A HISTORICAL OVERVIEW

JAMES A. BARNETT
School of Biological Sciences
University of East Anglia
Norwich, United Kingdom

and

LINDA BARNETT
CONTENTS

Foreword Paul Nurse / vii
Preface / ix
Acknowledgments / xi

Chapter 1
THE CAUSE OF FERMENTATION: WORK BY CHEMISTS AND BIOLOGISTS, 1789 TO 1850 / 1

Chapter 2
THE BEGINNINGS OF YEAST PHYSIOLOGY, 1850 TO 1880 / 12

Chapter 3
PURE CULTURES, NEW YEAST SPECIES, AND CELL-FREE EXTRACTS, 1880 TO 1900 / 26

Chapter 4
YEAST CYTOLOGY, 1890 TO 1950 / 41

Chapter 5
YEAST CYTOLOGY, 1950 TO 1990 / 60

Chapter 6
THE FERMENTATION PATHWAY, 1900 TO 1950 / 76

Chapter 7
THE MAIN RESPIRATORY PATHWAY, 1920 TO 1960 / 98
Chapter 8
ENZYMIC ADAPTATION AND REGULATION, 1900 TO 1960 / 116

Chapter 9
REGULATION OF SUGAR METABOLISM, 1920 TO 2004 / 135

Chapter 10
METABOLITE TRANSPORT BY FACILITATED DIFFUSION, 1900 TO 2000 / 167

Chapter 11
METABOLITE UPTAKE BY ACTIVE TRANSPORT, 1925 TO 2000 / 183

Chapter 12
THE FOUNDATIONS OF YEAST GENETICS, 1918 TO 2000 / 202

Chapter 13
MEDICAL YEASTS, 1800 TO 2000 / 227

Chapter 14
YEAST TAXONOMY, 1900 TO 2000 / 254

REFERENCES / 275
INDEX OF NAMES / 361
SUBJECT INDEX / 367
Yeasts are important living organisms because of their contributions to biotechnology, particularly through fermentation, brewing, and baking and also as model systems for biological and biomedical research. Given the importance of yeasts, this scholarly and approachable book on the history of yeast research is very timely. Well written and illustrated, it comprehensively reviews the original published material, showing how the use of yeasts has advanced microbiology, biochemistry, molecular genetics, taxonomy, and cell biology as well as describing the history of studies of pathogenic yeasts. The book will be useful to those who are involved in research on yeasts and who want to understand how currently accepted concepts and practical methods have been developed.

The text contains descriptions of the work and characters of scientists who have made major contributions from the end of the 18th century onward, which will be helpful to teachers and students of microbiology and which provide a valuable perspective for those now directly involved in yeast research. I recommend this book to microbiologists in general and to yeast researchers in particular.

Paul Nurse, P.R.S.
Today thousands of people are engaged in research on yeasts: on their physiology, metabolism, genetics, and molecular biology as well as their roles in industry and medicine. The use of yeasts in industry is increasing, as they are very versatile and some are peculiarly suitable for industrial purposes. Most grow actively at lower pH values than those optimal for bacteria; hence it is relatively easy to keep industrial cultures of yeasts free from fast-growing contaminating microbes. Furthermore, yeasts are easier and cheaper to harvest than bacteria and large-scale yeast production does not usually evoke concern for problems of public health.

Research on yeasts has, and always has had, considerable scientific and social importance. Initially, much yeast research was concerned with problems of wine making and brewing; at the same time, the work laid down some of the foundations of microbiology, enzymology, and carbohydrate chemistry. Yeast biochemistry and muscle biochemistry developed hand in hand, with experiments on each often done by the same investigator. More recently, research on mitochondrial genetics and the cell cycle has been generated by work on yeasts.

Herein the development of yeast research since the end of the 18th century is described, based on material from vast numbers of original publications. PubMed generated a list of nearly 190,000 references to “yeast” in February 2010, so it was necessary to be highly selective. Many extracts from published papers, particularly by leading experimentalists, are quoted exactly as they were written so as to give clear and valid impressions of exactly how they thought about their work.

This book derives from a series of articles I have been publishing since 1998 in the journal Yeast, which have met with approval and seem to have supplied a want. So the account here, written mostly by someone who has spent 50 years working on yeasts in the laboratory, differs from publications of professional science historians who concern themselves primarily with the social or political aspects of science rather than with experimental details. Another difference is
an attempt to provide maximum evidence for the statements given. This evidence includes quotations from primary sources, and, where these have been translated, the original words are given as endnotes. I have seen every reference which I have cited.

I have tried to attain the standards of three great works: William Bulloch’s *History of Bacteriology* (1938), the best such history ever published; J. R. Partington’s four-volume *History of Chemistry* (1961 to 1964); and J. S. Fruton’s *Proteins, Enzymes, Genes* (1999), all of which I esteem highly.

Names of yeasts
Since yeasts’ names are constantly being changed (see chapter 14), those used here accord with the most recently (at the time of writing) published major work on yeast systematics (90). Further extensive yeast name changes and new species will be described in reference 1166a.

James A. Barnett
School of Biological Sciences
University of East Anglia
Norwich NR4 7TJ, England
February 2010
I offer my warmest thanks to Frieder Lichtenthaler, Karl-Dieter Entian, and Alan Eddy for their kindness, generosity, and help and for permitting my use of material written jointly, in chapters 3, 9 and 10, respectively. However, I am solely responsible for all errors, omissions, and solecisms.

Chapters 4 and 5 are based on articles on yeast cytology which I was privileged to write with the late Carl Robinow. He was a German-born British cytologist who left Nazi Germany in 1935, as he had Jewish forebears, and came to work at the Strangeways Laboratory in Cambridge, where, in 1942 (having been interned for four months on the Isle of Man as an “enemy alien”), he was the first person to demonstrate chromatin (“the nuclear apparatus”) in a bacterium, *Bacillus mycoides*. Robinow went on to the University of Western Ontario in 1949, becoming professor of microbiology and specializing in yeast cytology.

Each of the published articles on which this book is based acknowledged the help of very many friends and colleagues. Here I must also express particular gratitude to André Goffeau, David Hopwood, Morten Kielland-Brandt, Paul Nurse, and Steve Oliver for all their support and encouragement. In addition, for finding obscure references I have had great assistance from Diana Green, Rachel Lewis, and Chris Groom of the Library at the John Innes Institute, Simon Goose of Cambridge University Central Science Library, and Heike Boos-Schuth of the Institute for Molecular Biosciences at Frankfurt University. It is also a pleasure to acknowledge the help I have had from Robert Hauer and Pratima Sinha. Many thanks to all these kind people for their unstinting aid.

In addition, I am happy to thank the Head of the Biology School at the University of East Anglia and Professor Andy Johnston of that School for facilities which have enabled me to prepare this book, as well as the Royal Society for a series of research grants.

James A. Barnett
INDEX OF NAMES

Abbe, Ernst (1840–1905), 41, 45
Agar, Hilda, 61–62, 75
Ainsworth, G. C., 272
Albert, Robert (1869–1952), 83
Amici, Giovanni Battista (1786–1868), 3
Anderson, Harry Warren, 57
Appert, François Nicolas (1750–1841), 2
Arrhenius, Svante August (1859–1927), 82
Aschner, Manfred (1901–1989), 244
Atkins, William Ringrose Gelston (1884–1959), 39, 83
Atkinson, Robert William (1850–1929), 32–33
Audry, Charles (1865–1934), 57, 234
Bacon, John Stanley Durrant (1917–1994), 61–63
Badan, J., 44
Baker, John Randal (1900–1984), 46
Balard, Antoine Jérome (1802–1876), 58
Balfour, Isaac Bayley (1853–1922), 32
Balling, Carl Albrecht (1835–1896), 9
Baraud, Jacques, 58
Barker, Bertie Thomas Percival (1877–1961), 52
Barnett, James Arthur (1923–), 64, 108, 123, 143–146, 149, 239
Bartley, Walter (1916–1994), 75, 140–141, 149, 155
Barton, A. A., 5, 61
 Bateson, William (1861–1926), 49, 202–203, 206
 Beggs, Jean Duthie (1950–), 166
Beijerinck, Martinus Willem (1851–1931), 30, 33–35, 43, 44, 52, 257, 266
Benda, Carl (1857–1932), 74
Benham, Rhoda Williams (1894–1957), 236, 243–244, 246
Bennett, John Hughes (1812–1875), 231–232
Bensley, Robert Russell (1867–1956), 74
Berg, Fredrik Theodor (1806–1887), 231–232
Berkeley, Miles Joseph (1803–1889), 256
Berkhout, Christine Marie (1893–1932), 234, 260
Bernard, Claude (1813–1878), 21
Berthelot, Pierre Eugène Marcellin (1827–1907), 12, 16–18, 21–22
Bertrand, Gabriel (1867–1962), 248
Berkelius, Jöns Jacob (1779–1848), 7–8, 12, 15
Bevan, E. Alan, 224–225
Beyer, Manfred, 69
Biot, Jean Baptiste (1774–1862), 17n
Bisby, Guy Richard (1889–1958), 54–55
Bisson, Linda F., 201
Boidin, Jacques Marcel Louis (1922–), 269
Bouchardat, Apollinaire (1806–1886), 9
Bouin, Maurice, 43
Bourquelot, Élie-Émile (1851–1921), 37, 177, 248
Bourrouilh, Léon, 52
Bovari, Theodor (1862–1915), 49
Brebeck, Carl, 54
Brefeld, Julius Oscar (1839–1925), 27–28
Bücher, Theodor (1914–1997), 95
Buchner, Hans (1850–1902), 39
Buller, Arthur Henry Reginald (1874–1944), 55
Burchardt, Maximilianus (1831–1897), 232
Burkholder, Paul Rufus (1903–1972), 209
Burton, Richard Francis (1821–1890), 31
Buscalioni, Luigi (1863–1954), 43
Buschke, Abraham (1868–1943), 243
Bush, David, 64
Busquet, P., 43
Byers, Breck, 61, 71–72

Cabib, Enrico, 63, 66
Cagniard-Latour, Charles (1777–1859), 4–10, 18, 63, 66, 255
Cantoni, Giulio Leonard (1915–2005), 73
Cantor, Charles R. (1932–), 61, 73
Carlson, Marian (1953–), 133, 154, 156–158, 185
Caro, Heinrich, 110
Casadevall, Arturo, 234–236, 248–249
Castellani, Aldo (1877–1971), 234–235
Chiang, Hui-Ling, 164
Ciferri, Raffaele (1895–1964), 263
Ciriacy, Michael (1947–1996), 154
Claude, Albert (1899–1983), 74
Clifton, Charles Egolf (1904–1976), 149
Cohn, Georges, 123
Cohn, Melvin (1922–), 121
Colin, Jean Jacques (1874–1865), 3, 6
Collander, Paul Runar (1894–1973), 170
Connstein, Wilhelm (1870–), 89–90
Conway, Edward Joseph (1894–1968), 64, 107, 171, 176
Cori, Carl Ferdinand (1896–1984), 80, 139
Cori, Gerty Theresa (1896–1957), 80
Correns, Carl (1864–1933), 26, 202
Crabtree, Herbert Grace (1892–1966), 136, 147
Curie, Marie (1867–1934), 80
Curtis, Ferdinand (1858–1937), 43, 244
Custers, Mathieu Theodoor Jozef, 136, 141–142
Dangeard, Pierre Clement Augustin (1862–1947), 42, 47
Darwin, Charles Robert (1809–1882), 254, 258
Davies, Ronald, 64
Davson, Hugh (1909–1996), 183
De Deken, R. H. (1927–1966), 139–140
De la Fuente, Gertrudis (1921–), 174–175, 181, 199
DeMoss, John Allen, 108
De Noblet, Johannes Gerardus Hans, 64
Dernby, Carl Gustav (1893–1929), 73
de Robichon–Szulmajster, Hugolette (?–1974), 130
Derk, Henri George (1894–1953), 55, 262
Desmazières, Jean-Baptiste–Henri-Joseph (1786–1862), 3
de Vries, Hugo (1848–1935), 26, 202
Dickinson, Richard, 57
Diddens, Harmanna Antonia (1902–1944), 57, 264, 266, 268
Dienert, Frédéric Vincent (1874–1948), 116–118
Dixon, Henry Horatio (1869–1953), 39, 83
Douay, Howard C., 61, 62, 75, 131–132, 215
Downey, Mary, 64, 171, 176
Drescher, Michael E., 72–73
Drouhet, Edouard (1919–2000), 247
Dubos, René Jules (1901–1982), 13
Dubourg, E., 37
Dubrunfaut, Augustin Pierre (1797–1881), 16–17, 37, 176–177
Duclaux, Émile (1840–1904), 13
Duell, Elizabeth, 61, 74
Dumas, Jean Baptiste (1800–1884), 3, 13
Dunham, Edward K., 73
Durham, Herbert Edward (1866–1945), 33, 236
Eckstein, Barbara, 70
Eddy, Alfred Alan (1926–), 61, 62, 66, 170, 180–181, 184–186
Edwards, T. E., 64
Egel, Richard, 219
Ehrlich, Felix (1877–1942), 58
Ehrlich, Paul (1854–1915), 45, 80
Einhorn, Max (1862–1953), 33, 236
Eisenschtitz, Sidney Sidonie (1861 or 1864–1941), 43
Emblen, Gustav (1874–1933), 80, 90, 92, 95–96
Engelhardt, Vladimir Aleksandrovich (1894–1984), 138–139
Entian, Karl-Dieter (1952–), 146, 155–156
Ephrussi, Boris (1901–1979), 216–218
Epps, Helen M. R., 124, 147, 149
Evans, Edward E., 246–247
Feulgen, Robert Joachim (1884–1955), 50
Fick, Adolf Eugen (1829–1901), 168
Fields, Stan, 157–158
Fink, Gerald R., 225
Fink, Hermann (1901–1962), 113–114, 240
Fischer, Bernhard (1852–1915), 54
Fischer, Emil (1852–1919), 8, 26, 34–37, 82, 89, 116, 143, 173, 174
Fiske, Cyrus, 76
Fittig, Rudolf (1835–1910), 3
Fitz, Albert, 34
Flemming, Walther (1843–1905), 45, 47, 49
Fletcher, Walter Morley (1873–1933), 84
Florkin, Marcel (1900–1979), 86, 99, 102
Fol, Herman (1845–1892), 26
Fraenkel, Dan G., 201
Frankland, Grace Coleridge (1858–1946), 28
Frankland, Percy Faraday (1858–1946), 28
Fremy, Edmond, 20
Friis, Jørgen Sven Knud, 64
Fromherz, Konrad (1883–1963), 88–89, 96
Fruton, Joseph Stewart (1912–2007), 95, 109
Fuhrmann, Franz (1877–1957), 44, 49
Fuhrmann, Günter Fred, 182, 201
INDEX OF NAMES

Gale, Ernest Frederick (1914–2005), 124, 147, 149
Gancedo, Carlos, 141
Gancedo, Juana Maria, 125, 147–148
Gay–Lussac, Joseph Louis (1778–1850), 2–3, 83
Gehret, Ludwig, 39
Geison, Gerald L. (1943–2001), 12–13, 21
Gerhardt, Charles Frédéric (1816–1856), 13
Gerhardt, Philipp (7–2008), 171
Giroux, Craig N., 72
Goetsch, Loretta, 61, 72–73
Goffeau, André, 226
Gooday, Graham (1942–), 58
Göring, Hermann Wilhelm (1893–1946), 83
Gottschalk, Alfred (1894–1973), 174–175, 177, 186
Gray, James (1891–1975), 45, 61
Green, Joseph (1848–1914), 39
Grenson, Marcelle (1925–1996), 187, 190
Guerra, Paul, 58, 239, 241, 260
Guilliermond, Marie Antoine Alexandre (1876–1945), 44, 47, 48, 52–53, 70, 74, 207, 218, 238, 243, 258, 263
Hagedorn, Herbert (1922–), 61, 64
Hahn, Martin (1865–1934), 39, 84
Haldane, John Burdon Sanderson (1892–1934), 36, 77
Haldane, John Scott (1860–1936), 83, 138
Halvorson, Harlyn Odell (1925–2008), 124, 162, 177, 183, 187, 224
Harold, Franklin M., 67, 184
Harris, G., 179, 183–184
Harrison, Francis Charles (1871–1952), 262
Hartig, Christina, 69
Hartree, Edward, 113
Hartwell, Lee Leland Harrison (1940–), 61, 68, 69, 202, 220–221
Haworth, Walter Norman (1883–1950), 86
Hayduck, Friedrich (1880–1961), 29
Heatley, Norman George (1911–2004), 34
Heidenhain, Martin (1864–1949), 45, 47, 49
Henneberg, Wilhelm Hermann (1871–1936), 73, 261
Henri, Arthur Trautwein (1889–1943), 244
Hesse, Angelina (1850–1934), 28
Hofmeister, Camill, 52
Hofmeister, Wilhelm Friedrich Benedict (1824–1877), 49
Holzer, Helmut (1921–1997), 162–163
Hopkins, Frederick Gowland (1861–1947), 80–81, 84, 111–112
Hoppe-Seyler, Felix (1825–1895), 111
Horisberger, Marc, 65
Horne, Robert W. (1923–), 61, 64
Hughes, David E. (1915–2003), 65
Hunt, Richard Timothy (1943–), 69
Huxley, Thomas Henry (1825–1895), 15, 38
Istvánní, Gyula (1860–1930), 47
Jacob, François (1920–), 116, 131
Janssens, Frans Alfonso (1863–1924), 42, 43, 47, 48
Johannsen, Wilhelm Ludwig (1857–1927), 206
Johnson, Byron F., 65
Johnson, Mark, 133, 159
Johnson, Samuel (1709–1784), 1, 8
Johnson, William Arthur (1913–1993), 100–102, 105
Joliot-Curie, Irène (1897–1956), 80
Judge, Jean A., 171
Kalkar, Herman Moritz (1908–1991), 129–130
Kamenski, Feodor M. (1851–1912), 270
Kater, John McAllister (1901–), 44, 49–50
Keilin, David (1887–1963), 3–4, 110–113, 139, 217, 257
Kennedy, Eugene Patrick (1919–), 104, 149
Kern, Eduard, 33
Kidby, Dennis K., 64
King, Earl Judson (1901–1962), 86
King, Stephen, 71
Klein, Edward Emanuel (1844–1925), 28
Klinkhammer-Hellendoorn, P. J., 266
Klöcker, Albert (1862–1923), 262–263
Knoop, Franz (1875–1946), 99–100, 102
Koch, Robert (1843–1910), 15, 28–29
Kornberg, Hans Leo (1928–), 101, 108, 149
Koshland, Daniel Edward (1920–2007), 36
Kosikov, K.V. (1904–1995), 209
Kossel, Karl Martin Leonhard (1853–1927), 42, 46
Kotyk, Arnošt, 178–179, 181, 184, 199
Krasser, Fridolin (1863–1922), 42, 46
Krebs, Hans Adolf (1900–1981), 100–102, 105, 107, 111, 138
Kruijssen, K., 54
Kudryavtsev, Vladimir Ilich (1900–1979), 209, 258, 267–268
Kühne, Wilhelm Friedrich (1837–1900), 22
INDEX OF NAMES

Kunstler, J., 43
Kurtzman, Cletus P. (1938–), 261–262, 269–270
Kützing, Friedrich Traugott (1807–1893), 4–10, 255, 273
Kwon-Chung, Kyung June, 244, 249, 251–253

Lagnado, John, 38
Lagunas, Rosario, 19, 140, 141
Langeron, Maurice Charles Pierre (1874–1950), 57–58, 236, 239, 241, 260
Laplace, Pierre Simon (1749–1827), 109
La Rivière, J. W. Maurits, 33
Laurent, Émile (1861–1904), 267
Lavoisier, Antoine Laurent (1743–1794), 255
Lebedev, Aleksandr Nikolaevich (1881–1938), 83, 89
Leblanc, A., 43, 52
Lehmann, Hermann, 96
Lehn, Robert (1913–1966), 74, 104, 149
Lefèvre, Louis Federico (1858–1934), 43
Lehmann, Hermann, 96
Lemke, Friedrich (1880–1955), 89–90
Lindoe, Karl (1880–1955), 89–90
Lüdersdorff, Friedrich Wilhelm (1807–1893), 4–10, 255, 273
Lwoff, André Michel (1902–1994), 116, 121
Lynen, Feodor (1911–1979), 102–103

Macallum, Archibald Byron (1858–1934), 43
Macfadyen, Allan (1860–1907), 39, 83
Mackenzie, Donald W. R., 237–238, 240
MacMunn, Charles Alexander (1852–1911), 111
Maffucci, Angelo (1847–1903), 43
Magasanik, Boris (1919–), 124, 147
Mager, Jacob Shalom (1916–1980), 244
Maitra, Pabitra Kumar (1932–2007), 155–156
Man, Gustav (1864–1921), 45
Mann, Thaddeus (1908–1993), 96
Marchand, H., 53
Martin, Charles, 80–81
Martin, Donald Stover (1904–), 236
Martius, Carl (1906–1993), 99–100, 102
Matile, Phillippe, 46, 61, 73
Mayr, Ernst Walter (1904–2005), 254, 259
McCly, Daniel Otho (1918–), 46, 58
McCull, Kathleen, 70–71
Mechnikov, Ilja Illych (1845–1916), 30, 45, 257
Mecck, Dieter, 163
Mechnick, Joseph Lewis (1914–2001), 139
Mendel, Johann Gregor (1822–1884), 202–203
Meyer, Franz Julius Ferdinand (1804–1840), 6, 36
Michaelis, Leonor (1875–1949), 104

Micheli, Pietro Patrizio (1679–1737), 6
Miescher, Friedrich (1844–1895), 46
Miller, Sara E., 241
Mitchell, Peter Dennis (1920–1992), 179, 184
Mitsch, John Murdoch (1922–), 67–68, 220–223
Mitscherlich, Eilhard (1794–1863), 9, 17, 176–177
Moeller, H., 42
Mons, Peter [Hendriek Pieter Bernalot] (1931–2008), 61
Moore, Hans, 62
Morgan, Thomas Hunt (1866–1945), 47, 49, 203–204, 215–216
Mortimer, Robert K. (?–2007), 61, 211–212, 215
Müller, Rudolf (1922–1973), 69, 257
Mussolini, Benito Amilcare Andrea (1883–1945), 235

Nakase, Takashi, 259
Napoleon Bonaparte, 109
Necas, Oldrich (1925–2008), 61, 66
Needham, Dorothy Moyle (1896–1987), 80
Neidleman, Richard B., 211
Neill, James M., 246
Nerst, Walther (1864–1941), 82
Neubauer, Otto (1874–1957), 88–89, 96
Neuberg, Carl (1877–1956), 81, 85–86, 89, 91–92, 96
Nickerson, Walter J., 64, 241
Northcote, Donald Henry (1921–2004), 61, 62
Nossal, Peter Maria Joseph (1925–1958), 65
Nurse, Paul Maxime (1949–), 61, 68–69, 202, 221–222

Odds, Frank C., 234, 239
Oppenheimer, Carl (1874–1941), 90, 101, 186
Oppenheimer, Gertrud (1893–1948), 173
Oppenheimer, Max, 89
Orskov, Soren Lundsgaard (1901–1966), 169–170, 173

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Fri, 06 Dec 2019 08:42:30
Swanson, Wilbur H. (1903–), 149
Swellengrebel, Nicolaas Hendrik (1885–1970), 44, 49, 168
Swim, Harold Earle (1926–), 108
Sydow, Hans (1879–1946), 257
Sydow, Paul (1851–1925), 257
Syvén, B., 61, 66

Talice, Rodolpho V., 57, 260
Tanaka, Kenji, 65
Tasdjian, Claire L. (1914–1998), 237, 240, 241
Thenard, Louis Jacques (1777–1857), 2–3, 38
Theorell, Axel Hugo Theodor (1903–1982), 88
Thierfelder, Hans (1858–1930), 35–36
Thompson, C., 179, 183–184
Thomson, Robert Dundas (1810–1864), 9
Thunberg, Thorsten Ludvig (1873–1952), 99, 110
Traube, J., 169
Traube, Moritz (1826–1894), 22, 78–79, 109
Tschermak von Seysenegg, Erich (1871–1962), 26, 202
Turpin, Pierre Jean François (1775–1840), 6–7
Ure, Andrew (1778–1875), 9
Vallery-Radot, René (1853–1933), 13
van den Broek, Johannes Hubertus (1815–1896), 15
Van der Walt, Johannes, 232, 262, 269
van Niel, Cornelis Bernardus (1897–1985), 54, 258–259, 262
van Steveninck, Johnny (1933–1999), 170, 179–181
van’t Hoff, Jacobus Henricus (1852–1911), 82
van Uden, Nicolau João (1921–1991), 257, 260
Völker, Bernhard, 201
von Baeyer, Adolf (1835–1917), 3
von Dusch, Theodor (1824–1890), 13
von Euler, Ulf Svante (1905–1983), 82, 88, 94, 113
von Euler-Chelpin, Hans Karl August Simon (1873–1964), 80, 82, 90, 120
von Liebig, Justus (1803–1873), 7–9, 12, 13, 15, 16, 20–22, 27–39, 76
von Manassein, Marie Mikhailovna (1843–1903), 38
von Nägeli, Carl Wilhelm (1817–1891), 38–39, 46
von Szent-Györgyi, Albert (1893–1986), 99, 102
von Wettstein, Dietrich Holger (1829–), 29
Vonderman, Adolphe Guillaume (1844–1902), 32
Vuillemin, Jean-Paul (1861–1932), 31, 55–56, 241, 243, 244, 256
Wager, Harold (1862–1929), 44, 51–52
Walden, Paul (1863–1957), 128
Waldeyer, Wilhelm (1836–1921), 47
Ward, Harry Marshall (1854–1906), 32
Weidenhagen, Alfred Rudolf (1900–1979), 174
Wertheimer, Ernst (1893–1978), 169–171
Westergaard, Mogens Christian Wanning (1912–1975), 212
Wiame, Jean M., 73
Wickerham, Lynferd J. (1911–1990), 258, 261, 267–268
Wieland, Heinrich (1877–1957), 102, 109–111, 200
Wiemken, Andres, 61, 192
Wieringa, Klaas Tammo (1891–1980), 169
Wilbrandt, Walter, 173
Wilkes, Benjamin Garrison, 174
Wilkinson, John Frome (1925–), 126–127
Williamson, Don H., 53, 61, 66, 68, 75, 220
Willstätter, Richard (1872–1942), 76, 92, 112, 173, 175, 186
Winge, Oyvind (1886–1964), 44, 50, 54, 131–133, 202, 204–216, 218, 220
Wohl, Alfred (1863–1939), 91–92
Wöhler, Friedrich (1800–1882), 7–8
Wolf, Dieter, 164
Wróblewski, Augustyn (1866–after 1913), 84

Yarrow, David, 259, 260
Young, William John (1878–1942), 84–85, 87–88

Zacharias, Edvard (1852–1911), 42
Zalewski, Aleksander (1854–1906), 42
Zeiss, Carl (1816–1888), 41, 45
Zernike, Frits (1888–1966), 60
Zimmermann, Friedrich K. (1934–), 125, 154–156
Zopf, Wilhelm (1846–1909), 234
SUBJECT INDEX

Aarhus University, 170
Acetic acid/acetate
“active,” 102–103
active transport of, 200
in Custers effect, 141–142
synthesis of, 110
Aconitase, 99
Acriflavine, 216–217
“Active acetate,” in tricarboxylic acid cycle, 102–103
Active transport, 183–201
of amino acids, 186–192
history of, 183–184
molecular mechanisms of, 184–185
of sugars, 185–186
into yeast species, 192–200
S-Adenosylmethionine, 73
Adh protein, in glucose repression, 150, 154
Aerial sterigmata, 54–55
Aerobic conditions, vs. anaerobic conditions, sugar
metabolism in, see Pasteur effect
Aerobic sugar utilization, 18–19
Agar, 28
Albumin, effect on Saccharomyces, 171–172
Albuminoids, 15
Alcohol(s)
metabolism of, 148
optical isomers of, 13–14
Alcohol dehydrogenase
in glucose repression, 154
in glycolysis, 93, 96
Alcoholic fermentation, see also Beer; Wine
fermentation
in cell-free preparation, 21–22, 83–84
description of, 12
equation for, 3, 16
fusel oils in, 58
Lavoisier’s analysis of, 1–3
Pasteur work on, 13–22
pathways of, 76–97
early studies of, 76–80
enzymes in, 92–96
glycerol formation in, 88–90
investigators of, 80–83
NAD and NADP in, 87–88
phosphates in, 84–87
universal nature of, 90–92
with yeast extracts, 83–84
Amino acids, active transport of, 186–192
carriers for, 187–190
genesis involved in, 191
regulation of, 190
Aminopeptidase B, in glucose inactivation, 164
Ammonia, in active transport repression, 190
Amygdalin, hydrolysis of, 8
Amyl alcohol, 58
Amylase, adaptation of, 117
Anaerobic conditions, vs. aerobic conditions, sugar
metabolism in, see Pasteur effect
Anaerobic fermentation, 18–19
Aneuploidy, 214
Anheuser-Busch, yeasts of, 29
Annalen der Pharmacie, 8
Antibiotics, candidiasis and, 240
Anti-Semitism, in Germany, 80–83, 101–102
Apochromats, 45
Arabinose, facilitated diffusion of, 173, 176
Arbutin, 266
Arginine, active transport of, 192
Artifacts, in microscopy, 45–46
Arxula adeninivorans, 222
Ascospores, 50–53, 204–206
 discovery of, 6, 21
 of Saccharomyces cerevisiae, 208–209, 216
 of Saccharomycodes ludwigii, 207
 of Schizosaccharomyces pombe, 219
Asexual state, 259–260, 262–263
Aspergillus oryzae, 33
ATP
 in glycolysis, 86–87
 in tricarboxylic acid cycle, 104–105
Autotrophs, 209
Auxanography, 34
Baker's yeast
 cell walls of, 62
 culture of, 29
 cytochrome absorption in, 114
 facilitated diffusion in, 172–173
 permeability of, 170
 tricarboxylic acid cycle in, 105
Ballistospores, 54–55
BAP genes, in amino acid transport, 191
Beer
 ginger, 32
 millet, 31–32
 rice, 32–33
Beer wort, 7, 37
Beer yeasts
 activity of, 16–18
 bad taste from, 29
 at Carlsberg, 27
 Custers effect and, 141–142
 cytochrome absorption in, 114
 facilitated diffusion in, 172–173
 as living organisms, 5–7
 microscopy of, 3
 for millet beer, 31–32
 newly discovered, 30
 Pasteur studies of, 19–22
 permeability of, 170
 sugar utilization and, 34–37
Beet juice fermentation, 14–15
Beilsteins Handbuch der Organischen Chemie, 3
Berichte der Deutschen Chemischen Gesellschaft, 3
Berlin Academy of Sciences, 81
Biochemische Zeitschrift, 81
Biological and Medical Chemistry Institute, Moscow, 82
Blastocodium, 261
Bonn University, 80
Botrytis cinerea, 37, 177
Bottom yeasts, 36–37
 cytochrome absorption in, 113–114
 Pasteur effect and, 138
Brettanomyces
 Custers effect and, 141–142
 taxonomy of, 262
Brewer's yeasts, see Beer yeasts
Brewing Industry Research Foundation, 183–184
British Institute of Preventative Medicine, 80
British Nylon Spinners, 63
Bud scars, 5, 66
Budding, 6, 51, 56, 66–68, 239–240
Bullera, taxonomy of, 262
Bulleromyces albus, 55
Cambridge University, 45, 52, 62, 102, 111, 124–125, 240
CAN1 gene, in amino acid transport, 191
Candida
 amino acid transport in, 193–194
 classification of, 236
 dimorphism of, 57
 nomenclature of, 236
 taxonomy of, 260
Candida albicans, 227, 231–242
 active transport in, 193, 199
 adherence of, 240
 antigens of, 237
 chlamydospores of, 55, 238, 240–241
 chromosomes of, 242
 chronology of research on, 231
 cytology of, 239–241
 dimorphism of, 57
 ecology of, 238–239
 first published illustration of, 233
 genetics of, 223, 241–242
 germ tubes of, 237–238
 glycosidase activity of, 37
 in healthy people, 231
 identification of, 235–238
 low oxygen concentration for, 58
 pathogenic effects of, 227, 231–235
Candida ciferri, 227
Candida dubliniensis
 chlamydospores of, 55, 241
 as pathogen, 228
Candida glabrata
 melanin in, 249
 as pathogen, 228
Candida glabrata
 transport into, 193
Candida guilliermondii, 228, 236
Candida haemulonii, 228
Candida intermedia, 193
Candida kruzei, 228, 236
Candida lodderi, 58
Candida lusitaniae, 228
Candida maltosa
 genetics of, 223
 transport into, 193
Candida mesenterica, 260
Candida parapsilosis, 228, 236
Candida sphaerica, 200
Candida stellata, 177
Candida tropicalis
dimorphism of, 57
glycosidase activity of, 37
as pathogen, 229, 236–237
transport into, 193
Candida utilis, 172
inactive with maltose, 142–143, 145
mitochondria of, 75
Pasteur effect and, 139–140
taxonomy of, 261–262
transport into, 192–194, 200
Candida vini, 56, 200
Candidiasis, 227, 231–234
Caproic acid, facilitated diffusion of, 170
Carbon catabolite repression, 124–125, 147–150
Carbon monoxide
cytchrome oxidase affinity for, 112–113
respiration and, 138
Carboxylic acids, active transport of, 200
Carboxypeptidase Y, in glucose inactivation, 164
Carl Zeiss optical works, 41, 45, 60
Carlsberg Brewery and Laboratory, Copenhagen, 27,
29, 47, 171, 202, 218
Carrier(s)
for amino acids, 187–190
for metabolites, 123–124
Carrier-substrate kinetics, 176–178
CAT genes, in glucose repression, 151–154, 157–159,
161
Catabolite inactivation, 162–165
CCRI gene, in glucose repression, 151, 154
CDC genes, of Schizosaccharomyces pombe, 68, 222
ddc mutants, 68–69, 221
Cell cycles, 66–69, 220–222
Cell shape, regulation of, 67–68
Cell size, regulation of, 67–68
Cell walls, characteristics of, 62–65
Cell-free fermentation, 37–39, 83–84
Cellbiose, Kluvyer effect and, 143–146
Cellullosimicrobium cellulans, 66
Charlottenburg Technische Hochschule, 169
Chiasmatype theory, 203–204
Chitin, in cell wall, 62–63, 66
Chlamydospores, 55–56, 238, 240–241
Chromatin, 47–48, 51
Chromosomes, 49–50
of Candida albicans, 242
discovery of, 47
early work on, 203–204
numbers of, 73
of Schizosaccharomyces pombe, 219
Chronospores, 55
CID1 gene, in glucose repression, 153
Citrate, oxidation of, 99–100
Citric acid (tricarboxylic acid) cycle, 99–106
Clones, 27–29
Coenzyme(s), 87–88
Coenzyme A, in tricarboxylic acid cycle, 104–105
Coferment substance, 88
Competitive inhibition, in facilitated diffusion, 178
Computer methods, for yeast identification, 270–271
Concanavalin A, used to label cell wall, 64–65
Conidium, 261
Cornell University, 246
Crabtree effect, 136, 147
Crossing-over, of chromosomes, 203–204
Cryptic mutants, 123–124
Cryptococcus, taxonomy of, 255
Cryptococcus albidus, 244
Cryptococcus bacillisporus, as previous name for Cryptococcus neoformans, 243
Cryptococcus gattii, 243, 249
Cryptococcus hominis, as previous name for Cryptococcus neoformans, 31, 243
Cryptococcus neoformans, 30–31, 242–253
capsule of, 244–248
clinical significance of, 253
cytology of, 252
genetics of, 223, 251–252
illustration of, 245–247
disease cycle of, 250–251
melanin in, 248–249
name of, 242–244
nomenclature of, 249–250
serotypes of, 246–247, 249–250
sexual reproduction of, 250–251
virulence of, 244–248, 253
Cultures
pure, 27–29
synchronized, 66–67
Custers effect, 141–142
Cyc8 protein, in glucose repression, 159
Cyclic adenosine monophosphate, glucose repression and, 150
Cyclin, in cell cycle, 68
Cyniclomyces guttulatus, 256
Cytochrome(s), 111–114, 138–139
Cytochrome oxidase, 112–113, 139
Cytochrome oxidase, 112–113, 139
Cytochrome oxidase, 112–113, 139
Cytogene theory, 213
Cytology
ascospores, 50–53
ballistoconidia, 54–55
bud scars, 66
budding, 66
Candida albicans, 239–241
cell cycles, 66–69
cell fusion, 53–54
cell wall characteristics, 62–65
chlamydospores, 55–56
chromosome numbers, 73
Cryptococcus neoformans, 252
Cytology (Continued)
dimorphism, 56–58
electron microscopic studies, 71–73
genetics and, 49–50
heterobasidiomycetous yeasts, 70–71
history of
 in early years (1879-1951), 41–59
 in modern times (1950-1990), 60–75
microscopes for, 41, 45, 60, 62
mitochondria, 74–75
nuclei studies, 46–50, 69–70
protoplasts, 65–66
septa, 66
sexual reproduction, 54
spheroplasts, 65–66
stains for, 45–46
vacuoles, 47, 50, 51, 73–74
“Cytoplasmic inheritance,” 215–218

DAL5 gene, in amino acid transport, 191
Database, of yeast species, 270
Debaryomyces occidentalis, 223–224
Debaryomyces polymorphus
 active transport in, 194
 Kluvyer effect and, 145–146
Dehydrogenases, in oxidation, 109–111
Dekkera
 active transport in, 194
 Custers effect and, 141–142
Delft Technological University, 33, 146
2-Deoxy-d-glucose
 Crabtree effect and, 147
 facilitated diffusion of, 179–180
 Kluvyer effect and, 144–145
Deplasmolysis, 168–169
Diabetic urine, fermentation in, 6–7
Diastase, 8
Die Cytomorphologie der Hefen (film), 69–70
Die Entstehung entwicklungsfähiger Protoplasten aus Hefezellen und ihre Reversion (film), 70
Die Kieselschaligen Bacillarien oder Diatomeen, 4
Die Weisse Rose, 110
Diffusion, facilitated diffusion, see Facilitated diffusion
DIL1 gene, in glucose repression, 152
Dimorphism, 56–58, 239–240
DIP5 gene, in amino acid transport, 191
Diploidy, 50
Direct fermentation, 173–174
Disaccharides
 active transport of, 186
 catabolism of, 37
 facilitated diffusion of, 173–175
Distillers Company, Epsom, England, 5
DOA4 gene, in amino acid transport, 191
Durham tubes, 33–34
Dyes, for staining, 45–46
École Normale, Paris, 15
École Supérieure de Pharmacie, Paris, 15
Edinburgh University, 221
Einhorn tubes, 266
Electron microscopy, 60, 62, 71–73
Electrophoretic karyotyping, 73
Embden pathway, of glycolysis, 92
Embden-Meyerhof-Parnas pathway, see Glycolysis
Emulsin, 8
Enantionorphism, of sugars and alcohols, 13–14
Endomycoses fifteen, 257–258
English Brewing Industry Research Foundation, 179, 220
Enzymic adaptation, 116–134
 carbon catabolite repression in, 124–125
 chronology of, 119–120
 cytoene theory of, 213
 of Escherichia coli, 120–123
 to galactose, 116–118, 120
 galactose pathway in, 125–132
 genetic regulation of, 130–133
 to lactose, 116, 120–123
 to maltose, 132–133
 permeases in, 123–124
 vs. selection of mutants, 118
 to sucrose, 133
Enzyme(s)
 action of, vs. fermentation, 16–18
 discovery of, 78–79
 Kühne naming of, 22
 repression of, 124–125
Enzyme-transition state complementarity, 36
Eremascus fertilis, 258
Escherichia coli
 active transport in, 184–185
 glucose repression in, 147, 149–150
 lactose utilization by, 120–123
 Ethyl methanesulphonate, as mutagen, 215
 Ethyl 1-thio-a-D-glucopyranoside, active transport of, 183
Études sur la Bière, 19–20
Études sur le Vin, 19
Facilitated diffusion, 167–182
 carrier kinetics in, 176–178
 early studies of, 167–171
 of glucose, 170, 175–176
 Kluvyer effect and, 145
 molecular passage of, 171–172
 of nonfermentable sugars, 176
 permeability coefficients in, 167–168
 permease concept in, 176–178
 phosphorylation in, 179–182
 plasmolysis and deplasmolysis in, 168–169
 selective uptake in, 172–173
 study methods for, 167
 Faculty of Medicine, Paris, 4
FAD (flavin adenine dinucleotide), in tricarboxylic acid cycle, 104–105
Fatty acids, entry of, 170
FBP1 gene, in gluconeogenesis, 162
fds gene, Kluyver effect and, 146–147
Fermentation, see also specific type, e.g., Alcoholic; Wine
 aerobic vs. anaerobic, 18–19
cell-free, 37–39, 83–84
direct, 173–174
eyear early work on (1789–1850), 1–11
 vs. enzymic action, 16–18
genes of, 209–212
lactic acid, 15, see also Glycolysis
later developments in (1850–1880), 12–25
Lavoisier’s analysis of, 1–3
by living organisms, 4–7, 9–10
mannose, 34–36
microscopic studies of, 3–4
milk, 33
physicochemical view of, 7–9
selective, 177
semiaerobic, 34
traditional drinks from, 32–33
Ferric oxide, in oxidation, 111
Fick laws of diffusion, 168
Filamentous growth, 57–58, 239–240
Filobasidiella bacillispora, as previous name for *Cryptococcus neoformans*, 243, 249
Filobasidiella (Cryptococcus) neoformans, 30–31
Filobasidiella neoformans, as previous name for *Cryptococcus neoformans*, 243–244
flk gene, in glucose repression, 154
Formate, transport of, 200
Fred Hutchinson Cancer Research Center, 69
FRT1 gene, in active transport, 198
β-Fructofuranosidase, action of, 17–18
Fructose
 active transport of, 198
 facilitated diffusion of, 172–173
 fermentation of, 37
 selective utilization of, 177
 utilization of, 34, 209
Fructose bisphosphatase
 in gluconeogenesis, 162
 in glucose inactivation, 162–165
 in glucose repression, 154
Fructose bisphosphate, 139
D-Fructose-1,6-bisphosphate, 85, 89
Fructose-bisphosphate aldolase, in glycolysis, 93–95
D-Fructose 6-phosphate, 85–86
Fumarate, active transport of, 200
Fusel oils, 58
GAL genes
 in transport, 186
 in glucose repression, 151, 157–158
Kluyver effect and, 146–147
regulation of, 130–132
Galactokinase, 126–127, 129–131
Galactose
 active transport of, 184, 198
 enzymatic adaptation to, 116–118, 120, 125–130
 facilitated diffusion of, 173–176, 179–180
 Kluyver effect and, 143–146
 utilization of, 209
Galactose-1-phosphate uridyltransferase, 130–131
α-Galactosidase
 in cytogene theory, 213
 in melibiose hydrolysis, 37
β-Galactosidase
 adaptation of, 122–123
 in milk fermentation, 33
 repression of, 125
“Galactowaldenase,” 128–129
Galactoxylomannan, in *Cryptococcus neoformans* capsule, 248
GAP genes, in amino acid transport, 191
Gärungs-Institut, 29
GATT1 gene, in amino acid transport, 191
GDH genes, in active transport, 190–191
Gelatin, for yeast cultures, 28–29
Gene(s)
 of *Candida albicans*, 241–242
 conversion of, controversies about, 213–215
 mutants of
 glucose repression, 150–161
 Kluyver effect, 146–147
 naming of, 206
 nuclear, 218
 polymeric, 211
General amino acid permease, 190
Genetics, 202–226, see also Gene(s)
 of *Arxula adeninivorans*, 222
 of ascospores, 204–206, see also Ascospores
 of *Candida albicans*, 223, 241–242
 of *Candida maltosa*, 223
 of cell cycle, 220–222
 controversies over, 212–215
 in *Cryptococcus neoformans*, 223, 251–252
 cytology and, 49–50
 cytoplasmic inheritance, 215–218
 of *Dekaryomyces occidentalis*, 223–224
 early work in, 202–204
 in enzymatic adaptation, 130–133
 of glucose repression, 150–161
 heterothallism, 206–209
 of killer yeasts, 224–225
 of *Kluyveromyces lactis*, 224
 Mendelian, 202–204
 mitochondrial, 215–218
 nucleus and, 49–50
Genetics (Continued)
of *Pichia*, 224
of *Saccharomyces cerevisiae*, 205, 220–221
of *Schizosaccharomyces pombe*, 207–208, 218–222
of sugar utilization, 209–212
of *Yarrowia lipolytica*, 224

Germ tube method, for *Candida albicans*, 237–238

German Nazi government, persecution of scientists under, 80–83, 101–102

GHT genes, in amino acid transport, 198

Ginger beer, 32

GLC7 gene, in glucose repression, 153

GLK gene, in glucose repression, 156

GLN genes, in active transport, 191

Glucan
in cell wall, 62–63, 64
penetration of cell wall, 171

Glucanation, regulation of, 161–165

Glucose
aerobic metabolism of, see Tricarboxylic acid cycle
chemical composition of, 3
facilitated diffusion of, 170, 172–173, 175–176, 179–180
fermentation of, 37
inactivation, 162–165
metabolism of, 148
repression, 147–150
defective mutants in, 154–155
double control systems for, 159–161
genetic analysis of, 150–161
hexokinases in, 153, 155–157, 160–161
single control systems for, 159–161
transport of, 185–186, 198

“Glucose effect;” 124–125, 147, 149

D-Glucose 6-phosphate, 85–86
Glucose-6-phosphate isomerase
in glycolysis, 93–94
mutants, in glucose inactivation, 163

α-Glucosidase, 122, 143
β-Glucosidase, 8

Glucuronolymannan, in *Cryptococcus neoformans* capsule, 248

D-Glyceraldehyde, fermentation of, 89
Glyceraldehyde 3-phosphate, 87
Glyceraldehyde-3-phosphate dehydrogenase, 93, 95

Glycerol
formation of, in fermentation, 88–90
in plasmolysis, 168
uptake of, 170

Glycogen granules, 51

Glycols, penetration of cell wall, 171

Glycolysis, 76–97
early studies of, 76–80
enzymes in, 92–96
glycerol formation in, 88–90
investigators of, 80–83
Kluyver effect and, 145
NAD and NADP in, 87–88
phosphates in, 84–87
respiration after, 98–99
universal nature of, 90–92
with yeast extracts, 83–84

Glycosides
active transport of, 199–200
hydrolysis of, 173–175
Glyoxalate cycle, 149, 162

GNPl gene, in amino acid transport, 191

Golgi apparatus, 46

Grape juice
absence of yeast in, 6
fermentation of, 1–2, see also *Wine fermentation organisms* in, 19–20

GRR1 gene, in glucose repression, 153

Hanseniaspora uvarum, 20

Hansenula, taxonomy of, 257, 267

Hansenula jadinii, 261

Hans–Knoll-Institut, 69–70

Haploidy, 50

Harden–Young ester (d-fructose-1,6-bisphosphate), 85, 89

Hebrew University of Jerusalem, 244

Heidelberg University, 13, 22, 81

Heterobasidiomycetous yeasts, 70–71

Heterothallism, 206–209

HEX genes, in glucose repression, 153, 155–157

Hexokinase
in glucose repression, 153, 155–157, 160–161
in glucose uptake, 175–176
in glycolysis, 92–94
Hexose(s), transport of, 172–175, 185–186, 198–199
Hexose phosphates, 85–86
“Hexosephosphate;” 169

HGT genes, in glucose transport, 198

HIP1 gene, in amino acid transport, 191

The History of Cell Respiration and Cytochrome, 111

HO gene, 212

HTX gene, in hexose transport, 185–186

Humboldt University, 81

HXK2 gene, in glucose repression, 153

Hydrogen ion, in active transport, 184–185

Hyphae, 261

Candida albicans, 239
true, 56

Imperial Cancer Research Fund, London, 69

Indophenol oxidase, 112

Induced-fit theory, 36

Institut de France, medal, 2, 4
Institut für Mikrobiologie and Experimentelle Therapie, 69–70
Institut Pasteur, 183
International Code of Botanical Nomenclature, 255
International Medical Congress of 1881 (London), 28
Intracellular oxidation, 109
Inulin, 171
Invertase (β-fructofuranosidase), 17–18, 64 adaptation of, 120
genetic regulation of, 133
Invertin, 36
Isocitrate lyase, 154
in gluconeogenesis, 162
in glucose inactivation, 162–163
Isoleucine, 58
Isomaltase, 122
Isomaltose, utilization of, 34
2-Isopropylmalate, in glucose inactivation, 163
Isovaleric acid, entry of, 170
JEN1 gene, mediation of carboxylate uptake, 200
Jenner Institute, 83
Johannisberg yeast, 52
Johns Hopkins University, 104
Justus Liebig’s Annalen der Chemie, 110
Kaiser Wilhelm Institute for Cell Physiology, Berlin, 82
Kaiser Wilhelm Institute for Experimental Therapy and Biochemistry, Berlin, 81
Kaiser Wilhelm Institute for Medical Research, Heidelberg, 81
Karolinska Institute, 74
“Karyokinesis,” 47
Karyotyping, electrophoretic, 73
Kefir, 33
Killer yeasts, 224–225
Kloeckera, taxonomy of, 262–263
Kluyver effect, 142–147
Kluyver’s observations, 142–143
mutants, 146–147
Pronk experiments, 146
Sims and Barnett studies, 146
KLAY gene, 215
Kluyveromyces, transport in, 194–196
Kluyveromyces lactis
 cell wall permeability of, 172
 chromosomes of, 73
 GAL genes of, 132
genetics of, 224
 mutants, 146–147
 Pasteur effect and, 140
 respiration in, 108–109
 transport in, 194–195, 198–200
Kluyveromyces marxianus, 30
 active transport in, 186, 195, 200
cell wall of, 64
galactose catabolism in, 125, 127–130
invertase of, 124–125
Kluyver effect and, 145
respiration in, 109
Kluyveromyces polymorphus, 145
Kluyveromyces thermotolerans
 active transport in, 198
 Kluyver effect and, 143–144
Kodamaea ohmeri, 196
KRBI gene, 215
L gene, of Saccharomyces ludwigii, 207–208
Lactic acid/lactate fermentation of, 15, see also Glycolysis formation of
in glycolysis, 79–80, 90–92
Pasteur effect and, 138
transport of, 200
Lactobacillus brevis, 33
Lactose, 171
active transport of, 186, 200
Escherichia coli utilization by, 120–123
utilization of, 35–36, 173–175
Lebedew juice, 83
Lectin, 65
Leloir galactose pathway, 125–130
Leucine, 58
Leuconostoc scottii, 70
Light microscopy, 69–70
Lock and key model of enzyme action, 36
LYPI gene, in amino acid transport, 191
MAL genes, 132–133, 211
Malassezia, 227, 229
Malate dehydrogenase, in gluconeogenesis, 162
Malate synthase, in gluconeogenesis, 162
Malic acid, active transport of, 200
Malt extract, white precipitate from, 8
Malts, 122
Maltose
 active transport of, 186, 200
catabolism of, 142–143, 177–179
cytosolic hydrolysis of, 174–175
Kluyver effect and, 143–146
utilization of, 132–133, 210–212
Maltotriose, active transport of, 183–184
Mannan
 in cell wall, 62–64
 in Cryptococcus neoformans capsule, 247
Mannose, fermentation of, 34–36
Manometer, Warburg, 82–83, 98–99, 138
MAT genes, of Cryptococcus neoformans, 252
Mating type, 209, 219
Max Planck Institute for Cell Chemistry, 103
Media, for culture, 28–29
Medical yeasts, see Pathogenic yeasts
Megalococcus myxoides, as previous name for Cryptococcus neoformans, 244
Meiosis, 71–73
Melanin, Cryptococcus neoformans, 248–249
Melibiose
 hydrolysis of, 37, 199
 Kluyver effect and, 146–147
 utilization of, 209
Membrane impermeability, 105, 107–109
Mendelian genetics, 202–204
MEP genes, in ammonia uptake, 189, 191
Metabolites, transport of
 active, see Active transport
 by facilitated diffusion, see Facilitated diffusion
Methyl α-D-galactopyranoside, 123
Methyl α-D-glucopyranoside, facilitated diffusion of, 179–180
Methyl α-D-glucoside, active transport of, 183
Methyl β-D-galactopyranoside, 122
Methyl 1-thio-β-D-galactopyranoside, 122, 124, 145
Methylene blue, in dehydrogenase studies, 110
Metschnikowia, 30, 257
Metschnikowia bicuspidata, 257
Metschnikowia hibisci, 58
Metschnikowia reukauffii, active transport in, 196
Metschnikoviella, 257
Michaelis-Menten equations, 173
Microfilaments, 65
Micro-organisms and Disease, 28
Microscopy
 early use of, 3–4
 electron, 60, 62, 71–73
 improvements in, 41, 45
 light, 69–70
 phase-contrast, 60
Microtubules, 71
MIG1 gene, in glucose repression, 151, 158–161
Mikroskopische Untersuchungen, 6
Military School of Utrecht, 15
Milk fermentation, 33
“Milk-sugar yeast,” 35
Millet beer, 31–32
Mitochondria, 74–75
 early genetic studies of, 216–218
 Pasteur effect and, 141
 preparation of, 104
Mitosis, 48, 70–71
Monilia albicans, as previous name for Candida albicans, 234
Monilia candida, see Candida albicans
Moniliiasis, 227, 231–234
Monosaccharides, see also specific monosaccharides
 facilitated diffusion of, 172–173, 177–179
Monospora, 257
Monosporella, 257
Msnp protein, in glucose repression, 159
Murcor rouxii, Kluyver effect and, 143
MUP genes, in amino acid transport, 191
Muscle
 coenzymes in, 88
 glycolysis in, 79–80, 90–92
Mutants, see Gene(s), mutants of
 Mycoderma cervisiae, 3
 Mycoderma vini, 3
 Mycotoxins, 224–225
 Myozymase, 83
N gene, of Saccharomyces ludwigii, 207–208
NAD (nicotinamide adenine dinucleotide), 87–88
NADH, in tricarboxylic acid cycle, 104–105
NADP (nicotinamide adenine dinucleotide phosphate), in glycolysis, 87–88
National Institutes of Health, 244
Nazi government, persecution of scientists under, 80–83, 101–102
Nematospora coryli, 257
Neuberg ester (D-fructose 6-phosphate), 85–86
Neuberg theory, of glycolysis, 91–92
A New Key to the Yeasts, 271
o-Nitrophenyl β-D-galactopyranoside, 124
Nobel Prizes
 Buchner (1907), 27
 Cori and Cori (1947), 80
 Curie (1911), 80
 Ehrlich (1908), 45
 Fischer (1902), 26
 Harden (1929), 80, 82, 86
 Hartwell (2001), 69, 202
 Joliot-Curie (1935), 80
 Krebs (1953), 101
 Lynen (1964), 102
 Manassein (1907), 38
 Mechnikov, 45
 Nurse (2001), 69, 202
 von Euler, Ulf (1970), 82
 von Euler-Chelpin, Hans, (1929), 80, 82
 Wärburg (1931), 83, 138
 Wieland (1927), 110
 Willstätter (1926), 76, 78
Nomen dubium and nomen confusum, 255
NPRI gene, in amino acid transport, 190–192
Nuclei, studies of, 46–50, 69–70
Nucleolus, 46, 49, 51, 70
Nutrition, 33–37
 sugar transport, 37
 sugar utilization, 34–37
Odium albicans, as previous name for Candida albicans, 232
Oligo-1,6-glucosidase, 122
Oligosaccharides, transport of, 173–175
Optical activity, of sugars and alcohols, 13–14
Oxaloacetate, in tricarboxylic acid cycle, 100, 102, 104–105
Oxford University, 75, 102
Oxidation, 109–114
 concepts before 1925, 109–111
 cytochromes in, 111–114
 intracellular, 109
2-Oxoglutarate, active transport of, 200
Oxygen
 concentration of, filamentous growth and, 57–58
 transport of, 111
Oxymeloblobin, 111
Pabst, yeasts of, 29
Pantothenic acid, 104
Pasteur effect, 135–141
 “negative” (Custers effect), 136, 141–142
 Pasteur’s observations, 136–137
 studies of
 6-phosphofructokinase, 138–139
 during 1920s and 1930s, 137–138
 Saccharomyces cerevisiae and, 139–141
 “Pasteur enzyme,” 139
Pasteurization, 2
Pathogenic yeasts, 227–253
 Candida albicans, 227, 231–242, see also Candida albicans
 Cryptococcus neoformans, 30–31, 242–253
 PKG genes, in gluconeogenesis, 162
 Pentoses, transport of, 172–173
 Permeability coefficients, 167–168, 170
 “Permease” concept, 176–178
 Permeases, for metabolite transport, 123–124
 Persil certificate, 102–103
 Petites colonies, 215–218
 Petri dishes, 28
 Phase-contrast microscopy, 60
 Phenotypic characteristics, in taxonomy, 259
 Phosphates, in fermentation, 84–87
 Phosphobacterium, 33
 Phosphoenolpyruvate carboxykinase
 in gluconeogenesis, 162
 in glucose inactivation, 162–163
 6-Phosphofructokinase
 in glycolysis, 93–94
 Pasteur effect and, 138–139
 Phosphoglycerate kinase
 in glucose inactivation, 163
 in glycolysis, 93, 95
 Phosphoglycerate mutase, in glycolysis, 93, 95–96
 Phosphopyruvate hydratase, in glycolysis, 93, 96
 Phosphorylation, in sugar transport, 179–182
 Photomicrographs, of organisms, 28
 Physiologia Generalis, 4
Physiological Histology, 45
Pichia, 30
 genetics of, 224
 as pathogens, 229
 taxonomy of, 257
 transport in, 196, 198
 Plasmodylosis, 168–169
 “Polymeric genes,” 211
 Polyploidy, 214–215
 Polysaccharides, see also specific polysaccharides
 in Cryptococcus neoformans capsule, 246–248
 Pompé (millet beer), 31–32
 Pores, diffusion through, 169–170
 Potassium ion, in active transport, 184–185
 Promitochondria, 141
 Propionate, transport of, 200
 Proteases, 73–74, 163–164
 Proteins
 classification of, 15
 penetration of cell wall, 171–172
 Proton symport, 184–185
 Prototrophs, 209
 Pseudohyphae, 56, 57, 239, 261
 Pseudomonilia albomarginata, 260
 Pseudosaccharomyces, 263
 Pulse-labeling studies, of sugar transport, 179–180
 PUT4 gene, in amino acid transport, 191
 Putrefaction, 9
 Pyruvate
 active transport of, 200
 catabolism of, 79–80
 formation of, in fermentation, 88–90, 92
 in tricarboxylic acid cycle, 100–105
 Pyruvate decarboxylase
 in glycolysis, 93, 96
 Kluyver effect and, 145–146
 Pyruvate kinase
 in glucose inactivation, 163
 in glycolysis, 93, 95
 Raffinose
 glucose repression and, 154–155
 hydrolysis of, 175, 199–200, 266
 Kluyver effect and, 146–147
 utilization of, 209
 RAG1 gene, in glucose transport, 198
 Raman microspectroscopy, 238
 REG1 gene, in glucose repression, 153
 Respiration
 in mitochondria, 74–75
 repression of (Crabtree effect), 136, 147
 “Respiratory enzyme,” 111
 Respiratory pathway, 98–115
 Krebs tricarboxylic acid cycle, 99–106
Respiratory pathway (Continued)
 membrane impermeability, 105, 107–109
 oxidation, 109–114
RG T2 gene, glucose sensor, 186
Rhaznose, active transport of, 184
Rhodospiridium glutinis, 229
Rhodospiridium rubra, 229
Rhodospiridium toruloides
 active transport in, 184, 196–198
 Klyuyver effect and, 143
Rhodotorula, taxonomy of, 262
Rhodotorula glutinis, 70
Rice, beer made from (sake), 32–33
Rockefeller Institute, 74, 85
Royal College of Science, London, 45
Royal College of Surgeons, London, 9
Royal Indian Engineering College, Egham, England, 32
Royal Society of London, 14
RSP5 gene, in amino acid transport, 191
Rumford Medal, 14
Saccharomyces
 naming of, 6
 polyploidy in, 214
 taxonomy of, 255–256
Saccharomyces albicans, as previous name for Candida albicans, 232, 234
Saccharomyces apiculatus, 20–21, 262–263
Saccharomyces bayanus, 66
Saccharomyces capensis, 211
Saccharomyces carlsbergensis, 210
Saccharomyces cerevisiae, 30
 ascospores of, 51, 205, 216
 carbon catabolite repression in, 125
 cdc mutants of, 67–68
 cell cycle of, 220–221
 cell wall of, 62–63
 chromosomes of, 49–50, 73, 215
 discovery of, 5
 electron microscopy of, 71–72
 filamentous growth of, 57
 GAL genes of, 131–132
 gene conversion in, 213–214
 genetic mapping of, 215
 genetics of, 205, 220–221
 genome of, 218
 glucose repression and, 149–150, 154–156, 162
 killer strains of, 224–225
 Klyuyver effect and, 145–147
 MAL genes of, 132–133
 membrane impermeability of, 107–108
 microscopy of, 69–70
 mitochondria of, 75
 mitosis in, 48–49
 mutant selection or enzymic adaptation, 118
 nomenclature changes of, 272
 nucleus of, 46, 49, 70
 Pasteur effect and, 139–141
 as pathogen, 230
 regulation of shape and size, 67–68
 sexual reproduction of, 208–209
 in sugar catabolism, 19
 in sugar utilization, 210–211
 transport in, 183, 185–190, 192, 198–200
 transport into, 169, 171–172, 178–180
Saccharomyces ellipsoides, 20–21
Saccharomyces exigus, 177
Saccharomyces fragilis, 123
Saccharomyces hirtogenes, as previous name for Cryptococcus neoformans, 243
Saccharomyces neoformans, as previous name for Cryptococcus neoformans, 243
Saccharomyces oviformis, 211
Saccharomyces pastorianus, 20–21
 active transport in, 185
 bad taste from, 29
 cell wall of, 63
 filamentous growth of, 57
 MAL genes of, 132
Saccharomyces rouxii, 52
Saccharomyces ludwigii, 30
ascospores of, 51
 cell wall of, 64
 isolation of, 256
 mitochondria of, 75
 sexual reproduction of, 206–208
Saccharomyces species, 256
Sake, 32–33
Saldicin, 13
Saturation kinetics, in facilitated diffusion, 170–171, 178
“Sauternes yeast,” 37, 177
Scaffold proteins, in glucose repression, 158
Schizoblastosporion, taxonomy of, 263
Schizosaccharomyces, chromosomes, 71
Schizosaccharomyces japonicus, 48
Schizosaccharomyces octosporus, 30, 48, 52, 64
Schizosaccharomyces pombe, 31–32, 48, 52
 active transport in, 197–198, 200
 cell cycle of, 221–222
 cell wall of, 64, 65, 172
 chromosomes of, 219
 discovery of, 31, 256
 genetics of, 207–208, 218–222
 glucose repression and, 150
 malate carrier of, 107
 Pasteur effect and, 140
 polyploidy in, 214
 regulation of size and shape, 67–68
Schlitz, yeasts of, 29
Schwermetalle als Wirkungsgruppen von Fermenten, 111
Selective fermentation, 177
Semianerobic fermentation, 34
Septa, 66
Sexual reproduction
 of Cryptococcus neoformans, 250–251
 of Saccharomyces cerevisiae, 208–209
 of Saccharomycodes ludwigii, 206–208
Shape, of cell, regulation of, 67–68
Sheffield University, 75, 102
SIP genes, in glucose repression, 151–152, 158
Size, of cell, regulation of, 67–68
Smith tubes, 266
SNF genes
 in glucose repression, 151, 154, 156–158
 in transport, 186
Snf kinase, in glucose repression, 154, 159–160
Sodium chloride, in plasmolysis, 168–169
Sorbose, transport of, 178
Southern Illinois University Carbondale, 46
Species, concept of, 258–259
Spheroplasts, 65–66
Spindles, 71
Spontaneous generation, experiments refuting, 5
Spores, 29–30, 50, see also Ascospores
Sporidiobolus salmonicolor, 54, 70
Sporobolomyces, taxonomy of, 262
Sporobolomyces salmonicolor, 54
SSN1 gene, in glucose repression, 152
Stains, 45–46
Stereoispecifi city
 in facilitated diffusion, 178
 of sugars and alcohols, 13–14
Stockholm University, 7, 82
STP1 gene, in amino acid transport, 191
Streptomyces, 66
Substrate activation theory, 36
SUC genes
 in enzymic regulation, 133
 in glucose repression, 158
Succinate/succinic acid
 active transport of, 200
 production of, 171
 in tricarboxylic acid cycle, 99–100, 102, 104–105
Sucrose
 active transport of, 199–200
 chemical composition of, 176–178
 enzymatic action on, 17–18
 facilitated diffusion of, 174
 hydrolysis of, 19
 Kluvyer effect and, 144–146
 utilization of, genetic regulation of, 133
Sugar(s), see also specific sugars
 beet, 14–15
 chemical composition of, 1
 in diabetic urine, 6–7
 fermentation of, see Fermentation
metabolism of, regulation of, 135–166, see also
 Enzymatic adaptation
 Crabtree effect, 136, 147
 Custers effect, 136, 141–142
 glucose inactivation, 136, 161–165
 glucose repression, 136, 147–162
 Kluvyer effect, 136, 142–147
 mechanisms for, 136–137
 Pasteur effect, 135–141
 mixtures of, utilization of, 34–35
 optical isomers of, 13–14
 transport of, 37, see also Active transport
 phosphorylation in, 179–182
 utilization of, 34–37
Sulfites, in glycerol fermentation, 89
Swiss Federal Institute of Technology, 73, 192
Synpaticomplexes, 72
Synchronized cultures, 66–67
Syringospora robinitii, as previous name for Candida albicans, 232
Talose, utilization of, 36
Taxonomy, 254–274
 of asexual yeasts, 262–263
 Brettanomyces, 262
 Bullera, 262
 Candida, 260
 Candida utilis, 261–262
 computer identification for, 270–271
 criteria for, 254
 database for, 270
 description of, 254–255
 Diddens and Lodder (1942), 266
 Dutch School of (1931–1998), 263–270
 Guilliermond’s systematic identification scheme (1928), 263
 Hansen’s genera (1904), 256–257
 Kloekera, 262–263
 Kreger-van Rij and others (1984), 268–269
 Kurzman, Fell, and colleagues (1998), 269–270
 Lodder (1934), 266
 Lodder and Kreger-van Rij (1952), 266–267
 Lodder and others (1970), 267–268
 new genera introduced in 2003, 273
 regulations for, 255
 Rhodotomula, 262
 Schizoblastosporion, 263
 sexual vs. asexual confusion in, 259–260
 species concept in, 258–259
 Sporobolomyces, 262
 Stelling-Dekker (1931), 264–266
 Trigonopsis, 263
 yeast-mold interrelationships and, 257–262
 Taxonomy of Yeasts, 267
 Technische Hochschule Darmstadt, 125
 Tetramorphism, Candida albicans, 239
 Thrush, 227, 231–234, see also Candida albicans

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Fri, 06 Dec 2019 08:42:30
Thunberg tubes, 110, 113
Top yeasts, 36–37, 84, 113–114
\textit{Torula histolytica}, as previous name for \textit{Cryptococcus neoformans}, 244
\textit{Torulaspora delbrueckii}, 30, 33, 197
\textit{Torulopsis}, taxonomy of, 260
\textit{Torulopsis neoformans}, as previous name for \textit{Cryptococcus neoformans}, 243
Toxins, from killer yeasts, 224–225
\textit{Tremella}, 30
Tricarboxylic acid cycle, 99–106
“active acetate” in, 102–103
coenzyme A in, 104–105
in yeasts, 105–106
\textit{Trichosporon} dimorphism of, 57
as pathogen, 227, 230
\textit{Trichosporon cutaneum}, 197
\textit{Trichosporon pullulans}, 30
\textit{Trigonopsis variabilis}, 64, 263
Trinity College, Dublin, 39
Triose-phosphate isomerase in glucose inactivation, 163
in glycolysis, 93–95
Tumor cells, Crabtree effect in, 136, 147
Tup1 protein, in glucose repression, 159
Tyrosine, as melanin precursor, 248–249
Ubiquitin–conjugating enzyme, in glucose inactivation, 165
\textit{UGA4} gene, in amino acid transport, 191
University College London, 183
University of Basel, 46, 192
University of Brussels, 187
University of Caen, 52
University of Cagliari, 243
University of Erlangen, 80
University of Freiburg, 101
University of Georgia, 241
University of Giessen, 7
University of Graz, 80
University of Greifswald, 30–31, 243
University of Groningen, 60
University of Halle, 8
University of Helsinki, 170
University of Manchester, 80
University of Mannheim, 13
University of Minnesota, 244
University of Modena, 3
University of Munich, 39, 103
University of Münster, 234
University of North Carolina, 236
University of Otago, 56–57
University of Pennsylvania, 81
University of Prague, 9
University of Strasbourg, 14
University of Tokyo, 32–33
University of Tübingen, 9, 99
University of Washington, 62, 214
Uni-Yeast-Tek kit, 238
\textit{URE2} gene, in amino acid transport, 191
Urea, transport of, 170
Uridine diphosphate intermediates, in galactose pathway, 125, 128–131
Uridyl transferase, 128
Vacuoles, 47, 50, 51, 73–74
active transport into, 192
degradation in, 165
Valeric acid, entry of, 170
Vereinigt Chemische Werke AG, Berlin, 89
Vid vesicles, in glucose inactivation, 164
“Vienna process,” 114
“Vital force,” 20
Volutin, 51, 73
Wageningen University, 169
Walden inversion, 128
Washington University Medical School, 80
Western Reserve University, 74–75, 108
\textit{Willia}, taxonomy of, 257
Wine fermentation fusel oils in, 58
Lavoisier’s analysis of, 1–3
by living organisms, 5–7, 9–10
Sauternes, 37, 177
selective, 177
sugar transport specificity in, 37
transport complexity and, 186
Wine yeasts cytochrome absorption bands in, 114
microscopy of, 3
Pasteur studies of, 19–22
World War II, persecution of scientists during, 80–83, 101–102
Xylose, entry of, 173
\textit{Yarrowia lipolytica} active transport in, 197
genetics of, 224
\textit{Yeast}: \textit{a Taxonomic Study}
fifth edition in preparation, 270
first edition (1952), 266–267
fourth edition (1998), 269–270
third edition (1984), 268–269
\textit{Yeast}: \textit{Characteristics and Identification}, 271
Zeiss optical works, 41, 45, 60
Zeitschrift für Chemie, 3
Zygosaccharomyces, taxonomy of, 256
Zygosaccharomyces bailii, 30, 37
 active transport in, 198, 200
 respiration in, 108
 in selective fermentation, 177
Zygosacharomyces fermentati, nomenclature
 changes of, 272
Zygosaccharomyces priorianus, 50
Zymase, 39, 83–84
Zymin, 83
Zymohexase, 94