BACTERIAL STRESS RESPONSES

Second Edition

Edited by

Gisela Storz
Eunice Kennedy Shriver Institute of Child Health
and Human Development
Bethesda, Maryland

and

Regine Hengge
Freie Universität Berlin
Berlin, Germany
To Ella, Toby, Felix, Lisa-Maria, and Manolis
CONTENTS

Contributors • ix
Preface • xiii
Acknowledgments • xv

I. General Principles

1. Structure and Evolution of Transcriptional
Regulatory Networks • 3
Guilhem Chalancon and M. Madan Babu

2. Architecture and Dynamics of Transcriptional
Networks • 17
Anat Bren and Uri Alon

3. Regulation by Alternative Sigma
Factors • 31
John D. Helmann

4. The Role of Two-Component Transduction
Systems in Bacterial Stress Responses • 45
Michael T. Laub

5. Roles of mRNA Stability, Translational
Regulation, and Small RNAs in Stress Response
Regulation • 59
Susan Gottesman

6. Role of Proteolysis and Chaperones in Stress
Response and Regulation • 75
Kürşad Turgay

II. Specific Stress Responses

7. Cellular Response to Heat Shock and Cold
Shock • 93
Bentley Lim and Carol A. Gross

8. Envelope Stress • 115
Sarah E. Ades, Jennifer D. Hayden, and
Mary E. Laubacher

9. Osmotic Stress • 133
Janet M. Wood

10. Sensing and Responding to Reactive Oxygen
and Nitrogen Species • 157
Gisela Storz and Stephen Spiro

11. Global Responses of Bacteria to
Oxygen Deprivation • 175
Patricia J. Kiley and Timothy J. Donohue

12. Sensing Metals: the Versatility
of Fur • 191
Sun-Shin Cha, Jung-Ho Shin, and Jung-Hye Roe

13. The DNA Damage Response • 205
Susan T. Lovett

III. General Stress Responses

14. The Stringent Response • 231
Emmanuelle Bouveret and Aurélia Battesti

15. The General Stress Response in
Gram-Negative Bacteria • 251
Regine Hengge

16. The General Stress Response in
Alphaproteobacteria • 291
Anne Francez-Charlot, Julia Frunzke, and
Julia A. Vorholt
17. The General Stress Response in Bacillus subtilis and Related Gram-Positive Bacteria • 301
Chester W. Price

18. Resistance of Bacterial Spores • 319
Peter Setlow

19. Protection against Foreign DNA • 333
Philippe Horvath and Rodolphe Barrangou

20. More than Just a Quorum: Integration of Stress and Other Environmental Cues in Acyl-Homoserine Lactone Signaling • 349
Brett Mellbye and Martin Schuster

21. Biofilms • 365
Hera Vlamakis and Roberto Kolter

22. Persister Bacteria • 375
Nathalie Q. Balaban

IV. Pathogenic Responses

23. Bacterial Responses to the Host Cell • 385
Alfonso Felipe-López and Michael Hensel

24. Phase Variation • 399
Marjan W. van der Woude and Sarah E. Broadbent

V. Bacteria Thriving in Stressful Environments

25. Metamicrobiology: Analyzing Microbial Behavior at the Community Level • 419
Jo Handelsman

26. Life at the Extremes of Temperature • 425
Charles Gerday

27. Comparative Genomics of Stress Response Systems in Deinococcus Bacteria • 445
Kira S. Makarova and Michael J. Daly

VI. Applications of Stress Response Studies

28. Redox Mechanisms and Reactive Oxygen Species in Antibiotic Action and Resistance • 461
Inas J. Radhi and Gerard D. Wright

29. Applications of Stress Response Studies: Biofuel Production • 473
James B. McKinlay and Caroline S. Harwood

30. Microbial Bioremediation of Chemical Pollutants: How Bacteria Cope with Multi-Stress Environmental Scenarios • 481
Victor de Lorenzo and Herminia Loza-Tavera

Index • 493
CONTRIBUTORS

Sarah E. Ades
Department of Biochemistry and Molecular Biology
Pennsylvania State University
University Park, PA 16802

Uri Alon
Department of Molecular Cell Biology
Weizmann Institute of Science
Rehovot 76100, Israel

M. Madan Babu
MRC Laboratory of Molecular Biology
Hills Road
Cambridge CB2 0QH, United Kingdom

Nathalie Q. Balaban
Racah Institute of Physics and The Sudarsky Center
for Computational Biology
Hebrew University
Jerusalem 91904, Israel

Rodolphe Barrangou
Danisco USA Inc.
Madison, WI 53716

Aurélie Battesti
NIH/NCI
9000 Rockville Pike
Bethesda, MD 20892

Emmanuelle Bouveret
CNRS
University Aix-Marseille, LISM, UPR9027
31 chemin Joseph Aiguier
13009 Marseille, France

Anat Bren
Department of Molecular Cell Biology
Weizmann Institute of Science
Rehovot 76100, Israel

Sarah E. Broadbent
Department of Biology and the
Hull York Medical School
University of York
York Y010 5YW, United Kingdom

Sun-Shin Cha
Marine Biotechnology Research Center
Korea Ocean Research & Development Institute
Ansan P.O. Box 29
Seoul 425-600, Korea

Guilhem Chalancon
MRC Laboratory of Molecular Biology
Hills Road
Cambridge CB2 0QH, United Kingdom

Michael J. Daly
Department of Pathology
Uniformed Services University of the
Health Sciences
Bethesda, MD 20814

Victor de Lorenzo
Systems Biology Program
Centro Nacional de Biotecnología-GSIC
Campus de Cantoblanco
Madrid 28049, Spain

Timothy J. Donohue
Department of Bacteriology and Great Lakes
Bioenergy Research Center
University of Wisconsin—Madison
Madison, WI 53706

Alfonso Felipe-López
Abteilung Mikrobiologie
Fachbereich Biologie/Chemie
Universität Osnabrück
49076 Osnabrück, Germany
James B. McKinlay
Department of Microbiology
University of Washington
Seattle, WA 98195

Brett Mellbye
Department of Microbiology
Oregon State University
Corvallis, OR 97331

Chester W. Price
Department of Microbiology
University of California at Davis
Davis, CA 95616

Inas J. Radhi
Michael G. DeGroote Institute for Infectious Disease Research
Department of Biochemistry and Biomedical Sciences
1200 Main St. W
McMaster University
Hamilton, ON L8N 3Z5, Canada

Jung-Hye Roe
School of Biological Sciences
Seoul National University
Seoul 151-742, Korea

Martin Schuster
Department of Microbiology
Oregon State University
Corvallis, OR 97331

Peter Setlow
Department of Molecular, Microbial and Structural Biology
University of Connecticut Health Center
Farmington, CT 06030-3305

Jung-Ho Shin
School of Biological Sciences
Seoul National University
Seoul 151-742, Korea

Stephen Spiro
Department of Molecular and Cell Biology
University of Texas at Dallas
Richardson, TX 75080

Gisela Storz
Cell Biology and Metabolism Program
Eunice Kennedy Shriver National Institute of Child Health and Human Development
National Institutes of Health
18 Library Drive
Bethesda, MD 20892-5430

Kürşad Turgay
Institut für Biologie—Mikrobiologie
Freie Universität Berlin
Königin-Luise-Str. 12-16
14195 Berlin, Germany

Marjan W. van der Woude
Department of Biology and the Hull York Medical School
University of York
York Y010 5YW
United Kingdom

Hera Vlamakis
Department of Microbiology and Molecular Genetics
Harvard Medical School
Boston, MA 02115

Julia A. Vorholt
Institute of Microbiology
ETH Zürich
CH-8093 Zürich, Switzerland

Janet M. Wood
Department of Molecular and Cellular Biology
University of Guelph
Guelph, Ontario N1G 2W1, Canada

Gerard D. Wright
Michael G. DeGroote Institute for Infectious Disease Research
Department of Biochemistry and Biomedical Sciences
1200 Main St. W
McMaster University
Hamilton, ON L8N 3Z5, Canada
A decade has passed since the first edition of the *Bacterial Stress Responses* book was published, and the time has come for a new edition.

Reflecting back, an astonishing amount has been learned about bacterial stress responses in the past ten years. Major developments include new ways of thinking about regulation. It has become clear that there is far more posttranscriptional regulation than initially imagined, by regulatory small RNAs and riboswitches as well as by proteolysis. The genome-wide identification of transcription regulators and their target genes in a broad range of organisms has also allowed scientists to think about regulatory networks on a much larger scale. General regulatory principles, which have come to be better understood and underlie all stress responses, are the focus of the first section of the new edition.

The second and third sections of this edition illustrate how much more we now know about both the specific and general stress responses. Many more regulators and target genes and connections between different responses have been identified. In addition, the physiological roles of many of the target genes are better understood. The research on extremely complex general stress responses, which encompass hundreds, if not thousands of genes, has revealed how general stress responses are comprised of highly integrated regulatory networks, modulated at the levels of transcription, transcript stability, translation, protein activity, protein degradation and by the production or decay of small signaling molecules. Significant insights into how bacteria survive stress conditions by undergoing changes of their state or morphology or cell surface have also been obtained. These topics discussed in the first three sections provide background for the last three sections, including the fourth part of the book focused on how stress responses affect the interactions between bacteria and host cells.

The accumulating knowledge of the molecular mechanisms of stress responses illustrates the power of studying model organisms. The many years of research on *Escherichia coli* and *Bacillus subtilis* have been critical in setting the stage for the analyses of other species. However, in this edition as in the first edition, there is an emphasis on what has been learned across species. In the past ten years we have come to have an even greater appreciation of the diversity of bacteria and the diversity of responses to different environments, in part due to significant advances in sequencing. The fifth section of the book describes the study of bacterial stress responses in different niches and communities, particularly in extreme environments.

It has also become increasingly clear that in order to combat bacterial infection with antibiotics or to exploit bacteria for biofuel production or bioremediation, topics of significant medical and commercial importance, there is a need to understand the stress responses. The connections between stress and antibiotic action, as well as the stresses encountered during biofuel production and bioremediation, are discussed in the last chapters.

The review of what we have learned, as covered in the chapters of this edition, has also pointed out what is still less well understood:

- Many aspects of regulation by RNAs as well as the role of proteolysis in shutting off responses or in molecular switches have not yet been fully explored. There also are hints that largely-ignored small proteins modulate the activities of sigma factors and two-component systems and may comprise yet another unexplored level of regulation.
- Current studies have led to a revival of research on second messengers, both long-known and newly-identified, which seem to operate in
far more complex ways than imagined only a few years ago; however, much remains to be learned about the production and sensing of these molecules.

- Environmental signal perception and transduction are still the most poorly characterized steps of stress response pathways.

- A remaining challenge is how to integrate and synthesize the increasing amounts of data from different lines of experimentation. As interesting as any one approach to a problem may be, whether it be mechanistic details or a whole genome survey, full understanding of an entire response requires that we be able to integrate information obtained at all levels and from multiple perspectives, including quantitative analyses of the response dynamics.

- Finally, despite significant advances in recent years, our knowledge regarding bacterial communities such as biofilms (including aspects such as bistability of genetically identical cells and mixed species communities) as well as entire ecosystems is still limited.

We look forward to seeing what is learned in the next ten years.

Gisela Storz
Regine Hengge
ACKNOWLEDGMENTS

We thank all of the authors for their contributions and Greg Payne of ASM Press for his help in putting together the book.
INDEX

AAA + proteases, 76–77, 77f, 79
ABC transporter, 38
acpP gene, 368
Actinobacteria, 468
Actinomyces, 423
Actinomycetales, 309–310
acyl-homoserine lactone (acyl-HSL) QS, 349 basic circuitry, 350f
environmental cues, 356 future directions, 358 orphan LuxR-type regulators, 355–356
P. aeruginosa QS, signal integration and, 350–355, 351f
QS evolution, conflict potential and, 356–358 signal integration, other bacteria, 355 adhesins, 389 aerobic respiration
anaerobic regulators, gram-positive bacteria, 181
E. coli, 176–177
ArcA and ArcB, 179f, 179–180
FNR, 177f, 177–179, 178f
S. oneidensis, 180–181
agr43 gene, 402, 406, 407f
Agrobacterium tumefaciens, 195, 293f, 349, 351f, 355
ahpC gene, 403
PhyR/NepR/σ32f signal transduction cascade, 292–296, 293f, 293–294f, 295f
PhyR/NepR/σ32f signal transduction cascade, role of, 296–298, 297f
alternative σ factors
B. subtilis, regulation, 38–41
E. coli, regulation, 35–38 families, 32t, 32–33, 33f
regulation, general, 31–32, 34f, 34–35, 35f
σ 54 family, 33–34 amino acid starvation, 235–236, 236f aminoglycosides, 463–464
Anabaena, 338

Entries followed by an f indicate a figure; those followed by a t indicate a table.
auxiliary proteins
 regulators, of histidine kinases, 53–54
 regulators, of response regulators, 52–53

Bacillales
 signaling variations, 308–309, 309f
 spore structure, 320f, 320–323, 322f, 323f
 spores, formation, 319–320
Bacillus anthracis, 320
Bacillus cereus, 308–309, 309f, 312
Bacillus subtilis. *See also Bacillus subtilis*, general stress response
 alternative σ regulation, 38–41
 biofilms, 368f, 368–369, 392
 chaperones, transcriptional repressor activation, 81f
 competence development, 82
 CSR, 109
 DNA damage response, 219
 envelope stress, 123–125
 HSR, 100–101, 101f
 LiaRS two-component system, 122–123
 phosphorelays, 46
 phosphotransfer, 51
 (p)ppGpp, effects of, 240, 242–243
 proteolysis localization, 83
 response regulators, 52
 RIP, 84
 spores, 320
 two-component signaling proteins, 46–47

Bacillus subtilis, general stress response, 301–302
 cold stress branch, 307–308
 Obg protein, 308
 RsbQ-PAS input module, 304, 304f
 RsbRST input module, 304–305
 RsbV and RsbW, 302–303
 RST module, 305–307, 307f
 σE, 301–312
 signaling pathway, 302–308, 303f
 bacitracin, 122
 bacterial spore resistance, 319, 323t, 323–324
 Bacillales, 319–323, 320f, 322f, 323f
 Clostridiales, 319–323, 320f, 322f, 323f
 core protein resistance, 327–328
 cortex, germ cell wall peptidoglycan resistance, 328–329
 DNA protection, 324t, 324–327, 325t, 326t
 DNA repair, 327
 future directions, 329
 germination protein resistance, 328
 spore inner membrane resistance, 329
 bacteriophage λ system, 17
 bacteriophage lambda, 62–63, 63f
 Bacteroides fragilis, 400, 404
 Bae response, 116–117, 117f
 BarA protein, 65, 391
 β-lactams
 redox chemistry, indirect role, 463–464
 SOS response, 211
 betaproteobacteria, 274t, 274–275
 BetP protein, 143
 bioaugmentation, 482
 biofilms, 365–366
 c-di-GMP, 369–370
 formation, 270–271, 366t, 366–367
 future directions, 371
 heterogeneity, 367–368, 368f
 host cell, bacterial responses, 388
 secondary metabolites, multicellularity and, 370–371
 stress, formation and, 368–369
 biofuel production, 473
 future directions, 479
 intentional stresses and, 476–477
 metabolic imbalance, 477–479, 478f
 microbial biofuels, 473–474, 474f
 unintentional stresses and, 474–476
 bioremediation, microbial, 481–482
 bacteria, multiple chemicals and, 485–487, 487f
 biodegradation, 483–484, 484f
 chaotropic and solvent stress, 482–483
 future directions, 490
 heat shock and ROS stresses, 484–485, 485f
 multiple environmental challenge response, 488f, 488–490
 physicochemical conditions, inherent stress, 487–488
 biostimulation, 482
 bleomycin, 462, 462f
 Bordetella bronchiseptica, 310–311
 Bordetella pertussis, 11, 403
 Borrelia burgdorferi, 274–275, 387
 Borrelia hermsii, 400
 Bradyrhizobium japonicum, 55, 185, 196–197, 295–297, 488
 Brucella abortus, 291
 Burkholderia cenocepacia, 355, 481–484
 Burkholderia cepacia, 349, 355, 485
 Burkholderia mallei, 402
 Burkholderia pseudomallei, 402
 Burkholderia xenovorans, 485
 C1 FFL. *See Coherent type-1 FFL
 cAMP-CRP
 anaerobic respiration, *S. oneidensis*, 180–181
 general stress response, 259
 Campylobacter, 467
 Campylobacter jejuni
 antibiotic resistance, 467
 NO, nitrosative stress, 164
 PV, 401
 carbon storage regulator, 65
 cas genes, 335–342, 336f
 Cas proteins, 342
 cathelicidins, 388
 Caulobacter, 50
 Caulobacter crescentus
 alphaproteobacteria general stress response, 291, 296
 CtrA degradation, 83
 (p)ppGpp, 242
 two-component signal transduction systems, 46, 49
 c-di-GMP. *See Cyclic di-guanosine monophosphate
 cell envelope, 115, 116f
 Cpx stress response, 119–120
 gram-negative bacterial stress response, 116–117, 117f
 gram-positive bacterial stress response, 122–125
 Psp stress response, 117f, 117–118
 σE stress response, 118–119
stress responses, 115–116
structure, genes affecting, 270
cgtA genes, 242
channel MscL, 144
channel MscS, 144–146, 145f
chaotropic stress, 482–483
chaperones, molecular
AAA+ proteases, 76–77, 77f, 79
function, 76
Hsp100/Clp, 76–79, 77f, 78f
protein quality control, 76
stress sensors, heat shock, 79–80, 81f
CheY protein, 49
ChiX protein, 67–68
Chlamydia, 395
Chlamydia pneumoniae, 393
Chlamydia trachomatis, 310–311
Chlamydomonas reinhardtii, 476
Chlorogloeopsis, 426
cholera toxin, 389
ciprofloxacin, 467, 467f
Clostridiales
biofuel production, 473–475, 478f
spore resistance, 325
spore structure, 320f, 320–323, 322f, 323f
spores, formation, 319–320
Clostridium botulinum, 34
Clostridium difficile, 404
Clostridium perfringens, 323
Clostridium phytofermentans, 477
Clostridium tetani, 34
ClpA protein, 79
clpC gene, 312
ClpCP protein, 79–80, 83, 100
ClpEP protein, 80
clpP gene, 312
ClpS protein, 79
ClpXP protein, 83, 117f, 118, 261–262
clusters of orthologous genes (COGs), 447t
coherent type-I FFL (C1 FFL)
AND gate input function, 22, 23f
OR (or SUM) gate input function, 22–24
cold shock response (CSR), 102
circuitry, 106
Csp family, 103–104
E. coli versus B. subtilis, 109
inputs, 102–103
integration, other cellular responses, 108–109
outputs, 103, 104f
RNA degradation, 105–106
translation, 105
translation initiation inhibition, 108
Culwellia psychrerythraea, 434, 437
ComK protein, 82–83
community ecology, 421–422
ComP protein, 82
comparative genomics, Deinococccae, 445–446
evolution of, 446–447, 447t
future directions, 454
radiation response, 447–449, 448f
resistance hypotheses, 449–453, 451f, 452f, 453f
compatible solutes, 133, 136–138, 137f
competence, B. subtilis, 82
ComQ protein, 82
comS gene, 82
ComX protein, 82
CopN protein, 395
Corynebacterium, 6
Corynebacterium diphtheriae, 338
Cpx envelope stress response, 117f, 119–120
cpx genes, 119–120
Cpx proteins, 51–52, 54, 119–120
CRISPR structure
cas genes and, 339
genomic contribution, 338–339
initial discoveries, 338
loci life cycle, 344
metagenomics, community analyses and, 341
phage resistance role, 339–341, 340f
plasmid immunity, 341
spoligotyping, 338
CRISPR/Cas immunity system
associated genes, 335–338
Cas protein studies, 342
CRISPR loci life cycle, 344
CRISPR motif, 342–344
dNA versus RNA target, 342, 343f
immunity circumvention, 344
leader, 338
repeats and spacers, 333, 336f, 337f, 341–342
CseCB two-component system, 124–125
Csp family
CSR, 103–104
CSR, CspA induction and, 106–108, 107f
CSR. See Cold shock response
csrA gene, 367
CsrA protein, 65–66, 367
CsrB protein, 65
CsrC protein, 65
csrD gene, 66
CSSR, 404
CtrA protein, 83
CtsR protein, 80
cupA gene, 367
cya genes, 180
CyaR protein, 69
cylic di-guanosine monophosphate (c-di-GMP), 369–370
cylic-di-GMP signaling, 49, 49f
Dam. See DNA adenine methyltransferase
DBD. See DNA binding domain
DEAD box helicase, 105
defensins, 388
degP gene, 116, 120
DegP protein, 116, 386
degradosome, 105–106
degrons, 78–79
DegS protein, 85, 118–119
Deinococcus, 445
bacterial radioresistance, 450–453, 452f
compative genomics, 445–446
DNA repair, 450, 452–453t
INDEX

DNAJ protein, 76, 80
DNAK protein, 76, 80, 95
drrN gene, 167
DOR. See Dense overlapping regulon
DosS histidine kinase, 165
DosT histidine kinase, 165
double-strand breaks (DSBs), 449
DPA. See Dipicolinic acid
dps gene, 311
DrrA protein, 394
drug resistance. See Antibiotic resistance
DSBs. See Double-strand breaks
DsrA protein, 68
ECF sigma factors. See Extracytoplasmic function sigma factors
endonucleases
mRNA stability, 60–61
genome reassembly, 449–450
protein family expansions, 447
radiation response, 447–449, 448
Deinococcus radiodurans
bioremediation, stress and, 488
cellular genomics, stress response, 445–454
DNA damage response, 219–220
RNS response, 168
Deinococcus-Thermus group, 445
Delftia acidovorans, 485
deltaproteobacteria, 274, 274–275
dense overlapping regulon (DOR)
biological functions, 27
TRN motif structure, 19, 20
des gene, 436
desaturases, 436–437
desiccation resistance, Deinococcus, 445
DesK protein, 436
Desulfobacterium hafniense, 11
Desulfovibrio vulgaris, 487
DHp domain, 55
dihydroxyllavone, 392
din genes, 212, 212, 215
DinB protein, 215–216
DinG protein, 214
DinP protein, 209, 209
Dipicolinic acid (DPA), 322–323, 323
DivJ protein, 50
DivK protein, 49–50
DivL protein, 50
Dj1A protein, 121
DksA protein, 238–239
DNA
regulon functions, 96
repair, D. radiodurans, 450
single-strand, SOS response signal, 210
DNA adenine methyltransferase (Dam), 406–407, 407
DNA binding domain (DBD), 3–4
DNA damage response, 205, 218–219. See also SOS response
B. subtilis, 219
D. radiodurans, 219–220
E. coli, 219–220
future directions, 220–221
mycobacteria, 219
DNA, foreign, protection systems, 333–334
CRISPR/Cas, 335–344, 336, 337, 340, 343
future directions, 344–345
H-NS, 334–335
R-M systems, 334
SNSN, 334
DNA methylation, 406–408, 407
DNA polymerase II, 214–215
DNA polymerase IV, 215–216
DNA polymerase V, 216–217
DNA polymerase, Y family, 215
DNAJ protein, 76, 80
DNAK protein, 76, 80, 95
drrN gene, 167
DOR. See Dense overlapping regulon
DosS histidine kinase, 165
DosT histidine kinase, 165
double-strand breaks (DSBs), 449
DPA. See Dipicolinic acid
dps gene, 311
DrrA protein, 394
drug resistance. See Antibiotic resistance
DSBs. See Double-strand breaks
DsrA protein, 68
ECF sigma factors. See Extracytoplasmic function sigma factors
endonucleases
mRNA stability, 60–61
regulators, 61, 61–62
Enterobacteriaceae, 468
Enterococcus faecalis, 484
Enterococcus hirae, 192
Enterococcus faecium, 51
envelope, 115, 270
envelope stress
B. subtilis ECF sigma factors, 123–124
capsule, Rsc phosphorelay and, 120–122
future directions, 125–126
gram-negative bacteria stress response, 116–117
gram-positive bacteria stress response, 122–125
LiaRS two-component system, 122–123
Psp stress response, 117–118
S. coelicolor sigma factor E, 124–125
themes, variations, 125
envZ gene, 54
Erwinia carotovora, 355
Escherichia coli
alternative σ factor regulation, 35–38
anaerobic respiration, 176–180, 177, 178, 179
autoregulation, 19
biofilms, 365, 366, 367, 369–370
biofuels, 474
chaperones, heat shock regulation, 80
CRISPR discovery, 338
CSR, 109
DNA damage responses, 219–220
DOR, 19, 20, 26, 27
future directions, 125
envelope stress, 125
FFL, 19, 19–20, 22, 25
gene duplication, 8–9
horizontal gene transfer, 10
HSR, 100–101, 101
NAR, 21
NorR, NO stress response, 163
persister bacteria, 375–377
Deinococcus radiodurans
bioremediation, stress and, 488
comparative genomics, stress response, 445–454
dense overlapping regulon (DOR)
biological functions, 27
TRN motif structure, 19, 20
des gene, 436
desaturases, 436–437
desiccation resistance, Deinococcus, 445
DesK protein, 436
Desulfobacterium hafniense, 11
Desulfovibrio vulgaris, 487
DHp domain, 55
dihydroxyllavone, 392
din genes, 212, 212, 215
DinB protein, 215–216
DinG protein, 214
DinP protein, 209, 209
Dipicolinic acid (DPA), 322–323, 323
DivJ protein, 50
DivK protein, 49–50
DivL protein, 50
Dj1A protein, 121
DksA protein, 238–239
DNA
regulon functions, 96
repair, D. radiodurans, 450
single-strand, SOS response signal, 210
DNA adenine methyltransferase (Dam), 406–407, 407
DNA binding domain (DBD), 3–4
DNA damage response, 205, 218–219. See also SOS response
B. subtilis, 219
D. radiodurans, 219–220
E. coli, 219–220
future directions, 220–221
mycobacteria, 219
DNA, foreign, protection systems, 333–334
CRISPR/Cas, 335–344, 336, 337, 340, 343
future directions, 344–345
H-NS, 334–335
R-M systems, 334
SNSN, 334
DNA methylation, 406–408, 407
DNA polymerase II, 214–215
DNA polymerase IV, 215–216
DNA polymerase V, 216–217
DNA polymerase, Y family, 215
host cell, bacterial responses, 385–386

adhesins, 389
antimicrobial peptides, 387–392, 390f, 391f
bacterial surface, 388–389
biofilm formation, 388
Chlamydia, 395
extracellular responses, 389–392, 390f, 391f
intracellular responses, 392–395
iron limitation, toxicity, 387
L. pneumophila, 393–394
pH, extreme, 386
protein secretion systems, 389
resident microflora, 386–387
rhizobacteria, extracellular responses, 392
RNS, 387
ROS, 387
S. enterica, 393
starvation, 387
temperature, 386
toxins, 389
HrcA protein, 100
HSP. See Heat shock proteins
Hsp33, 161–162
Hsp60 family, 76, 80, 95
Hsp70 family, 76, 80, 95
Hsp100/Clp proteins
mechanism, function and, 76–78, 77f
substrate recognition, 78–79
HSR. See Heat shock response
HtrA protein, 116, 386
hydrogen gas, 474
hydrogen peroxide, 157
hydrogenase I, 272
hydroxyl radical, 157, 162, 463–464
hypochlorite, 157
I1-FFL. See Incoherent type-1 FFL
iap gene, 338
ica gene, 366–367
ICE. See Iron control element
Idiomarina lohiensis, 437
IgaA protein, 121
incoherent type-1 FFL (I1-FFL), 22, 24f, 24–25
inducible nitric oxide synthase (iNOS), 387
Ira proteins, 83
iron control element (ICE), 196–197
iron limitation, 353–354, 387
iron toxicity, 387
iron transport
D. radiodurans, 453
host cell, 387
iron-sensing Fur, 193–194
iron-sulfur cluster, 463–464
Irr, heme-sensing, 196–197
IrrE/PprI protein, 449
IscR protein, 166
K+ glutamate, 138–139
kanamycin, SOS response and, 211
kat genes, 311–313
kdp genes, 147
Kdp protein, 140
Klebsiella pneumoniae, 121, 179, 338
Kup protein, 140

lac system, 17
Lactococcus lactis, 123, 141, 146
lactoferrin, 387
lacZ gene, 22, 31, 67, 106, 180, 210, 368
LAM. See Lipoarabinomannan
large clusters of tandem repeats (LCTR), 339
Legionella, 66
Legionella pneumophila
host cell, bacterial responses, 393–394
pathogenicity, 243
SpoT regulation, 236–237
α3 origin, physiological role, 274t, 275
Leguminosae family, 392
Leptospirillum, 341
LetA/LetS, 65
Lets proteins, 394
lexA gene, 212–213, 217, 220, 449
LexA protein, 21, 205–206, 206f, 220, 449, 467
LiaRS two-component system, 122f, 122–123
ligand binding, 430
lipid(s)
biogenesis, 242
membrane, chemical modifications, 437
lipoarabinomannan (LAM), 394–395
lipopolysaccharides (LPS), 388
Listeria, 313
Listeria monocytogenes
host cell, bacterial responses, 386–387
α3, pathogenicity and, 313
signaling variations, 308
stringent response, 233
temperatures, low, 437
long tandemly repeated repetitive (LTRR) sequence, 338
LPS. See Lipopolysaccharides
Lqs proteins, 394
LTRR sequence. See Long tandemly repeated repetitive sequence
luciferase operon, 350
Lux proteins, 350, 355–356
manganese-sensing Mur, 195
mar genes, 378, 466
Mar proteins, 160–161, 466
MCRA flavoenzyme, 464–465
McsB protein, 79–80, 82–83
mec genes, 82
MecA protein, 79–80, 82–83
mechanosensitive (MS) channels, 140–141, 144–146, 145f
menaquinone, 180
messenger RNA (mRNA), 59–60
endonucleases, regulators and, 61f, 61–62
exonucleases, degradation initiation, 62
regulation, points of, 60
retroregulation, 62–64, 63f
ribonucleases, 63–64
riboswitches, 64–65
stability, 60–61
transcription termination, 64
translation, 60
metagenetics, 422–423
metagenomics, 422
metal sensors, 191–193, 192f, 193f
Fur family regulators, target DNA sites and, 199–200
Fur family structural features, 197–199, 198f
heme-sensing Irr, 196–197
iron-sensing Fur, 193–194
manganese-sensing Mur, 194–195
nickel-sensing Nur, 195–196
peroxide-sensing PerR, 196
zinc-sensing Zur, 194–195
metamicrobiology, 419–420, 420f
community ecology, 421–422
future directions, 423
metagenetics, 422–423
metagenomics, 422
population biology, 421
systems biology, 420–421
Methanococcus janaschii, 141, 335
Methanopyrus, 426
Methylobacterium, 292
Methylobacterium extorquens, 292, 294, 296–298
Methylocystis, 487
mex genes, 466–467
MexA protein, 467
MexR protein, 466–467
mfd gene, 467
Mfd protein, 467
mgrA gene, 466
MgrA protein, 161, 466–467
MgsR protein, 312
micF gene, 147
MicM protein, 67–68
microbial biofuels, 473–474, 474f
microbial bioremediation, 481–482
bacteria, multiple chemicals and, 485–487, 487f
biodegradation, 483–484, 484f
chaotropic and solvent stress, 482–483
future directions, 490
heat shock and ROS stresses, 484–485, 485f
multiple environmental challenge response, 488f, 488–490
physicochemical conditions, inherent stress, 487–488
Micrococcus roseus, 437
microflora, resident, 386–387
MIMs. See Multiple input models
mitomycin C, 464f, 464–465
mod genes, 408
modified nucleotides, 430
Moraxella catarrhalis, 404
mRNA. See Messenger RNA
MS channels. See Mechanosensitive channels
Msc proteins, 140–141, 144–146, 145f
multiple input models (MIMs), 6f, 7
Mur, manganese-sensing, 195
mutation, antibiotic resistance, 464
mutHHL gene, 467
Mycobacterium
DNA damage response, 219
(p)pGpp, 238
Rsh proteins, 234–235
SOS response, 209
Mycobacterium leprae, 12
Mycobacterium smegmatis, 209, 235
Mycobacterium tuberculosis
amino acid starvation, 235
CRISPR structure, 338
host cell, bacterial responses, 394–395
MS channels, 141
NO, nitrosative stress regulators, 165
signaling network variations, 309–310
SOS response, 218
Mycoplasma pulmonis, 401
Myxococcus xanthus, 243, 356
NADH dehydrogenases, 486
NAPD oxidase, 486
NAR. See Negative autoregulation
NarL protein, 11, 47, 49f
natural attenuation, 482
negative autoregulation (NAR), 21
Neisseria, 274
Neisseria gonorrhoeae, 401, 406, 408–409
Neisseria meningitidis
iron-sensing Fur, 194
NO, nitrosative stress, 164
oxidative stress, 160
phase variation, 400–401
nepR gene, 292–293f, 293–294, 296
NepR protein, 291, 293–296, 294–295, 295f
network motifs, TRNs
autoregulation, 19, 19f
biological functions, 20–21
DOR, 19f, 20, 27
FFL, 19f, 19–20, 22–25, 23f, 24f
FFM, 6f, 6–7
NAR, 21
PAR, 22
SIM, 19f, 20, 25–27
nickel-sensing Nur, 195–196
nif genes, 194
nitrate reductase, 167
nitric oxide, 157
nitroimidazole antibiotics, 462f, 462–463
nitrosative stress, 157–158
response regulators, 163, 163f
FNR/CRP family members, 164
NorR, 163
NsrR, 163–164
other regulators, 164–165
transcription regulators, collateral effects, 165–166
Nitrosomonas europaea, 163–164
nitrous oxide, 157–158
detoxifying activities, 166–167
pathogenesis and, 168
stress response regulators, 163, 163f
FNR/CRP family members, 164
NorR, 163
NsrR, 163–164
other regulators, 164–165
transcription regulators, collateral effects, 165–166
nlpD gene, 259
NmlR protein, 165
mrrS gene, 167
nod genes, 392
nodulation factors (Nod), 392
norA gene, 163, 167
norR gene, 163
norVW gene, 163
Nostoc isolates, 338
NreB protein, 181
NreC protein, 181
nsrR gene, 164
Nsr protein, 163–164
NssR protein, 164
NtrC protein, 47, 49f
nucleic acids, high temperature adaptation, 429–430
nucleoid morphology, 449–450
nucleotides, modified, 430
Nur, nickel-sensing, 195–196
obg gene, 308
obrB gene, 311
OhrR protein, 160–161, 311
OmpC protein, 147
OmpF protein, 147
OmpR protein, 47, 49f, 147
opr genes, 466–467
OpuA transporter, 143–144
opuE genes, 146
organic peroxides, 157
OryR protein, 356
OsaC protein, 310
osmophobic effect, 138
osmoregulation, gene expression, 146
osmoregulatory proteins, 139
aquaporins, 139–140
MS channels, 140–141
osmoprotectant transporters, 140, 140f
potassium transporters, 140
osmosensing, 141
channel MscL, 144
channel MscS, 144–146, 145f
osmoprotectant transporters, 141–142
transporter BetP, 143
transporter OpuA, 143–144
transporter ProP, 142–143
osmotic stress, 133–136, 134t, 135t, 136f, 147–148
osmotic stress response
 compatible solutes, 133, 136–138, 137f
downshocks, 139
upshocks, 138–139
oxidative stress response, 158, 158t
 Hsp33, 161–162
 OhrR protein, 160–161
 OxyR protein, 160
 PerR protein, 160
 SoxR protein, 158–159, 159t
 thiol-stress regulators, 161
oxygen deprivation
 anaerobic respiration, fermentation and, 176t,
 176–181, 177f, 178f, 179f
 an oxygenic photosynthesis regulation, 181–184
 PrrB/PrrA response, nonphotosynthetic bacteria,
 184–185
 OxyR protein, 160, 166

pap genes
 DNA methylation, 406–407
 PV, regulatory networks and, 409–410
PAR. See Positive autoregulation
partner switching mechanism, 310–311
PAS domain, 55, 179
peptidoglycan, 319, 328–329
peroxide stress, 466–467
peroxide-sensing PerR, 196
PerR protein, 160, 196, 311
persistor bacteria, 375f, 375–376
 future directions, 380–381
genes, 376–378, 377t
 mathematical modeling, 378–379, 379t
 persistence, survival strategy, 380
 stochasticity, 379
 stress persistence, 380
 systems biology, study approaches, 378f, 378–380, 379t
types of, 376
pertussis toxin, 389
PGA protein, 367
pigaA-D genes, 367
pH, host cell bacterial responses, 386
phage resistance, 339–341
phage-shock protein (Psp) response, 117f, 117–118
phagocyte oxidase, 387
phase variation (PV), 399
 biological significance, 399–402
 complex cross-regulatory networks, 410–411
 CSSR, 404, 405f
 Dam, 406–407, 407f
 DNA methylation, 406–408, 407f
 environmental regulation, 408
epistatic regulation, of genes, 410
future directions, 411
gene conversion, 406
heterogeneity degrees, 402
immune evasion, modulation strategy, 400
mobile genetic elements, 406
phasevarions, 408
R/M systems, 401–402
SSM, 402–404, 403f
 switch frequency regulation, 408–409
 variable population composition, 401
phasevarions, 408
PhoP protein, 390, 391f, 392
phosphatidylinositol mannoside (PIM), 394–395
PhoQ protein, 390, 391f, 392
phosphate relay, 45–46, 46f
phosphotransfer, 50–52
photosynthesis, anoxic photosynthesis, 181
 electron transport chain in control of, 183–184
 FNR homologs as global regulators, 182
 repression under aerobic conditions, 181–182
phrA gene, 52
phyR gene, 292, 293f, 294–298
PhyR protein, 291–298, 295f
PhyR/NepR/sEcFG signal transduction cascade
 basic protein properties, 292–293
 292–294, 294f
 genes, regulation of, 297
 297–298
 organism variations, 295–296
 phenotypic observations, 296

PhzA1 gene, 368
pil genes, 406, 486
PIM. See Phosphatidylinositol mannoside
plasmid(s)
 immunity, 341
 P. putida, 481
 S. enterica, 393
plsB gene, 377
PMF. See Proton motive force
pmr genes, 390
PmrA protein, 390, 391f
PmrB protein, 390, 391f
PmrD protein, 53
pnp gene, 107f, 107–108
PNPase, 62
polyA polymerase, 61f, 62
population biology, 421
porins, 118–119
positive autoregulation (PAR), 22
potassium transporters, 140
(p)ppGpp, stringent response, 231–232, 232f
 bacterial physiology, global control of, 240–243, 241f
 biochemistry of, 232, 233f
 concentration, control of, 232–234, 233f
 enzyme inhibition, 239–240
 pathogenicity, 243
 regulation of, 234–238
 RNAP activity and, 238–239
 RNAP redistribution, sigma factor competition and, 239
PpsR protein, 181–182
PQS. See Pseudomonas quinolone signal
pqb genes, 352
PrfA gene, 313, 386
PrfA protein, 313, 386
proP gene, 146, 147
ProP protein, 142–143, 147
proQ gene, 147
ProQ protein, 147
proteasome, 75
protein quality control, 75
AAA+ proteins, 76–77, 77f, 79
adaptor proteins, 79
Hsp100/C1p, 76–77, 77f, 78f
molecular chaperones, 76
protein quality control, 79–80
stress sensors, 79–80
substrate proteins, 78–79
protein secretion systems, 389
proteins
high-temperature adaptation
molecular chaperones, 433
stability, structural parameters, 432–433
thermodynamic aspects, 431f, 431–432
low-temperature adaptation, 437
cold-adapted enzymes, 437–438, 438f
strategy, 439
thermodynamic aspects, 439
Proteobacteria, 434, 468
proteolysis, 75
AAA+ proteases, 76–77, 77f, 79
adaptor proteins, 79, 82–83
competence development, 82
developmental, adaptation processes, 80–82
heat shock, 80, 81f
Hsp100/C1p, 76–79, 77f, 78f
impact, 79
localization, 83
molecular chaperones, 76
RIP, 84f, 84–85
σE, regulation of, 79–80
stress sensors, 79–80
substrate proteins, 79–80
trans-membrane signaling, 83–85
Proteus mirabilis, 121, 410
proton motive force (PMF), 117
proto-spacer, 342
PrrB/PrrA protein, 183–185
Pseudoalteromonas atlantica, 406
Pseudoalteromonas, 184, 392, 482–485
Pseudomonas aeruginosa
acyl-HSL QS, 349
biofilms, 366t, 366–371
Fur, iron-sensing, 193
host cell, response, 389–390
oxidative stress responses, 159
oxygen deprivation, 184–185
persister bacteria, 376
QS, signal integration and, 351–353, 352f
iron limitation, 353–354
microaerobic and anaerobic conditions, 353
other regulatory pathways, 354–355
phosphate limitation, 353
stationary-phase sigma factor RpoS, 354
stringent response, 354
reactive nitrogen species responses, 168
redox-active pigmented antibiotics, 467–468, 468f
σE, 119
two-component signal transduction systems, 49, 54
Pseudomonas aureofaciens, 467–468
Pseudomonas fluorescens, 66
Pseudomonas putida
chaotropic stress, 481
microbial bioremediation, 481–484, 486, 488–489
oxidative stress responses, 158–159
oxygen deprivation response, 184
Pseudomonas quinolone signal (PQS), 351, 371
PsiB protein, 210
Psp response. See Phage-shock protein response
pspA gene, 117, 117–118
PspA protein, 117
pspB gene, 117
PspB protein, 118
pspC gene, 117
PspC protein, 117
pspF gene, 117–118
PspF protein, 117, 117–118
pspG gene, 118
Psychromonas ingrahamii, 437
PV. See Phase variation
Py protein, 105, 108
Pyrococcus furiosus, 342
Pyrodictium occultum, 426
Pyrolobus fumarii, 426, 432
quinolone, SOS response and, 211
host cell, bacterial responses, 387
nitrosative stress response regulators, 163
pathogenesis and, 168
responses, physiological roles, 166–168
transcription regulators, collateral effects, 165–166
reactive oxygen species (ROS), 157–158
antibiotic resistance, 464–468
cell stasis, death and, 162
defense responses, 162
host cell, bacterial responses, 387
Hsp33, 161–162
OhrR protein, 160–161
OxyR protein, 160
redox-sensitive regulators, 158t, 158–162
SoxR protein, 158–159, 159t
thiol-stress regulators, 161
recA gene, 205, 209, 212, 212t, 219
radiation/desiccation response motif (RDRM), 447–449, 448t
radioresistance, D. radiodurans, 450–453, 451f, 452–453t
Ralstonia eutropha, 163
Rap proteins, 52
rbfA gene, 108
Rcs phosphorelay, 117, 117–118
Rcs protein, 117
rAA1 proteases, 76–77, 77f, 79
adaptor proteins, 79, 82–83
competence development, 82
developmental, adaptation processes, 80–82
heat shock, 80, 81f
Hsp100/C1p, 76–79, 77f, 78f
impact, 79
localization, 83
molecular chaperones, 76
RIP, 84f, 84–85
σE, regulation of, 79–80
stress sensors, 79–80
substrate proteins, 79–80
trans-membrane signaling, 83–85
Proteus mirabilis, 121, 410
proton motive force (PMF), 117
proto-spacer, 342
PrrB/PrrA protein, 183–185
Pseudoalteromonas atlantica, 406
Pseudoalteromonas, 184, 392, 482–485
Pseudomonas aeruginosa
acyl-HSL QS, 349
biofilms, 366t, 366–371
Fur, iron-sensing, 193
host cell, response, 389–390
oxidative stress responses, 159
oxygen deprivation, 184–185
persister bacteria, 376
QS, signal integration and, 351–353, 352f
iron limitation, 353–354
microaerobic and anaerobic conditions, 353
other regulatory pathways, 354–355
phosphate limitation, 353
stationary-phase sigma factor RpoS, 354
stringent response, 354
reactive nitrogen species responses, 168
redox-active pigmented antibiotics, 467–468, 468f
σE, 119
two-component signal transduction systems, 49, 54
Pseudomonas aureofaciens, 467–468
Pseudomonas fluorescens, 66
Pseudomonas putida
chaotropic stress, 481
microbial bioremediation, 481–484, 486, 488–489
oxidative stress responses, 158–159
oxygen deprivation response, 184
Pseudomonas quinolone signal (PQS), 351, 371
PsiB protein, 210
Psp response. See Phage-shock protein response
pspA gene, 117, 117–118
PspA protein, 117, 117–118
pspB gene, 117
PspB protein, 118
pspC gene, 117
PspC protein, 117, 117–118
pspF gene, 117–118
PspF protein, 117, 117–118
pspG gene, 118
Psychromonas ingrahamii, 437
PV. See Phase variation
Py protein, 105, 108
Pyrococcus furiosus, 342
Pyrodictium occultum, 426
Pyrolobus fumarii, 426, 432
quinolone, SOS response and, 211
quorum sensing (QS), 349
radiation/desiccation response motif (RDRM), 447–449, 448t
radioresistance, D. radiodurans, 450–453, 451f, 452–453t
Ralstonia eutropha, 163
Rap proteins, 52
rbfA gene, 108
Rcs phosphorelay, 117, 120–122
Rcs proteins, 121
RDR regulon, 447–449
RDRM. See Radiation/desiccation response motif
reactive nitrogen species (RNS), 157–158
host cell, bacterial responses, 387
nitrosative stress response regulators, 163t, 163–165
pathogenesis and, 168
responses, physiological roles, 166–168
transcription regulators, collateral effects, 165–166
reactive oxygen species (ROS), 157–158
antibiotic resistance, 464–468
clpB gene, 369, 369–371
clpA, 148
clpB, 148
Hsp33, 161–162
OhrR protein, 160–161
OxyR protein, 160
redox-sensitive regulators, 158t, 158–162
SoxR protein, 158–159, 159t
thiol-stress regulators, 161
recA gene, 205, 209, 212, 212t, 219
RecA protein
- DNA damage response, 207
- loading factors, 207–208, 208f
- modulators, 208–210, 209f
RecBCD protein, 208
RecF protein, 207
recN gene, 212
RecN protein, 214
RecO protein, 207–208
RecR protein, 207
RecX protein, 209f, 209–210
redox chemistry
- antibiotic action, 461–464, 462f, 463f
- antibiotic resistance, 464–469, 465f, 466f, 467f, 468f
regulated intramembrane proteolysis (RIP), 84f, 84–85
rel genes, 232–234, 233f, 237–238
RelA protein, 354
ResD protein, 181
ResE protein, 181
restriction/modification (R/M) systems, 334, 401
reverse-gyrase, 430
rhizobacteria, 392
Rhizobium etli, 296
Rhizobium leguminosarum, 291
rhl genes, 351–355, 352f
Rhodobacter capsulatus, 164
Rhodobacter sphaeroides, 182–183, 291
Rhodococcus jostii, 488
Rhodopseudomonas palustris, 356
Rhodospirillaceae, 181
ribonucleases, 63–64
ribosomal RNA (rRNA)
- HSR outputs, 96
- (p)ppGpp, effects of, 241
ribosome biogenesis, 241
riboswitches, 64–65
Ricketsiae, 233
RIP. See Regulated intramembrane proteolysis
R/M systems. See Restriction/modification systems
RNA
- antisense, 66
- regulatory, recent research, 59–60
- trans-encoded class, 66
RNA degradation, 105–106
RNA polymerase (RNAP), 31–32
bioremediation, 481
(p)ppGpp and, 238–239
RNase E, 61f, 61–62, 105
RNase G, 62
RNase III, 62, 108
RNase R, 62
RNS. See Reactive nitrogen species
ROS. See Reactive oxygen species
rpoE gene, 37, 118, 292
rpoE2 gene, 293–294, 296
RpoE2 protein, 293–294
rpoH gene, 118
rpoN gene, 392
rpoS gene, 259–260
rpoS mRNA, 260–261
RpoS protein, 4
- degradation initiation, 62
- P. aeruginosa, QS, 354
- pairing mechanism, gene regulation and, 68–69
RppH enzyme, 61–62
RraA protein, 61–62
RrsA protein, 161
RssB protein, 36, 53, 83, 263–264
Ruv proteins, 214
Saccharomyces cerevisiae
- biofuel production, stresses, 475
- gene duplication, 8
- NAR, 21
- TRN, 6, 8
Salmonella
- genomic sequence variation, 12
- horizontal gene transfer, 10
- PmrD protein, 53
- Psp system, 118
- PV, 400–401
- Rsc phosphorelay, 120–121
- SdiA protein, 356
Salmonella enterica
- antimicrobial peptides, 389–392, 391f
- host cell, response, 387, 393
- SarZ protein, 161
- SAP. See Small acid-soluble protein
- scale-free network, 17–18
- SdiA protein, 356
- secondary metabolites, 370–371
- secretion system, 389
- SPI2, 393
- type III, 389, 393
- type IV, 393–394
- SgrS protein, 69
- Shewanella oneidensis, 165, 180–181
- Shiga toxin, 389
Shigella, 387
- short regularly spaced repeats (SSRS), 338–339
- short sequence repeats (SSRs), 402
- SidM protein, 394
- sigB regulon, 302–314
- sigF gene, 314
sigma factor
families of, 32t, 32–33, 33f
regulation, 31–32, 34f, 34–35, 35f
sigma factor 24. See Sigma factor E
sigma factor 28, 36–37
sigma factor 32
chaperones, stress sensors, 80
HSR circuitry, 97f, 97–100
HSR outputs, 95–97
regulation of heat shock response, 37
sigma factor 54, 32, 35
sigma factor 70
diversity, 33–34
general stress response, 252–253, 264, 274
sigma factor B
general stress response, *B. subtilis*, 301–312
general stress response, other bacteria, 312–314
HSR, 100
regulation
energy signaling branch, 304, 304f
environmental signaling branch, 304–305
Ogb protein, 308
RsbV and RsbW, 302–303
RST module, 305–307, 307f
S. coelicolor, 310
stress response regulation, 38–39
sigma factor B–controlled genes, 311
co-regulated subsets, 311–312
function, 311
pathogenesis, 313–314
soil bacteria, 312–313
sigma factor D, 40
sigma factor E
evelope stress response, 118–119, 124–125
regulation, alternative σ factors, 34, 37–38
sigma factor EcG, 291, 294–295, 295f
sigma factor F, 309–310
sigma factor Fecl, 38
sigma factor H, 40
sigma factor L, 40
sigma factor M, 40, 123–124
sigma factor R, 161
sigma factor S
activity regulation, 264–265
complex regulation, synthesis and stability, 36, 83
Gamma-, Beta-, and Deltaproteobacteria, 274f,
274–275
history of, 255
osmoregulation of gene expression, 146–147
proteolysis regulation, 261–264, 263f
RssB-mediated degradation, 83
σ70 family diversity, 33
sigma factor S–containing RNA polymerase
history of, 255
interaction with Erb and Erb70, 256–257
specific promoter recognition, 255–257
transcription factor cooperation, 257–258
sigma factor S–controlled downstream network,
265–267, 266f
sigma factor S–controlled genes
biofilm formation, composition, 270–271
cell envelope structure, overall cellular shape, 270
metabolic redirectors, 269–270
multiple stress resistance, cross-protection, 268–269
physiological functions, 267–273
regulatory genes, 272–273
stationary phase, stress-induced mutagenesis, 272
virulence genes, 271–272
sigma factor W, 40, 84, 123–124
sigma factor X, 40, 123–124
sigma factor Y, 40
sigT gene, 292
sigW gene, 40
sigX gene, 40
single-input modules (SIMs)
biological functions, 25–27
transcriptional network structure, 6f, 7
TRN architecture, 19f, 20
singlet oxygen, 157
Sinorhizobium meliloti
alphaproteobacterial general stress response, 291, 296
histidine kinase inhibitors, 53
Sin QS system, 355
SIP. See Stable isotope probing
SirA protein, 391
SixA protein, 53, 180
small acid-soluble protein (SASP)
a/β-type, 321–322, 322f, 325–327
g-type, 322
small RNA (sRNA), 59–60
antisense, 66
CsrA, regulation mechanisms, 65–66
Fur-regulated, 67
Hfq-dependent, 66–69, 67f
trans-encoded pairing regulators, 66
“small-world” effect, 18–19
SNSN enzymes, 334
solvent stress, 482–483
Sorangium cellulosum, 243
SOS response, 205, 206f
antibiotics, 211
autoregulation, 217
B. subtilis, 217
cell division inhibition, 213
dna polymerases, 214–215, 215f
excision repair, 213
gene network, 211–213, 212f
LexA protein, 205–206
medical aspects, 217–218
RecA filament, 207–210, 209f
recombinational repair, 213–214
repair reactions, 214
single-strand DNA, 210
spontaneous induction, 210–211
UmuD/C (DNA polymerase V), 216–217
unconventional induction, 211
Y family polymerases, 215
soxR gene, 158
soxR protein, 158–159, 159f, 467–468
protein adaptation, 437
cold-adapted enzyme properties, 437–438, 438t
strategy, 439
thermodynamic aspects, 439
tetracycline monooxygenase, 465–466
tetX gene, 465–466, 466f
TFs. See Transcription factors
TGs. See Target genes
Thermoanaerobacter ethanolicus, 475
Thermotoga maritima, 51, 426
Thermus aquaticus, 426
Thermus thermophilus, 233, 238, 431
thiol-stress regulators, 161
TOL. See Toluene degradation
toluene degradation (TOL), 481
topoisorase IV, 467
TorI protein, 53
transcription factors (TFs), 3–4, 5t
fine-tuners, 7
global regulators, 7
transcriptional regulatory networks (TRNs), 3–4
topology of, 17–18, 18f
autoregulation, 19, 19f
concept of, 4
databases, computer programs and, 5t
dOR, 19f, 20, 27
dynamic nature, 7–8
evolution, across organisms, 10–11, 12f
evolution, gene duplication and, 8–9
evolution, mechanisms for, 8, 9
FFL, 19f, 19–20, 22–25, 23f, 24f
FFMs, 6f, 6–7
gene circuit engineering, 13
gene networks, quantitative modeling, 12
gene networks, noise and, 13
HGT, 9–10
MIMs, 7–8
NAR, 21
network evolution, natural variation and, 12–13
PAR, 22
scale-free network, 17–18
SIMs, 7, 19f, 20, 25–27
single input loop, 20
“small-world” effect, 18–19
structure, global, 7
structure, local, 6f, 6–7
trans-encoded pairing regulators, 66
transfer RNA (tRNA), 64, 241
translational regulatory proteins
CsrA, sRNA regulators and, 65–66
TRAP protein, 66
transporter BetP, 143
transporter OpuA, 143–144
transporter ProP, 142–143
transposons, 466
TRAP protein, 66
TraR-TraI QS system, 355
trehalose dimycolate (TDM), 394
Treponema pallidum, 404
TREPs. See Tandem REPeats
triacylglycerides, 474
triacylglycerols (TAGs), 476
trimethoprim, SOS response and, 211
Trk protein, 140
tRNA. See Transfer RNA
TRNs. See Transcriptional regulatory networks
Truepera radiovictrix, 445
trx genes, 165
turgor pressure, 135
two-component signal transduction systems, 45–46, 46f
auxiliary proteins, 52–54
historical background, 46–47
inputs, 54–55
outputs, 47–50, 48f, 49f
phosphotransfer, 50–52
type I, II persisters, 376
umuCD gene, 467
UmutD gratitude, 216–217
umuDC gene, 212, 212
Uvr proteins, 208–209, 209f, 213
uvrAB gene, 212, 212
uvrD gene, 208–209
UvrY protein, 65
Vibrio cholerae, 233, 275, 335, 369, 389
Vibrio fischeri, 349–350, 351
Vibrio harveyi, 46, 50
Vibrio vulnificus, 334
virF gene, 120
wild-type bacteria, 375–377, 376f
Xanthomonas, 209, 274, 356
Xanthomonas campestris, 161, 195
Xanthomonas oryzae, 209
XccR protein, 356
Xenorhabdus nematophilus, 275
yafQ genes, 378
yciL gene, 355
yciR gene, 355
ydiM gene, 212, 212f
yebG gene, 212, 212f
Yersinia, 67, 125, 339, 386
Yersinia enterocolitica, 117–118
Yersinia pestis, 339, 387
Yersinia pseudotuberculosis, 121, 339, 386
YmdB protein, 62
YpbH protein, 79
yylE gene, 167
yvrHa gene, 34, 41
YvrHa protein, 34
yvrI gene, 34, 41
YvrI protein, 34
YwIIE phosphatase, 80
zinc uptake, 194–195
Zur, zinc-sensing, 194–195