EMERGING INFECTIONS

Edited by

W. Michael Scheld
Division of Infectious Diseases
University of Virginia Health Sciences Center
Charlottesville, Virginia

Donald Armstrong
Infectious Disease Service
Memorial Sloan-Kettering Cancer Center
New York, New York

James M. Hughes
National Center for Infectious Diseases
Centers for Disease Control and Prevention
Atlanta, Georgia

ASM Press • Washington, D.C.
To our children:
Sarah Scheld,
Rebecca, Alison, Priscilla, and Bradford James Armstrong, and
Andrew and Mitchell Hughes
CONTENTS

Contributors .. ix
Foreword ... xiii
Preface .. xv
Acknowledgments ... xix

1. Epidemic Dengue and Dengue Hemorrhagic Fever: a Global Public
 Health Problem in the 21st Century • Duane J. Gubler 1
2. Hemorrhagic Fevers: How They Wax and Wane • C. J. Peters 15
3. Recurrent Emergence of Venezuelan Equine Encephalomyelitis
 • Scott C. Weaver ... 27
4. Flying Foxes, Horses, and Humans: a Zoonosis Caused by a New
 Member of the Paramyxoviridae • Keith Murray,
 Bryan Eaton, Peter Hooper, Linfa Wang, Mark Williamson, and
 Peter Young .. 43
5. The Reemergence of Rabies • Cathleen A. Hanlon and
 Charles E. Rupprecht .. 59
6. Emerging Human Ehrlichioses: Recently Recognized, Widely
 Distributed, Life-Threatening Tick-Borne Diseases
 • David H. Walker ... 81
7. The Reemergence of Severe Group A Streptococcal Disease: an
 Evolutionary Perspective • Donald E. Low, Benjamin
 Schwartz, and Allison McGeer ... 93
8. Patterns in the Emergence of Epidemic Meningococcal Disease
 • Jay D. Wenger and Bradley A. Perkins ... 125
9. Escherichia coli O157:H7 • Patricia M. Griffin and
 Thomas G. Boyce .. 137
10. Bartonella: an Emerging Human Pathogen • Jane E. Koehler 147
11. Epidemic Diphtheria in the Newly Independent States of the Former
 Soviet Union • Melinda Wharton, Iain R. B. Hardy,
 Charles Vitek, Tanja Popovic, and Roland W. Sutter 165
12. A Convergence of Tick-Transmitted Diseases within the Lyme Disease
 Transmission Cycle • David H. Persing .. 177
13. Helicobacter pylori and Gastroduodenal Disorders
 • Ernst N. Kuipers and Martin J. Blaser .. 191
14. The Changing Nature of Nontuberculous Mycobacteriology
 • Timothy E. Kiehn and Mary H. White ... 207
15. Emerging Fungal Pathogens: Evolving Challenges to
 Immunocompromised Patients • Thomas J. Walsh 221

vii
16. Emerging Enteric Protozoa: *Cryptosporidium*, *Cyclospora*, and Microsporidia • Richard W. Guerrant and Nathan M. Thielman ... 233

17. Emerging and Reemerging Infections: the Critical Societal Determinants, Their Mitigation, and Our Responsibilities • Donald B. Louria .. 247

18. Addressing the Challenges of Emerging Infectious Diseases: Implementation of the Strategy of the Centers for Disease Control and Prevention • James M. Hughes 261

Index ... 271
CONTRIBUTORS

Martin J. Blaser • Division of Infectious Diseases, Vanderbilt University School of Medicine, A-3310 Medical Center North, Nashville, Tennessee 37232-2605

Thomas G. Boyce • Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee 37232

Bryan Eaton • CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3213, Australia

Patricia M. Griffin • Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333

Duane J. Gubler • Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, P.O. Box 2087, Fort Collins, Colorado 80522

Richard L. Guerrant • Division of Geographic and International Medicine, Department of Medicine, University of Virginia School of Medicine, HSC 485, Charlottesville, Virginia 22908

Cathleen A. Hanlon • Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop G-33, 1600 Clifton Road NE, Atlanta, Georgia 30333

Iain R. B. Hardy (deceased) • National Immunization Program, Centers for Disease Control and Prevention, Atlanta, Georgia 30333

Peter Hooper • CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3213, Australia

James M. Hughes • National Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop C-12, 1600 Clifton Road NE, Atlanta, Georgia 30333

Timothy E. Kiehn • Microbiology Service, Department of Clinical Laboratories, and Infectious Disease Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, and Department of Medicine, Cornell University Medical College, New York, New York 10021

Jane E. Koehler • Division of Infectious Diseases, University of California—San Francisco, Box 0654, Room C-443, 521 Parnassus Avenue, San Francisco, California 94143-0654

Ernst J. Kuipers • Department of Gastroenterology, Free University Hospital, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands

Donald B. Louria • Department of Preventive Medicine and Community Health, University of Medicine and Dentistry, New Jersey Medical School, MSB-506, 185 South Orange Avenue, Newark, New Jersey 07103-2714
Contributors

Donald E. Low • Department of Microbiology, Mount Sinai and Princess Margaret Hospitals, University of Toronto, Toronto, Ontario M5G 1X5, Canada

Allison McGeer • Department of Microbiology, Mount Sinai and Princess Margaret Hospitals, University of Toronto, Toronto, Ontario M5G, 1X5, Canada

Keith Murray • CSIRO Australian Animal Health Laboratory, Private Bag 24, Geelong, Victoria 3213, Australia

Bradley A. Perkins • Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop C-23, 1600 Clifton Road NE, Atlanta, Georgia 30333

David H. Persing • Hilton 470, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905

C. J. Peters • Special Pathogens Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, Georgia 30333

Tanja Popovic • Diphtheria Laboratory, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333

Charles E. Rupprecht • Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop G-33, 1600 Clifton Road NE, Atlanta, Georgia 30333

Benjamin Schwartz • Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop C-09, 1600 Clifton Road NE, Building 1, Room 4049, Atlanta, Georgia 30333

Roland W. Sutter • National Immunization Program, Centers for Disease Control and Prevention, Atlanta, Georgia 30333

Nathan M. Thielman • Medical University of South Carolina, 807 Clinical Sciences Building, 171 Ashley Avenue, Charleston, South Carolina 29425

Charles Vitek • National Immunization Program, Centers for Disease Control and Prevention, Atlanta, Georgia 30333

David H. Walker • Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0609

Thomas J. Walsh • Immunocompromised Host Section, Division of Clinical Sciences, National Cancer Institute, Building 10, Room 13N240, National Institutes of Health, Bethesda, Maryland 20892

Linfa Wang • CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3213, Australia

Scott C. Weaver • Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609

Jay D. Wenger • Children’s Vaccine Initiative, World Health Organization, 22 Avenue Appia, CH-1211 Geneva, Switzerland

Melinda Wharton • National Immunization Program, Centers for Disease Control and Prevention, 12 Corporate Boulevard, Room 5313, Atlanta, Georgia 30329
Mary H. White • Infectious Disease Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, and Department of Medicine, Cornell University Medical College, New York, New York 10021

Mark Williamson • CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3213, Australia

Peter Young • Animal Research Institute, Queensland Department of Primary Industry, Yeerongpilly, Queensland 4388, Australia
FOREWORD

Infections have been emerging since the first microbe tried to climb the food chain ladder, preying on the protoalgae who were the primary producers of photosynthate. Some of them learned tit for tat, first learning the joys of putrefaction, then accelerating that process as they learned the comforts of in vivo parasitism. Perhaps this happened even closer to the dawn of life, depending on when the first viruses emerged to take their free lunch out of the hide of their microbial hosts.

Emergence is none other than the dark side of coevolution, a typical, inexorable biological phenomenon. But we came along with marvelous vaccines and antibiotics, with sanitary water and food; for a while, some of us practiced safer lifestyles, from handwashing to discreet sex. And perhaps we thought we had licked the bugs with our technology.

But they kept and do keep evolving, and besides having let down our guard, we have contrived a world that is safer for bugs than ever before, with instantaneous travel, mass production and transport of foodstuffs, and crowded and sharply stratified urban populations.

So, in the past decade, we have begun to rouse ourselves, and specialists in various diseases and etiological agents have learned that they have common cause with many others. And molecular and evolutionary biologists commune with heroic field workers and doctors and the public health system for a new convergence that is as intellectually challenging as it is humanly important.

This exchange of lessons is well typified in the current volume: it will have exciting news, and much to think about, after the headlines have faded. The microbial cosmos is one worldwide web of exchange of genetic information via transmittal of plasmids for virulence and antibiotic resistance. It is the least we can do to drop the parochialism that inscribed artificial boundaries between one infectious agent and another, and perhaps we can keep our place in this game without suffering the immense toll of the plagues of ancient and current history.

Joshua Lederberg
May 1997
PREFACE

As a result of improvements in sanitation and overall living conditions during the early 20th century and the subsequent introduction of many vaccines and antibiotics, tremendous progress has been made in the prevention and control of infectious diseases. Globally, smallpox has been eradicated and target dates have been established for the eradication of polio and dracunculiasis. In the United States, the annual incidence of several vaccine-preventable diseases is at an all-time low.

Despite these successes, infectious diseases remain the leading cause of death worldwide and the third leading cause of death in the United States. The World Health Organization (WHO) estimated that approximately 17 million (33%) of the 52 million deaths that occurred worldwide in 1995 were caused by microbial agents. Human immunodeficiency virus (HIV) infection is now the leading cause of death in the United States among persons between the ages of 25 and 44 years. AIDS, which was first recognized in 1981, is the most dramatic example of a new infectious disease that has rapidly emerged during the last 15 years. However, there are numerous other examples of emerging and reemerging infectious diseases of great current clinical and public health importance.

The Institute of Medicine (IOM) published a report entitled “Emerging Infections: Microbial Threats to Health in the United States” in the fall of 1992. This report, developed under the leadership of Joshua Lederberg and Robert Shope, identified the important factors that contribute to disease emergence and reemergence. These factors include changes in human demographics and behaviors, advances in technology and industry, economic development and changes in land use, increases in travel and commerce, microbial adaptation and change, and deterioration in the public health system at the local, state, national, and global levels. The IOM report defined new and emerging infectious diseases as those that have (i) newly appeared in humans, (ii) rapidly increased in incidence, (iii) expanded in geographic range, and/or (iv) developed increasing or novel mechanisms of antimicrobial resistance.

Recognizing the intense interest in and scientific and public health importance of new and emerging infectious diseases, the program committee of the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) and the officers of the Infectious Diseases Society of America (IDSA) scheduled joint sessions during ICAAC and the IDSA annual meetings beginning in 1995. These joint sessions on new and emerging pathogens were immensely popular, attracting audiences in excess of 4,000, and were planned carefully to span the gamut among new and emerging bacteria, viruses, fungi, and parasites with appropriate discussions on national and international strategies for control. The chapters in the present
volume are derived from presentations given at the joint sessions on new and emerging infections of ICAAC and the IDSA meeting in 1995 and 1996 and are updated and fully referenced for this volume, the first in a planned series. They focus on a variety of diseases that pose major challenges today; some have been recognized for a century or more, while others have been identified during the past 25 years. Some affect healthy persons, while others primarily affect immunosuppressed persons. Some are important problems in the United States, while others cause disease primarily in other parts of the world. Approximately half of these diseases are zoonotic or vector borne, reflecting the current importance of these modes of transmission. The epidemiology of each has been influenced by one or more of the factors identified in the IOM report. Because of the nature of the "global village" in which we live, we cannot afford to be ignorant or complacent about any of them.

Experiences with these diseases dramatically remind physicians, microbiologists, researchers, public health officials, policy makers, and the public of the critical importance of ensuring the availability of the capacity to detect, respond to, and control these infections. The ability to address these emerging and reemerging microbial threats requires adequate surveillance and response capacity, ongoing research and training programs, strengthened prevention and control programs, and repair of the public health system at the local, state, national, and international levels. Strategies to address these threats and the factors that underlie disease emergence are outlined in the last two chapters. The challenges that these diseases will continue to pose demand a multidisciplinary approach and a supply of trained clinicians, microbiologists, pathologists, biomedical researchers, rodent and vector biologists, ecologists, behavioral scientists, and public health officials. The challenges also require funds to support the people and facilities needed to meet them. This is true particularly, but not only, in the developing world. Poverty makes populations especially susceptible to emerging and reemerging infections.

Future challenges are difficult to predict but certainly include more problems with antimicrobial-resistant infections, the threat of another influenza pandemic, the increasingly complex challenges of food-borne disease resulting from the globalization of the food supply, and the likelihood of increasing problems with dengue hemorrhagic fever and the risk of the resurgence of urban yellow fever in the Western Hemisphere. The global HIV epidemic will put large numbers of people at risk for currently recognized and new opportunistic infections. The roles of hepatitis B virus in chronic liver disease and hepatocellular carcinoma, human papillomavirus in cervical cancer, and Helicobacter pylori infection in peptic ulcer disease and gastric cancer are now well established. Additional chronic diseases will certainly be found to have an infectious etiology, providing important new opportunities for disease prevention in the future.

On the basis of the continued importance of new and emerging infectious diseases as defined by the 1992 IOM report, symposia on these topics are planned for future ICAACs. We plan production of an annual volume on new and emerging infections based on the presentations at each year’s ICAAC. This volume is there-
fore the first of a planned series. It should serve as a valuable source of information for persons responsible for coping with infectious diseases in the new millennium.

W. Michael Scheld
Donald Armstrong
James M. Hughes
ACKNOWLEDGMENTS

We thank everyone who has helped us in the preparation of this volume. Most importantly, we thank all of the authors for their outstanding contributions. As editors, we are particularly grateful to those members of the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) Program Committee and of the leadership of the Infectious Diseases Society of America (IDSA) who assisted us in coordinating topic and speaker selection for and moderating the joint symposia on emerging infections during the 1995 and 1996 ICAAC-IDSA meetings: Vincent Andriole, William Craig, and Jerome Klein. Numerous other colleagues provided helpful discussion, advice, and criticism. We are also grateful to our secretaries, Susan Shaker, Susan Waisner, Lynn Erickson, and Darlene Shannon. The editorial staff at ASM Press deserves our gratitude: Patrick Fitzgerald, Pamela Lacey, Eleanor Tupper, and Ken April. And, finally, we thank our families for their tolerance and support during this undertaking.
Index

Addressing Emerging Infectious Disease

Threats: a Prevention Strategy for the United States, 262

- Adherence, group A streptococci, 97–98
- Adjuvant effects, 182
- *Aedes* mosquito, dengue virus, 1–11
- Africa
dengue infections, 9–10
meningitis belt, 126–129
AIDS, 265
enteric protozoan disease, 233–245
fungal infections, 221–232
Air travel, 11, 250
Alternaria, 224
Amapari virus, 18
Angiomatosis, bacillary, 148–149, 152–154
Animal bite, rabies, 59–76
Animal model, Lyme disease, 178
Animal translocation, rabies spread by, 66–69, 75
coyote translocation, 68
raccoon translocation, 66–69
Anticomplementary properties, group A streptococci, 101
Antifungal therapy, 228–229
Antimicrobial susceptibility testing, nontuberculous mycobacteria, 213, 215–216
Antimicrobial usage, 248
Antiphagocytic properties, group A streptococci, 100–101
Apophysomyces elegans, 223
Arenavirus, 16–22
Argentine hemorrhagic fever, 17–18, 22
Aseptic meningitis, 17
Aspergillus, 223
Atrophic gastritis, 197
Australia, equine morbillivirus, 43–58
Autoimmune gastritis, 199–200
Azole-resistant *Candida albicans*, 222–223, 225

Babesia microti, 179–181, 184–185
coinfection with *Ehrlichia* and *Borrelia*, 177–190
Babesiosis, 179–181, 264
immune suppression, 180, 183
Bacillary angiomatosis, 148–149, 152–154
Bacillary peliosis hepatis, 152–154
Bacteremia
Bartonella, 155–156
relapsing, 151, 155–156
Bait, rabies vaccination of wildlife, 69–76
Bamboo rat, association with *P. marmeset*, 227–228
Barrier nursing equipment, 23
Bartonella, 147–163
historical perspective, 147–151
human disease caused by, 151–156
reservoirs and vectors, 156–159
Bartonella bacilliformis, 147–148, 151–152, 156–157
Bartonella clarridgeiae, 150
Bartonella dolhiae, 150–151, 159
Bartonella elizabethae, 150–151, 155–156, 158
Bartonella grahamii, 150–151, 159, 185
Bartonella henselae, 148–158
Bartonella quintana, 148–149, 151–156, 158
Bartonella taylorii, 150–151, 159
Bartonella vinsonii, 150, 159, 185
Bat
equine morbillivirus, 44–58
lyssavirus, 68–69
rabies, 59, 62, 64–66, 68–69, 75–76
Bipolaris, 223–224
Bolivian hemorrhagic fever, 16–19
Borrelia burgdorferi, 177–190
cag pathogenicity island, 192
Campylobacter pyloridis, see *Helicobacter pylori*
Canada, meningococcal disease, 130–131
Cancer, gastric, 197–200
Candida albicans, azole-resistant, 222–223, 225
Candida glabrata, 223, 225

271
Candida krusei, 223, 225
Candida parapsilosis, 223
Caribbean islands, dengue infections, 6–9
Cat, see also Cat scratch disease
B. henselae, 157–158
rabies, 59–60, 62–63
Cat flea, harboring of B. henselae, 157–158
Cat scratch disease, 150, 154–155, 157–158
Centers for Disease Control and Prevention, challenges of emerging infections, 261–269
Cholera, 265
Cladophialophora bantiana, 223
Coccidioides immitis, 222–223, 228
Coccidioidomycosis, 228
Coinfection
Borrelia, Babesia, and Ehrlichia, 177–190
immune suppression in, 182–184
Colonization, group A streptococci, 97–98
Corynebacterium diphtheriae, 165–176
Creutzfeldt-Jakob disease, 265, 267
Crimean-Congo hemorrhagic fever, 16, 24
Cryptococcus neoformans, 223, 226
Cryptosporidiosis, 234–238, 248, 262, 264
alterations in intestinal absorptive physiology, 236–237
clinical manifestations, 236
diagnosis, 236–238
growth shortfalls in children, 236
history and presentation, 234
treatment, 238
Cryptosporidium, 233–238, 240
taxonomic relationships, 235
waterborne, 235
Cryptosporidium parvum, 233, 238
Culex mosquito, vector of Venezuelan equine encephalitis virus, 30, 32–33
Culture, nontuberculous mycobacteria, 212–214
Cunninghamella bertholetiae, 223
Curvularia, 224
Cyclospora, 233, 238–240, 262, 265, 267
taxonomic relationships, 235
Cyclosporiasis, 238–239
history and presentation, 234
Cysteine protease function, group A streptococci, 101–102
Cytokines, 229
Cytolysin, group A streptococci, 102
Dactylaria constricta, 223
Dam building, 249–250, 255
Deer, as host for ehrlichia, 84
Deer mouse, as host for ehrlichia, 87
Deer tick
cotransmission of Borrelia, Ehrlichia, and Babesia, 177–190
flavivirus, 184
Dematiaceous molds, 223–224
Dengue fever, 1–14, 251, 262
changing epidemiology, 4–10
clinical manifestations, 2–3
geographic distribution, 3–4
incidence, 3–4
prevention programs, 12
reasons for global resurgence, 10–11
transmission cycle of dengue virus, 1–2
vaccine, 11–12
Dengue hemorrhagic fever, 1–14, 265
changing epidemiology, 4–10
clinical manifestations, 2–3
geographic distribution, 3–4
incidence, 3–4
prevention programs, 12
reasons for global resurgence, 10–11
vaccine, 11–12
Dengue virus, see also Dengue hemorrhagic fever; Dengue fever
prevention of infections, 24
serotypes, 1, 4
transmission cycle, 1–2
treatment of infections, 24
Diarrhea
enteric protozoa, 233–245
E. coli O157:H7, 138
Dimorphic fungi, endemic, 223
Diphtheria, epidemic in former Soviet Union, 165–167, 247
age-specific incidence, 167, 169–170
control, 174
epidemiology, 166–174
historical perspective, 165–166
microbiology, 171–173
military personnel and, 172
population immunity in adults, 170–171
significance of outbreak, 174–175
vaccination coverage in children, 168–170
vaccine efficacy, 171
Dog
ehrlichiosis, 84
rabies, 59–60, 62, 66–68
Ear mite, isolation of Bartonella from, 159
Ebola virus, 16, 22–24, 262, 265
Echinocandins, 229
Educational changes, to ameliorate emerging infections, 256–257
Ehrlichia
characteristics, 81–82
coinfections with *Borrelia* and *Babesia*, 177–190

Ehrlichia canis, 82, 85

Ehrlichia chaffeensis, 82–86

Ehrlichia equi, 82, 83, 87–88, 181

Ehrlichia sennetsu, 83

Ehrlichiosis, 81–91, 264

Emerging Infection Programs, 263, 267

Emerging infections

educational changes to ameliorate entire educational system, 256

in medical schools, 256–257

individual actions to ameliorate, 255

international efforts, 266

prevention and control programs, 265

primary prevention, 247–248

research priorities, 264

secondary prevention, 247

societal determinants, 247–259

societies, institutions, and foundations in amelioration, 257–258

strategy of Centers for Disease Control and Prevention, 261–269

threats to national security, 266

Emerging Infections: Microbial Threats to Health in the United States, 261–262

Emerging Infectious Diseases (journal), 265

emm-like gene family, 96, 98

Encephalitozoon, 234, 240

Endocarditis, *Bartonella*, 151, 155–156

Enteric protozoa, 233–245

Enterocytozoon bieneusi, 239–240

Epidemic diphtheria, see *Diphtheria*, epidemic in former Soviet Union

Equine morbillivirus, 43–58

genome, 50–52

Hendra outbreak, 44–46

Mackay incident, 46

pathology of infections, 52–56

virology, 48–50

wildlife reservoir, 46–48

Escherichia coli, Shiga toxin-producing, 141–142

Escherichia coli O157:H7 infection, 137–145, 262, 265

characteristics of pathogen, 137–145

clinical manifestations, 138–139

diagnosis, 141

geographic factors, 140–141

incidence, 140

infectious dose, 139–140

pathophysiology, 137–138

recognition of clusters, 142

recognition of pathogen, 137

recommendations for clinicians, 142–143

seasonal factors, 140–141

transmission, 139–140

treatment, 141

Evolution, group A streptococci, 108–111

Fatality rate, *E. coli* O157:H7, 139

Ferret, 69

Fibronectin, 98

Filamentous fungi, 223

Filovirus, 22–23

Fitness of pathogen, 94

group A streptococci, 94–105

Flavivirus, 184

Flea

B. henselae, 157–158

Bartonella, 159

Flexal virus, 18

Fluconazole, 227

Flying fox, as host for equine morbillivirus, 44–58

Food Safety Initiative, 263–264

Food-borne disease, 263–264, 267

E. coli O157:H7 infection, 137–145, 262

Former Soviet Union, epidemic diphtheria in, 165–176

Fox rabies, 59–60, 62, 66, 70, 76

Fruit bat, as host for equine morbillivirus, 44–58

Fungal pathogens, 221–232

antifungal therapy, 228–229

Fusarium, 223

multidrug-resistant, 221–224

Fusarium moniliforme, 221

Fusarium oxysporum, 221

Fusarium solani, 221

Gastric cancer, *H. pylori* and, 197–200

Gastric lymphoma, *H. pylori* and, 199–200

Gastritis

atrophic, 197

autoimmune, 199–200

H. pylori, 191, 198–199

hypertrophic protein-losing, 200

Gastroesophageal reflux disease, *H. pylori* and, 200

Gastrointestinal disorders, *H. pylori*, 191–206

Genetic diversity

group A streptococci, 108–111

H. pylori, 193–194

Genome, equine morbillivirus, 50–52

Global warming, 249–251, 254–255

Goat rabies, 63

Grahamella, see *Bartonella*
Greenhouse gases, 251
Group A streptococci, 93–123
 adherence and colonization, 97–98
 anticomplementary properties, 101
 antiphagocytic properties, 100–101
 avoidance of host defenses, 100–101
 current status of diseases, 107–108
 cysteine protease function, 101–102
cytolsins, 102
 evolution, 108–111
 fitness, 94–105
 fitness determinants
 functional classes, 97–105
 genetic organization and control of expression, 95–97
 genetic diversity, 108–111
 history of severe disease
to 1900, 105–106
after 1900, 106–107
 horizontal gene transfer, 108
 invasion and replication, 98–100
 invasive, current strains, 108–111
 superantigens, 102–105
 transmissibility, 94–95
Guanarito virus, 17–20
Hantaan virus, 24
Hantavirus pulmonary syndrome, 16, 262
Helicobacter pylori, 191–206, 265
 clinical implications and approach, 200–201
 epidemiology of infections, 194–195
 extragastrointestinal disorders, 200
 gastric cancer and, 197–200
 gastric lymphoma and, 199–200
 gastritis, 191, 198–199
 gastroduodenal disorders, 191–206
 gastroesophageal reflux disease and, 200
 general characteristics, 192
 genetic diversity, 193–194
 microbiology, 192–194
 peptic ulcer disease, 195–197, 200
 phenotypic diversity, 193–194
 screening for, 201
 transmission of infections, 194–195
 upper gastrointestinal disorders, 199–200
Hemolytic uremic syndrome (HUS), E. coli
 O157:H7, 139
Hemorrhagic fever, 15–25, see also specific diseases
 arenavirus, 16–22
 clinical presentation, 15
 dengue, 1–14
 Ebola virus, 22–24
 emergence, 15–16
 prevention, 24
treatment, 24
Hendra outbreak, equine morbillivirus, 44–46
HGE, see Human granulocytotropic ehrlichiosis
Histoplasma capsulatum, 223
HME, see Human monocytotropic ehrlichiosis
Horse
 equine morbillivirus, 43–58
 Venezuelan equine encephalomyelitis, 27–42
House mouse, as host for lymphocytic choriomeningitis virus, 17
Human body louse, as host for Bartonella, 148, 158
Human granulocytotropic ehrlichiosis (HGE), 179, 262, 264
 clinical manifestations, 87–88
HGE, see Human granulocytotropic ehrlichiosis
HGE, see Human granulocytotropic ehrlichiosis
HME, see Human monocytotropic ehrlichiosis
Horse
 equine morbillivirus, 43–58
 Venezuelan equine encephalomyelitis, 27–42
Hypertrophic protein-losing gastritis, 200
i ceA gene, 193
Immune mechanisms, of older people, 252–254
Immune suppression
 babesial infections, 180, 183
 in coinfection, 182–184
 ehrlichial infections, 182–183
 fungal infections in immunocompromised patients, 221–232
Immunization, 247–248
Industrialization, 249, 255
Institute of Medicine (IOM), 261–262
International travel, 249–250
Intestinal metaplasia, 197
Intracellular bacteria, 81
IOM, see Institute of Medicine
Irrigation, 249–250, 255
Junin virus, 17–18, 22, 24
Lassa fever, 16–17, 22, 24, 265
Life span, 253-254
Louping ill virus, 182
Lyme disease, 177-179
animal models, 178
biologic variability, 178-179
clinical manifestations, 178
coinfections with Babesia and Ehrlichia, 177-190
transmission cycle, 177-190
Lymphadenitis, nontuberculous mycobacterial, 211, 217
Lymphocytic choriomeningitis virus, 17
Lymphoma, gastric, 199-200
Lyssavirus, 68-99
M protein, 95-99, 108
Machupo virus, 17-19, 24
Mackay incident, equine morbillivirus, 46
Malaria, 250-251, 262
Malnutrition, 249
Marburg virus, 22, 24
Medical school curriculum, changes to ameliorate emerging infections, 256-257
Megamyxovirus, 44, 57
Membrane cofactor protein, 97
Meningitis
aseptic, 17
meningococcal, 125-136
Meningococcal disease, 125-136, 264-265
carriage, 125
serogroup A meningococci, 126-129
serogroup B meningococci, 131-133
serogroup C meningococci, 130-131
transmission, 125
vaccine, 128-129, 130-131
Mga regulator, 96
Mycobacterium avium complex, 207-212, 214, 217
Mycobacterium celatum, 207-208, 210-211
Mycobacterium chelonae, 208, 210, 216
Mycobacterium conspicuum, 207-208, 210, 214
Mycobacterium fortuitum, 208, 210, 216
Mycobacterium genavense, 207-208, 210-211, 214
Mycobacterium gordoni, 208, 210, 212, 214, 217
Mycobacterium haemophilum, 208-212, 214, 217
Mycobacterium kansasii, 208-212, 214, 217
Mycobacterium malmoense, 208-211, 214, 217
Mycobacterium marinum, 208-210, 212, 214
Mycobacterium mucogenicum, 208, 210
Mycobacterium scrofulaceum, 208-211
Mycobacterium shimoidei, 208-210
Mycobacterium simiae, 208-210, 217
Mycobacterium xenopi, 208-210
Myositis/myonecrosis, group A streptococcal, 107-108
Necrotizing fasciitis, group A streptococcal, 105, 107-109
Neisseria gonorrhoeae, 262
Neisseria meningitidis, 125-136; see also Meningococcal disease
Nikkomycin Z, 229
Non-albicans Candida, 223, 225
Nontuberculous mycobacteria, 207-219
antimicrobial susceptibility testing
rapidly growing mycobacteria, 213, 215-216
slowly growing mycobacteria, 213, 215
epidemiology, 207-209
historical perspective, 207-209
human disease, 209-212
cutaneous and soft tissue infections, 211-212
disseminated infections, 212
lymphadenitis, 211, 217
pulmonary infections, 211, 217
treatment, 216-217
laboratory procedures
direct organism detection in specimens, 213-214
organism detection by culture, 212-214
organism identification from culture, 213-214
specimen processing and staining, 212-213

Index 275
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>risk factors, 209–212</td>
</tr>
<tr>
<td>Older persons, 249, 252–254</td>
</tr>
<tr>
<td>Olives virus, 18</td>
</tr>
<tr>
<td>O’nyong-nyong fever, 265</td>
</tr>
<tr>
<td>Oral rabies vaccination research, 69–76</td>
</tr>
<tr>
<td>Oroya fever, 147–148, 151–152, 156–157</td>
</tr>
<tr>
<td>Paramyxoviridae, 43–58</td>
</tr>
<tr>
<td>Parish virus, 18</td>
</tr>
<tr>
<td>Pathogen</td>
</tr>
<tr>
<td>fitness, 94</td>
</tr>
<tr>
<td>virulence, 94</td>
</tr>
<tr>
<td>Peliosis hepatis, bacillary, 152–154</td>
</tr>
<tr>
<td>Penicilliosis, 227–228</td>
</tr>
<tr>
<td>Penicillium marneffei, 222–223, 227–228</td>
</tr>
<tr>
<td>Peptic ulcer disease, H. pylori, 195–197, 200</td>
</tr>
<tr>
<td>Pet trade, 69</td>
</tr>
<tr>
<td>Pichinde virus, 18</td>
</tr>
<tr>
<td>Pitirial virus, 18</td>
</tr>
<tr>
<td>Pneumocandins, 229</td>
</tr>
<tr>
<td>Pneumonic plague, 265</td>
</tr>
<tr>
<td>Polyene-resistant yeasts, 225–227</td>
</tr>
<tr>
<td>Population growth, 249–251, 254–255, 267</td>
</tr>
<tr>
<td>Postexposure prophylaxis, human rabies, 61–64, 76</td>
</tr>
<tr>
<td>Poverty, 249</td>
</tr>
<tr>
<td>Powassan virus encephalitis, 184</td>
</tr>
<tr>
<td>Presidential Decision Directive NSTC-7, 266</td>
</tr>
<tr>
<td>Protozoa, enteric, 233–245</td>
</tr>
<tr>
<td>Pseudallescheria boydii, 223–224</td>
</tr>
<tr>
<td>Public health infrastructure, 248, 262, 265</td>
</tr>
<tr>
<td>Pulmonary infection, nontuberculous mycobacterial, 211, 217</td>
</tr>
<tr>
<td>Rabies, 59–76</td>
</tr>
<tr>
<td>animal translocation and, 60–69</td>
</tr>
<tr>
<td>clinical manifestations, 60–61</td>
</tr>
<tr>
<td>control of disease in wildlife, 69–76</td>
</tr>
<tr>
<td>cryptic, 63–66</td>
</tr>
<tr>
<td>diagnosis, 60–61</td>
</tr>
<tr>
<td>human influences, 66–69</td>
</tr>
<tr>
<td>nonindigenous human fatalities, 63–66</td>
</tr>
<tr>
<td>pathogenesis, 60–61</td>
</tr>
<tr>
<td>postexposure prophylaxis, 61–64</td>
</tr>
<tr>
<td>reemergence, 59–76</td>
</tr>
<tr>
<td>Raccoon rabies, 59–60, 62–63, 66–76</td>
</tr>
<tr>
<td>RDA, see Representational difference analysis</td>
</tr>
<tr>
<td>Reemerging infections, societal determinants, 247–259</td>
</tr>
<tr>
<td>Refugees, 249, 251–252, 255</td>
</tr>
<tr>
<td>Relapsing bacteremia, 151, 155–156</td>
</tr>
<tr>
<td>Representational difference analysis (RDA), 185</td>
</tr>
<tr>
<td>Rhizopus oryzae, 223</td>
</tr>
<tr>
<td>Ribavirin, 20, 23–24</td>
</tr>
<tr>
<td>Rift Valley fever, 16, 24</td>
</tr>
<tr>
<td>Rochalimaea, see Bartonella</td>
</tr>
<tr>
<td>Rodent</td>
</tr>
<tr>
<td>arenavirus, 17–21</td>
</tr>
<tr>
<td>Bartonella, 159</td>
</tr>
<tr>
<td>Venezuelan equine encephalitis virus, 33–34</td>
</tr>
<tr>
<td>Rodent control, 19</td>
</tr>
<tr>
<td>Russia, epidemic diphtheria, 165–167</td>
</tr>
<tr>
<td>Sabia virus, 16–18, 20–21, 24</td>
</tr>
<tr>
<td>Salmonellosis, 262, 264</td>
</tr>
<tr>
<td>Sand fly, as vector for B. bacilliformis, 156–157</td>
</tr>
<tr>
<td>Scarlet fever, 105–106</td>
</tr>
<tr>
<td>Scedosporium prolificans, 224</td>
</tr>
<tr>
<td>SCH-56592, 229</td>
</tr>
<tr>
<td>Schistosomiasis, 250–251</td>
</tr>
<tr>
<td>Septata, see Encephalitozoon</td>
</tr>
<tr>
<td>Sexually transmitted disease, 249</td>
</tr>
<tr>
<td>Shiga toxin, 137–145</td>
</tr>
<tr>
<td>Shiga toxin-producing Escherichia coli, 141–142</td>
</tr>
<tr>
<td>Sin Nombre virus, 24</td>
</tr>
<tr>
<td>Skin infection, nontuberculous mycobacteria, 211–212</td>
</tr>
<tr>
<td>Skunk rabies, 59–60, 62–63, 75</td>
</tr>
<tr>
<td>Smoking, meningococcal disease and, 133</td>
</tr>
<tr>
<td>Societal determinants</td>
</tr>
<tr>
<td>amelioration of societal conditions, 247–259</td>
</tr>
<tr>
<td>emerging infections, 247–259</td>
</tr>
<tr>
<td>Soft tissue infection, nontuberculous mycobacterial, 211–212</td>
</tr>
<tr>
<td>South America</td>
</tr>
<tr>
<td>dengue infections, 8–9</td>
</tr>
<tr>
<td>Venezuelan equine encephalitis, 27–28, 30, 32–33, 35, 37–39</td>
</tr>
<tr>
<td>Southeast Asia</td>
</tr>
<tr>
<td>dengue infections, 4–10</td>
</tr>
<tr>
<td>P. marneffei, 227–228</td>
</tr>
<tr>
<td>Soviet Union, epidemic diphtheria in, 165–167</td>
</tr>
<tr>
<td>Staining, nontuberculous mycobacteria, 212</td>
</tr>
<tr>
<td>Streptococcal opacity factor, 98</td>
</tr>
<tr>
<td>Streptococci, group A, see Group A streptococci</td>
</tr>
<tr>
<td>Streptococcus iniae, 265</td>
</tr>
<tr>
<td>Streptokinase, 99</td>
</tr>
<tr>
<td>STSS, see Streptococcal toxic shock syndrome</td>
</tr>
<tr>
<td>Superantigen, group A streptococci, 102–105</td>
</tr>
<tr>
<td>Surveillance, 247, 262, 264–266</td>
</tr>
<tr>
<td>T-cell differentiation, coinfection and, 182–183</td>
</tr>
<tr>
<td>Tacaribe virus, 18</td>
</tr>
</tbody>
</table>
Index

Tamiami virus, 18
Terrorism, 266
Thrombotic thrombocytopenic purpura (TTP),
E. coli O157:H7, 139
Tick
cotransmission of Borrelia, Ehrlichia, and Babesia, 177–190
human ehrlichiosis, 81–91, 181–182
Tick pyemia, 182
Toxic shock syndrome, see Streptococcal toxic shock syndrome
Translocation, animal, see Animal translocation
Transmission
Bartonella, 156–159
cotransmission of Borrelia, Ehrlichia, and Babesia, 177–190
dengue virus, 1–2
E. coli O157:H7, 139–140
H. pylori, 194–195
meningococcal disease, 125
Venezuelan equine encephalitis, 31–34
Trench fever, 148, 151, 158
Trichozaole, 229
Trichosporon asahii, 225–226
Trichosporon beigeli, 222, 225–227
Trichosporonosis, 225–227
TTP, see Thrombotic thrombocytopenic purpura
United States
coccidioidomycosis, 228
dengue infections, 9
E. coli O157:H7, 137–145
human ehrlichiosis, 81–91
meningococcal disease, 130–133
rabies, 59–76
Venezuelan equine encephalitis, 27–28, 30
Upper gastrointestinal disorders, 199–200
Urban trench fever, 158
Urbanization, 4–11, 249–250, 255
vacA gene, 193
Vaccine
Argentine hemorrhagic fever, 18
dengue infections, 11–12
diphtheria, 168–171
meningococcal, 128–129, 131
rabies control in wildlife, 69–76
Venezuelan equine encephalitis, 34
Vaccinia-rabies glycoprotein recombinant virus vaccine, 70–72
Venezuelan equine encephalomyelitis, 27–42, 265
classification of viruses, 29
clinical manifestations in horses and humans, 29–31
enzootic, 29–30, 33–34
epidemic/epizootic, 29–33
history, 27–28
model for emergence, 37–39
studies of emergence, 34–37
vaccine, 34
Venezuelan hemorrhagic fever, 17, 19–20
Verruga peruana, 147–148, 151–152, 156–157
vir regulon, 96, 108
Virulence, 94
Vole, as host for B. vinsonii, 159
Voriconazole, 229
War, 249, 252
West Nile fever, 265
White piedra, 226
White-footed mouse, isolation of novel Bartonella from, 184–185
White-tailed deer, ehrlichiosis in, 84
Whitewater Arroyo virus, 18
World Health Organization emerging infections plan, 266
WHO Collaborating Centers, 265
Xylohypha, 224
Yeast, 223
polyene-resistant, 225–227
Yellow fever, 24, 262
Zygomycetes, 222–223