DEDICATION

We dedicate this volume to the memory of our colleague Ira Herskowitz, whose lifetime effort exemplified what was best in the Phage Group. Ira’s work with Ethan Signer on late gene expression in λ (see reference 11 in the Preface) presaged the recent work discussed in Chapter 7 on the mechanism of Shiga toxin expression from λ-related prophages. His work with David Botstein in constructing hybrid phages between coliphage λ and the Salmonella phage P22 (see reference 3 in the Preface) showed that phages specific for different species under the right conditions can recombine, adding to the early experimental evidence leading to the ideas discussed in (Continues)
Chapter 4 regarding phage evolution. Although Ira's career blossomed with his seminal contributions to the yeast field, he never lost his love for \(\lambda \). Even in the midst of making that career change, he wrote an insightful review on the subject of the \(\lambda \) lysis-lysogeny decision in Annual Review of Genetics (see reference 10 in the Preface) and even later joined with colleagues from two other laboratories to write a definitive review on \(\lambda \)-host interactions (see reference 7 in the Preface). More than two decades later, the lysis-lysogeny review is still regarded by the field as a masterful and useful presentation of the topic. Ira's wisdom and enthusiasm are missed.
CONTENTS

Contributors xi
Preface xv

I. SETTING THE STAGE:
GENERAL INFORMATION 1

1. History of Phage Research and Phage Therapy
 William C. Summers
 3

2. Phage Biology
 Richard Calendar and Ross Inman
 18

3. Lysogeny, Prophage Induction, and Lysogenic Conversion
 John W. Little
 37

4. Bacteriophage Evolution and the Role of Phages
 in Host Evolution
 Roger W. Hendrix
 55

5. Phage Ecology and Bacterial Pathogenesis
 Mya Breitbart, Forest Rohwer, and Stephen T. Abedon
 66

6. Phage Lysis
 Ry Young
 92
II. THE CORE OF THE ISSUE: PHAGE CONTRIBUTION TO VIRULENCE 129

7. Lambdoid Phages and Shiga Toxin
 Jessica S. Tyler, Jonathan Livny, and David I. Friedman 131

8. Prophage Arsenal of Salmonella enterica Serovar Typhimurium
 Lionello Bossi and Nara Figueroa-Bossi 165

9. Virulence-Linked Bacteriophages of Pathogenic Vibrios
 Brigid M. Davis and Matthew K. Waldor 187

10. Bordetella Phages
 A. Hodes, S. Doulatov, and J. F. Miller 206

11. Mycoplasma Phages
 Kevin Dybvig, Anh-Hue Tu, and Brenda Clapper 223

12. Mycobacteriophages: Pathogenesis and Applications
 Graham F. Hatfull 238

13. Phages and Bacterial Vaginosis
 Lin Tao, Sylvia I. Pavlova, and Ali O. Kiliç 256

14. Bacteriophages Encoding Botulinum and Diphtheria Toxins
 Eric A. Johnson 280

15. Staphylococcal Phages
 Avery M. Matthews and Richard P. Novick 297

16. Contribution of Phages to Group A Streptococcus Genetic Diversity and Pathogenesis
 David J. Banks, Stephen B. Beres, and James M. Musser 319

17. Pneumococcal Phages
 Pedro García, José L. García, Rubens López, and Ernesto García 335

18. Listeria Phages: Basics and Applications
 Martin J. Loessner and Catherine E. D. Rees 362
III.

UTILITY OF PHAGES: DIRECT APPLICATION TO TECHNOLOGY 381

19. Recombineering in Prokaryotes
 Lynn C. Thomason, Richard S. Myers, Amos Oppenheim, Nina Costantino, James A. Sawitzke, Simanti Datta, Mikhail Bubnenko, and Donald L. Court
 383

20. Polysaccharide-Degrading Phages
 Dean Scholl and Carl Merril
 400

21. Phage Display: a Molecular Fashion Show
 Amita Gupta, Amos B. Oppenheim, and Vijay K. Chaudhary
 415

22. Use of Phages in Therapy and Bacterial Detection
 Michael McKinstry and Rotem Edgar
 430

Index 441
CONTRIBUTORS

Stephen T. Abedon
Department of Microbiology, The Ohio State University, Mansfield, OH 44906

David J. Banks
Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840

Stephen B. Beres
Center for Human Bacterial Pathogenesis Research, Department of Pathology, Baylor College of Medicine, Houston, TX 77030

Lionello Bossi
Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France

Mya Breitbart
Department of Biology, San Diego State University, San Diego, CA 92182

Mikhail Bubunenko
Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, Frederick, MD 21702–1225

Richard Calendar
Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720–3202

Vijay K. Chaudhary
Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India

Brenda Clapper
Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
CONTRIBUTORS

Nina Costantino
Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-
Frederick, Frederick, MD 21702–1225

Donald L. Court
Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-
Frederick, Frederick, MD 21702–1225

Simanti Datta
Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-
Frederick, Frederick, MD 21702–1225

Brigid M. Davis
Department of Microbiology, Tufts University School of Medicine and HHMI,
Boston, MA 02111

S. Doulatov
Department of Microbiology, Immunology and Molecular Genetics, David Geffen School
of Medicine at UCLA and Molecular Biology Institute, University of California at
Los Angeles, Los Angeles, CA 90095

Kevin Dybvig
Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294

Rotem Edgar
National Cancer Institute, National Institute of Mental Health, National Institutes of
Health, Bethesda, MD 20892

Nara Figueroa-Bossi
Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France

David I. Friedman
Department of Microbiology and Immunology, University of Michigan,
Ann Arbor, MI 48109

Ernesto García
Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC,
28040 Madrid, Spain

José L. García
Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC,
28040 Madrid, Spain

Pedro García
Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC,
28040 Madrid, Spain

Amita Gupta
Department of Biochemistry, University of Delhi South Campus,
New Delhi 110021, India

Graham F. Hatfull
Pittsburgh Bacteriophage Institute and Department of Biological Sciences,
University of Pittsburgh, Pittsburgh, PA 15260

Roger W. Hendrix
Pittsburgh Bacteriophage Institute and Department of Biological Sciences,
University of Pittsburgh, Pittsburgh, PA 15260
CONTRIBUTORS

A. Hodes
Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095

Ross Inman
Institute of Molecular Virology, University of Wisconsin, Madison, WI 53706

Eric A. Johnson
Departments of Food Microbiology and Toxicology and Bacteriology, University of Wisconsin, Madison, WI 53706

Ali O. Kiliç
Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612

John W. Little
Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721

Jonathan Livny
Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI 48109

Rubens López
Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain

Martin J. Loessner
Institute of Food Science and Nutrition, Swiss Federal Institute of Technology, ETH Center, CH-8092 Zurich, Switzerland

Avery M. Matthews
Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY 10016

Michael McKinstry
National Cancer Institute, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892

Carl Merril
National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892

Jeff F. Miller
Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095

James M. Musser
Center for Human Bacterial Pathogenesis Research, Department of Pathology, Baylor College of Medicine, Houston, TX 77030

Richard S. Myers
Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101–6129
CONTRIBUTORS

Richard P. Novick
Skrball Institute of Biomolecular Medicine, New York University Medical School,
New York, NY 10016

Amos B. Oppenheim
Department of Molecular Genetics and Biotechnology, The Hebrew University—Hadassah
Medical School, Jerusalem, Israel 91120 and Laboratory of Molecular Biology, National
Cancer Institute, Bethesda, MD 20892

Sylvia I. Pavlova
Department of Oral Biology, College of Dentistry, University of Illinois at Chicago,
Chicago, IL 60612

Catherine E. D. Rees
School of Biosciences, University of Nottingham, Sutton Bonington Campus,
Loughborough, Leicestershire LE12 5RD, United Kingdom

Forest Rohwer
Department of Biology, San Diego State University, San Diego, CA 92182

James A. Sawitzke
Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-
Frederick, Frederick, MD 21702–1225

Dean Scholl
National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892

William C. Summers
Department of Therapeutic Radiology, Yale University, New Haven, CT 06520–8114

Lin Tao
Department of Oral Biology, College of Dentistry, University of Illinois at Chicago,
Chicago, IL 60612

Lynn C. Thomason
Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-
Frederick, Frederick, MD 21702–1225

Anh-Hue Tu
Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294

Jessica S. Tyler
Department of Microbiology and Immunology, University of Michigan,
Ann Arbor, MI 48109

Matthew K. Waldor
Department of Microbiology, Tufts University School of Medicine and HHMI,
Boston, MA 02111

Ry Young
Department of Biochemistry and Biophysics, Texas A&M University,
College Station, TX 77843–2128
A skeptical reader may well ask, “Why publish a volume dedicated to the subject of phage and bacterial pathogenesis at this time?” After all, the idea that phage genomes include genes encoding virulence factors is certainly not new. Over a half a century has passed since Freeman reported that nontoxicogenic *Corynebacterium diphtheriae* could be converted to a toxigenic state through phage infection and lysogeny (6). This suggested that a phage encodes and/or controls expression of the toxin gene. The former was proven to be the correct interpretation more than 30 years ago when Uchida et al. (16) provided the genetic and physiological proof that a phage indeed carries the gene encoding diphtheria toxin. Moreover, the idea of using phages as antibacterial agents goes back to a discoverer of phage. As pointed out by Summers in Chapter 1, Félix d’Herelle, the codiscoverer of phage, was an early advocate of the use of phage to combat bacterial infections; he even conducted phage therapy trials on humans. What then has occurred to warrant the publication of this book on phage and bacterial pathogenesis?

A number of factors have aligned themselves to make this, in our opinion, a propitious time to assemble such a monograph. First, the results of the sequencing of a large number of the genomes from bacterial pathogens made it clear that prophages make up a relatively large component of these genomes (see chapters 7, 8, and 16). For example, most of the differences between the genomes of enterohemorrhagic *Escherichia coli* (EHEC) and *E. coli* K-12 are accounted for by the 18 prophage-like elements found in the EHEC genome (see chapter 7). Comparative analyses of the genomes of several group A streptococcus (GAS) strains revealed that most of the variation in gene content among different GAS strains is accounted for by differences in their phage contents (see chapter 16). Moreover, sequence analysis of the genomes of a number of pathogens makes it quite clear that the presence of virulence genes on phage genomes is far more common than was previously thought. These studies show that many genes encoding known virulence factors and open reading frames
homologous to genes that encode virulence factors are carried within prophages. Second, the extensive body of knowledge collected over the years on phage biology, particularly at the molecular level, was productively applied to phages carrying virulence genes (see chapters 7, 8, and 9). Third, there has been recent heightened interest in how the ecological niche influences the interaction between phages and bacteria (see chapter 5). One needs only to look at the enthusiastic response to the recent ASM-sponsored meeting on the “New Phage Biology” (2) that attracted over 350 participants from 24 countries for confirmation of the resurgence of interest in phage biology and related technologies.

In preparing this volume, we have tried to bring together the new findings on phage in pathogenesis with sufficient background information on important aspects of phage biology that directly impinge on the role of phage in pathogenesis. The book is divided into three sections. The chapters in Section I present overviews of the phage world that are designed to provide updates of relevant information for those with more than a cursory knowledge of phage lore and sufficient background for the non-cognoscenti to assist in understanding the chapters focusing on specific pathogens and their phages. The chapters in Section II explore the role of phages in the biology and pathogenicity of specific infectious bacteria. It is these chapters that obviously provide the rationale for initiating this endeavor. The chapters in Section III present new information regarding applications of phage biology in biotechnology as well as a critical assessment of therapeutic and diagnostic use of phage. We hope this last section provides information of practical value for the research efforts of the reader.

The editors feel privileged to have attracted such a group of renowned experts to write chapters and thank them for their cooperation in getting the volume to press in a timely manner. We would also like to remind the reader of the spirit of cooperation that imbued the phage group, a spirit that was institutionalized by the annual Cold Spring Harbor phage meeting and the Cold Spring Harbor Phage Course. Through the inspired efforts of that group, work on phage contributed significantly over the last 60 years to fundamental advances in biology. It is our intention for this volume to become a worthy successor to previous noteworthy books on phage. These include the classic earlier works of Mark Adams (1) and Gunther Stent (14) that served as primers to the phage world as well as the seven volumes dedicated specifically to single-stranded DNA phages (5), RNA phages (17), λ (8, 9), T4 (12, 13), and Mu (15). The more encompassing two-volume set edited by Richard Calendar (4), soon to be updated, covers information on most of the intensely studied phages.

REFERENCES

INDEX

Note: CP indicates a page on which a Color Plate concerning the subject is cited.

A
A118, 368–370
A511, 370–371
Aβ lysis protein, 118–119
Acinetobacter, 119
Adenylate kinase, enzyme, 437, 438
American Phage Group, 9
“Amurin” protein inhibitors, 116
microviruses and, 116
Antibiotic resistance, 354, 430
staphylococcal bacteriophages and, 307–309
Antibiotic treatment, in Shiga toxin-producing E. coli, 143–144
Antiholins, 101–102
inhibitory form of, 101
Antimicrobial agents, new, 430
Antiphagocytic behavior, M-like, 325–326
Arthritis, mycoplasmas and, 226

B
Bacillus anthracis, 354
Bacillus phage SPP1 Chu/gp35, 394
Bacillus subtilis, 343, 369, 393
BACTEC 460 system, 436, 437
Bacteria, gram-negative, phages of, lysis systems of, 112
gram-positive, phages infecting, lysins from, 349, 350–352
phages of, lysis systems of, 112–113
pathogenesis of, ecological impact of phages and, 66–73
phage propagation and, 73–77
pathogenic, and impact of phages on bacteria, 73
phage impact on, pathogenic bacteria and, 73
phage-infected, and temperate phage-encoded bacterial virulence factors, 74
phage-susceptible, absence of, 69
Bacterial artificial chromosomes, 383
Bacterial autolysis, 3
Bacterial detection, and therapy, phages in, 430–440
Bacterial detection tools, phages as, 436–437
Bacterial genome, phages and, 136–137
Bacterial pathogenesis, ecology and, 66–91
Bacterial pathogens, formation of, in extraorganismal environment, 82
Bacterial pools, and phage pools, and interactions, 81
Bacterial predation, and community diversification by, 72
Bacterial prophages, VF genes associated with, 71
Bacterial resistance, spread of, 430, 431
Bacterial vaginosis. See Vaginosis, bacterial
Bacterial virulence, life history strategies and, 69
Bacterial virulence factors, temperate phage-encoded, phage-infected bacteria and, 74
Bacteriocins, produced by phage tail genes, 62
Bacteriophage lambda system, for peptides and protein display, 422–423
Bacteriophages. See also specific types of phages
evolution of toxigenicity, 290–291
functions of, 280
gene transfer by, 297–298
temperate, integration of, 344
Barbone, 6
Benzo[α]pyrene (BPDE), phage induction by, 268–270
Beta-Exo complex, 385–386, CP385
Beta-hemolysin, staphylococcal, 300–301
Beta-hemolysin-converting phages, 298–304
Biodisinfection, Listeria phages for, 372
Biology, 18–36
 evolutionary, 76–77
 history of, lysis in, 92–93
Bor, 151
Bordet, Jules, 5
Bordetella
 limited-host-range subspecies, 206
Bordetella avium, 206, 207
Bordetella bronchiseptica, 206, 207, 210
Bordetella parapertussis, 206
Bordetella pertussis, 206, 207, 210
Bordetella phage(s), 206–222
 coding sequences, 207, 209
 diversity-generating retroelements and, 217–220
 evolution of, 216–217
 historical note on, 208–211
 tropism switching by, 207, 210, 211
 variability-generating cassette and, 211–216
Botulinum neurotoxin (BoNT), 280
 and pseudolysogeny, in C. botulinum C and D, 285–287
C, genes for, 289
D, genes for, 289
Botulinum toxin, bacteriophages encoding, 280–296
Boyd, J. S. K., 166
BPP-1, 207, 208
wild type, 213

C
C1 endolysin, 113–114
C1 phage, 113
Campbell, Alan, 12
Catalase genes, 152
Caudovirales, 364, 370
Cell inhibiting factor (Cif), 151
Cell wall/peptidoglycan hydrolase, 349
Cholera, 7, 207
V. cholerae, 187–188
Chromosome replacement, with dsDNA, 386–387, CP387
CI, as critical regulator, 43
gene regulatory protein, 46
lambda, cleavage of, 49–50
Cif (cell inhibiting factor), 151
Cigarette chemicals, phage induction by, 266–270
CII, activator protein, 43–44
CII protein, 139
Citrobacter freundii, 135
Clostridia, neurotoxigenic, properties of, 286
Clostridium butyricum, 280, 286, 287
 bacteriophages and toxins produced by, 284
 types C and D, bacteriophages and toxigenicity in, 288–290
 BoNT and pseudolysogeny in, 284–287
Clostridium botulinum ATCC 3502, 286
Clostridium butyricum, 289, 290
Clostridium novyi, 288
Clostridium perfringens, 287
Coliphages, specific for lipopolysaccharide O antigens, 402
Conversion(s), 70
 and pathogens in environment, 80–84
Cornebacterium diphtheriae, 281, 282, 283, 284–285
 and diphtheria toxin, 280–282
Corynebacterium, and diphtheria toxin, 282–285
Cp-1, lytic phage with DNA covalently linked to protein, 341–342, 347
CP-B2F1 prophage, 149
CP-933V, 148
Cpl-I lysozyme, 348–349, 355
CTX prophage, and RS1 DNA, in isolates of V. cholerae, 192, 193
CTXΦ, infection by, 190–191
 integration by, 191–194
 structure and evolution of, 188–190
 variants of, 189–190
CTXΦ-encoded toxins, additional, 198–199
CTXΦ hosts, alternate, 198
CTXΦ phage, alternate transfer pathways for, 198
 regulation of, 196–197
 replication by, 194–195
 secretion of, 195–196
 toxic regulation of, 197–198

D
Darwinian model of evolution, two-step, of phage genomes, 57
 Definition, 66
 Delbrück, Max, 9–10, 11, 12
Diphtheria, 280
 in animals, 281
 protection against, 281
 symptoms of, diphtheria toxin and, 282
Diphtheria toxin, bacteriophages encoding, 280–296
 C. diphtheriae and, 280–282
corynebacterial and, 282–285
discovery of, 281
Diversity, characteristics of, 78–79
 global, 79–80
 uncultured, electron microscopy, in, 78
DNA binding proteins, 421
DNA, extra, in phage genomes, 71
 headful packaging, 33–34
 phage, infection and, 71
 phage-mediated inter- and intrageneric horizontal transfer of, 328
 retrieval of, cloning of plasmid by, 387–388, CP388
 Staphylococcus aureus, M13 library of, 419
 substrate, introduction into bacterial host, 395
 viral, packaging into mature virions, 41
DNA methylase, 153
DNases, GAS-encoded, 323
Double-stranded DNA phages, 22
Dp-1 gene products, functions for, 340
Dp-1 genome, 337–341
INDEX

Drosophila, 232

dsDNA phages, evolution of, horizontal gene exchange and, 408
dsDNA, replacement of genes with, 386–387, CP386, CP387
targeting with, accuracy of, 389–391
dsDNA tailed phages, lysis in, 103–114
dsDNA viruses, 393

ssDNA, recombineering with, 388–389

ssDNA complexes, purified, 388–389

E

E lysin protein, 116–118

Ecological impact, pathogenesis of bacteria and, 66–73

Ecology, and bacterial pathogenesis, 66–91

Ecosystems, effects of phages on, 77

Ehly1, 153

Ehly2, 153

EJ-1, temperate phage from atypical _Pneumococcus_, 343–344, 346

Ejh, 346

Ejl, 346

Electron microscopy, in uncultured diversity of phages, 78

Electroporation, to introduce substrate DNA, 395

Ellis, Emory L., 9, 10

Endolysins, as “enzybiotics,” 113–114

Listeria, 366, 372–375

SAR domains and, 106, 107

secretory, and role of holins, 103

sequence release (SAR), activation of, 106, 107

and signal arrest, P1 phage and, 105–108

sites of cleavage of, peptidoglycan structure and, 94

structure of, 102–103

Endopeptidases, 352

Enteroctobacter agglomerans, 410

Enteroctobacter cloacae, 135

Enteroctosus faecium, vancomycin-resistant, 433, 434

Enteroheamolysin, 153

plasmid-encoded, 153

Enteroheamorhagic _E. coli_, 132, 135

EDL933 strain, 148

virulence determinants, 132–133

Enteroxopathogenic _E. coli_, 132

TcA protein, 153

Environment and bacterial pathogenesis, 66–73

archive (SAR), activation of, 106, 107

and signal arrest, P1 phage and, 105–108

sites of cleavage of, peptidoglycan structure and, 94

structure of, 102–103

Endopeptidases, 352

Enteroctobacter agglomerans, 410

Enteroctobacter cloacae, 135

Enteroctosus faecium, vancomycin-resistant, 433, 434

Enteroheamolysin, 153

plasmid-encoded, 153

Enteroheamorhagic _E. coli_, 132, 135

EDL933 strain, 148

virulence determinants, 132–133

Enteroxopathogenic _E. coli_, 132

TcA protein, 153

Environmental abundance and diversity, 77–80

Environment(s), interactions with, 66–68

pathogens in, phage conversion and, 80–84

VF-encoding phages in, 80

“Enzybiotics,” endolysins as, 113–114

Enzyme adenylate kinase, 437, 438

Enzymes, depolymerizing, genetic fusion to tail protein, 408

Epos mutants, 116

Escherichia coli, 8, 9, 11, 12, 18, 22, 26, 27, 29, 30, 51,

59, 74, 108, 112–113, 118, 119, 150, 152, 153,

243, 344, 345, 347, 365, 370, 372, 373, 375,

383, 384, 389, 392–393, 394, 395, 400, 401–

402, 404, 406, 409, 410, 417, 419, 432, 435,

436–437

chromosome of, DNA lambda phage and, 29–30

enterohemorrhagic, 132, 135

EDL933 strain, 148

virulence determinants, 132–133

enteropathogenic, 132

TcA protein, 153

Shiga toxin-producing. See _Shiga toxin-producing_

E. coli

EspFu, 151

Eukaryotic display systems, 417

Exfoliative biology, 76–77

Exfoliative toxin (ETA), 298

Exfoliative toxin (ETA) phages, 306–307

Exonuclease(s), 5’ to 3’ dsDNA-dependent, 385

in bacteria, 393

Exotoxin superantigens, pyrogenic, 302–303

F

Fels-1 phage, 174–175

Fels-2 phage, 175–176

Fels-2 prophage, 175, CP175

Fels phages, 174–176

Filamentous bacteriophage M13, 415 display system, 417–419

approach for improving, 418–419

Filamentous phages, 18–22

DNA of, replication of, 18, 21

in _V. cholerae_, 199

infection cycle of, 20

life cycle of, 18, 20

Vibrio cholerae and, 22

**Fluorescently labeled phages, 436–437**

Foreign genes, expression of, 38–41

by prophage induction, 51–52

orgins of, 41

‘Fromage phage,’ 112

Functions, 66

G

“Gap-repair” reaction, 384

Gardnerella-associated vaginosis. See _Vaginosis, bacterial_

Gastrointestinal infections, phages for treatment of, 435

Gene expression systems, mycobacteriophages and, 250

Enterohemorrhagic _E. coli_, 132

Enteropathogenic _E. coli_, 132

Endolysins, as “enzybiotics,” 113–114
Gene transfer, by bacteriophages, 297–298
Genes, and lom, 152
“foreign.” See Foreign genes
lysis. See Lysis genes
Lyz, 106, 107
of phage genomes, and phage fitness, 72
phage tail, bacteriocins produced by, 62
replacement of, phasmid-mediated, 245
replacement of with dsDNA, 386–387, CP386, CP387
Rz and Rz1, 104–105
SOD, 152–153
stx, and defective (“cryptic”) prophages, 147–149
lysis genes, and phage, 154
tRNA, 152
virulence factors, associated with bacterial
phage, 59–60
extra DNA in, 71
genes carried by prophages as, 62
genes of, and phage fitness, 72
two-step Darwinian model of evolution of, 57
Genetic map, of lambdoid phages, 137, 138
Genetic transduction, 70
Genome sequencing, 79
Genomes, bacterial, phages and, 136–137
lambdoid, 153–154
phage, 59–60
extra DNA in, 71
genes carried by prophages as, 62
genes of, and phage fitness, 72
two-step Darwinian model of evolution of, 57
Genomics, phage, comparative, 309–310, 311
Gifsy-1 prophage, 171
Gifsy-2 prophage, 171–173, CP172
Gifsy-3 prophage, 173–174, CP173
Gifsy phages, attachment sites and occurrence of, 168, CP168, CP169
discovery of, 167–168, CP168
inducibility and immunity of, 168
regulatory and structural features of, 170, CP170
role in Salmonella pathogenicity, 170
Global diversity, 79–80
Glycerol ester hydrolase (GEH), 304, 305–306
Growth parameters, propagation and selection acting on, 73–74
selection acting on, 74
H
Haemophilus influenzae type Ib conjugate vaccine, 335
Hemolytic-uremic syndrome, 132, 133, 135, 143, 144
d’Herelle, Félix, 3–7, 9, 10, 12, 250, 297
and early phage therapy, 430–432
Holin–antholin system, dual-start, 102
Holin–endolysin system, lysis and, 95
Holins, 96–101
accumulation in “death rafts,” 100
definition of, 96
functional characteristics of, 96–98
plasticity of, 98
secretory endolysins and, 103
transmembrane domains of, 96, 100–101
triggering of, 98–100
Horizontal transfer, phage–mediated, of Shiga toxin–producing E. coli, 135
Hosts, evolution of, role of phages in, 55–61, 61–63
microbial, phage survival outside of, 80
Human microbiota, formation of pathogens from, 82
Human pathogens, formation of, during association with nonhuman organisms, 82
Hyaluronan lyase, GAS and, 325
Hyaluronidase, phage-encoded, 325
I
Imm, 109
Inactivation, 69
Infection(s), gastrointestinal, phages for treatment of, 435
life cycles of phages during, 68
lytic, and phage conversion, 70
phage, propagation and selection acting on, 73–74
phage DNA and, 71
spiroplasma, 232
Integration-proficient vectors, 245–247
Integration vectors, Listeria phages and, 375
Interactions with environments, 66–68
Internalins, 362
K
K139, 200
K1-specific phages, 402–404
K1E endosialidase, 403
K1F endosialidase, 403
Klebsiella, polysaccharide-degrading phages and, 402
L
L lysis protein, 119
Lactobacilli, vaginal, evidence of, and transmission of, 271–275
factors inhibiting, 258
infection of, 260
phage analysis of, 258–263
phage infection of, 271
Lactobacillus, 258–261, 275
DNA fingerprinting of, 262
electron micrographs of, 261
lysogens among species of, 259, 260
protein profiles of, 259
Lactobacillus johnsonii, 343
Lactobacillus phages, analysis by agar-drop assay, 270
from sewage, 266, 267
Lactobacillus products, commercial, phage analysis of, 263–266
Lactococcus lactis, 375, 393
Lactococcus lactis phage, 346
Lambda Beta protein, 385
Lambda CI cleavage, 49–50
Lambda display system, 421–423
Lambda-displayed yeast genomic library, 422
Lambda Exo, 385
Lambda Gam protein, 386, 393
Lambda genome, organization and transcription patterns of, 40, 42
transcription of, \(P_L \) and \(P_R \), and, 137
Lambda phage, 22, 23, 61
absorption and injection of, 22–23
accessory genes \(bor \) and \(lom \), 151
antitermination of transcription in, 23, 24
cell lysis, 27
DNA, and chromosome of \(E. \) coli, 29–30
replication of, 25–26
gene organization and lytic pathway of, 42–43
gene regulatory circuitry of, 41–51
genetic map of, 24
lysis cassette of, 101
lysis genes and gene products of, 104–105
lytic genes of, 42
particle synthesis, 26
Lambda repressor, 43
Lambda transglycosylate, 104
Lambdoid genomes, 153–154
Lambdoid phages, accessory functions of, 150–152
and Shiga toxin, 131–164
cryptic, 384
genetic map of, 137, 138
in regulation of gene expression, 137–139
integration and excision of, 140
lysis of, 140
operators and repressors, 146
relevant features of, 137–141
replication of, 140
\(stx \)-carrying, relevant biology of, 141–146
Lederberg, Esther, 12
Leviviridae, 118, 119
Leviviruses, 118–119
LexA, 47, 49
Life cycles, during infection, 68
during release steps, 68–69
steps in, 68
Life history strategies, and bacterial virulence, 69
Line vaccine development, 425
Lipase-converting phages, 304
Lipid phage(s), 112
\(dsDNA \), 119, 120
in regulated cell lysis, 119
\(PRD1 \), 120, 121
Lipopoly saccharide O antigens, coliphages specific for, 402
Listeria bacteriophages, 363
Listeria cells, immobilized on plasmon resonance biochip, 366, 367
Listeria grayi, 363
Listeria innocua, 363
Listeria ivanovii, 363, 365
Listeria phage(s), 102, 362–379
A118, 368–370
A511, 370–371
applications of, 372–375
endolysins, 366, 372–375
for biodisinfection, 372
host range of, 364–365
lysozyme and, 367
lytic enzymes and, 372–375
multiplication and lysis of, 365–367
properties of, 364–368
PSA, 370
relationships of, 371–372
virion structure and composition of, 364
Listeria seeligeri, 363
Listeria welshimeri, 363
Listerious, 363
Locus of enterocyte effacement, 132
Lom, 151
Luciferase reporter mycobacteriophages, 250, 437
Luciferase reporter phage, 372, 373
Luria, Salvador, 11, 12, 13
Lwoff, Andre, 131, 155
LydA membrane protein, 105
LydB membrane protein, 105
Lyssins, phage. See Endolysins
Lysis, 92–127
and lysozyme terminology, 93, 94
first principles of, 95–96
foundations and fundamentals of, 92–103
holin-endolysin mode of, 122
in history of phage biology, 92–93
in phages lacking tails, 114–120
in tailed (\(dsDNA \) phages, 103–114
in tailless phages, 114–120
of lambdoid phages, 140
scope and caveats of, 92
single-gene lysis systems and, 96
timing of, holin gene and, 98
to maximize phage yield, 95
Lysis cassette, 346–349, CP347
Lysis gene(s), 112
\(E \), 116, 117
\(lydB \), 105
\(lyc \), 105
of lambda and lambdoid phages, 104–105
of lytic single-stranded phages, 114, 116
of P1, P2m, and T7 phages, 105
phage, and \(stx \) genes, 154
Lysis inhibition state, 109
Lysis-lysozyme decision, 43–44
Lysis protein, \(A_5 \), 118–119

L, 119
Lysis systems, in phages of gram-negative bacteria, 112
in phages of gram-positive bacteria, 112–113
Lysogen(s), engineered, 145
induction of, possible in vivo inducing agent, 147
Lysogenic conversion, 38–41
Lysogenic state, maintenance of, 44–47
role of O1 in, 46–47
Lysogeny, 280
prophage induction, and lysogenic conversion, 37–54
Lysozyme, terminology associated with, lysis and, 93, 94
Lytic enzymes, phage, evolution and, 349–354
major groups of, 349–352, 353
Lytic infections, and phage conversion, 70
Lyz gene, 106, 107
M
M13 filamentous bacteriophage, 415
display system, 417–419
approach for improving, 418–419
Macrolide resistance, GAS and, 324, CP324
MAV1, 227–228, 232
MAV1 DNA, structure of, and recombination with lost genome, 228–230
MAV1 genome, and Vir protein, 230
Methicillin, 430
Methylases, 345–346
Microbial cell surface displays, 417
Microbiota, human, formation of pathogens from, 82
Micrococcos lutens, 243
Microviridae, 116, 117, 118
Microviruses, and “amurin” protein inhibitors, 116
Mitogenic factors, 323
MM1, 347
temperate phage from multiresistant Pneumococcus, 342–343
Mollicutes, 223, 224
phages from, 224, 225, 228
Monocytes, and polymorphonuclear leukocytes, and Shiga toxin-producing E. coli, in intestinal lumen, 133
Morons, 59–60, 71
genesis carried by prophages as, 62
two-step model of Darwinian evolution of, 57
MS2 L protein, 119
Multiplicity of infection, 432, 434
Murein precursor biosynthesis pathway, 116–118
Mycobacteriophages, and pathogenesis, 241–243
applications of, in clinical microbiology, 249–250
as therapeutic agents, 250
gene expression systems and, 248–249
generalized transduction in, 247–248
genetically selectable markers and, 248
genomics of, 239–241
in development of genetic tools, 243–249
integration-proficient vectors and, 245–247
luciferase reporter, 249, 437
phage-amplified biological assay, 249
sequenced, 239, 240
virion morphologies of, 239, 241, 242–243
Mycobacterium bovis, 436
Mycobacterium smegmatis, 223, 245–246, 247, 436
Mycobacterium tuberculosis, 238, 243, 244–245, 246, 247, 249, 436, 437
Mycobacterium tuberculosis genomes, potential pathogenesis genes in, 242
prophage-like elements in, 241–242
Myoplasma arthritidis, 226, 232, 345
fermentans, 226
virulence factors, 226–228
Myoplasma fermentans, 233
Myoplasma hominis, 233
Myoplasma pneumoniae, 223
Myoplasma salivarium, 223, 224, 226
Myoplasma genomes, 224
virulence factors, 226–228
chronic diseases produced by, 223
restriction and modification in, 232
Myoviridae, 275, 343, 364
Myoviridae family, 309
Myoviridae phage, 344
N
N-acetylmuramoyl- p- alanine amidase, 352–354
N protein, 139
Neisseria gonorrhoeae, 345
Neisseria meningitidis, displayed peptide, 420–421
Neurotoxin, botulinum. See Botulinum neurotoxin NleA, 151
Nus proteins, 139
O
Oenoccocus oeni, 103, 107
Okazaki fragment, 389, CP389
O1 and O15, interaction between, 46
Oligohistidine tag method, 118
Oligonucleotides, single-stranded, 384
synthetic, 383
Open reading frames, encoding virulence factors, 152–153
O1, and O15, interaction between, 46
P
P22, 178–179
P1 phage, and discovery of SAR endolysins, 105–108
and signal arrest and release sequence endolysins, 105–108
P1 plasmid prophage, 29
P22 tailspike, and related proteins, 406–408
and SP6 tailspike, compared, 407
Panton-Valentine leucocidin (PVL), 298, 310
phages, 307, 308, 309–310
Pathogens, bacterial, formation of, in extraorganismal environment, 82
formation of, from human microbiota, 82
likelihood of, 83–84
human, formation of, during association with nonhuman organisms, 82
in environment, phage conversion and, 80–84
PB1A, 325
PB1B, 325
Penicillin, 430
Peptides, bacteriophage lambda system for display of, 422–423
Peptidoglycan structure, and sites of cleavage of endolysins, 94
Phage-amplified biological assay (PhaB), Mycobacterium tuberculosis and, 249
Phage β, 282, 283
Phage display, 415–429
applications of, 415–417
display density of, importance of, 423–425
display platforms and, 417
Phage HK97, 59, 61
Phage induction, expression of foreign genes by, 51–52
Phage-susceptible bacteria, absence of, 69
Phage-typing system, 113
Pharmaceutical companies, and phage therapy, 431
Pharyngitis, 326
GAS phage-encoded virulence factors in, 326
Phasmids, gene replacement mediated by, 245
shuttle, and construction of, 243–244
Phenotypic and genetic complexity, 93–95
Phospholipase, GAS, 323
Plaque assays, phages for, 436
Plasmid(s), cloning by retrieval of DNA into, 387–388, CP388
extrachromosomally replicating, 245
Phomopodium falkipara, 324–325
Platelet binding proteins, PB1A and Pb1B, 325
pN, transcription antitermination by, 23
Pneumococcal phages, 335–361
general characteristics of, 336–337, 338
genomes of, 338, 339
Pneumococcus, 335
atypical, EJ-1 temperate phage from, 343–344, 346
multiresistant, MM1 temperate phage from, 342–343
Podoviridae family, 309
Polymorphonuclear leukocytes, and monocytes, and Shiga toxin-producing E. coli, in intestinal lumen, 133
Polysaccharide-degrading lytic phages, 405–406, CP405
Prophecy, A2 lysis, 118–119
Pools, and bacterial pools, and interactions, 81
Population, 55
Predator-prey-dynamics, 83
Production/yield, lysis to maximize, 95
Prokaryotes, recombining in, 383–399
recombining with, possibility of, 392–395
Propagation, absorption rate and, 75
and bacterial pathogenesis, 73–77
eclipse period and, 75
latent period and, 76
likelihood of reduction to lysogeny, 75
Prophage(s), bacterial, VF genes associated with, 71
defective ("cryptic"). stx genes and, 147–149
genes carried by, as morons, 62
Stx, 153
Prophage-associated phenomena, prophage-encoded non-PTSAg molecules and, 323–326
Prophage-encoded non-PTSAg molecules, and prophage-associated phenomena, 323–326
Prophage induction, 47–51, 140–141
mechanisms of, 50
mechanisms of cleavage in, 49
SOS regulatory system and, 50–51
systems behavior of, 47–49
Protein(s), A2 lysis, 116–119
microviruses and, 116
Proteobacteria, gram-negative bacteria of, inhibition of growth of, 346–347
Proton motive force, 98–100
and polysaccharides, 400
applications of, 409
Klebsiella and, 402
knowledge and identification of, 401
Polysaccharide-specific E. coli phages, 402
Polysaccharides, 400
polysaccharide-degrading phages and, 400
Pools, and bacterial pools, and interactions, 81
Population, 55
INDEX

PSA, 370
Pseudolysogeny, 280
Pseudomonas aeruginosa, 62, 356
Pseudomonas putida, 347
Pyrogenic exotoxin superantigens, 302–303
Q
Q genes, 144–145
Q proteins, 145
R
R phage, 432
Rac, 384
RecA, 47, 49
Recombination system(s). See also Red recombination system
choice of, 392–394
expression system and, 394
moving into other strains, 384–395
Recombineering. See also Red recombination system
genetic manipulations possible with, 386–389
in prokaryotes, 383–399
with other prokaryotes, possibility of, 392–395
with ss-oligos and dsDNA, efficiencies of, 389, 390
with ssDNA, 388–389
Red recombination system, 388
accuracy of, 389–391
biochemistry of, 385–386
efficiency of, 389, CP389, 390
expression of functions of, 391–392, CP391, CP392
Research, history of, 3–17
Retroelements, diversity-generating, 217–220
Rhodobacter capsulatus, 63
ssRNA phages, 118–119
RS1, 199
RS1 DNA, and CTX prophage, in isolates of V. cholerae, 192, 193
S
S105 holin, 101, 104
S107 protein, 101–102, 104
Saccharomyces cerevisiae, proteins on, 417
Salmonella, 30–31, 153, 165
pathogenicity of, role of Gifsy phages in, 170
Salmonella enterica, 152–153
prophage-related inserts in, 178, CP178
Serovar Typhimurium, 165–186
prophages in, 166, 167
Salmonella pathogenicity islands, 165
Salmonella phages, 166
Salmonella prophage genes, and pathogenicity, 172, 173
Satellite phage P4, 27, 28–29
Selectable in vivo technology (SIVET), 145–146
Sequence release (SAR) domains, phage endolysins and, 106, 107
Sequence release (SAR) endolysins, activation of, 106, 107
discovery of, P1 phage and, 105–108
Sequence release (SAR) transmembrane domain, 106
Serotype M3 sterile-site isolates, and clinical disease association, 329, CP329
Serovar Typhimurium S. enterica, 165–186
prophages in, 166, 167
Shiga toxin(s), 133–134
actions of, 134
lambdoid phages and, 131–164
Stx1 and Stx2, 134
Stx variants of, 134–135
acquisition of, 135–136
Shiga toxin genes, 52
Shiga toxin-producing E. coli, 131
and disease, 131–132
treatment of, 136
and monocytes and polymorphonuclear leukocytes, in intestinal lumen, 133
antibiotic treatment of, 141
B2F1 strain, 144
phage-mediated horizontal transfer of, 135
Stx2 levels in, 143–144
Stx1 production by, 144
Shigella dysenteriae, 133, 150
Shigella sonnet, 150
Shigella spp., stx phages in, 150
Single-gene lysis area, 122
Single-stranded phages, lytic, lysis genes of, 114, 116
Siphoviridae, 275, 309, 364
SIVET (selectable in vivo technology), 145–146
SopEF phage, 175, 176–177, CP177
and Fels-2, lysogenic relay and double lysogeny, 177–178, CP177, CP178
SOS regulatory system, prophage induction and, 47–49
SP6 group, 405–406, CP405, 410
SP6 tailspike, and P22 tailspike, compared, 407
Spiroplasma infection, 232
Spiroplasma phages, and pathogenesis, 232
ss-Oligo, Beta-bound, recombineering with, 389, CP389, 390
accuracy of, 391
ssDNA, recombineering with, 388–389
ssDNA complexes, purified, 395
S105 holin, 101, 104
S107 protein, 101–102, 104
Saccharomyces cerevisiae, proteins on, 417
Salmonella, 30–31, 153, 165
pathogenicity of, role of Gifsy phages in, 170
Salmonella enterica, 152–153
prophage-related inserts in, 178, CP178
Serovar Typhimurium, 165–186
prophages in, 166, 167
Salmonella pathogenicity islands, 165
Salmonella phages, 166
Salmonella prophage genes, and pathogenicity, 172, 173
Satellite phage P4, 27, 28–29
Selectable in vivo technology (SIVET), 145–146
Sequence release (SAR) domains, phage endolysins and, 106, 107
Sequence release (SAR) endolysins, activation of, 106, 107
discovery of, P1 phage and, 105–108
Sequence release (SAR) transmembrane domain, 106
Serotype M3 sterile-site isolates, and clinical disease association, 329, CP329
Serovar Typhimurium S. enterica, 165–186
prophages in, 166, 167
Shiga toxin(s), 133–134
actions of, 134
lambdoid phages and, 131–164
Stx1 and Stx2, 134
Stx variants of, 134–135
acquisition of, 135–136
Shiga toxin genes, 52
Shiga toxin-producing E. coli, 131
and disease, 131–132
treatment of, 136
and monocytes and polymorphonuclear leukocytes, in intestinal lumen, 133
antibiotic treatment of, 141
B2F1 strain, 144
phage-mediated horizontal transfer of, 135
Stx2 levels in, 143–144
Stx1 production by, 144
Shigella dysenteriae, 133, 150
Shigella sonnet, 150
Shigella spp., stx phages in, 150
Single-gene lysis area, 122
Single-stranded phages, lytic, lysis genes of, 114, 116
Siphoviridae, 275, 309, 364
SIVET (selectable in vivo technology), 145–146
SopEF phage, 175, 176–177, CP177
and Fels-2, lysogenic relay and double lysogeny, 177–178, CP177, CP178
SOS regulatory system, prophage induction and, 47–49
SP6 group, 405–406, CP405, 410
SP6 tailspike, and P22 tailspike, compared, 407
Spiroplasma infection, 232
Spiroplasma phages, and pathogenesis, 232
ss-Oligo, Beta-bound, recombineering with, 389, CP389, 390
accuracy of, 391
ssDNA, recombineering with, 388–389
ssDNA complexes, purified, 395
ssRNA phages, 118–119
ST104, 179
Staphylococcal bacteriophages, and antibiotic resistance, 307–309
medically important, 311
Staphylococcal beta-hemolysin, 300–301
Staphylococcal enterotoxin A (SEA), 298, 303
Staphylococcal enterotoxin E (SEE), 298
Staphylococcal pathogenicity islands (SaPIs), 298, 302–304
Staphylococcal phages, 297–318
recombination and modularity in, 299
toxin-converting, 307
Staphylococcus aureus, 96, 297, 298, 304, 305, 307, 352, 354, 430, 432–433
DNA, M13 library of, 419
phage 187, 113
superantigen-encoding pathogenicity islands, 71–72
Staphylokinase (SAK), 298, 301–302
ST64B phage, 178
Stk, 151–152
Streptococcal phages, 113
Streptococcus, group A (GAS), background of, 319–320
chromosome phage receptors, on cell wall, and integration of genome, 321–322
genetic diversity and pathogenesis of, contribution of phages to, 319–334
genetic diversity of, and disease, 320
M protein, 325–326
macrolide resistance and, 324, CP324
modular phage evolution in, 327–328
transduction in, history of, 320–321, CP320
Streptococcus canis, 355
Streptococcus cremoris, 402
Streptococcus equi, 328
Streptococcus mitis, 325
Streptococcus pneumoniae, 154, 335, 342, 343, 349, 354, 356, 393
Streptococcus pneumoniae genome, 344
Streptococcus pneumoniae transposon, 355
Streptococcus pyogenes, 154, 336, 343
Streptococcus pyogenes prophages, 344
Streptococcus thermophilus phage, 341, 343
ST64T, 179
Stx, 153
Stx1, production of, by Shiga toxin-producing E. coli, 144
Stx2, levels of, in Shiga toxins, 134–136
Stx1 and Stx2, of Shiga toxins, 134–136
Stx-carrying phages, relevant biology of, 141–146
Stx2-carrying phages, 154, 155
Stx-encoding phages, diversity of, 149–150
Stx genes, and defective (“cryptic”) prophages, 147–149
lysis genes, and phage, 154
Stx phages, in Shigella spp., 150
Stx prophages, 153
Stx variants, of Shiga toxins, 134–136
Superantigens, 323
Superoxide dismutase (SOD) genes, 152–153
Survival, outside microbial hosts, 80
SynExo, 385
T
T4-like phages, 108
T4 phage display vectors, 420–421
T4 virus, 108
and r genetic system, 108–111
lysis physiology, 109
T7-like phages, 111
T7 lysozyme, 111
T7 phage, 111–112
T7 phage display vectors, 419–420
Tail protein, existing, genetic fusion of depolymerizing enzymes to, 408
Tailed (dsDNA) phages, lysis in, 103–114
Tails, phages lacking, lysis in, 114–120
Tailspike(s), P22, and related proteins, 406–408
and SP6, compared, 404
SP6, and P22, compared, 404
structural aspects of, 406–408
Tape measure proteins, signaling motifs in, 242–243
TCP, 199–200
TcpA, 199
Temperate coliphage lambda, 22, 23
Temperate coliphage P2, 27–28
Temperate phages, generalized transduction of, 30–34
lytic cycles of, 37–38
lysogenic conversion by, 70
specialized transduction of, 29–30
Tetanus neurotoxin, 285
Tetracycline, 7–8
Therapeutic agents, phages as, 250
Therapeutic phages, applications of, 435
Therapy, 354
and bacterial detection, 430–440
animal studies in, 432–435
developments needed for, 437–438
for gastrointestinal infections, 435
history of, 3–17
pharmaceutical companies and, 431
Toxigenicity, evolution of, bacteriophages and, 290–291
Transduction, generalized, 70
in mycobacteriophages, 247–248
of temperate phages, 30–34
genetic, 70
Listeria phages and, 375
specialized, 70–71
of temperate phages, 29–30
Transmembrane domain(s), N-terminal, 106
of holins, 96, 100–101
SAR, 106
Transposon, mariner, 244
Transposon delivery tools, 244–245
Trc, 153
TrcA protein, 153
tRNA genes, 152
Tuberculosis, 238, 436
Twort, Frederick W., 3–4, 5, 435
Typhimurium, 152–153
Typhoid fever, 165

V

Vaccine, live vaccine development of, 425

Vaginosis, bacterial, description of, 256
diagnosis of, 256
health risks associated with, 257
sexual transmission of, 257
nonspecific. See Vaginosis, bacterial

Variability-generating cassette, *Bordetella* phages, 211–216
diversity-generating mechanisms and, 215–216
genetic analysis of, 214–215

Vibrio cholerae, 50, 169, 187
and cholera, 187–188
CTX prophage and RS1 DNA in isolates of, 192, 193
filamentous phages and, 22, 199
phages of, 188–200

Vibrio parahaemolyticus, 187, 200–201
Vibrio vulnificus, 187

Vibrios, pathogenic, virulence-linked bacteriophages of, 187–205

Vir protein, MAV1 genome and, 230

Virulence factors, bacterial, temperate phage-encoded, phage-infected bacteria and, 74
open reading frames encoding, 152–153
phage-encoded, phage induction and expression of, 326–327
phage-encoded nonsuperantigen secreted, 323
phage-encoded secreted, 323

Virulence factor-encoding phages, in environment, 80

Virulence factor genes, associated with bacterial prophage, 71

Virulence-linked bacteriophages, of pathogenic vibrios, 187–205

Virus(es), dsDNA, 393
extra genetic material and, 39–40

W

ΦW104 prophage, 179, CP179

Y

Yeast genomic library, lambda-displayed, 422