YEAST RESEARCH
A HISTORICAL OVERVIEW

JAMES A. BARNETT
School of Biological Sciences
University of East Anglia
Norwich, United Kingdom

and

LINDA BARNETT
CONTENTS

Foreword Paul Nurse / vii
Preface / ix
Acknowledgments / xi

Chapter 1
THE CAUSE OF FERMENTATION: WORK BY CHEMISTS AND BIOLOGISTS, 1789 TO 1850 / 1

Chapter 2
THE BEGINNINGS OF YEAST PHYSIOLOGY, 1850 TO 1880 / 12

Chapter 3
PURE CULTURES, NEW YEAST SPECIES, AND CELL-FREE EXTRACTS, 1880 TO 1900 / 26

Chapter 4
YEAST CYTOLOGY, 1890 TO 1950 / 41

Chapter 5
YEAST CYTOLOGY, 1950 TO 1990 / 60

Chapter 6
THE FERMENTATION PATHWAY, 1900 TO 1950 / 76

Chapter 7
THE MAIN RESPIRATORY PATHWAY, 1920 TO 1960 / 98
Chapter 8
ENZYMIC ADAPTATION AND REGULATION, 1900 TO 1960 / 116

Chapter 9
REGULATION OF SUGAR METABOLISM, 1920 TO 2004 / 135

Chapter 10
METABOLITE TRANSPORT BY FACILITATED DIFFUSION, 1900 TO 2000 / 167

Chapter 11
METABOLITE UPTAKE BY ACTIVE TRANSPORT, 1925 TO 2000 / 183

Chapter 12
THE FOUNDATIONS OF YEAST GENETICS, 1918 TO 2000 / 202

Chapter 13
MEDICAL YEASTS, 1800 TO 2000 / 227

Chapter 14
YEAST TAXONOMY, 1900 TO 2000 / 254

REFERENCES / 275
INDEX OF NAMES / 361
SUBJECT INDEX / 367
Yeasts are important living organisms because of their contributions to biotechnology, particularly through fermentation, brewing, and baking and also as model systems for biological and biomedical research. Given the importance of yeasts, this scholarly and approachable book on the history of yeast research is very timely. Well written and illustrated, it comprehensively reviews the original published material, showing how the use of yeasts has advanced microbiology, biochemistry, molecular genetics, taxonomy, and cell biology as well as describing the history of studies of pathogenic yeasts. The book will be useful to those who are involved in research on yeasts and who want to understand how currently accepted concepts and practical methods have been developed.

The text contains descriptions of the work and characters of scientists who have made major contributions from the end of the 18th century onward, which will be helpful to teachers and students of microbiology and which provide a valuable perspective for those now directly involved in yeast research. I recommend this book to microbiologists in general and to yeast researchers in particular.

Paul Nurse, P.R.S.
Today thousands of people are engaged in research on yeasts: on their physiology, metabolism, genetics, and molecular biology as well as their roles in industry and medicine. The use of yeasts in industry is increasing, as they are very versatile and some are peculiarly suitable for industrial purposes. Most grow actively at lower pH values than those optimal for bacteria; hence it is relatively easy to keep industrial cultures of yeasts free from fast-growing contaminating microbes. Furthermore, yeasts are easier and cheaper to harvest than bacteria and large-scale yeast production does not usually evoke concern for problems of public health.

Research on yeasts has, and always has had, considerable scientific and social importance. Initially, much yeast research was concerned with problems of wine making and brewing; at the same time, the work laid down some of the foundations of microbiology, enzymology, and carbohydrate chemistry. Yeast biochemistry and muscle biochemistry developed hand in hand, with experiments on each often done by the same investigator. More recently, research on mitochondrial genetics and the cell cycle has been generated by work on yeasts.

Herein the development of yeast research since the end of the 18th century is described, based on material from vast numbers of original publications. PubMed generated a list of nearly 190,000 references to “yeast” in February 2010, so it was necessary to be highly selective. Many extracts from published papers, particularly by leading experimentalists, are quoted exactly as they were written so as to give clear and valid impressions of exactly how they thought about their work.

This book derives from a series of articles I have been publishing since 1998 in the journal Yeast, which have met with approval and seem to have supplied a want. So the account here, written mostly by someone who has spent 50 years working on yeasts in the laboratory, differs from publications of professional science historians who concern themselves primarily with the social or political aspects of science rather than with experimental details. Another difference is
an attempt to provide maximum evidence for the statements given. This evidence includes quotations from primary sources, and, where these have been translated, the original words are given as endnotes. I have seen every reference which I have cited.

I have tried to attain the standards of three great works: William Bulloch’s *History of Bacteriology* (1938), the best such history ever published; J. R. Partington’s four-volume *History of Chemistry* (1961 to 1964); and J. S. Fruton’s *Proteins, Enzymes, Genes* (1999), all of which I esteem highly.

Names of yeasts
Since yeasts’ names are constantly being changed (see chapter 14), those used here accord with the most recently (at the time of writing) published major work on yeast systematics (90). Further extensive yeast name changes and new species will be described in reference 1166a.

James A. Barnett
School of Biological Sciences
University of East Anglia
Norwich NR4 7TJ, England
February 2010
ACKNOWLEDGMENTS

I offer my warmest thanks to Frieder Lichtenthaler, Karl-Dieter Entian, and Alan Eddy for their kindness, generosity, and help and for permitting my use of material written jointly, in chapters 3, 9 and 10, respectively. However, I am solely responsible for all errors, omissions, and solecisms.

Chapters 4 and 5 are based on articles on yeast cytology which I was privileged to write with the late Carl Robinow. He was a German-born British cytologist who left Nazi Germany in 1935, as he had Jewish forebears, and came to work at the Strangeways Laboratory in Cambridge, where, in 1942 (having been interned for four months on the Isle of Man as an “enemy alien”), he was the first person to demonstrate chromatin (“the nuclear apparatus”) in a bacterium, *Bacillus mycoides*. Robinow went on to the University of Western Ontario in 1949, becoming professor of microbiology and specializing in yeast cytology.

Each of the published articles on which this book is based acknowledged the help of very many friends and colleagues. Here I must also express particular gratitude to André Goffeau, David Hopwood, Morten Kielland-Brandt, Paul Nurse, and Steve Oliver for all their support and encouragement. In addition, for finding obscure references I have had great assistance from Diana Green, Rachel Lewis, and Chris Groom of the Library at the John Innes Institute, Simon Goose of Cambridge University Central Science Library, and Heike Boos-Schuth of the Institute for Molecular Biosciences at Frankfurt University. It is also a pleasure to acknowledge the help I have had from Robert Hauer and Pratima Sinha. Many thanks to all these kind people for their unstinting aid.

In addition, I am happy to thank the Head of the Biology School at the University of East Anglia and Professor Andy Johnston of that School for facilities which have enabled me to prepare this book, as well as the Royal Society for a series of research grants.

James A. Barnett
INDEX OF NAMES

Abbe, Ernst (1840–1905), 41, 45
Agar, Hilda, 61–62, 75
Ainsworth, G. C., 272
Albert, Robert (1869–1952), 83
Amici, Giovanni Battista (1786–1868), 3
Anderson, Harry Warren, 57
Appert, François Nicolas (1750–1841), 2
Arrhenius, Svante August (1859–1927), 82
Aschner, Manfred (1901–1989), 244
Atkins, William Ringrose Gelston (1884–1959), 39, 83
Atkinson, Robert William (1850–1929), 32–33
Audry, Charles (1865–1934), 57, 234
Bacon, John Stanley Durrant (1917–1994), 61–63
Badian, J., 44
Baker, John Randal (1900–1984), 46
Balard, Antoine Jérome (1802–1876), 58
Balfour, Isaac Bayley (1853–1922), 32
Balling, Carl Albrecht (1835–1896), 9
Baraud, Jacques, 58
Barker, Bertie Thomas Percival (1877–1961), 52
Barnett, James Arthur (1923–), 64, 108, 123, 143–146, 149, 239
Bartley, Walter (1916–1994), 75, 140–141, 149, 155
Barton, A. A., 5, 61
Bateson, William (1861–1926), 49, 202–203, 206
Beggs, Jean Duthie (1950–), 166
Beijerinck, Martinus Willem (1851–1931), 30, 33–35, 43, 44, 52, 257, 266
Benda, Carl (1857–1932), 74
Benham, Rhoda Williams (1894–1957), 236, 243–244, 246
Bennett, John Hughes (1812–1875), 231–232
Bensley, Robert Russell (1867–1956), 74
Berg, Fredrik Theodor (1806–1887), 231–232
Berkeley, Miles Joseph (1803–1889), 256
Berkhout, Christine Marie (1893–1932), 234, 260
Bernard, Claude (1813–1878), 21
Berthelot, Pierre Eugène Marcellin (1827–1907), 12, 16–18, 21–22
Bertrand, Gabriel (1867–1962), 248
Berzelius, Jöns Jacob (1779–1848), 7–8, 12, 15
Bevan, E. Alan, 224–225
Beyer, Manfred, 69
Biot, Jean Baptiste (1774–1862), 17n
Bisby, Guy Richard (1889–1958), 54–55
Bisson, Linda F., 201
Boidin, Jacques Marcel Louis (1922–), 269
Bouchardat, Apollinaire (1806–1886), 9
Bouin, Maurice, 43
Bourquelot, Élie-Émile (1851–1921), 37, 177, 248
Bourrouilh, Léon, 52
Boveri, Theodor (1862–1915), 49
Brebeck, Carl, 54
Brefeld, Julius Oscar (1839–1925), 27–28
Bücher, Theodor (1914–1997), 95
Buchner, Hans (1850–1902), 39
Buller, Arthur Henry Reginald (1874–1944), 55
Burchardt, Maximilianus (1831–1897), 232
Burkholder, Paul Rufus (1903–1972), 209
Burton, Richard Francis (1821–1890), 31
Buscalioni, Luigi (1863–1954), 43
Buschke, Abraham (1868–1943), 243
Bush, David, 64
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busquet, P.</td>
<td>43</td>
</tr>
<tr>
<td>Byers, Breck</td>
<td>61, 71–72</td>
</tr>
<tr>
<td>Cabib, Enrico</td>
<td>63, 66</td>
</tr>
<tr>
<td>Cagniard-Latour, Charles</td>
<td>(1777–1859), 4–10, 18, 63, 66, 255</td>
</tr>
<tr>
<td>Cantoni, Giulio Leonardo</td>
<td>(1915–2005), 73</td>
</tr>
<tr>
<td>Cantor, Charles R.</td>
<td>(1932–), 61, 73</td>
</tr>
<tr>
<td>Carlson, Marian</td>
<td>(1953–), 133, 154, 156–158, 185</td>
</tr>
<tr>
<td>Caro, Heinrich</td>
<td></td>
</tr>
<tr>
<td>Casadevall, Arturo</td>
<td>234–236, 248–249</td>
</tr>
<tr>
<td>Castellani, Aldo</td>
<td>(1877–1971), 234–235</td>
</tr>
<tr>
<td>Chiang, Hui-Ling</td>
<td>164</td>
</tr>
<tr>
<td>Ciferri, Raffaele</td>
<td>263</td>
</tr>
<tr>
<td>Ciriacy, Michael</td>
<td>(1947–1996), 154</td>
</tr>
<tr>
<td>Claude, Albert</td>
<td>(1899–1984), 74</td>
</tr>
<tr>
<td>Clifton, Charles Egolf</td>
<td>(1904–1976), 149</td>
</tr>
<tr>
<td>Cohen, Georges</td>
<td>123</td>
</tr>
<tr>
<td>Cohn, Melvin</td>
<td>(1922–), 121</td>
</tr>
<tr>
<td>Colin, Jean Jacques</td>
<td>(1874–1865), 3, 6</td>
</tr>
<tr>
<td>Collander, Paul Runar</td>
<td>(1894–1973), 170</td>
</tr>
<tr>
<td>Connstein, Wilhelm</td>
<td>(1870–), 89–90</td>
</tr>
<tr>
<td>Conway, Edward Joseph</td>
<td>(1894–1968), 64, 107, 171, 176</td>
</tr>
<tr>
<td>Cori, Carl Ferdinand</td>
<td>(1896–1984), 80, 139</td>
</tr>
<tr>
<td>Cori, Gerty Theresa</td>
<td>(1896–1957), 80</td>
</tr>
<tr>
<td>Correns, Carl</td>
<td>(1864–1933), 26, 202</td>
</tr>
<tr>
<td>Crabtree, Herbert Grace</td>
<td>(1892–1966), 136, 147</td>
</tr>
<tr>
<td>Curie, Marie</td>
<td>(1867–1934), 80</td>
</tr>
<tr>
<td>Curtis, Ferdinand</td>
<td>(1858–1937), 43, 244</td>
</tr>
<tr>
<td>Custers, Mathieu Theodoor Jozef</td>
<td>136, 141–142</td>
</tr>
<tr>
<td>Dangeard, Pierre Clement</td>
<td>Augustin (1862–1947), 42, 47</td>
</tr>
<tr>
<td>Darwin, Charles Robert</td>
<td>(1809–1882), 254, 258</td>
</tr>
<tr>
<td>Davies, Ronald</td>
<td>64</td>
</tr>
<tr>
<td>Davson, Hugh</td>
<td>(1909–1996), 183</td>
</tr>
<tr>
<td>De Deken, R. H.</td>
<td>(1927–1966), 139–140</td>
</tr>
<tr>
<td>de la Fuente, Gertrudis</td>
<td>(1921–), 174–175, 181, 199</td>
</tr>
<tr>
<td>Delamater, Edward</td>
<td>44</td>
</tr>
<tr>
<td>Delbrück, Max Emil Julius</td>
<td>(1850–1919), 29</td>
</tr>
<tr>
<td>DeMoss, John Allen</td>
<td>108</td>
</tr>
<tr>
<td>De Nobel, Johannes Gerardus</td>
<td>64</td>
</tr>
<tr>
<td>Derby, Karl Gustav</td>
<td>(1893–1929), 73</td>
</tr>
<tr>
<td>de Robichon-Szulmajster</td>
<td>Huguette (?–1974), 130</td>
</tr>
<tr>
<td>Derx, Henri George</td>
<td>(1894–1953), 55, 262</td>
</tr>
<tr>
<td>Desmazières, Jean-Baptiste-</td>
<td>Henri-Joseph (1786–1862), 3</td>
</tr>
<tr>
<td>de Vries, Hugo</td>
<td>(1848–1935), 26, 202</td>
</tr>
<tr>
<td>Dickinson, Richard</td>
<td>57</td>
</tr>
<tr>
<td>Diddens, Harmanna Antonia</td>
<td>(1902–1944), 57, 264, 266, 268</td>
</tr>
<tr>
<td>Dierent, Frédéric Vincent</td>
<td>(1874–1948), 116–118</td>
</tr>
<tr>
<td>Dixon, Henry Horatio</td>
<td>(1869–1953), 39, 83</td>
</tr>
<tr>
<td>Downey, Mary</td>
<td>64, 171, 176</td>
</tr>
<tr>
<td>Dresser, Michael E.</td>
<td>72–73</td>
</tr>
<tr>
<td>Drouhet, Edouard</td>
<td>(1919–2000), 247</td>
</tr>
<tr>
<td>Dubos, René Jules</td>
<td>(1901–1982), 13</td>
</tr>
<tr>
<td>Dubourg, E., 37</td>
<td></td>
</tr>
<tr>
<td>Duburnaut, Augustin Pierre</td>
<td>(1797–1881), 16–17, 37, 176–177</td>
</tr>
<tr>
<td>Duclaux, Émile</td>
<td>(1840–1904), 13</td>
</tr>
<tr>
<td>Duell, Elizabeth</td>
<td>61, 74</td>
</tr>
<tr>
<td>Dumas, Jean Baptiste</td>
<td>(1800–1884), 3, 13</td>
</tr>
<tr>
<td>Dunham, Edward K.</td>
<td>73</td>
</tr>
<tr>
<td>Durham, Herbert Edward</td>
<td>(1866–1945), 33, 236</td>
</tr>
<tr>
<td>Eckstein, Barbara</td>
<td>70</td>
</tr>
<tr>
<td>Eddy, Alfred Alan</td>
<td>(1926–), 61, 62, 66, 170, 180–181, 184–186</td>
</tr>
<tr>
<td>Edwards, T. E.</td>
<td>64</td>
</tr>
<tr>
<td>Egel, Richard</td>
<td>219</td>
</tr>
<tr>
<td>Ehrlich, Felix</td>
<td>(1877–1942), 58</td>
</tr>
<tr>
<td>Ehrlich, Paul</td>
<td>(1854–1915), 45, 80</td>
</tr>
<tr>
<td>Einhorn, Max</td>
<td>(1862–1953), 33, 236</td>
</tr>
<tr>
<td>Eisenschitz, Siddy Sidonie</td>
<td>(1861 or 1864–1941), 43</td>
</tr>
<tr>
<td>Embden, Gustav</td>
<td>(1874–1933), 80, 90, 92, 95–96</td>
</tr>
<tr>
<td>Engelhardt, Vladimir</td>
<td>Aleksandrovich (1894–1984), 138–139</td>
</tr>
<tr>
<td>Entian, Karl-Dieter</td>
<td>(1952–), 146, 155–156</td>
</tr>
<tr>
<td>Ephrussi, Boris</td>
<td>(1901–1979), 216–218</td>
</tr>
<tr>
<td>Epps, Helen M. R.</td>
<td>124, 147, 149</td>
</tr>
<tr>
<td>Evans, Edward E.</td>
<td>246–247</td>
</tr>
<tr>
<td>Feulgen, Robert Joachim</td>
<td>(1884–1955), 50</td>
</tr>
<tr>
<td>Fick, Adolf Eugen</td>
<td>(1829–1901), 168</td>
</tr>
<tr>
<td>Fields, Stan</td>
<td>157–158</td>
</tr>
<tr>
<td>Fink, Gerald R.</td>
<td>225</td>
</tr>
<tr>
<td>Fink, Hermann</td>
<td>(1901–1962), 113–114, 240</td>
</tr>
<tr>
<td>Fischer, Bernhard</td>
<td>(1852–1915), 54</td>
</tr>
<tr>
<td>Fischer, Emil</td>
<td>(1852–1919), 8, 26, 34–37, 82, 89, 116, 143, 173, 174</td>
</tr>
<tr>
<td>Fiske, Cyrus</td>
<td>76</td>
</tr>
<tr>
<td>Fittig, Rudolf</td>
<td>(1835–1910), 3</td>
</tr>
<tr>
<td>Fitz, Albert</td>
<td>34</td>
</tr>
<tr>
<td>Flemming, Walther</td>
<td>(1843–1905), 45, 47, 49</td>
</tr>
<tr>
<td>Fletcher, Walter Morley</td>
<td>(1873–1933), 84</td>
</tr>
<tr>
<td>Florkin, Marcel</td>
<td>(1900–1979), 86, 99, 102</td>
</tr>
<tr>
<td>Fol, Herman</td>
<td>(1845–1892), 26</td>
</tr>
<tr>
<td>Fraenkel, Dan G.</td>
<td>201</td>
</tr>
<tr>
<td>Frankland, Grace Coleridge</td>
<td>(1858–1946), 28</td>
</tr>
<tr>
<td>Frankland, Percy Faraday</td>
<td>(1858–1946), 28</td>
</tr>
<tr>
<td>Fremy, Edmond</td>
<td>20</td>
</tr>
<tr>
<td>Friis, Jørgen Sven Knud</td>
<td>64</td>
</tr>
<tr>
<td>Fromherz, Konrad</td>
<td>(1883–1963), 88–89, 96</td>
</tr>
<tr>
<td>Fruton, Joseph Stewart</td>
<td>(1912–2007), 95, 109</td>
</tr>
<tr>
<td>Fuhrmann, Franz</td>
<td>(1877–1957), 44, 49</td>
</tr>
<tr>
<td>Fuhrmann, Günter Fred</td>
<td>182, 201</td>
</tr>
<tr>
<td>Name</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Gale, Ernest Frederick (1914–2005)</td>
<td>124, 147, 149</td>
</tr>
<tr>
<td>Gancedo, Carlos</td>
<td>141</td>
</tr>
<tr>
<td>Gancedo, Juana Maria</td>
<td>125, 147–148</td>
</tr>
<tr>
<td>Gay-Lussac, Joseph Louis (1778–1850)</td>
<td>2–3, 83</td>
</tr>
<tr>
<td>Gehret, Ludwig</td>
<td>39</td>
</tr>
<tr>
<td>Geison, Gerald L. (1943–2001)</td>
<td>12–13, 21</td>
</tr>
<tr>
<td>Gerhardt, Charles Frédéric (1816–1856)</td>
<td>13</td>
</tr>
<tr>
<td>Gerhardt, Philipp (7–2008)</td>
<td>171</td>
</tr>
<tr>
<td>Giroux, Craig N.</td>
<td>12–13, 21</td>
</tr>
<tr>
<td>Goetsch, Loretta</td>
<td>61, 72–73</td>
</tr>
<tr>
<td>Goffeau, André</td>
<td>226</td>
</tr>
<tr>
<td>Gooday, Graham (1942–)</td>
<td>58</td>
</tr>
<tr>
<td>Göring, Hermann Wilhelm (1893–1946)</td>
<td>83</td>
</tr>
<tr>
<td>Gottschalk, Alfred (1894–1973)</td>
<td>174–175, 177, 186</td>
</tr>
<tr>
<td>Gow, Neil A. R.</td>
<td>58, 239</td>
</tr>
<tr>
<td>Grawitz, Paul Albert (1842–1914)</td>
<td>39</td>
</tr>
<tr>
<td>Grenson, Marcelle (1925–1996)</td>
<td>187, 190</td>
</tr>
<tr>
<td>Gruby, David (1810–1898)</td>
<td>231–232</td>
</tr>
<tr>
<td>Guerra, Paul,</td>
<td>58, 239, 241, 260</td>
</tr>
<tr>
<td>Guillermonnd, Marie Antoine Alexandre</td>
<td>44, 47, 48, 52–53, 70, 74, 207, 218, 238, 243, 258, 263</td>
</tr>
<tr>
<td>Hagedorn, Herbert (1922–)</td>
<td>61, 64</td>
</tr>
<tr>
<td>Hahn, Martin (1865–1934)</td>
<td>39, 84</td>
</tr>
<tr>
<td>Haldane, John Burdon Sanderson (1892–1964)</td>
<td>36, 77</td>
</tr>
<tr>
<td>Haldane, John Scott (1860–1936)</td>
<td>83, 138</td>
</tr>
<tr>
<td>Halvorson, Harlyn Odell (1925–2008)</td>
<td>124, 162, 177, 183, 187, 224</td>
</tr>
<tr>
<td>Harold, Franklin M.</td>
<td>67, 184</td>
</tr>
<tr>
<td>Harris, G.</td>
<td>179, 183–184</td>
</tr>
<tr>
<td>Harrison, Francis Charles (1871–1952)</td>
<td>262</td>
</tr>
<tr>
<td>Hartig, Christina</td>
<td>69</td>
</tr>
<tr>
<td>Hartree, Edward</td>
<td>113</td>
</tr>
<tr>
<td>Hartwell, Lee Leland Harrison (1940–)</td>
<td>61, 68, 69, 202, 220–221</td>
</tr>
<tr>
<td>Haworth, Walter Norman (1883–1950)</td>
<td>86</td>
</tr>
<tr>
<td>Hayduck, Friedrich (1880–1961)</td>
<td>29</td>
</tr>
<tr>
<td>Heatley, Norman George (1911–2004)</td>
<td>34</td>
</tr>
<tr>
<td>Heidenhain, Martin (1864–1949)</td>
<td>45, 47, 49</td>
</tr>
<tr>
<td>Heneberg, Wilhelm Hermann (1871–1936)</td>
<td>73, 261</td>
</tr>
<tr>
<td>Henri, Arthur Trautwein (1889–1943)</td>
<td>244</td>
</tr>
<tr>
<td>Hesse, Angelina (1850–1934)</td>
<td>28</td>
</tr>
<tr>
<td>Hestrin, Shlomo (1914–1962)</td>
<td>174–175</td>
</tr>
<tr>
<td>Hill, Archibald Vivian (1886–1977)</td>
<td>81, 138</td>
</tr>
<tr>
<td>Hippocrates (460–ca. 370 BCE)</td>
<td>227</td>
</tr>
<tr>
<td>Hoffer, Milan (1842–1895)</td>
<td>227</td>
</tr>
<tr>
<td>Hoffmann, Hermann Heinrich (1819–1891)</td>
<td>19</td>
</tr>
<tr>
<td>Hoffmeister, Camill</td>
<td>52</td>
</tr>
<tr>
<td>Hofmeister, Wilhem Friedrich Benedict (1824–1877)</td>
<td>49</td>
</tr>
<tr>
<td>Holzer, Helmut (1921–1997)</td>
<td>162–163</td>
</tr>
<tr>
<td>Hopkins, Frederick Gowland (1861–1947)</td>
<td>80–81, 84, 111–112</td>
</tr>
<tr>
<td>Hoppe-Seyler, Felix (1825–1895)</td>
<td>111</td>
</tr>
<tr>
<td>Horisberger, Marc</td>
<td>65</td>
</tr>
<tr>
<td>Horne, Robert W. (1923–)</td>
<td>61–62</td>
</tr>
<tr>
<td>Hughes, David E. (1915–2003)</td>
<td>65</td>
</tr>
<tr>
<td>Hunt, Richard Timothy (1943–)</td>
<td>69</td>
</tr>
<tr>
<td>Huxley, Thomas Henry (1825–1895)</td>
<td>15, 38</td>
</tr>
<tr>
<td>Istvánffy, Gyula (1860–1930)</td>
<td>47</td>
</tr>
<tr>
<td>Jacob, François (1920–)</td>
<td>116, 131</td>
</tr>
<tr>
<td>Janssens, Frans Alfons (1863–1924)</td>
<td>42, 43, 47, 48</td>
</tr>
<tr>
<td>Johannsen, Wilhelm Ludwig (1857–1927)</td>
<td>206</td>
</tr>
<tr>
<td>Johnson, Byron F.</td>
<td>65</td>
</tr>
<tr>
<td>Johnson, Mark</td>
<td>133, 159</td>
</tr>
<tr>
<td>Johnson, Samuel (1709–1784)</td>
<td>1, 8</td>
</tr>
<tr>
<td>Johnson, William Arthur (1913–1993)</td>
<td>100–102, 105</td>
</tr>
<tr>
<td>Joliot-Curie, Irène (1897–1956)</td>
<td>80</td>
</tr>
<tr>
<td>Judge, Jean A.</td>
<td>171</td>
</tr>
<tr>
<td>Kalckar, Herman Moritz (1908–1991)</td>
<td>129–130</td>
</tr>
<tr>
<td>Kamenski, Feodor M. (1851–1912)</td>
<td>270</td>
</tr>
<tr>
<td>Kater, John McAllister (1901–)</td>
<td>44, 49–50</td>
</tr>
<tr>
<td>Keilin, David (1887–1963)</td>
<td>3–4, 110–113, 139, 217, 257</td>
</tr>
<tr>
<td>Kennedy, Eugene Patrick (1919–)</td>
<td>104, 149</td>
</tr>
<tr>
<td>Kern, Eduard</td>
<td>33</td>
</tr>
<tr>
<td>Kidby, Dennis K.,</td>
<td>64</td>
</tr>
<tr>
<td>King, Earl Judson (1901–1962)</td>
<td>86</td>
</tr>
<tr>
<td>King, Stephen</td>
<td>71</td>
</tr>
<tr>
<td>Klein, Edward Emanuel (1844–1925)</td>
<td>28</td>
</tr>
<tr>
<td>Klinkhammer-Hellendoorn, P.J.</td>
<td>266</td>
</tr>
<tr>
<td>Klöcker, Albert (1862–1923)</td>
<td>262–263</td>
</tr>
<tr>
<td>Knoop, Franz (1875–1946)</td>
<td>99–100, 102</td>
</tr>
<tr>
<td>Koch, Robert (1843–1910)</td>
<td>15, 28–29</td>
</tr>
<tr>
<td>Kornberg, Hans Leo (1928–)</td>
<td>101, 108, 149</td>
</tr>
<tr>
<td>Koshland, Daniel Edward (1920–2007)</td>
<td>36</td>
</tr>
<tr>
<td>Kossel, Karl Martin Leonhard Albrecht (1853–1927)</td>
<td>42, 46</td>
</tr>
<tr>
<td>Kotyk, Arnošt,</td>
<td>178–179, 181, 184, 199</td>
</tr>
<tr>
<td>Krasser, Fridolin (1863–1922)</td>
<td>42, 46</td>
</tr>
<tr>
<td>Krebs, Hans Adolf (1900–1981)</td>
<td>100–102, 105, 107, 111, 138</td>
</tr>
<tr>
<td>Kruijs, K.,</td>
<td>54</td>
</tr>
<tr>
<td>Kudryavtsev, Vladimir Ilich (1900–1979)</td>
<td>209, 258, 267–268</td>
</tr>
<tr>
<td>Kühne, Wilhelm Friedrich (1837–1900)</td>
<td>22</td>
</tr>
</tbody>
</table>
INDEX OF NAMES

Kunstler, J., 43
Kurtzman, Cletus P. (1938–),
261–262, 269–270
Kützing, Friedrich Traugott
(1807–1893), 4–10, 255, 273
Kwon-Chung, Kyung June, 244,
249, 251–253

Lagnado, John, 38
Lagunas, Rosario, 19, 140, 141
Langeron, Maurice Charles
Pierre (1874–1950), 57–58,
236, 239, 241, 260
Laplace, Pierre Simon (1749–
1827), 109
La Rivière, J. W. Maurits, 33
Laurent, Émile (1861–1904), 267
Laustsen, Otto (1909–1988),
205–209, 216
Lavoisier, Antoine Laurent
(1743–1794), 1–2, 16, 109
Lebedev, Aleksandr Nikolaevich
(1881–1938), 83, 89
Leblanc, A., 43, 52
Lehmann, Hermann, 96
Lehnister, Albert Lester
(1917–1986), 74, 104, 149
Leloir, Luis Federico (1906–
1987), 116
Leupold, Urs (1924–), 125–131,
218–220
Levan, John Albert (1905–), 57
Levene, Phoebus Aaron (1869–
1940), 85–86
Lewis, M. J., 64
Lietz, Klaus, 50
Lindegren, Carl Clarence
(1896–1987), 33, 44, 50, 118, 130,
204, 208–210, 212–215, 220
Lindner, Paul (1861–1945),
30–32, 256–258, 262–263
Linnaeus, Carolus (1707–1778),
255
Linossier, Georges (1857–1923),
55, 234, 241
Lippmann, Fritz Albert (1899–
1986), 87, 104, 138–139
Lister, Joseph (1827–1912), 28
Lloyd, Curtis Gates (1859–1926),
273
Löbo, Zita (1945–2000), 155–156
Lodder, Jacomina (1905–1987),
30, 34, 57, 236, 243, 244, 255,
258, 260–261, 266–268
Loeb, Jacques (1859–1924), 49
Lohmann, Karl (1898–1978), 76,
81, 88, 94, 96
Lüdecke, Karl (1880–1955), 89–90
Lüdersdorff, Friedrich Wilhelm
(1801–1886), 38
Lwoff, André Michel (1902–
1994), 116, 121
Lynen, Feodor (1911–1979),
102–103
Macallum, Archibald Byron
(1858–1934), 43
Macfadyen, Allan (1860–1907),
39, 83
Mackenzie, Donald W. R., 237–
238, 240
MacMunn, Charles Alexander
(1852–1911), 111
Maffucci, Angelo (1847–1903),
43
Magasanik, Boris (1919–), 124,
147
Mager, Jacob Shalom (1812–1881),
4
Mann, Gustav (1864–1921), 45
Mann, Thaddeus (1908–1993), 96
Marchand, H., 53
Martin, Charles, 80–81
Martin, Donald Stover (1904–),
236
Martius, Carl (1906–1993),
99–100, 102
Matile, Phillippe, 46, 61, 73
Mayr, Ernst Walter (1904–2005),
254, 259
McCly, Daniel Otho (1918–),
46, 58
McCull, Kathleen, 70–71
Mechnikov, Ilya Ilyich (1845–
1916), 30, 45, 257
Mec, Dieter, 163
Melnick, Joseph Lewis (1914–
2001), 139
Mendel, Johann Gregor (1822–
1884), 202–203
Meyen, Franz Julius Ferdinand
(1804–1840), 6, 36
Meyerhoff, Otto Fritz (1884–
1951), 79, 81, 83, 86–66,
90–92, 94–96, 137–138, 140
Michaels, Leonor (1875–1949),
104
Micheli, Pietro Antonio (1679–
1737), 6
Miescher, Friedrich (1844–1895),
46
Miller, Sara E., 241
Mitchell, Peter Dennis (1920–
1992), 179, 184
Mitschison, John Murdoch
(1922–), 67–68, 220–223
Mitscherlich, Eilhard (1794–
1863), 9, 17, 176–177
Moeller, H., 42
Moens, Peter [Hendri Pieter
Bernelot] (1931–2008), 61
Monod, Jacques (1910–1976),
116–117, 120–125, 131, 143,
177, 183
Moore, Hans, 62
Morgan, Thomas Hunt (1866–
1945), 47, 49, 203–204, 215–
216
Mortimer, Robert K. (?–2007),
61, 211–212, 215
Muller, Rudolf (1922–1973), 69,
257
Musolfi, Benito Amilcare
Andrea (1883–1945), 235
Meyen, Franz Julius Ferdinand
(1804–1840), 6
Miescher, Friedrich (1844–1895),
46
Miller, Sara E., 241
Mitchell, Peter Dennis (1920–
1992), 179, 184
Mitschison, John Murdoch
(1922–), 67–68, 220–223
Mitscherlich, Eilhard (1794–
1863), 9, 17, 176–177
Moeller, H., 42
Moens, Peter [Hendri Pieter
Bernelot] (1931–2008), 61
Monod, Jacques (1910–1976),
116–117, 120–125, 131, 143,
177, 183
Moore, Hans, 62
Morgan, Thomas Hunt (1866–
1945), 47, 49, 203–204, 215–
216
Mortimer, Robert K. (?–2007),
61, 211–212, 215
Muller, Rudolf (1922–1973), 69,
257
Musolfi, Benito Amilcare
Andrea (1883–1945), 235
Nakase, Takashi, 259
Napoleon Bonaparte, 109
Necas, Oldrich (1925–2008), 61,
66
Needham, Dorothy Moyle
(1896–1987), 80
Needleman, Richard B., 211
Neill, James M., 246
Nernst, Walther (1864–1941), 82
Neubauer, Otto (1874–1957),
88–89, 96
Neuberg, Carl (1877–1956), 81,
85–86, 89, 91–92, 96
Nickerson, Walter J., 64, 241
Northcote, Donald Henry
(1921–2004), 61, 62
Nossal, Peter Maria Joseph
(1925–1958), 65
Nurse, Paul Maxime (1949–), 61,
68–69, 202, 221–222
Oddi, Frank C., 234, 239
Oppenheimer, Carl (1874–1941),
90, 101, 186
Oppenheimer, Gertrud (1893–
1948), 173
Oppenheimer, Max, 89
Orskov, Soren Lundsgaard (1901–
1966), 169–170, 173
INDEX OF NAMES

Ostern, Pawel (1902–1941), 94, 96
Ottolenghi, Paul (1934–1986), 64, 133, 171–172
Oura, Erkki, 170
Paine, Sydney, 168–169
Palade, George Emil (1912–2008), 74
Palmer, Elizabeth T., 174
Parnas, Jacob Karol (1884–1949), 81–82, 86–87, 96
Parrot, Joseph Marie Jules (1829–1883), 232
Pauling, Linus Carl (1901–1994), 36
Payen, Anselme (1795–1871), 8
Peniston, Annie, 51
Perfect, John R., 248–249
Perkin, William Henry (1838–1907), 45
Persoon, Christiaan Hendrik (1761–1836), 7
Persoz, Jean-François (1805–1868), 8
Petri, Richard Julius (1852–1921), 28, 80
Phaff, Herman Jan (1913–2001), 258–259
Planck, Max (1858–1947), 82
Plaut, Hugo, 241
Plimmer, Robert Henry Aders (1877–1955), 15
Pomper, Seymour, 209
Pontecorvo, Guido (1907–1999), 34, 213–214
Pronk, Jack T., 146
Quekett, John Thomas (1815–1861), 7, 9
Quevenne, Théodore-Auguste (1805–1855), 6–7
Quinquaud, Charles Eugène (1841–1894), 232, 234
Rafalko, Margaret, 44
Ranganathan, B., 44
Ravonier, Louis-Antoine (1835–1922), 45
Rapport, Ellen, 61
Raun, Johannes, 42
Raymond, Albert L. (1901–1989), 85
Recce, Max Ferdinand Friedrich (1845–1901), 20–21, 30, 56, 232, 234, 256–258, 262–263
Rhein, E., 101–102
Reiner, John M., 149
Reinfruth, Elsa (1889–?), 89, 209
Roberts, Catherine (1917–1993), 209–211
Robin, Charles-Philippe (1821–1885), 232–233
Robison, Robert (1883–1941), 85–86
Roks, Antonis, 273
Roman, Herschel Lewis (1914–1989), 214, 215, 217
Roncali, D. B., 43
Rose, Anthony H., 75
Rosenberg, Thomas, 173
Ross, Ronald (1857–1932), 26
Rothstein, Aser (1918–), 170, 175–176, 179–181
Roux, Gabriel (1853–1914), 55–56, 234, 241
Sakov, Nikolai E. (ca. 1917–1942), 138–139
Sanfelice, Francesco (1861–1945), 31, 243
Šatava, Jan (1878–1938), 54, 204
Scheele, Carl Wilhelm (1742–1786), 96
Scheffers, W. Alexander, 141–142
Schekman, Randy (1948–), 164
Schieck, Friedrich Wilhelm (1790–1870), 5
Schönning, Holger Ludwig (1868–1942), 43, 52, 256–257
Schlossberger, Julius Eugen (1819–1860), 9
Schmitz, Friedrich (1850–1895), 42, 46–47
Schröder, Heinrich Georg Friedrich (1810–1885), 13
Schwann, Theodor Ambrose Hubert (1810–1882), 4–10, 12, 13, 26, 76, 255
Schwartz, David C., 61, 73
Scope, A. W., 61, 66, 68
SenthilShanmugamathan, S., 64
Serrano, Ramón (1948–), 181, 192
Shadomy, H. Jean, 250–251
Shepherd, Maxwell G., 56–57
Sims, Anthony Peter (1933–1990), 143–146
Sirle, Luigi, 43
Sjöstrand, Fritiof, 74
Skou, Jens Christian (1918–), 201
Slator, Arthur (1879–1953), 170
Slonims, Piotr (1922–2009), 217
Smith, Dorothea, 244, 246
Smith, James Lorrain (1862–1931), 138
Smith, Theodore (1859–1934), 33, 236
Sobotka, Harry Hermann (1899–1965), 172–173, 176
Söhngen, Nicolas Louis (1878–1934), 169
Sols, Alberto (1917–1987), 37, 105, 149–150, 174–175, 177–178, 199
Sommer, A., 64
Song, Ok-kyu, 157–158
Sonnewborn, Tracy Morton (1905–1981), 213
Spiegelman, Solomon (1914–1983), 118, 120, 126, 149, 166, 165
Srb, Adrian, 190
Stahl, Georg Ernst (1660–1734), 7–8
Stanier, Roger Yate (1916–1982), 122, 130
Steere, Russell L. (1917–1992), 62
Stelling-Dekker, Nellie Margaretha (1905–1998), 53–54, 264–266
Stephenson, Marjory (1885–1948), 91, 105, 117–118
Stevens, Barbara J., 61, 75
Stevenson, Robert Louis (1850–1894), 164
Strasburger, Eduard Adolf (1844–1912), 26, 42, 46–47
Streiblová, Eva, 66
Stryer, Lubert (1938–), 69
Subbarow, Yellapragada, 76
Subramaniam, M. K., 44
Suomalainen, Heikki (1917–), 170
Sutton, Walter Stanford (1877–1916), 49, 203
Swan, Allan P., 43
Swanson, Wilbur H. (1903–), 149
Swendengrebels, Nicolaas Hendrik (1885–1970), 44, 49, 168
Swim, Harold Earle (1926–), 108
Sydow, Hans (1879–1946), 257
Sydow, Paul (1851–1925), 257
Sylvén, B., 61, 66
Talice, Rodolpho V., 57, 260
Tanaka, Kenji, 65
Taschdjian, Claire L. (1914–1998), 237, 240, 241
Thenard, Louis Jacques (1777–1857), 2–3, 38
Theorell, Axel Hugo Theodor (1903–1982), 88
Thierfelder, Hans (1858–1930), 35–36
Thompson, C., 179, 183–184
Thomson, Robert Dundas (1810–1864), 9
Thunberg, Thorsten Ludvig (1873–1952), 99, 110
Tschermak von Seysenegg, Erich (1871–1962), 26, 202
Turpin, Pierre Jean François (1775–1840), 6–7
Ure, Andrew (1778–1875), 9
Vallery-Radot, René (1853–1933), 13
Van den Broek, Johannes Hubertus (1815–1896), 15
Van der Walt, Johannes, 232, 262, 269
Van Niel, Cornelis Bernardus (1897–1985), 54, 258–259, 262
Van Steveninck, Johnny (1933–1999), 170, 179–181
Van’t Hoff, Jacobus Henricus (1852–1911), 82
Van Uden, Nicolau Joao (1921–1991), 257, 260
Völker, Bernhard, 201
von Baeyer, Adolf (1835–1917), 3
von Dusch, Theodor (1824–1890), 13
von Euler, Ulf Svante (1905–1983), 82, 88, 94, 113
von Euler-Chelpin, Hans Karl August Simon (1873–1964), 80, 82, 90, 120
von Liebig, Justus (1803–1873), 7–9, 12, 13, 15, 16, 20–22, 27–39, 76
von Manassein, Marie Mikhailovna (1843–1903), 38
von Nägeli, Carl Wilhelm (1817–1891), 38–39, 46
von Szent-Györgyi, Albert (1893–1986), 99, 102
von Wettstein, Dietrich Holger (1929–), 29
Vonderman, Adolphe Guillaume (1844–1902), 32
Vuillemin, Jean-Paul (1861–1932), 31, 55–56, 241, 243, 244, 256
Wager, Harold (1862–1929), 44, 51–52
Walden, Paul (1863–1957), 128
Waldeyer, Wilhelm (1836–1921), 47
Ward, Harry Marshall (1854–1906), 32
Weidenhagen, Alfred Rudolf (1900–1979), 174
Wertheimer, Ernst (1893–1978), 169–171
Westergaard, Mogens Christian Wanning (1912–1975), 212
Wiame, Jean M., 73
Wickerham, Lynferd J. (1911–1990), 258, 261, 267–268
Wieland, Heinrich (1877–1957), 102, 109–111, 200
Wiemken, Andres, 61, 192
Wieringa, Klaas Tammo (1891–1980), 169
Wilbrandt, Walter, 173
Wilkes, Benjamin Garrison, 174
Wilkinson, John Frome (1925–), 126–127
Williamson, Don H., 53, 61, 66, 68, 75, 220
Willstätter, Richard (1872–1942), 76, 92, 112, 173, 175, 186
Winge, Oyvind (1886–1964), 44, 50, 54, 131–133, 202, 204–216, 218, 220
Wohlf, Alfred (1863–1939), 91–92
Wöhler, Friedrich (1800–1882), 7–8
Wolf, Dieter, 164
Wróblewski, Augustyn (1866–after 1913), 84
Yarrow, David, 259, 260
Young, William John (1878–1942), 84–85, 87–88
Zacharias, Eduard (1852–1911), 42
Zalewski, Aleksander (1854–1906), 42
Zeiss, Carl (1816–1888), 41, 45
Zernike, Fritz (1888–1966), 60
Zimmermann, Friedrich K. (1934–), 125, 154–156
Zopf, Wilhelm (1846–1909), 234
Aarhus University, 170
Acetic acid/acetate
 “active,” 102–103
 active transport of, 200
 in Custers effect, 141–142
 synthesis of, 110
Aconitase, 99
Acriflavine, 216–217
“Active acetate,” in tricarboxylic acid cycle, 102–103
Active transport, 183–201
 of amino acids, 186–192
 history of, 183–184
 molecular mechanisms of, 184–185
 of sugars, 185–186
 into yeast species, 192–200
S-Adenosylmethionine, 73
Adh protein, in glucose repression, 150, 154
Aerial sterigmata, 54–55
Aerobic conditions, vs. anaerobic conditions, sugar metabolism in, see Pasteur effect
Aerobic sugar utilization, 18–19
Agar, 28
Albumin, effect on *Saccharomyces*, 171–172
Albuminoids, 15
Alcohol(s)
 metabolism of, 148
 optical isomers of, 13–14
Alcohol dehydrogenase
 in glucose repression, 154
 in glycolysis, 93, 96
Alcoholic fermentation, see also Beer; Wine fermentation
 in cell-free preparation, 21–22, 83–84
 description of, 12
 equation for, 3, 16
fusel oils in, 58
Lavoisier’s analysis of, 1–3
Pasteur work on, 13–22
pathways of, 76–97
 early studies of, 76–80
 enzymes in, 92–96
 glycerol formation in, 88–90
 investigators of, 80–83
 NAD and NADP in, 87–88
 phosphates in, 84–87
 universal nature of, 90–92
 with yeast extracts, 83–84
Amino acids, active transport of, 186–192
 carriers for, 187–190
 genes involved in, 191
 regulation of, 190
Aminopeptidase B, in glucose inactivation, 164
Ammonia, in active transport repression, 190
Amygdalin, hydrolysis of, 8
Amyl alcohol, 58
Amylase, adaptation of, 117
Anaerobic conditions, vs. aerobic conditions, sugar metabolism in, see Pasteur effect
Anaerobic fermentation, 18–19
Aneuploidy, 214
Anheuser-Busch, yeasts of, 29
Annalen der Pharmacie, 8
Antibiotics, candidiasis and, 240
Anti-Semitism, in Germany, 80–83, 101–102
Apochromats, 45
Arabinose, facilitated diffusion of, 173, 176
Arbutin, 266
Arginine, active transport of, 192
Artifacts, in microscopy, 45–46
Arxula adeninivorans, 222
Ascospores, 50–53, 204–206
discovery of, 6, 21
of Saccharomyces cerevisiae, 208–209, 216
of Saccharomyces ludwigii, 207
of Schizosaccharomyces pombe, 219
Asexual state, 259–260, 262–263
Aspergillus oryzae, 33
ATP
in glycolysis, 86–87
in tricarboxylic acid cycle, 104–105
Autotrophs, 209
Auxanography, 34

Baker’s yeast
cell walls of, 62
culture of, 29
cytochrome absorption in, 114
facilitated diffusion in, 172–173
permeability of, 170
tricarboxylic acid cycle in, 105
Ballistospores, 54–55
BAP genes, in amino acid transport, 191
Beer
ginger, 32
millet, 31–32
rice, 32–33
Beer wort, 7, 37
Beer yeasts
activity of, 16–18
bad taste from, 29
at Carlsberg, 27
Custers effect and, 141–142
cytocrome absorption in, 114
facilitated diffusion in, 172–173
as living organisms, 5–7
microscopy of, 3
for millet beer, 31–32
newly discovered, 30
Pasteur studies of, 19–22
permeability of, 170
sugar utilization and, 34–37
Beet juice fermentation, 14–15

Beilsteins Handbuch der Organischen Chemie, 3
Berichte der Deutschen Chemischen Gesellschaft, 3
Berlin Academy of Sciences, 81
Biochemische Zeitschrift, 81
Biological and Medical Chemistry Institute, Moscow, 82
Blastocladium, 261
Bonn University, 80
Botrytis cinerea, 37, 177
Bottom yeasts, 36–37
cytochrome absorption in, 113–114
Pasteur effect and, 138

Brettanomyces
Custers effect and, 141–142
taxonomy of, 262
Brewer’s yeasts, see Beer yeasts
Brewing Industry Research Foundation, 183–184
British Institute of Preventative Medicine, 80
British Nylon Spinners, 63
Bud scars, 5, 66
Budding, 6, 51, 56, 66–68, 239–240
Bullera, taxonomy of, 262
Bulleromyces albus, 55

Cambridge University, 45, 52, 62, 102, 111, 124–125, 240
CAN1 gene, in amino acid transport, 191
Candida
amino acid transport in, 193–194
classification of, 236
dimorphism of, 57
nomenclature of, 236
taxonomy of, 260
Candida albicans, 227, 231–242
active transport in, 193, 199
adherence of, 240
antigens of, 237
chlamydospores of, 55, 238, 240–241
chromosomes of, 242
chronology of research on, 231
cytology of, 239–241
dimorphism of, 57
ecology of, 238–239
first published illustration of, 233
genetics of, 223, 241–242
germ tubes of, 237–238
glycosidase activity of, 37
in healthy people, 231
identification of, 235–238
low oxygen concentration for, 58
pathogenic effects of, 227, 231–235
Candida ciferri, 227
Candida dubliniensis
chlamydospores of, 55, 238
as pathogen, 228
Candida glabrata
melanin in, 249
as pathogen, 228
transport into, 193
Candida guilliermondii, 228, 236
Candida haemulonii, 228
Candida intermedia, 193
Candida krusei, 228, 236
Candida loddieri, 58
Candida lusitaniae, 228
Candida maltosa
genetics of, 223
transport into, 193
Candida mesenterica, 260
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida parapsilosis</td>
<td>228, 236</td>
</tr>
<tr>
<td>Candida sphaerica</td>
<td>200</td>
</tr>
<tr>
<td>Candida stellata</td>
<td>177</td>
</tr>
</tbody>
</table>
| Candida tropicalis | dimorphism of, 57
glycosidase activity of, 37
as pathogen, 229, 236–237
transport into, 193 |
| Candida utilis | 172
inactive with maltose, 142–143, 145
mitochondria of, 75
Pasteur effect and, 139–140
taxonomy of, 261–262
transport into, 192–194, 200 |
| Candida vini | 56, 200 |
| Candidiasis | 227, 231–234 |
| Caproic acid | facilitated diffusion of, 170 |
| Carbon catabolite repression | 124–125, 147–150 |
| Carbon monoxide | cytochrome oxidase affinity for, 112–113
respiration and, 138 |
| Carboxylic acids, active transport of | 200 |
| Carboxypeptidase Y | in glucose inactivation, 164 |
| Carl Zeiss optical works | 41, 45, 60 |
| Carlsberg Brewery and Laboratory, Copenhagen | 27, 29, 47, 171, 202, 218 |
| Carrier(s) | 187–190
for metabolites, 123–124 |
| Carrier-substrate kinetics | 176–178 |
| CAT genes | in glucose repression, 151–154, 157–159, 161 |
| Catabolite inactivation | 162–165 |
| CDC genes of Schizosaccharomyces pombe | 68, 222 |
| Cdc mutants | 68–69, 221 |
| Cell cycles | 66–69, 220–222 |
| Cell shape, regulation of | 67–68 |
| Cell size, regulation of | 67–68 |
| Cell walls, characteristics of | 62–65 |
| Cell-free fermentation | 37–39, 83–84 |
| Cellulbiose, Kluver effect and, 143–146 |
| Cellulosimicrobium cellulans | 66 |
| Charlottenburg Technische Hochschule | 169 |
| Chiasmatype theory | 203–204 |
| Chitin | in cell wall, 62–63, 66 |
| Chlamydospores | 55–56, 238, 240–241 |
| Chromatin | 47–48, 51 |
| Chromosomes, 49–50 | of Candida albicans, 242
discovery of, 47
early work on, 203–204
numbers of, 73
of Schizosaccharomyces pombe, 219 |
| Chronospores | 55 |
| CID1 gene | in glucose repression, 153 |
| Citrate | oxidation of, 99–100 |
| Citric acid (tricarboxylic acid) cycle | 99–106 |
| Clones | 27–29 |
| Coenzyme(s) | 87–88 |
| Coenzyme A | in tricarboxylic acid cycle, 104–105 |
| Coferment substance | 88 |
| Competitive inhibition, in facilitated diffusion | 178 |
| Computer methods, for yeast identification | 270–271 |
| Concanavalin A, used to label cell wall | 64–65 |
| Conidium | 261 |
| Cornell University | 246 |
| Crabtree effect | 136, 147 |
| Crossing-over, of chromosomes | 203–204 |
| Cryptic mutants | 123–124 |
| Cryptococcus | taxonomy of, 255 |
| Cryptococcus albidus | 244 |
| Cryptococcus baillii, as previous name for Cryptococcus neoformans | 243 |
| Cryptococcus gattii | 243, 249 |
| Cryptococcus hominis | as previous name for Cryptococcus neoformans, 31, 243 |
| Cryptococcus neoformans | 30–31, 242–253 |
| Capsule of | 244–248 |
| clinical significance of | 253 |
| cytology of | 252 |
| genetics of | 223, 251–252 |
| illustration of | 245–247 |
| life cycle of | 250–251 |
| melanin in | 248–249 |
| name of | 242–244 |
| nomenclature of | 249–250 |
| serotypes of | 246–247, 249–250 |
| sexual reproduction of | 250–251 |
| virulence of | 244–248, 253 |
| Cultures | 27–29 |
| pure | 27–29 |
| synchronized | 66–67 |
| Custers effect | 141–142 |
| Cyc8 protein | in glucose repression, 159 |
| Cyclic adenosine monophosphate, glucose repression and | 150 |
| Cyclin | in cell cycle, 68 |
| Cyniclomyces guttulatus | 256 |
| Cytochrome(s) | 111–114, 138–139 |
| Cytochrome oxidase | 112–113, 139 |
| Cytogene theory | 213 |
| Cytology | ascospores, 50–53 |
| ballistoconidia, 54–55 |
| bud scars, 66 |
| budding, 66 |
| Candida albicans, 239–241 |
| cell cycles, 66–69 |
| cell fusion, 53–54 |
| cell wall characteristics, 62–65 |
| chlamydospores, 55–56 |
| chromosome numbers, 73 |
| Cryptococcus neoformans, 252 |
Cytology (Continued)
dimorphism, 56–58
electron microscopic studies, 71–73
genetics and, 49–50
heterobasidiomycetous yeasts, 70–71
history of
in early years (1879-1951), 41–59
in modern times (1950-1990), 60–75
microscopes for, 41, 45, 60, 62
mitochondria, 74–75
nuclei studies, 46–50, 69–70
protoplasts, 65–66
septa, 66
sexual reproduction, 54
spheroplasts, 65–66
stains for, 45–46
vacuoles, 47, 50, 51, 73–74
“Cytoplasmic inheritance,” 215–218

DAL5 gene, in amino acid transport, 191

Database, of yeast species, 270

Debaryomyces occidentalis, 223–224
Debaryomyces polymorphus
active transport in, 194
Kluyver effect and, 145–146
Dehydrogenases, in oxidation, 109–111

Dekkera
active transport in, 194
Custers effect and, 141–142
Delft Technological University, 33, 146

2-Deoxy-d-glucose
Crabtree effect and, 147
facilitated diffusion of, 179–180
Kluyver effect and, 144–145
Deplasmolysis, 168–169
Diabetic urine, fermentation in, 6–7
Diastase, 8

Die Cytomorphologie der Hefen (film), 69–70
Die Entstehung entwicklungsfähiger Protoplasten aus Hefezellen und ihre Reversion (film), 70
Die Kieselschaligen Bacillarien oder Diatomeen, 4
Die Weisse Rose, 110

Diffusion, facilitated diffusion, see Facilitated diffusion

DIL1 gene, in glucose repression, 152
Dimorphism, 56–58, 239–240
DIP5 gene, in amino acid transport, 191
Diploidy, 50
Direct fermentation, 173–174
Disaccharides
active transport of, 186
catabolism of, 37
facilitated diffusion of, 173–175
Distillers Company, Epsom, England, 5
DOA4 gene, in amino acid transport, 191
Durham tubes, 33–34
Dyes, for staining, 45–46

École Normale, Paris, 15
École Supérieure de Pharmacie, Paris, 15
Edinburgh University, 221
Einhorn tubes, 266
Electron microscopy, 60, 62, 71–73
Electrophoretic karyotyping, 73
Embden pathway, of glycolysis, 92
Embden-Meyerhof-Parnas pathway, see Glycolysis
Emulsin, 8
Enantiomorphism, of sugars and alcohols, 13–14
Endomyces fibuliger, 257–258
English Brewing Industry Research Foundation, 179, 220

Enzymic adaptation, 116–134
carbon catabolite repression in, 124–125
chronology of, 119–120
cytogene theory of, 213
of Escherichia coli, 120–123
to galactose, 116–118, 120
galactose pathway in, 125–132
genetic regulation of, 130–133
to lactose, 116, 120–123
to maltose, 132–133
permeases in, 123–124
vs. selection of mutants, 118
to sucrose, 133

Enzyme(s)
action of, vs. fermentation, 16–18
discovery of, 78–79
Kühne naming of, 22
repression of, 124–125

Enzyme-transition state complementarity, 36
Eremascus fertilis, 258

Escherichia coli
active transport in, 184–185
glucose repression in, 147, 149–150
lactose utilization by, 120–123
Ethyl methanesulfonate, as mutagen, 215
Ethyl 1-thio-α-D-glucopyranoside, active transport of, 183

Études sur la Bière, 19–20
Études sur le Vin, 19

Facilitated diffusion, 167–182
carrier kinetics in, 176–178
early studies of, 167–171
of glucose, 170, 175–176
Kluyver effect and, 145
molecular passage of, 171–172
of nonfermentable sugars, 176
permeability coefficients in, 167–168
permease concept in, 176–178
phosphorylation in, 179–182
plasmolysis and deplasmolysis in, 168–169
selective uptake in, 172–173
study methods for, 167

Faculty of Medicine, Paris, 4
FAD (flavin adenine dinucleotide), in tricarboxylic acid cycle, 104–105
Fatty acids, entry of, 170

\textit{FBP1} gene, in gluconeogenesis, 162

\textit{fds} gene, Kluyver effect and, 146–147

Fermentation, see also specific type, e.g., Alcoholic; Wine
- aerobic vs. anaerobic, 18–19
- cell-free, 37–39, 83–84
- direct, 173–174
- early work on (1789–1850), 1–11
- vs. enzymic action, 16–18
- genetics of, 209–212
- lactic acid, 15, see also Glycolysis
- later developments in (1850–1880), 12–25
- Lavoisier's analysis of, 1–3
- by living organisms, 4–7, 9–10
- mannose, 34–36
- microscopic studies of, 3–4
- milk, 33
- physicochemical view of, 7–9
- selective, 177
- semianaerobic, 34
- traditional drinks from, 32–33

Ferric oxide, in oxidation, 111

Fick laws of diffusion, 168

Filamentous growth, 57–58, 239–240

\textit{Filobasidiella bacillispora}, as previous name for \textit{Cryptococcus neoformans}, 243, 249

\textit{Filobasidiella (Cryptococcus) neoformans}, 30–31

\textit{Filobasidiella neoformans}, as previous name for \textit{Cryptococcus neoformans}, 243–244

\textit{flk} gene, in glucose repression, 154

Formate, transport of, 200

Fred Hutchinson Cancer Research Center, 69

\textit{FRT1} gene, in active transport, 198

\textit{β}-Fructofuranosidase, action of, 17–18

Fructose
- active transport of, 198
- facilitated diffusion of, 172–173
- fermentation of, 37
- selective utilization of, 177
- utilization of, 34, 209

Fructose bisphosphatase
- in gluconeogenesis, 162
- in glucose inactivation, 162–165
- in glucose repression, 154

Fructose bisphosphate, 139

\textit{d}-Fructose-1,6-bisphosphate, 85, 89

Fructose-bisphosphate aldolase, in glycolysis, 93–95

\textit{d}-Fructose 6-phosphate, 85–86

Fumarate, active transport of, 200

Fusel oils, 58

GAL genes
- in transport, 186
- in glucose repression, 151, 157–158

Kluyver effect and, 146–147
regulation of, 130–132

Galactokinase, 126–127, 129–131

Galactose
- active transport of, 184, 198
- enzymatic adaptation to, 116–118, 120, 125–130
- facilitated diffusion of, 173–176, 179–180
- Kluyver effect and, 143–146
- utilization of, 209

Galactose-1-phosphate uridylyltransferase, 130–131

\textit{α}-Galactosidase
- in cytogene theory, 213
- in melibiose hydrolysis, 37

\textit{β}-Galactosidase
- adaptation of, 122–123
- in milk fermentation, 33
- repression of, 125

“Galactowaldenase,” 128–129

Galactoyslomannan, in \textit{Cryptococcus neoformans} capsule, 248

GAP genes, in amino acid transport, 191

Gärungs-Institut, 29

\textit{GATT1} gene, in amino acid transport, 191

\textit{GDH} genes, in active transport, 190–191

Gelatin, for yeast cultures, 28–29

Gene(s)
- of \textit{Candida albicans}, 241–242
- conversion of, controversies about, 213–215
- mutants of glucose repression, 150–161
- Kluyver effect, 146–147
- naming of, 206
- nuclear, 218
- polymeric, 211

General amino acid permease, 190

Genetics, 202–226, see also Gene(s)
- of \textit{Arxula adeninivorans}, 222
- of ascospores, 204–206, see also Ascospores
- of \textit{Candida albicans}, 223, 241–242
- of \textit{Candida maltosa}, 223
- of cell cycle, 220–222
- controversies over, 212–215
- of \textit{Cryptococcus neoformans}, 223, 251–252
- cytology and, 49–50
- cytoplasmic inheritance, 215–218
- of \textit{Debaryomyces occidentalis}, 223–224
- early work in, 202–204
- in enzymatic adaptation, 130–133
- of glucose repression, 150–161
- heterothallism, 206–209
- of killer yeasts, 224–225
- of \textit{Kluyveromyces lactis}, 224
- Mendelian, 202–204
- mitochondrial, 215–218
- nucleus and, 49–50
Genetics (Continued)
of *Pichia*, 224
of *Saccharomyces cerevisiae*, 205, 220–221
of *Schizosaccharomyces pombe*, 207–208, 218–222
of sugar utilization, 209–212
of *Yarrowia lipolytica*, 224

Germ tube method, for *Candida albicans*, 237–238

German Nazi government, persecution of scientists under, 80–83, 101–102

GHT genes, in amino acid transport, 198
Ginger beer, 32

GLC7 gene, in glucose repression, 153
GLK gene, in glucose repression, 156
GLN genes, in active transport, 191

Glucan
in cell wall, 62–63, 64
penetration of cell wall, 171

Glucan, synthesis of, 62–63, 64

Glucose
aerobic metabolism of, see Tricarboxylic acid cycle
chemical composition of, 3
facilitated diffusion of, 170, 172–173, 175–176, 179–180
fermentation of, 37
inactivation, 162–165
metabolism of, 148
repression, 147–150
defective mutants in, 154–155
double control systems for, 159–161
genetic analysis of, 150–161
hexokinases in, 153, 155–157, 160–161
single control systems for, 159–161
transport of, 185–186, 198

"Glucose effect," 124–125, 147, 149

α-D-Glucose 6-phosphate, 85–86
Glucose-6-phosphate isomerase in glycolysis, 93–94
mutants, in glucose inactivation, 163

β-Glucosidase, 8

Glucuronolomannan, in *Cryptococcus neoformans* capsule, 248

α-D-Glyceraldehyde, fermentation of, 89
Glyceraldehyde 3-phosphate, 87
Glyceraldehyde-3-phosphate dehydrogenase, 93, 95

Glycerol
formation of, in fermentation, 88–90
in plasmolysis, 168
uptake of, 170

Glycogen granules, 51

Glycols, penetration of cell wall, 171

Glycolysis, 76–97
eyear studies of, 76–80
enzymes in, 92–96
glycerol formation in, 88–90
investigators of, 80–83
Kluyver effect of, 145
NAD and NADP in, 87–88
phosphates in, 84–87
respiration after, 98–99
universal nature of, 90–92
with yeast extracts, 83–84

Glycosides
active transport of, 199–200
hydrolysis of, 173–175
Glyoxalate cycle, 149, 162

GNP1 gene, in amino acid transport, 191
Golgis apparatus, 46
Grape juice
absence of yeast in, 6
fermentation of, 1–2, see also Wine fermentation organisms in, 19–20

GRR1 gene, in glucose repression, 153

Hanseniaspora uvarum, 20
Hansenula, taxonomy of, 257, 267

Hansenula jadinii, 261

Hans-Knoll-Institut, 69–70

Haploid, 50

Harden-Young ester (d-fructose-1,6-bisphosphate), 85, 89

Hebrew University of Jerusalem, 244

Heidelberg University, 13, 22, 81

Heterobasidiomycetous yeasts, 70–71

Heterothallism, 206–209

HEX genes, in glucose repression, 153, 155–157

Hexokinase
in glucose repression, 153, 155–157, 160–161
in glucose uptake, 175–176
in glycolysis, 92–94
Hexose(s), transport of, 172–175, 185–186, 198–199

Hexose phosphates, 85–86

"Hexosephosphate," 169

HGT genes, in glucose transport, 198

HIP1 gene, in amino acid transport, 191

The History of Cell Respiration and Cytochrome, 111

HO gene, 212

HTX gene, in hexose transport, 185–186

Humboldt University, 81

HXK2 gene, in glucose repression, 153

Hydrogen ion, in active transport, 184–185

Hyphe, 261

Candida albicans, 239
true, 56

Imperial Cancer Research Fund, London, 69

Indophenol oxidase, 112

Induced-fit theory, 36

Institut de France, medal, 2, 4
Institut für Mikrobiologie and Experimentelle Therapie, 69–70
Institut Pasteur, 183
International Code of Botanical Nomenclature, 255
International Medical Congress of 1881 (London), 28
Intracellular oxidation, 109
Inulin, 171
Invertase (β-fructofuranosidase), 17–18, 64
adaptation of, 120
 genetic regulation of, 133
Invertin, 36
Isocitrate lyase, 154
in gluconeogenesis, 162
in glucose inactivation, 162–163
Isoleucine, 58
Isomaltase, 122
Isomaltose, utilization of, 34
2-Isopropylmalate, in glucose inactivation, 163
Isovaleric acid, entry of, 170
JEN1 gene, mediation of carboxylate uptake, 200
Jenner Institute, 83
Johannisberg yeast, 52
Johns Hopkins University, 104
Justus Liebig's Annalen der Chemie, 110
Kaiser Wilhelm Institute for Cell Physiology, Berlin, 82
Kaiser Wilhelm Institute for Experimental Therapy and Biochemistry, Berlin, 81
Kaiser Wilhelm Institute for Medical Research, Heidelberg, 81
Karolinska Institute, 74
"Karyokinesis," 47
Karyotyping, electrophoretic, 73
Kefir, 33
Killer yeasts, 224–225
Kloeckera, taxonomy of, 262–263
Kluyver effect, 142–147
Kluyver's observations, 142–143
mutants, 146–147
Pronk experiments, 146
Sims and Barnett studies, 143–146
Kluyveromyces, transport in, 194–196
Kluyveromyces lactis
 cell wall permeability of, 172
 chromosomes of, 73
 GAL genes of, 132
genetics of, 224
mutants, 146–147
Pasteur effect and, 140
respiration in, 108–109
transport in, 194–195, 198–200
Kluyveromyces marxianus, 30
 active transport in, 186, 195, 200
cell wall of, 64
galactose catabolism in, 125, 127–130
invertase of, 124–125
Kluyver effect and, 145
respiration in, 109
Kluyveromyces polymorphus, 145
Kluyveromyces thermotolerans
 active transport in, 198
Kluyver effect and, 143–144
Kodamaea ohmeri, 196
KRBI gene, 215
L gene, of Saccharomyces ludwigii, 207–208
Lactic acid/lactate fermentation of, 15, see also Glycolysis
formation of
in glycolysis, 79–80, 90–92
 Pasteur effect and, 138
transport of, 200
Lactobacillus brevis, 33
Lactose, 171
active transport of, 186, 200
Escherichia coli utilization by, 120–123
utilization of, 35–36, 173–175
Lebedew juice, 83
Lectin, 65
Leloir galactose pathway, 125–130
Leucine, 58
Leucosporidium scottii, 70
Light microscopy, 69–70
Lock and key model of enzyme action, 36
LYP1 gene, in amino acid transport, 191
MAL genes, 132–133, 211
Malassezia, 227, 229
Malate dehydrogenase, in gluconeogenesis, 162
Malate synthase, in gluconeogenesis, 162
Malic acid, active transport of, 200
Malt extract, white precipitate from, 8
Maltase, 122
Maltose
 active transport of, 186, 200
catabolism of, 142–143, 177–179
cytosolic hydrolysis of, 174–175
Kluyver effect and, 143–146
utilization of, 132–133, 210–212
Maltotriose, active transport of, 183–184
Mannan
 in cell wall, 62–64
 in Cryptococcus neoformans capsule, 247
Mannose, fermentation of, 34–36
Manometer, Warburg, 82–83, 98–99, 138
MAT genes, of Cryptococcus neoformans, 252
Mating type, 209, 219
Max Planck Institute for Cell Chemistry, 103
Media, for culture, 28–29
Medical yeasts, see Pathogenic yeasts
SUBJECT INDEX

Megalococcus myxoides, as previous name for Cryptococcus neoformans, 244
Meiosis, 71–73
Melanin, Cryptococcus neoformans, 248–249
Melibiose
hydrolysis of, 37, 199
Kluyver effect and, 146–147
utilization of, 209
Membrane impermeability, 105, 107–109
Mendelian genetics, 202–204
MEP genes, in ammonia uptake, 189, 191
Metabolites, transport of
active, see Active transport
by facilitated diffusion, see Facilitated diffusion
Methyl α-D-galactopyranoside, 123
Methyl α-D-glucopyranoside, facilitated diffusion of, 179–180
Methyl α-D-glucoside, active transport of, 183
Methyl β-D-galactopyranoside, 122
Methyl 1-thio-β-D-galactopyranoside, 122, 124, 145
Methylene blue, in dehydrogenase studies, 110
Metschnikowia, 30, 257
Metschnikowia bicuspidata, 257
Metschnikowia hibisci, 58
Metschnikowiella, 257
Michaelis-Menten equations, 173
Microfilaments, 65
Micro-organisms and Disease, 28
Microscopy
early use of, 3–4
electron, 60, 62, 71–73
improvements in, 41, 45
light, 69–70
phase-contrast, 60
Microtubules, 71
MIG1 gene, in glucose repression, 151, 158–161
Mikroskopische Untersuchungen, 6
Military School of Utrecht, 15
Milk fermentation, 33
“Milk-sugar yeast,” 35
Millet beer, 31–32
Mitochondria, 74–75
early genetic studies of, 216–218
Pasteur effect and, 141
preparation of, 104
Mitosis, 48, 70–71
Monilia albicans, as previous name for Candida albicans, 234
Monilia candida, see Candida albicans
Moniliasis, 227, 231–234
Monosaccharides, see also specific monosaccharides
facilitated diffusion of, 172–173, 177–179
Monospora, 257
Monosporella, 257
Msnp protein, in glucose repression, 159
Mucor rouxii, Kluyver effect and, 143
MUP genes, in amino acid transport, 191
Muscle
coenzymes in, 88
glycolysis in, 79–80, 90–92
Mutants, see Gene(s), mutants of
Mycoderma cervisiae, 3
Mycoderma vini, 3
Mycotoxins, 224–225
Myozymase, 83
N gene, of Saccharomyces ludwigii, 207–208
NAD (nicotinamide adenine dinucleotide), 87–88, 91
NADH, in tricarboxylic acid cycle, 104–105
NADP (nicotinamide adenine dinucleotide phosphate), in glycolysis, 87–88
National Institutes of Health, 244
Nazi government, persecution of scientists under, 80–83, 101–102
Nematospora coryli, 257
Neuberg ester (D-fructose 6-phosphate), 85–86
Neuberg theory, of glycolysis, 91–92
A New Key to the Yeasts, 271
L-Nitrophenyl β-D-galactopyranoside, 124
Nobel Prizes
Buchner (1907), 27
Cori and Cori (1947), 80
Curie (1911), 80
Ehrlich (1908), 45
Fischer (1902), 26
Harden (1929), 80, 82, 86
Hartwell (2001), 69, 202
Joliot-Curie (1935), 80
Krebs (1953), 101
Lynen (1964), 102
Manassein (1907), 38
Mechnikov, 45
Nurse (2001), 69, 202
von Euler, Ulf (1970), 82
von Euler-Chelpin, Hans, (1929), 80, 82
Wärburg (1931), 83, 138
Wieland (1927), 110
Willstätter (1926), 76, 78
Nomen dubium and nomen confusum, 255
NPR1 gene, in amino acid transport, 190–192
Nuclei, studies of, 46–50, 69–70
Nucleolus, 46, 49, 51, 70
Nutrition, 33–37
sugar transport, 37
sugar utilization, 34–37
Odium albicans, as previous name for Candida albicans, 232
Oligo-1,6-glucosidase, 122
Oligosaccharides, transport of, 173–175
Optical activity, of sugars and alcohols, 13–14
Oxaloacetate, in tricarboxylic acid cycle, 100, 102, 104–105
Oxford University, 75, 102
Oxidation, 109–114
 concepts before 1925, 109–111
cytochromes in, 111–114
 intracellular, 109
2-Oxoglutarate, active transport of, 200
Oxygen
 concentration of, filamentous growth and, 57–58
 transport of, 111
Oxyhemoglobin, 111
Pabst, yeasts of, 29
Pantothenic acid, 104
Pasteur effect, 135–141
 “negative” (Custers effect), 136, 141–142
 Pasteur’s observations, 136–137
 studies of
 6-phosphofructokinase, 138–139
during 1920s and 1930s, 137–138
Saccharomyces cerevisiae and, 139–141
 Pasteur enzyme,” 139
Pasteurization, 2
Pathogenic yeasts, 227–253
 Candida albicans, 227, 231–242, see also Candida albicans
 Cryptococcus neoformans, 30–31, 242–253
PKG genes, in gluconeogenesis, 162
Pentoses, transport of, 172–173
Permeability coefficients, 167–168, 170
 “Permease” concept, 176–178
Permeases, for metabolite transport, 123–124
Persil certificate, 102–103
Petites colonies, 215–218
Petri dishes, 28
Phase-contrast microscopy, 60
Phenotypic characteristics, in taxonomy, 259
Phosphates, in fermentation, 84–87
Phosphobacterium, 33
Phosphoenolpyruvate carboxykinase
 in gluconeogenesis, 162
 in glucose inactivation, 162–163
6-Phosphofructokinase
 in glycolysis, 93–94
 Pasteur effect and, 138–139
Phosphoglycerate kinase
 in glucose inactivation, 163
 in glycolysis, 93, 95
Phosphoglycerate mutase, in glycolysis, 93, 95–96
Phosphopyruvate hydratase, in glycolysis, 93, 96
Phosphorylation, in sugar transport,
 179–182
Photomicrographs, of organisms, 28
Physiologia Generalis, 4
Physiological Histology, 45
Pichia, 30
 genetics of, 224
 as pathogens, 229
 taxonomy of, 257
 transport in, 196, 198
Plasmolysis, 168–169
“Polymeric genes,” 211
Polyplody, 214–215
Polysaccharides, see also specific polysaccharides
 in Cryptococcus neoformans capsule, 246–248
Pombe (millet beer), 31–32
Pores, diffusion through, 169–170
Potassium ion, in active transport, 184–185
Promitochondria, 141
Propionate, transport of, 200
Proteases, 73–74, 163–164
Proteins
 classification of, 15
 penetration of cell wall, 171–172
Proton symport, 184–185
Protoplasts, 65–66
Prototrophs, 209
Pseudohyphae, 56, 57, 239, 261
Pseudomonila albolanipinata, 260
Pseudosaccharzymes, 263
Pulse-labeling studies, of sugar transport, 179–180
PUT4 gene, in amino acid transport, 191
Putrefaction, 9
Pyruvate
 active transport of, 200
 catabolism of, 79–80
 formation of, in fermentation, 88–90, 92
 in tricarboxylic acid cycle, 100–105
Pyruvate decarboxylase
 in glycolysis, 93, 96
 Kluver effect and, 145–146
Pyruvate kinase
 in glucose inactivation, 163
 in glycolysis, 93, 95
Raffinose
 glucose repression and, 154–155
 hydrolysis of, 175, 199–200, 266
 Kluyver effect and, 146–147
 utilization of, 209
RAG1 gene, in glucose transport, 198
Raman microspectroscopy, 238
REG1 gene, in glucose repression, 153
Respiration
 in mitochondria, 74–75
 repression of (Crabtree effect), 136, 147
 “Respiratory enzyme,” 111
Respiratory pathway, 98–115
Krebs tricarboxylic acid cycle, 99–106
Respiratory pathway (Continued)
membrane impermeability, 105, 107–109
oxidation, 109–114
RGT2 gene, glucose sensor, 186
Rhamnose, active transport of, 184
Rhodospirillum glutinis, 229
Rhodospirillum rubra, 229
Rhodospirillum toruloides
active transport in, 184, 196–198
Kluyver effect and, 143
Rhodotorula, taxonomy of, 262
Rhodotorula glutinis, 70
Rhodosporidium glutinis,
229
Rhodosporidium rubra,
229
Rhodosporidium toruloides
active transport in, 184, 196–198
Kluyver effect and, 143
Rice, beer made from (sake), 32–33
Rockefeller Institute, 74, 85
Royal College of Science, London, 45
Royal College of Surgeons, London, 9
Royal Indian Engineering College, Egham, England, 32
Royal Society of London, 14
RSP5 gene, in amino acid transport, 191
Rumford Medal, 14
Saccharomyces
naming of, 6
polyplody in, 214
taxonomy of, 255–256
Saccharomyces albicans, as previous name for Candida albicans, 232, 234
Saccharomyces apiculatus, 20–21, 262–263
Saccharomyces bayanus, 66
Saccharomyces capensis, 211
Saccharomyces carlsbergensis, 210
Saccharomyces cerevisiae, 30
ascospores of, 51, 205, 216
carbon catabolite repression in, 125
cdc mutants of, 67–68
cell cycle of, 220–221
cell wall of, 62–63
chromosomes of, 49–50, 73, 215
discovery of, 5
electron microscopy of, 71–72
filamentous growth of, 57
GAL genes of, 131–132
gene conversion in, 213–214
genetic mapping of, 215
genetics of, 205, 220–221
genome of, 218
glucose repression and, 149–150, 154–156, 162
killer strains of, 224–225
Kluyver effect and, 145–147
MAL genes of, 132–133
membrane impermeability of, 107–108
microscopy of, 69–70
mitochondria of, 75
mitosis in, 48–49
mutant selection or enzymic adaptation, 118
nomenclature changes of, 272
nucleus of, 46, 49, 70
Pasteur effect and, 139–141
as pathogen, 230
regulation of shape and size, 67–68
sexual reproduction of, 208–209
in sugar catabolism, 19
in sugar utilization, 210–211
transport in, 183, 185–190, 192, 198–200
transport into, 169, 171–172, 178–180
Saccharomyces ellipsoides, 20–21
Saccharomyces exigus, 177
Saccharomyces fragilis, 123
Saccharomyces histogenes, as previous name for Cryptococcus neoformans, 243
Saccharomyces neoformans, as previous name for Cryptococcus neoformans, 243
Saccharomyces oviformis, 211
Saccharomyces pastorianus, 20–21
active transport in, 185
bad taste from, 29
cell wall of, 63
filamentous growth of, 57
MAL genes of, 132
Saccharomyces rouxii, 52
Saccharomyces ludwigi, 30
ascospores of, 51
cell wall of, 64
isolation of, 256
mitochondria of, 75
sexual reproduction of, 206–208
Saccharomyces, 256, 258
Sake, 32–33
Salicin, 13
Saturation kinetics, in facilitated diffusion, 170–171, 178
“Sauternes yeast,” 37, 177
Scaffold proteins, in glucose repression, 158
Schizoblastosporion, taxonomy of, 263
Schizosaccharomyces, chromosomes, 71
Schizosaccharomyces japonicus, 48
Schizosaccharomyces octosporus, 30, 48, 52, 64
Schizosaccharomyces pombe, 31–32, 48, 52
active transport in, 197–198, 200
cell cycle of, 221–222
cell wall of, 64, 65, 172
chromosomes of, 219
discovery of, 31, 256
genes of, 207–208, 218–222
glucose repression and, 150
malate carrier of, 107
Pasteur effect and, 140
polyplody in, 214
regulation of size and shape, 67–68
Schlitz, yeasts of, 29
Schwermetalle als Wirkungsgrupen von Fermenten, 111
Selective fermentation, 177
Semianerobic fermentation, 34
Septa, 66
Sexual reproduction
 of Cryptococcus neoformans, 250–251
 of Saccharomyces cerevisiae, 208–209
 of Saccharomyces ludwigii, 206–208
Shape, of cell, regulation of, 67–68
Sheffield University, 75, 102
SIP genes, in glucose repression, 151–152, 158
in transport, 186
Size, of cell, regulation of, 67–68
Smith tubes, 266
SNF genes
 in glucose repression, 151, 154, 156–158
 in transport, 186
Snf kinase, in glucose repression, 154, 159–160
Société des Sciences de Lille, 14
Sodium chloride, in plasmolysis, 168–169
Sorbose, transport of, 178
Southern Illinois University Carbondale, 46
Species, concept of, 258–259
Spheroplasts, 65–66
Spindles, 71
Spontaneous generation, experiments refuting, 5
Spores, 29–30, 50, see also Ascospores
Sporidiobolus salmonicolor, 54, 70
Sporobolomyces, taxonomy of, 262
Sporobolomyces salmonicolor, 54
SSN1 gene, in glucose repression, 152
Stains, 45–46
Stereoispecificity
 in facilitated diffusion, 178
 of sugars and alcohols, 13–14
Stockholm University, 7, 82
STPI gene, in amino acid transport, 191
Sterngomyces, 66
Substrate activation theory, 36
SUC genes
 in enzymic regulation, 133
 in glucose repression, 158
Succinate/succinic acid
 active transport of, 200
 production of, 171
 in tricarboxylic acid cycle, 99–100, 102, 104–105
Sucrose
 active transport of, 199–200
 chemical composition of, 176–178
 enzymatic action on, 17–18
 facilitated diffusion of, 174
 hydrolysis of, 19
 Kluyver effect and, 144–146
 utilization of, genetic regulation of, 133
Sugar(s), see also specific sugars
 beet, 14–15
 chemical composition of, 1
 in diabetic urine, 6–7
 fermentation of, see Fermentation
metabolism of, regulation of, 135–166, see also
 Enzymatic adaptation
 Crabtree effect, 136, 147
 Custers effect, 136, 141–142
 glucose inactivation, 136, 161–165
 glucose repression, 136, 147–162
 Kluyver effect, 136, 142–147
 mechanisms for, 136–137
 Pasteur effect, 135–141
 mixtures of, utilization of, 34–35
 optical isomers of, 13–14
 transport of, 37, see also Active transport
 phosphorylation in, 179–182
 utilization of, 34–37
Sulfites, in glycerol fermentation, 89
Swiss Federal Institute of Technology, 73, 192
Synchronous cultures, 66–67
Syngerspora robinitii, as previous name for Candida albicans, 232
Talose, utilization of, 36
Taxonomy, 254–274
 of asexual yeasts, 262–263
 Brettanomyces, 262
 Bullera, 262
 Candida, 260
 Candida utilis, 261–262
 computer identification for, 270–271
 criteria for, 254
 database for, 270
 description of, 254–255
 Diddens and Lodder (1942), 266
 Dutch School of (1931–1998), 263–270
 Guilliermond's systematic identification scheme (1928), 263
 Hansen's genera (1904), 256–257
 Kloeckera, 262–263
 Kreger-van Rij and others (1984), 268–269
 Kurzman, Fell, and colleagues (1998), 269–270
 Lodder (1934), 266
 Lodder and Kreger-van Rij (1952), 266–267
 Lodder and others (1970), 267–268
 new genera introduced in 2003, 273
 regulations for, 255
 Rhodotouroa, 262
 Schizoblastosporion, 263
 sexual vs. asexual confusion in, 259–260
 species concept in, 258–259
 Sporobolomyces, 262
 Stelling-Dekker (1931), 264–266
 Trigonopsis, 263
 yeast-mold interrelationships and, 257–262
Taxonomy of Yeasts, 267
Technische Hochschule Darmstadt, 125
Tetramorphism, Candida albicans, 239
Thrush, 227, 231–234, see also Candida albicans
Thunberg tubes, 110, 113
Top yeasts, 36–37, 84, 113–114
Torula histolytica, as previous name for Cryptococcus neoformans, 244
Torulaspora delbrueckii, 30, 33, 197
Torulopsis, taxonomy of, 260
Torulopsis neoformans, as previous name for Cryptococcus neoformans, 243
Toxins, from killer yeasts, 224–225
Tremella, 30
Tricarboxylic acid cycle, 99–106
“active acetate” in, 102–103
coenzyme A in, 104–105
in yeasts, 105–106
Trichosporon
dimorphism of, 57
as pathogen, 227, 230
Trichosporon cutaneum, 197
Trichosporon pullulans, 30
Trigonopsis variabilis, 64, 263
Trinity College, Dublin, 39
Triose-phosphate isomerase
in glucose inactivation, 163
in glycolysis, 93–95
Tumor cells, Crabtree effect in, 136, 147
Tup1 protein, in glucose repression, 159
Tyrosine, as melanin precursor, 248–249
Ubiquitin-conjugating enzyme, in glucose inactivation, 165
URA4 gene, in amino acid transport, 191
University College London, 183
University of Basel, 46, 192
University of Brussels, 187
University of Caen, 52
University of Cagliari, 243
University of Erlangen, 80
University of Freiburg, 101
University of Georgia, 241
University of Giessen, 7
University of Graz, 80
University of Greifswald, 30–31, 243
University of Groningen, 60
University of Halle, 8
University of Helsinki, 170
University of Manchester, 80
University of Mannheim, 13
University of Minnesota, 244
University of Modena, 3
University of Munich, 39, 103
University of Münster, 234
University of North Carolina, 236
University of Otago, 56–57
University of Pennsylvania, 81
University of Prague, 9
University of Strasbourg, 14
University of Tokyo, 32–33
University of Tübingen, 9, 99
University of Washington, 62, 214
Uni-Yeast-Tek kit, 238
URE2 gene, in amino acid transport, 191
Urea, transport of, 170
Uridine diphosphate intermediates, in galactose pathway, 125, 128–131
Uridyl transferase, 128
Vacuoles, 47, 50, 51, 73–74
active transport into, 192
degradation in, 165
Valeric acid, entry of, 170
Veinignt Chemische Werke AG, Berlin, 89
Vid vesicles, in glucose inactivation, 164
“Vienna process,” 114
“Vital force,” 20
Volutin, 51, 73
Wageningen University, 169
Walden inversion, 128
Washington University Medical School, 80
Western Reserve University, 74–75, 108
Willia, taxonomy of, 257
Wine fermentation
fusel oils in, 58
Lavoisier’s analysis of, 1–3
by living organisms, 5–7, 9–10
Sauternes, 37, 177
selective, 177
sugar transport specificity in, 37
transport complexity and, 186
Wine yeasts
cytochrome absorption bands in, 114
microscopy of, 3
Pasteur studies of, 19–22
World War II, persecution of scientists during, 80–83, 101–102
Xylose, entry of, 173
Yarrowia lipolytica
active transport in, 197
genetics of, 224
Yeasts: a Taxonomic Study
fifth edition in preparation, 270
first edition (1952), 266–267
fourth edition (1998), 269–270
third edition (1984), 268–269
Yeasts: Characteristics and Identification, 271
Zeiss optical works, 41, 45, 60
Zeitschrift für Chemie, 3
Zygosaccharomyces, taxonomy of, 256
Zygosaccharomyces bailii, 30, 37
 active transport in, 198, 200
 respiration in, 108
 in selective fermentation, 177

Zygosaccharomyces fermentati, nomenclature changes of, 272
Zygosaccharomyces priorianus, 50
Zymase, 39, 83–84
Zymin, 83
Zymohexase, 94