SUPERANTIGENS
SUPERANTIGENS
Molecular Basis for Their Role in Human Diseases

Edited by
Malak Kotb
and John D. Fraser

ASM PRESS
Washington, D.C.
Cover illustration: A hypothesized functional complex of SEB, MHC-II, and TCR (see Chapter 6 and Color Plate 6) (courtesy of Vickery Arcus).

Address editorial correspondence to ASM Press, 1752 N St., N.W., Washington, DC 20036-2904, USA

Send orders to ASM Press, P.O. Box 605, Herndon, VA 20172, USA
Phone: 800-546-2416; 703-661-1593
Fax: 703-661-1501
E-mail: books@asmusa.org
Online: http://estore.asm.org

Copyright © 2007 ASM Press
American Society for Microbiology
1752 N St., N.W.
Washington, DC 20036-2904

Library of Congress Cataloging-in-Publication Data
Superantigens: molecular basis for their role in human diseases / edited by Malak Kotb and John D. Fraser.
p. ; cm.
Includes bibliographical references and index.
1. Superantigens. I. Kotb, Malak. II. Fraser, John D. III. American Society for Microbiology.
QR186.6.S94S875 2007
616.07’92—dc22
2007013806

10 9 8 7 6 5 4 3 2 1

All Rights Reserved
Printed in the United States of America
This book is dedicated to the memory of Edwin H. Beachey,
 a great scientist, mentor, and friend
CONTENTS

Contributors ... ix
Preface ... xi

I. SUPERANTIGENS: WHAT IS NEW?
1. The Streptococcal Superantigens • John D. Fraser and Thomas Proft ... 3
2. Staphylococcal and Streptococcal Superantigens: an Update •
 Patrick M. Schlievert and Gregory A. Bohach 21
3. Mycoplasma arthritidis-Derived Superantigen (MAM), a Unique Class of
 Superantigen That Bridges Innate and Adaptive Immunity •
 Barry C. Cole and Hong-Hua Mu .. 37
4. Viral Superantigens in Mice and Humans • Albert K. Tai and
 Brigitte T. Huber ... 59
5. Superantigens from Gram-Negative Bacteria and the Diseases That They
 Cause • Takehiko Uchiyama, Tohru Miyoshi-Akiyama,
 and Hidehiro Ueshiba .. 77

II. SUPERANTIGEN STRUCTURE AND FUNCTION
6. Superantigen Architecture: Functional Decoration on a Conserved
 Scaffold • Vickery L. Arcus and Edward N. Baker 93
7. Structural Evidence for Zinc and Peptide Dependence in Superantigen-
 Major Histocompatibility Complex Class II Interaction •
 Björn Walse ... 103
8. Superantigens: Structure, Function, and Diversity •
 Matthew D. Baker and K. Ravi Acharya 121

III. SUPERANTIGENS AND HUMAN DISEASES
9. Role of Superantigens in Skin Disease • Sang-Hyun Cho and
 Donald Y. M. Leung .. 139

IV. EXPERIMENTAL MODELS FOR SUPERANTIGEN-MEDIATED DISEASES
10. Pathogenetic Mechanisms and Therapeutic Approaches in
 Superantigen-Induced Experimental Autoimmune Diseases •
 Andrej Tarkowski .. 159
11. Experimental Models of Superantigen-Mediated Neuropathology • Malte E. Kornhuber, Alexander Emmer, Kristina Gerlach, and M.S. Staege ... 169

12. Novel Experimental Models for Dissecting Genetic Susceptibility of Superantigen-Mediated Diseases • Eva Medina 183

V. THERAPEUTIC INTERVENTIONS IN SUPERANTIGEN-MEDIATED DISEASES

13. Intravenous Immunoglobulin Therapy in Superantigen-Mediated Toxic Shock Syndrome • Anna Norrby-Teglund, Donald E. Low, and Malak Kotb ... 197

15. Small Nonpeptide Inhibitors of Staphylococcal Superantigen-Induced Cytokine Production and Toxic Shock • Teresa Krakauer 229

16. Countermeasures against Superantigens: Structure-Based Design of Bispecific Receptor Mimics • Goutam Gupta and Meghan Kunkel ... 245

Index .. 255
CONTRIBUTORS

K. Ravi Acharya • Department of Biology and Biochemistry, University of Bath, Building 4 South, Room 0.29, Claverton Down, Bath BA2 7AY, United Kingdom

Gila Arad • Department of Molecular Virology, The Hebrew University-Hadassah Medical School, 91120 Jerusalem, Israel

Vickery L. Arcus • AgResearch Protein Engineering Laboratory, Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand

Edward N. Baker • Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Private Bag 92-019, Auckland, New Zealand

Matthew D. Baker • Department of Biology and Biochemistry, University of Bath, Building 4 South, Room 0.29, Claverton Down, Bath BA2 7AY, United Kingdom

Gregory A. Bohach • Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83846

Sang-Hyun Cho • Department of Dermatology, The Catholic University of Korea, Seoul, Korea 403-720

Barry C. Cole • Division of Rheumatology, University of Utah School of Medicine, Salt Lake City, UT 84132

Alexander Emmer • Neurology Hospital, Martin Luther University, D-06097 Halle-Wittenberg, Germany

John D. Fraser • School of Medical Sciences, University of Auckland, Private Bag 92019, 85 Park Rd., Grafton, Auckland, New Zealand

Kristina Gerlach • Neurology Hospital, Martin Luther University, D-06097 Halle-Wittenberg, Germany

Goutam Gupta • Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545

Dalia Hillman • Department of Molecular Virology, The Hebrew University-Hadassah Medical School, 91120 Jerusalem, Israel

Brigitte T. Huber • Department of Pathology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111

Raymond Kaempfer • Department of Molecular Virology, The Hebrew University-Hadassah Medical School, 91120 Jerusalem, Israel

Malte E. Kornhuber • Neurology Hospital, Martin Luther University, D-06097 Halle-Wittenberg, Germany

Malak Kotb • University of Tennessee Health Science Center, 930 Madison, Suite 468, Memphis, TN 38163
Contributors

Teresa Krakauer • Department of Immunology, Integrated Toxicology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011
Meghan Kunkel • Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545
Donald Y. M. Leung • Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, and University of Colorado Health Sciences Center, Denver, CO 80262
Revital Levy • Department of Molecular Virology, The Hebrew University-Hadassah Medical School, 91120 Jerusalem, Israel
Donald E. Low • Department of Microbiology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 1X5, Canada
Eva Medina • Department of Microbial Pathogenesis and Vaccine Research, Infection Immunology Research Group, GBF-German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
Tohru Miyoshi-Akiyama • Department of Infectious Disease, International Medical Center of Japan, Tokyo 162-8655, Japan
Hong-Hua Mu • Division of Rheumatology, University of Utah School of Medicine, Salt Lake City, UT 84132
Iris Nasie • Department of Molecular Virology, The Hebrew University-Hadassah Medical School, 91120 Jerusalem, Israel
Anna Norrby-Teglund • Karolinska Institutet, Center for Infectious Medicine, Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
Thomas Proft • School of Medical Sciences, University of Auckland, Private Bag 92019, 85 Park Rd., Grafton, Auckland, New Zealand
Patrick M. Schlievert • Department of Microbiology, University of Minnesota Medical School, 420 Delaware Street S.E., Minneapolis, MN 55455
M. S. Staege • Children’s Cancer Research Center, Division of Pediatric Hematology and Oncology, Martin Luther University, D-06097 Halle-Wittenberg, Germany
Albert K. Tai • Department of Pathology, Tufts University School of Medicine, Boston, MA 02111
Andrej Tarkowski • Department of Rheumatology and Inflammation Research, Göteborg University, Guldhedsgatan 10, S-413 46 Göteborg, Sweden
Takehiko Uchiyama • Department of Microbiology and Immunology, Department of Infectious Diseases, Institute of Laboratory Animals, School of Medicine, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
Hidehiro Ueshiba • Institute of Laboratory Animals, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
Björn Walse • SARomics AB, Scheelevägen 22, SE-220 07 Lund, Sweden
PREFACE

Microbial superantigens are fascinating proteins that have structurally evolved to interact in a unique manner with host immune defense systems. These molecules are unusual in the sense that they can simultaneously activate cells involved in innate immunity as well as T cells, which normally mediate acquired immune responses. As a result of this unusual mode of interaction, superantigens have the capacity to stimulate large numbers of immune cells to release inflammatory mediators that, if uncontrolled, can inflict serious damage upon the host and may even cause death. Through our studies of the various superantigens, we have learned so much about immune system activation and regulation and about the various mechanisms by which different cells of the immune system interact and exchange biochemical signals that program their response and function.

Years prior to their designation as superantigens and the discovery of the mechanism by which they function, several laboratories had been studying these proteins and noticing the unconventional way by which they elicit immune activation. The massive proliferative response they elicit in resting leukocytes resembled that of polyclonal mitogens, yet the requirement for cells expressing HLA class II molecules to induce leukocyte activation resembled antigenic responses. Unlike conventional antigens, however, these molecules required no processing by antigen-presenting cells and their presentation to T cells was MHC unrestricted. These seemingly perplexing properties were resolved when it became evident that the superantigens interact in a unique manner with HLA class II as well as with specific elements within the variable region of the β chain of the αβ T cell receptor (TCR). Furthermore, it was found that superantigens use these receptors as a means to bring different types of cells closer, forcing them to interact and exchange activation signals that trigger biochemical cascades, resulting in the elaboration of potent inflammatory cytokine responses and massive T cell proliferation.

Shortly after their discovery, it was believed that all superantigens were alike, that they interact in the same way with immune cells, and that they cause similar diseases, namely toxic shock, serious skin infections, and food poisoning. A common remark was “if you’ve studied one superantigen, you’ve studied them all.” We now know that nothing could have been further from the reality of these molecules. The fact that bacteria like *Streptococcus pyogenes* have over twelve different superantigens suggested that these microbial proteins are functionally nonredundant.

Thousands of articles have been published on superantigens, with a marked increase in the past two years, underscoring the fact that the field has been advancing considerably. This, we believe, is a result of the advent of sophisticated technologies and bioinformatics tools that unraveled new structure-function information and considerable differences in the way that distinct superantigens interact with HLA class II and/or TCR molecules. These new discoveries provided an impetus for more in-depth studies of molecular features underlying differences in the biological function of superantigens, their tissue specificity and capacity to cause or exacerbate different diseases.
Although several outstanding books on superantigens have been published, we wanted this book to highlight several new and exciting findings. We assembled an outstanding team of scientists with highly diverse expertise but a common interest in superantigen structure, function, and biology. These authors brilliantly captured some of the latest advances in the field, presenting information on newly discovered superantigens in bacteria and viruses, demonstrating how some superantigens interact with receptors other than, or in addition to, HLA class II and TCR molecules, and proposing novel mechanisms for the association of certain superantigens with various types of acute and chronic diseases, including autoimmune diseases. Exciting developments in therapeutic modalities for superantigen-mediated diseases are also highlighted in this book. This latter aspect has been given some priority in recent years, particularly since certain superantigens, in the aerosolized form, have potential for use as biological weapons and in bioterrorism.

More importantly, we wanted the readers of this book to develop a better appreciation for how newly discovered structural variations among superantigens affect the mode by which they interact with immune cells. We hope that the readers will have a better understanding of how these structure/function differences may explain why different superantigens contribute to the initiation and/or exacerbation of distinct diseases, why certain ones are effective in some tissues but not others, and how the host’s genetic makeup can grossly alter the course of superantigen-mediated diseases. We also hope that the readers of this book will appreciate how this new information has informed the design and development of novel intervention strategies or suggested the use of existing modalities to ameliorate or modulate superantigen responses in severe acute infections or certain chronic illnesses.

On the flip side, however, the powerful immune-stimulating potential of certain superantigens may be exploited to modulate and direct the type of inflammatory responses in a way that increases the host’s efficiency in overcoming certain chronic diseases and infections. These new insights may provide information on disease mechanism and thereby focus efforts to develop effective therapeutics and intervention measures for superantigen-mediated illnesses.

Malak Kotb
John D. Fraser
INDEX

Allergic encephalomyelitis
 experimental, 161
Antibodies
 development of
 superantigen mimetic peptide and, 224–225
 induction in rabbits, 27
Antigenic peptide
 interactions of superantigens and MHC class II
 molecules, 112–113, Color Plates 8 and 9
Antigens
 conventional
 superantigens versus, 246–247, Color Plate 16
Arthritis
 collagen-induced
 murine
 triggering and exacerbation of, 50–52
 experimental, 161
 induced by *Mycoplasma arthritidis*
 in BALB/c and C3H/HeJ mice, 40, 41
 septic, 162
Autoimmune diseases
 development of
 superantigens in, 162
 experimental
 impact of superantigens on, 160
 human
 role of superantigens in, 51–52, 236
 superantigen-induced experimental
 pathogenetic mechanisms in, 159–168
 therapeutic approaches in, 159–168
 superantigens in development of, 245
 murine models to study, 190–191
Autoimmunity
 M. arthritidis-derived superantigen and,
 50–52
B-cell and T-cell superantigens
 joint action of
 in multiple sclerosis, 175–178
 multiple sclerosis and, 180
B cells
 activation by superantigens, 143
 superantigens stimulating, 59–60
Bacterial superantigens. See Superantigens, bacterial

Baicalin, 239
Benzylpenicillin
 in toxic shock syndrome, 204
Blood mononuclear cells
 human peripheral
 to study superantigens, 231–233
Bullous impetigo, 145

Cell receptor-toxin interaction
 inhibitors of, 237
Cellular response
 in vitro, 231–233
Central nervous system
 oligoclonal immunoglobulin synthesis in
 superantigens and, 175–178
Chimeras
 affinity for superantigens
 molecular modeling to improve, 251–252
 cloning of, 250
 design of, 249
 future testing using, 253
 molecular modeling of
 and interactions, 250–251, Color Plate 18
 pairwise contacts with superantigens, 252
 rationale for therapy by, 248–249
 superantigen specificity of, 250
 type-specific inhibition of IL-2 release and cell
 proliferation by, 250
Chimeric receptor mimics
 rationale for therapy by, 248–249
Clindamycin
 in toxic shock syndrome, 204–205
Corticosteroids
 resistance to
 staphylococcal superantigens and, 142
Costimulatory molecules
 blocking of, 165
Crohn’s disease, 28
Cytokines
 associated with sepsis, 202
 inducible
 in cells of *M. arthritidis*-injected mice, 40, 41
 induction of
 by streptococcal superantigens, 12
 inhibitors of, 239
serum induced by *Mycoplasma arthritidis* in C3H/HeSnJ and C3H/HeJ mice, 41, 43

staphylococcal superantigen-induced production of small nonpeptide inhibitors of, 229–244

Cytomegalovirus superantigen activity associated with, 60

D-galactosamine to induce toxic shock, 233–234

D-galactosamine-sensitized mouse as model for studying lethality of superantigens, 220

Dermatitis atopic
description of, 143
IgE antibodies and, 144
staphylococcal superantigens and, 143–144
staphylococcal superantigens in, 152
treatment of staphylococcal superantigens and, 141–142

Dexamethasone, 238

Diseases human association of superantigens with, 25–29
superantigen-mediated genetic susceptibility to in vitro studies of, 184–185 in vivo studies of, 185–191 models for dissecting, 183–194 immunologic features of, 140 prevention of, 163–165

Doxycycline, 239

Drug design structure-based, 246

Eczema staphylococcal superantigens and, 143

Encephalitis superantigen activated splenocytes amplifying, 171–173, 174
gene expression of, 175, 176–178
suppressor T-cells in, 173–175

Encephalomyelitis allergic experimental, 169 experimental allergic, 161

Endotoxins in staphylococcal scarlet fever, 145–146 pyrogenicity of superantigens and synergy with, 11

Enterotoxins staphylococcal. See *Staphylococcal enterotoxins*

Epstein-Barr virus superantigen activity associated with, 60

Erythema perineal recurrent toxin-mediated, 146–147

Exotoxins produced by *Staphylococcus aureus* and *Streptococcus pyogenes*, 247
term “superantigen” applied to, 21

Fever in superantigen-based disease, 245

Food poisoning, 245 staphylococcal superantigens and, 27–28, 235

Gene expression of superantigen encephalitis, 175, 176–178

Genetic factors and host response to microbial superantigens, 183–184

Genistein, 238

Genome scanning identification of streptococcal superantigens by, 5

Group A *Streptococcus* disease invasive and effects of streptococcal superantigens on primates, 13 epidemiological studies of, 12–13 influence of host genetic background on, 14

Guttate psoriasis, 148–150

Human endogenous retrovirus-K18 Env provirus, 65

Human endogenous retrovirus-K18 Env superantigens, 64–66

Human endogenous retrovirus superantigens, 63

Human endogenous retrovirus-W Env protein superantigens, 63–64

Human immunodeficiency virus-1 superantigens, 63

Human immunodeficiency virus infection, 245

Immune activation signal transduction and, 231

Immune system superantigen interactions with, 246–247, Color Plate 16

Immunity adaptive, 59–75 broad-spectrum protective without immunization, 221–222 innate and adaptive *M. arthritidis*-derived superantigen interactions with, 40–48
Index 257

protective humoral
lack of
 in toxic shock syndrome, 204

Immunization
 broad-spectrum protective immunity without, 221–222

Immunodeficiency diseases
 superantigens promoting, 245

Immunoglobulin
 intravenous
 in superantigen-mediated toxic shock syndrome, 197–215
 mechanisms of action of
 in toxic shock syndrome, 202, 203
 intravenous polyspecific
 in Kawasaki disease, 205
 in toxic shock syndrome, 205–209
 clinical studies of, 207–209
 inhibition of T-cell activation by, 207
 mechanistic actions of, 205–206
 modulation of cytokine response by, 206–207

Immunoglobulin synthesis
 oligoclonal
 in central nervous system
 superantigens and, 175–178

Impetigo
 bullous, 145

Infections
 as triggers for psoriasis, 148
 methicillin-resistant Staphylococcus aureus, 217
 staphylococcal
 pathogenic mechanisms in, 202–204
 streptococcal
 pathogenic mechanisms in, 202–204
 superantigen-mediated
 prevention and therapy of, 246
 with autoimmune manifestations, 162

Inflammation
 superantigen-mediated
 and shock, 202
 downregulation of
 to prevent disease, 163–164

Inflammatory diseases
 of nervous system
 superantigens and, 169

Interleukin 1
 as mediator of shock, 229, 235

Intravenous polyspecific immunoglobulin
 in Kawasaki disease, 205
 in toxic shock syndrome, 205–209
 clinical studies of, 207–209
 inhibition of T-cell activation by, 207
 mechanistic actions of, 205–206
 modulation of cytokine responses by, 206–207

Joint action
 of B-cell and T-cell superantigens
 in multiple sclerosis, 175–178

Kawasaki disease, 14–15, 143

Linezolid
 in toxic shock syndrome, 204

Lymphomas
 cutaneous T-cell, 147

Major histocompatibility complex
 class II
 α-chain binding, 97–98, Color Plates 4, 5 and 6
 and M. arthritidis-derived superantigen interaction, 38–39
 as coreceptor for M. arthritidis signaling through Toll-like receptors, 46–48
 β-chain binding, 98–99, Color Plates 4, 5 and 7
 binding sites of, 108
 blocking of, 165
 cross-linking of, 99, Color Plate 7
 interaction
 zinc and peptide dependence in, 103–120
 microbial superantigens and, 160
 superantigen binding to, 97, 98, Color Plate 4
 class II molecules
 and T-cell receptor interactions, 183
 β-chain of
 zinc-dependent interaction of, 111–112
 site of, 111, Color Plate 9
 structure of, 248, Color Plate 16
 superantigen binding to, 124–125, 229
 variations on, 97–100
 superantigen interaction with, 104–109, Color Plates 8 and 10, 247–248
 multiple modes of, 124, Color Plate 12
 T-cell receptor and, 114, Color Plate 10

Major histocompatibility complex II/staphylococcal enterotoxin B/T-cell receptor complex putative, 97–98, Color Plate 6

Major histocompatibility complex II-superantigen complexes
 comparison of, Color Plate 8

Major histocompatibility complex II/superantigen SPE-C/T-cell receptor complex putative, 98, Color Plate 7

Major histocompatibility complex II-superantigen-T cell receptors quaternary complex, Color Plate 10

Methicillin-resistant Staphylococcus aureus
 infection, 217
Microbial superantigens
characteristics of, 160
Mouse (Mice)
 human HLA-transgenic
 in studies of superantigen-induced disease, 187–188
 MHC complex class II-congenic strains of, 187
 protection and rescue from lethal shock, 220–221
 transgenic
 expressing human HLA and CD4 molecules, 189–190
Mouse models. See Murine models
Mouse strain specificity
 in adaptive immune response to M. arthritidis-derived superantigen in vivo, 40–45
Mucosal surfaces
 superantigen interaction at causing human diseases, 29–30
Multiple sclerosis, 169, 245
 and B-cell superantigens, 180
 and T-cell superantigens, 180
 as viral disease, 179–180
 chronic degeneration and inflammation in, 169
 further research strategies in, 181
 joint action, B-cell and T-cell superantigens, 179
 relapsing-remitting
 axonal loss in, 170
Multiple sclerosis-associated retrovirus, 170
Murine herpesvirus-68
 superantigen activity associated with, 60–61
Murine leukemia virus
 host-derived superantigens and, 61
Murine mammary tumor virus superantigen, 62
Murine models
 human HLA-transgenic
 to study superantigen-induced disease, 187–188
 MHC class II-congenic
 as experimental models, 186–187
 to study superantigens in autoimmune disease development, 190–191
 transgenic
 to study superantigen-mediated disease, 185
Mycoplasma arthritidis, 37–38
 disease induced by, 50–52
 role of M. arthritidis-derived superantigen, 48–50
M. arthritidis-derived superantigen, 37–57, 113–114, 122, 190
 and autoimmunity, 50–52
 and Toll-like receptor interaction
 regulation of TLR2 and IL-12p40 by, 45
 early work on, 38
 in vivo
 mouse strain specificity in adaptive immune response to, 40–45
 interactions with innate and adaptive immunity, 40–48
 macrophage expression of TLR2 and TLR4 in response to, 44–45
 regulation of B7–1 and B7–2 induced by mediated through Toll-like receptors, 46
 role in disease induced by M. arthritidis, 48–50
 selection of TLR-triggered cytokine profiles models for, 48, 49
 signaling through Toll-like receptors with MHC II as coreceptor, 46–48
 structural properties of and class II MHC interaction, 38–39
 T-cell receptor molecules interaction with, 39–40
 to study genetic susceptibility to disease, 185–186
 zinc and, 126, 127
Mycoplasma arthritidis-injected mice
 inducible cytokine profiles in cells of treatment with anti-B7–1 antibody, 46, 47
 inducible cytokines from, 40–41, 42–43
 serum cytokines induced in, 41, 43
Mycoplasma arthritidis mitogen. See Mycoplasma arthritidis-derived superantigen
Mycoplasmas, 37–38
Necrotizing fasciitis
 streptococcal toxic shock syndrome and, 209
Neonatal toxic shock syndrome-like exanthematous disease
 and adult TSS
 expansion of V2+ T cells in, 81, 82
 and toxic shock syndrome
 activation of TSST-1–reactive T cells in, Color Plate 2
 general description of, 81–83
Nervous system disorders
 streptococcal superantigens and, 28–29
Neuromuscular diseases
 superantigens and, 180–181
Neuropathology
 superantigen-mediated experimental models of, 169–182
Oligoclonal immunoglobulin synthesis
 in central nervous system superantigens and, 175–178
Osmotic pump implantation
 in experimental toxic shock syndrome and Y. pseudotuberculosis infection, 81, 83
Penicillin
in toxic shock syndrome, 204–205
Pentoxyfylline, 239
Peptide antagonists
broad-spectrum
of superantigen toxins, 217–227
Peptide antigen
and superantigen
presentation differences, 246–247, Color Plate 16
Peptides
and zinc dependence
in superantigen MHC class II interaction, 103–120
antagonist
as novel superantigen domain, 223, Color Plates 13 and 14
superantigen antagonist
blocking superantigen toxins, 218
effective in vivo, 218–219
in protection of mice from lethal shock, 220
superantigen mimetic
development of protective antibodies and, 224–225
Peripheral blood mononuclear cells
human
to study superantigens, 231–233
Plaque psoriasis
chronic, 150–151
Protein A
bacterial cell wall-expressed, 162
Protein therapeutics
structure-based design of, 246
Proteins
chimeric. See Chimeras
Psoriasis
animal models of, 148
chronic plaque, 150–151
experimental, 162
genetic predisposition to, 147
guttate, 148–150
immune mediation of, 147
infections triggering, 148
pathogenesis of, 147–148
superantigens in
potential role of, 151
Pyrogenic exotoxins
from group A streptococci, 3–4
Rabies virus superantigens, 62
Receptor mimics
chimeric. See Chimeras
Rheumatic fever
acute, 14
streptococcal superantigens and, 28
Scarlet fever
staphylococcal, 145
Septic arthritis, 162
Shock
in superantigen-based disease, 245
lethal
protection and rescue of mice from, 220–221
SEB-induced
small nonpeptide therapeutics for, 238
staphylococcal exotoxin-induced
treatment of, 236–237
Signal transduction
and immune activation, 231
inhibitors of, 237–238
trimeric complex for, 130
Skin
antigen-presenting cells of
effects of superantigens on, 141
pathophysiology of superantigens on, 139–143
surfaces of
superantigen interaction at
causing human diseases, 29–30
T cells migrating to
effects of superantigens on, 141–142
Skin disease
streptococcal superantigens in, 147–151
superantigen-mediated
immunologic features of, 140
superantigens in, 139–156
Skin infections
Staphylococcus aureus and, 28
Skin rashes
in acute and systemic Y. pseudotuberculosis
infection, 84–85
in systemic illnesses
superantigens and, 143
Splenocytes
activated
amplifying superantigen encephalitis, 171–173, 174
Staphylococcal enterotoxin A, 93
Staphylococcal enterotoxin-like toxins
binding of, 126
Staphylococcal enterotoxins, 104, 105, 121, 229
as model toxins for chimeric receptor mimics, 249
food poisoning and, 27–28
in autoimmune disorders, 190
SEA, 217–219
SEB, 217–219
acute lung injury caused by, 231
animal models of, 233–234
antagonist domain in, 223–224, Color Plate 15
as accessible to ligands, 223–224, Color Plate 15
human susceptibility to, 233
immunoglobulins against, 221, 222
in vivo testing of, 233
transcytosing of, 233
Staphylococcal food poisoning
superantigens and, 27–28
Staphylococcal protein A, 160
Staphylococcal scalded skin syndrome, 145–146
Staphylococcal scarlatiniform eruption, 145–146
Staphylococcal scarlet fever, 145
Staphylococcal superantigen-like proteins, 93
allelic variations in, 96
Staphylococcal superantigens
and MHC class II molecules, 229
and skin rashes, 143
and streptococcal superantigens
update on, 21–36
binding to host cells, 230
division into subfamilies, 121–122
family tree of, 107
human diseases caused by, 235–236
in atopic dermatitis, 152
production of, 104
structure of, 247, Color Plate 17, 93
surface representation of, 122–124, Color Plate 11
toxic shock syndrome and, 199
Staphylococcus aureus, 103
bacterial infections and, 143
exotoxins produced by, 247
menstrual toxic shock syndrome and, 29–30
molecular structures of toxins from, 224
skin infections and, 28
toxic shock syndrome caused by, 197–198
virulence factors of, 200–201
Staphylococcus aureus infection
methicillin-resistant, 217
Streptococcal infection
murine models in study of predisposing genetic factors, 186–187
Streptococcal mitogenic exotoxin, 121
Streptococcal pyogenic exotoxins, 121, 217–218
Streptococcal superantigen genes, 5–6
regulation of, 7–8
variation in, 6
Streptococcal superantigen SMEZ-2, 94–95, Color Plate 3
Streptococcal superantigens, 3–20, 121
and staphylococcal superantigens
update on, 21–36
biochemical properties of, 9–10
cell receptor binding of, 10–11
cytokine induction by, 12
dimer-formation of, 10
division into subfamilies, 121–122
family tree of, 107
functional properties of, 7
identification by genome scanning, 5
in skin disease, 147–151
production of, 104
pyrogenicity of
and synergy with endotoxins, 11
structure of, 93
surface representation of, 122–124, Color Plate 11
toxic shock syndrome and, 199–202
Vβ specificity of, 6–7
Streptococcal toxic shock syndrome. See Toxic shock syndrome, streptococcal
Streptococci
Group A
pyogenic exotoxins from, 3–4
Streptococcus dysgalactiae-derived mitogen, 111
Streptococcus pyogenes, 103
exotoxins produced by, 247
molecular structures of toxins from, 224
smeZ family superantigens from, 224
toxic shock syndrome caused by, 198–199
virulence factors of, 200–201
Superantigen-chimera complexes, 250–251, Color Plate 18
Superantigen fold, 94–96, Color Plate 3
allelic variations in sequence decorate, 96
Superantigen toxins
broad-spectrum peptide antagonists of, 217–227
Superantigens
absorption and binding of, 103
activation of T cells by, 218
diseases caused by, 103
and MHC class II complexes, 247–248
comparison of, Color Plate 8
and neuromuscular diseases, 180–181
and superantigen-like proteins
OB-fold domain of, 95
architecture of, 93–102
as term applied to exotoxins, 21
association with human disease, 25–29
B-cell, 23
bacteria producing, 103
bacterial
structure of, 104, 105
two domains of, 122
zinc-binding, 113–114
binding to MHC class II molecules, 124–125
Index 261

binding to MHC-II and TCR
variations on, 97–100
binding to T-cell receptor, 127–129, Color Plate 11
C-terminal β-grasp domain of, 95–96
categorization of, 24–25
countermeasures against, 245–254
definition of, 22–24
description of, 245–254
diseases mediated by. See Diseases, superantigen-mediated
downregulation of production of
to prevent disease, 163
formation of, 124, Color Plate 12
four major groups of, 104
from gram-negative bacteria
and disease caused by, 77–89
from various streptococci, 8–9
functions of, 93, 245–254
structure of
and diversity of, 121–135
zinc in, 124–125, Color Plate 11, 122, 123
host-derived
murine leukemia virus and, 61
human disease caused by, 25–26
interaction at mucosal and skin surfaces in, 29–30
human diseases based on, 245
human endogenous retrovirus, 63
human endogenous retrovirus-K18 Env,
64–66
human endogenous retrovirus-W Env protein,
63–64
human immunodeficiency virus-1, 63
in complex with T-cell receptors, 247–248
in skin disease, 139–156
infections mediated by
prevention and therapy of, 246
interaction with MHC class II molecules, 104–109, Color Plates 8 and 10
and antigenic peptide interactions, 112–113, Color Plates 8 and 9
multiple modes of, 124, Color Plate 12
T-cell receptor and, 114, Color Plate 10
interaction with Vβ-TCRs, 25
lethality of
D-galactosamine-sensitized mouse as model for studying, 220
mechanism of stimulation of, 21–22
microbial characteristics of, 160
immunological response to, 183
murine mammary tumor virus, 62
neutralization of
to prevent disease, 163–164
oligomerization of, 99–100
organisms encoding, 60
pathophysiology of
on skin, 139–143
potential role in psoriasis, 151
prevention of interaction of, 165
prototypes, 247
pyrogenic family of, 160
pyrogenic toxin
categorization of, 24
rabies virus, 62
resistance to
antagonist-mediated acquisition of, 221, 222, 224
role in human autoimmune disease, 51–52
sequence alignment of, 104, 106
specific tolerance to
induction of, 165
staphylococcal. See Staphylococcal superantigens
streptococcal. See Streptococcal superantigens
structural features and idiosyncrasies of, 130–132
structure of, 247, Color Plate 17
function of
and diversity of, 121–135
T-cell, 23–24
defining properties of, 23
use to benefit host, 165–166
versus conventional antigens, 246–247, Color Plate 16
viral
endogenous weak
affinity model for, 66–68
exogenous and endogenous
Vβ specificity of, 60–61
in mice and humans, 59–75
viral pathogens associated with, 60–61
T-cell and B-cell superantigens
joint action of
in multiple sclerosis, 175–178
multiple sclerosis and, 180
T-cell lymphomas
cutaneous, 147
T-cell receptor molecules
M. arthritidis-derived superantigen interaction with, 39–40
T-cell receptors, 59
and MHC class II molecule interactions, 183
β-chain complexes
superantigen binding to, 97, 98, Color Plate 5
blocking of, 165
interaction and activation of
superantigen interaction with MHC II molecules and, 114, Color Plate 10
structure of, 248, Color Plate 16
superantigen binding to, 127–129, Color Plate 11
variations on, 97–100
superantigens in complex with, 247–248
toxic shock syndrome toxin-1 binding, 128–129
T-cell superantigen
 intracerebral
 effects of, 170–171, 172–173
T cells
 activation by superantigens, 183, 218
 apoptosis of
during superantigen exposure, 164–165
migrating to skin
 effects of superantigens on, 141–142
 suppressor
 in superantigen encephalitis, 173–175
Toll-like receptors
 and *M. arthritidis* interaction
 regulation of TLR2 and IL-12p40 by, 45
 interaction of superantigens with, 48
M. arthritidis-induced regulation of B7–1 and B7–2 mediated through, 46
susceptibility to disease and, 52
Toxic shock syndrome, 143, 245
 and neonatal toxic shock-like exanthematous disease
 activation of TSST-1–reactive T cells in, Color Plate 2
 expansion of V2+ T cells in, 81, 82
 and staphylococcal superantigens, 199, 235–236
 and streptococcal superantigens, 199–202, 235–236
 as mediated by superantigens, 197
 caused by *Staphylococcus aureus*, 197–198
 caused by *Streptococcus pyogenes*, 198–199
 clinical and epidemiological aspects of, 197–199
 clinical definition of, 22
 conventional therapy of, 204–205
 general description of, 81–83
 in humans and animal models
 superantigens causing, 25–26
 intravenous immunoglobulin therapy in, 197–215
 lack of protective humoral immunity in, 204
 small nonpeptide inhibitors of, 229–244
streptococcal
 and effects of streptococcal superantigens on primates, 13
 and necrotizing fasciitis, 209
 consequence of superantigen intoxication in clinical studies of, 13–14
 epidemiological studies of, 13–14
 influence of host genetic background on, 14
 superantigen-induced cells and mediators participating in, 231, 232
Toxic shock syndrome-like exanthematous disease
 neonatal
 and adult TSS
 expansion of V2+ T cells in, 81, 82
 and toxic shock syndrome
 activation of TSST-1–reactive T cells in, Color Plate 2
 general description of, 81–83
Toxic shock syndrome toxin-1, 105, 121, 199, 229
cartoon model of, Color Plate 1
mucosal penetration by, 29–30
structural differences of, 131
superantigen domain of, 223
T-cell receptor binding site of, 128–129
Tumor necrosis factor alpha as mediator of shock, 229, 235
Vaginal mucosa
 composition of, 29
Viral disease
 multiple sclerosis as, 179–180
Viral pathogens
 associated with superantigens, 60–61
Viral superantigen(s)
 endogenous
 weak
 affinity model for, 66–68
 exogenous and endogenous
 Vβ specificity of, 60, 61
 in mice and humans, 59–75
Working Group on Severe Streptococcal Infections, 198
Yersinia pseudotuberculosis-derived mitogen a amino acid sequences of, 78
and mode of T-cell response-biased activation of T-cell fraction, 80–81
reactive T cells
 T-cell receptor Vβ repertoires of, 80
 T-cell-dependent toxic effects of, 79–80
 tertiary structure of, 79
Yersinia pseudotuberculosis-derived mitogen b, 77–79, 122
production by *Y. pseudotuberculosis* strains, 84
T-cell activation by, 79–81
Yersinia pseudotuberculosis infection
 acute and systemic
 skin rashes in, 84–85
systemic
general description of, 83–85
pathogenic mechanism of, 86–87
T-cell receptor V expression in, 86

Zinc
and *M. arthritidis*-derived superantigen, 126,
127
and peptide dependence

in superantigen MHC class II interaction, 103–120
for interaction of superantigens and MHC molecules, 109–111
in superantigen function, 125–127, Color Plate 11, 122, 123
interaction of β-chain MHC class II molecules dependence on, 111–112
site of, 111, Color Plate 9