Investigational new drug application, 184
K
Klebsiella, 3–4
Krupal-Wallis test, in animal models, 55
L
Labeling, 181
Lactococcus lactis, capsular polysaccharides of, 40
Lectin pathway, of complement activation, 83, 88–89
Lectins, in polysaccharide immune response, 68
INDEX

Lederle Laboratories, vaccines of, 25, 26, 247
Licensing, of vaccines, 183–196
 adult, 192–194
 European Union regulations on, 185–186
 history of, 26–27
 infant, 191
 information sources for, 184
 overview of, 184–185
 pediatric, 186–192
 second generation, 191–192
 seven-valent conjugate
 in European Union, 188–191
 in United States, 186–188
 United States regulations on, 184–186
 World Health Organization guidance on, 191
Lipopolysaccharides, detoxified, in conjugate vaccines, 425–427
Lipoproteins, for vaccines, 425–427
Lister, 22–23
Locking, in conjugate vaccine manufacture, 167
Logistic factors, for conjugate vaccine programs, in low-income countries, 411–413
Low- and middle-income countries, conjugate vaccines for, 405–418
 epidemiologic data and, 405–411
 expected impact of, 415
 financial constraints on, 413–414
 future developments in, 411–413
 infection pressure and, 408–411
 logistic factors and, 411–413
 programmatic problems with, 418–420
 serotype distribution and, 409–410
 underlying conditions and, 410–411
Luminex multiple-analyte profiling technology, 205
Lung aspiration
 in animal models, for sepsis, 50–51
 specimens from, in pneumonia diagnosis, 107
Lyt proteins, for vaccines, 425
M
Macrolides
 for pneumonia, 130–131
 resistance to, 369–370, 373, 378
Malaria, vaccine efficacy in, 410
Malnutrition, vaccine efficacy in, 410
Mannose-binding lectin
Mental fog
Meningitis
 animal models for, 52–53
 diagnosis of, 98–106
 meningococcal vaccine administered with, 237–238
 MeF proteins, in resistance, 370
 MEGA transposon-like element, in resistance, 370
 Meningitis
 animal models for, 52–53
 in children, 98–106
 diagnosis of, 98–106
 in infants, 218–219
 in immunogenicity evaluation, 250
 Metabolic pathways, for conjugate vaccines, 165; see also PCV-OMPC
Merck Sharp & Dohme vaccines, 25–26, 247; see also Vaccine(s), 23-valent
Merk Sharp & Dohme vaccines, 25–26, 247; see also Vaccine(s), 23-valent
Meta-analysis of, conjugate vaccines, in invasive disease, 317–326
Metropolitan Life Insurance Company, pneumonia research support from, 9–10
Models
 animal, see Animal models for colonization, 293–294
 for immune correlates of protection, 340–342
 for colonization, 346–348
 for invasive disease, 342–344
 for otitis media, 343, 345
 for pneumonia, 346
Molecular size, of capsular polysaccharides, 34
Monophosphoryl lipid A, in conjugate vaccines, 74
Moraxella catarrhalis
 carriage of, conjugate vaccine effects on, 289
 in otitis media, 374
Mortality
 in animal models, 49–52
 in meningitis, 98, 100–105
 pharmacoeconomics evaluation and, 396
 in pneumonia, 5, 106, 117, 124–125, 405–408, 409
 productivity costs of, 397
Mourning, see Animal models
Moxifloxacin, for pneumonia, 127
Mucosal infections, see also Otitis media; Pneumonia
 conjugate vaccine effects on, 374–376
 Mucosal vaccines, conjugate, 74–75
 Multilocus sequence typing, in invasiveness evaluation, 141–142
 Multiplex opsonophagocytosis assays, 217–218
 Mycobacterium phlei, 178
N
NanA protein, for vaccines, 427
Nasopharyngeal carriage, see Carriage/colonization
National Institutes of Health funding recommendations of, 25
vaccines of, 247
National Research Council, penicillin research by, 12
Navajo and Apache Native American study, 187
Neisseria meningitidis
 meningitis due to, 98–99, 104–105
 outer membrane complex of, in conjugate vaccines, 71–74
Neurologic disorders, in meningitis, 104–105
Neutrophils, in opsonophagocytosis, 214
Neisseria meningitidis
 meningitis due to, 98–99, 104–105
 outer membrane complex of, in conjugate vaccines, 71–74
Neurologic disorders, in meningitis, 104–105
Neuropathies, in opsonophagocytosis, 214
Nonresponders, polysaccharide, 270–271
Northern California Kaiser Permanente pneumonia trial, 187, 190, 228, 303–304, 342, 356, 361–362
Nuclear magnetic resonance, in polysaccharide characterization, 178
O
O antigen, synthesis of, 40
Occult bacteremia, in children, 96–98
OMAVAX study, 308
OME Study, 308
Opsonophagocytosis
 importance of, 215
 mechanisms of, 214
 as primary defense, 214–215
 replication in laboratory, 216
 vaccine elicitation of, 215–216
Opsonophagocytosis assays, 191
 in children, 219–221
 development of, 216–218
 vs. ELISA, 206
 flow cytometer-based, 217
 future directions for, 221–222
 in immunogenicity evaluation, 250
 in infants, 218–219
 in vitro system for, 216
 killing-type, 216–217
 minimal level of protection determination with, 222
 multiplex, 217–218
 for noncapsular antigens, 222
Opsonophagocytosis assays (Continued)

for pneumococcal organisms, 222
as reference assay, 216–217
standardization of, 221–222
in vaccine trials, 218–221
Optochin, 10
Otitis media, 301–315
animal models for, 52
burden of, 301–302
conjugate vaccine effects on, 374–376
epidemiology of, 27–28, 301
first recognition of, 5
immune correlate models for, 343, 345–346
immunogenicity in, 265
pathophysiology of, 301
serotypes of, 142, 144–145, 150
vaccine approval for, 188
vaccine efficacy in, 27–28, 188, 302–312, 360
in children, 228–230
herd effect in, 311
with immunization after first year, 307–308
with immunization in first year, 303–307
microbial balance and, 310
microbial population composition and, 310–311
pharmacoeconomics evaluation and, 395–396
replacement population and, 310–311
resistance in, 311
in routine immunization, 311–312
in severe disease, 308–310
Outbreaks, serotype distributions in, 147
Outer membrane complex, in conjugate vaccines, 73–74; see also PCV-OMPC
interactions of, 71–72
Oxygen therapy, for pneumonia, 8

P
Packaging, 181
Parapneumonic effusion, 109, 120
Pasteur, Louis, 3–4
Pasteur Mérieux Sérums et Vaccins, vaccines of, 25, 26, 247
PCR, for pneumonia, 123–124
PCV-CRM, PCV-CRM197
adjuvant for, 238
antibody measurement in, 200, 204
antibody persistence after, 236
in asplenia, 267
in bone marrow transplantation, 269–270
carriage effects of, 284, 286, 288–290, 293
carrier proteins in, 237
characteristics of, 247
doses of, 234
in HIV infection, 263–266, 268
immunogenicity of, 230–231, 234, 246, 248–255
in otitis media, 228–230
in pneumonia, 228
for low-income countries, 407
manufacture of, 164, 166–167
new formulation for, 236–237
in organ transplantation, 268–270
in otitis media, 270, 302–305, 307–312
in pneumonia, 329–331
in polysaccharide nonresponse, 271
reactogenicity of, 238
in sickle cell disease, 267
trials of, 218, 219
PCV-D

carriage effects of, 284, 286
in polysaccharide nonresponse, 271
PCV-D-T
adjuvant for, 238
antibody persistence after, 236
carriage effects of, 284
carrier proteins in, 238
characteristics of, 247
immunogenicity of, 228, 231–232, 235, 248
in low-income countries, 408
manufacture of, 167
in pneumonia, 329, 331
reactogenicity of, 238
trials of, 219
PCV-OMPC

carriage effects of, 284, 286, 288
characteristics of, 247
doses of, 233
in HIV infection, 266, 268
in Hodgkin’s disease, 269, 271
immunogenicity of, 228–229, 231, 233, 248, 252–253, 255
in low-income countries, 408
in otitis media, 302, 304–305, 308
in polysaccharide nonresponse, 271
trials of, 218, 219
PCV-PD
antibody persistence after, 236
carrier proteins in, 237
immunogenicity of, 228–232
in low-income countries, 408
manufacture of, 166–170
in otitis media, 228–230, 302, 304–306, 309
reactogenicity of, 238
PCV-T
carriage effects of, 284, 286
carrier proteins in, 237
in chronic obstructive pulmonary disease, 269, 271
PCV-T-T
characteristics of, 247
immunogenicity of, 248
in pneumonia, 329, 331
Pediatric patients, see Children and infants
Penicillin(s)
history of, 12–13
for meningitis, 105
for pneumonia, 125–127
resistance to, 13, 369–370, 373, 374, 376–378
Penicillin binding proteins, alterations in, in resistance development, 369
Peritonitis, first recognition of, 5
Pertussis proteins, in conjugate vaccines as carrier protein, 237–238
interactions of, 71
Phagocytosis, see also Opsonophagocytosis complement-mediated, 86–88
mechanisms of, 214–215
Pharmacoeconomics, of conjugate vaccines, 387–403
bottom-up models for, 388–389
cost-effectiveness measures and results, 397–398
costs, 396–397
definition of, 387
disease burden and, 388–389
disease outcomes and, 395–396
economic burden and, 389
evaluation methods for, 387–388
in fatality, 396
in invasive disease, 395
life-year considerations in, 396
in low- and middle-income countries, 398–400
model assumptions in, 390, 394–395
in otitis media, 395–396
overview of, 389–393
in pneumonia, 395
top-down models for, 388–389
Phenol, for organism inactivation, 177
6-Phosphogluconate dehydrogenase, for vaccines, 428
PhPA protein, degradation of, 86
Pht proteins, for vaccines, 427
Physical properties, of capsular polysaccharides, 34
PiaA protein, for vaccines, 426–427
PiuA protein, for vaccines, 426–427
Pleural effusion, in pneumonia, 109, 120
PLY protein, detection of, in pneumonia, 123
Pneumococcal disease, see also Invasive disease; Meningitis; Otitis media; Pneumonia
animal models of, 47–58
in children, 95–116
clinical features of, see Clinical features
diagnosis of, see Diagnosis
drug-resistant, see Resistance
epidemiology of, see Epidemiology
history of, 3–17
invasive, see Invasive disease
treatment of, see Treatment
Pneumococcal histidine triad proteins, for vaccines, 427
Pneumococcal Otitis Efficacy Trial (POET), 228–230, 305, 310–311
Pneumococcal surface adhesin A, 123
Pneumococcal surface antigens, for vaccines, 427–428
Pneumococcal surface proteins, 423–424
Pneumococcal vaccines, 73–74; see also PCV-OMPC
interactions of, 71–72
Pneumonia, 117–138, 327–337
animal models for, 52
atypical, 119
bacteremia in, 124
bacteremia in, 124
clinical features of, 106–109, 119–124, 327–328
diagnosis of, 106–109, 119–124, 327–328
drug-resistant, see Resistance
economic burden and, 389
epidemic of, vaccine trials prompted by, 177
epidemiology of, 4–5, 106, 117, 327–328
etiology of, 120–122
first recognition of, 4
immune correlate models for, 346
laboratory tests for, 120
mortality in, 5, 106, 117, 124–125, 405–408, 409
pathogenesis of, 328–329
PCR techniques for, 123–124
prevention of
infection control in, 8
vaccine recommendations for, 192
prognosis for, 124–125, 128–130
radiography in, 109, 119–120, 328–329
risk factors for, 119
serotypes in, 145–146, 150
surface adhesin A detection in, 123
treatment of, 125–127, 130–132
urine antigen tests in, 122–123
vaccine efficacy in, 327–330
vaccine introduction effects on, 148
vaccine recommendations for, 192
in children, 140, 143–146
distribution of, in low-income countries, 409–410
diversity of, 139–140
in epidemics, 147
epidemiology of, 164
in future vaccines, 149–150
genetics of, 34–39
in immunocompromise, 148
gene analysis of, 149–150
epidemiology of, 164
in future vaccines, 149–150
genetics of, 34–39
in immunocompromise, 148
gene analysis of, 149–150
Stability testing, 177, 180–181
Standardization, of opsonophagocytosis assays, 221–222
Staphylococcus aureus
carriage of, conjugate vaccine effects on, 289
pneumonia due to, 107
Statistical comparisons, in animal models, 54–55
Statistical models, for immune correlates of protection, 340–342
for colonization, 346–348
for invasive disease, 342–344
for otitis media, 343, 345
for pneumonia, 346
Sternberg, George M., 3–4
Streptococcus agalactiae
capsular polysaccharides of, 36, 39–41
Cpa protein of, 88
vaccines for, opsonophagocytosis assays for, 222
Streptococcus mitis, 13, 39
Streptococcus oralis, 39
Streptococcus pneumoniae, see also Pneumococcal disease; Vaccines
bioluminescent, 54
capsular polysaccharides of, 33–46
carriage/colonization of, see Carriage/colonization
complement protein interactions of, 83–92
discussion of, 3–6
evolution of, 13
serotypes of, see Serotype(s)
Streptococcus pyogenes
capsular polysaccharides of, 36–37
Cpa protein of, 88
vaccines for, opsonophagocytosis assays for, 222
Streptococcus thermophilus, 40
Student’s t-test, in animal models, 55
Sudden infant death syndrome, 361
Sulfanilamide, 11
Sulfapyridine, 11–12
Summary of product characteristics, 186
Surface adhesin A, detection of, in pneumonia, 123
Symptoms, see Clinical features
Syntheses, in capsular polysaccharide synthesis, 39, 41–42
Syringes, for low-income countries, 411–412

T
cells
adjuvants inducing, 74
in colonization, 281
polysaccharide antigen interactions with, 69–70
Target bacteria method, in opsonophagocytosis assays, 217
Tet proteins, in resistance, 370
Tetanus toxoid, in conjugate vaccines, 75, 179
as carrier protein, 165, 237–238
interactions of, 71–72
Tetanus toxoid-pneumococcal conjugate vaccine, 69
Therapy, see Treatment
tnp gene, of capsular polysaccharide, 38
Toll-like receptors
in adjuvant action, 72–74
polymorphisms of, in vaccine immune response, 68
in polysaccharide immune response, 68
Transplantation, immunogenicity in bone marrow, 265, 267, 269–270
organ, 265, 268–270
Treatment of meningitis, 105–106
of pneumonia, 125–127, 130–132
antibiotics in, 10–13
supportive, 8
vaccines used in, 7–8
Trimethoprim-sulfamethoxazole, resistance to conjugate vaccine effects on, 373, 377
mechanisms of, 370
Tropism, animal models for, 54
UDP-acetylgalactosamine, in capsular polysaccharide synthesis, 39–40
UDP-glucuronic acid, in capsular polysaccharide synthesis, 39, 42
United Kingdom Medicines Control Agency, 189
United States, licensing regulations of, 184–189
University of Rochester, vaccines of, 247
Urinary antigen assays, for pneumonia, 109, 122
V
Vaccine(s)
bacterial resistance and, 369–385
assays for
capsular antibody, 199–211
opsonophagocytic, 206, 213–226
for children, see Children and infants,
vaccines for
conjugation chemistry of, 163–174; see also Conjugate vaccines
efficacy of, see Efficacy
history of, 6–7, 21–31
immune correlates of protection for, 339–349
immunobiology of, 67–82
immunogenicity of, see Immunogenicity licensing of, 183–196
manufacture of, 163–174, 175–182
opsonophagocytic antibody production by, 215–216
pharmacoeconomics of, 387–403
recommendations for, history of, 26–27
schedules for, 353
serotype coverage of, prediction of, 142–143
as treatment, 7–8
1-valent, 247
in chronic obstructive pulmonary disease, 271
in polysaccharide nonresponders, 271
4-valent, 24
5-valent
carriage effects of, 286
characteristics of, 247
in HIV infection, 266, 268
immunogenicity of, 234, 248, 255
opsonophagocytosis assay evaluation of, 218
in polysaccharide nonresponders, 271
6-valent, 25
7-valent, 164
in asplenia, 267, 269
in bone marrow transplantation, 269–270
carriage effects of, 284, 286, 288, 290, 293
carrier protein for, 165
characteristics of, 247
coverage of, 143–144, 409–410
in HIV infection, 263–266, 268
in Hodgkin’s disease, 271
immune correlates of protection for, 339–349
immunogenicity of, 228–231, 236–237, 248–252, 253–254
invasive disease, 317–326
licensing of, 184, 186
limitations of, 421
in low-income countries, 408, 411–412
manufacture of, 167–168
opsonophagocytosis assay evaluation of, 218
in organ transplantation, 268–270
in otitis media, 270, 302–305, 307, 309–312
in pneumonia, 329, 331
in routine immunization programs, 354
serotype distribution and, 148–149
serotypes included in, 164
in sickle cell disease, 267
8-valent
carriage effects of, 286
immunogenicity of, 236
in polysaccharide nonresponders, 271
9-valent
carriage effects of, 284, 288, 290
efficacy of, 411
immunogenicity of, 228, 230, 234, 236–238
in low-income countries, 407–408
opsonophagocytosis assay evaluation of, 219
in otitis media, 307, 308
in pneumonia, 329, 331, 334–335
10-valent
carriage effects of, 284
immunogenicity of, 236
in low-income countries, 408
reactogenicity of, 238
11-valent
carriage effects of, 284
carrier protein for, 165
characteristics of, 247
immunogenicity of, 228–232, 234–238, 248
in low-income countries, 407–408
manufacture of, 168–170
opsonophagocytosis assay evaluation of, 219
in otitis media, 302, 304–306, 309–311

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Fri, 02 Aug 2019 14:40:51
in pneumonia, 311, 329
reactogenicity of, 238
13-valent
characteristics of, 247
coverage of, 144
immunogenicity of, 236–237, 246, 249
in low-income countries, 408
reactogenicity of, 238
14-valent, 26, 192
23-valent, 26
 adjuvants in, 72
in asplenia, 267, 269
chemical structures of, 164
in chronic obstructive pulmonary
disease, 269, 271
colonization and, 282
history of, 26
in HIV infection, 263–266, 268–269
in Hodgkin’s disease, 269, 271
immunogenicity of, 246
licensing of, 183–184, 186, 188–195
limitations of, 421
nonresponders to, 270–271
opsonophagocytosis assay evaluation
of, 219–220
in organ transplantation, 268–270
polysaccharide physical properties in,
34
serotypes included in, 164
in sickle cell disease, 267
Vaccine Adverse Event Reporting System,
360–361
Vaccines and Related Biologics Advisory
Committee, 188, 191–192
Vancomycin, for meningitis, 105
Vibrio cholerae conjugate vaccine, 71
Viral infections, colonization during,
280
Virulence
 animal models for, 54
capsular polysaccharides in, 67
W
Whole-cell vaccines, 22–24, 428–429
World Health Organization
guidelines for infant vaccines, 191
ligand-binding assay recommendations of,
200–204, 206
pneumococcal disease statistics of, 407
respiratory infection management
guidelines of, 327–328
Wyeth, vaccines of, 247
Wyeth Lederle Vaccines S.A. Belgium,
188–189
Wzx flippase, of capsular polysaccharide,
38
Wzy-synthesis mechanisms, 37–41