Candida
and Candidiasis
SECOND EDITION
Candida and Candidiasis

Second Edition

Edited by
Richard A. Calderone
Georgetown University Medical Center, Washington, DC

Cornelius J. Clancy
Department of Medicine, Infectious Diseases Division,
University of Pittsburgh, Pittsburgh, PA
Cover: *Candida albicans* (red) and *Staphylococcus aureus* (green) biofilm stained with species-specific peptide nucleic acid (PNA)-FISH probes, demonstrating extensive adherence of *S. aureus* to the *C. albicans* hyphae. Courtesy Mary Ann Jabra-Rizk, University of Maryland, Baltimore.

Copyright © 2012 by ASM Press. ASM Press is a registered trademark of the American Society for Microbiology. All rights reserved. No part of this publication may be reproduced or transmitted in whole or in part or reutilized in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

Disclaimer: To the best of the publisher's knowledge, this publication provides information concerning the subject matter covered that is accurate as of the date of publication. The publisher is not providing legal, medical, or other professional services. Any reference herein to any specific commercial products, procedures, or services by trade name, trademark, manufacturer, or otherwise does not constitute or imply endorsement, recommendation, or favored status by the American Society for Microbiology (ASM). The views and opinions of the author(s) expressed in this publication do not necessarily state or reflect those of ASM, and they shall not be used to advertise or endorse any product.

Library of Congress Cataloging-in-Publication Data
p. : cm.
Includes bibliographical references and index.
ISBN 978-1-55581-539-4
[DNLM: 1. Candida. 2. Candidiasis. QW 180.5.D38]
QR201.C27C365 2012
616.9'693—dc23
2011025353

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Address editorial correspondence to: ASM Press, 1752 N St., N.W., Washington, DC
20036-2904, USA.
Send orders to: ASM Press, P.O. Box 605, Herndon, VA 20172, USA.
Phone: 800-546-2416; 703-661-1593. Fax: 703-661-1501.
E-mail: books@asmusa.org
Online: http://estore.asm.org
Contents

Contributors / vii
Preface / xi

1 Candida: What Should Clinicians and Scientists Be Talking About? / 1
BRAD SPELLBERG, KIEREN A. MARR, AND SCOTT G. FILLER

SECTION I
THE ORGANISMS, THEIR GENOMICS, AND VARIABILITY / 9

2 An Introduction to the Medically Important Candida Species / 11
GARY MORAN, DAVID COLEMAN, AND DEREK SULLIVAN

3 Comparative Genomics of Candida Species / 27
GERALDINE BUTLER

4 The Genetic Code of the Candida CTG Clade / 45
ANA CATARINA GOMES, GABRIELA R. MOURA, AND MANUEL A. S. SANTOS

5 Genome Instability and DNA Repair / 57
GERMÁN LARRIBA AND RICHARD A. CALDERONE

6 Switching and Mating / 75
DAVID R. SOLL

7 Detection and Clinical Significance of Variability among Candida Isolates / 91
LOIS L. HOYER

8 Cell Cycle and Growth Control in Candida Species / 101
CHERYL A. GALE AND JUDITH BERMAN

SECTION II
HOST-PATHOGEN INTERACTIONS (THE HOST) / 125

9 Immunology of Invasive Candidiasis / 127
LUIGINA ROMANI

10 Mucosal Immunity to Candida albicans / 137
PAUL L. FIDEL, JR., AND MAIRI C. NOVERR

11 Innate Immunity to Candida Infections / 155
MIHAI G. NETEA AND NEIL A. R. GOW

12 Vaccines and Passive Immunity against Candidiasis / 171
BRAD SPELLBERG, YUE FU, AND ASHRAF S. IBRAHIM

13 Salivary Histatins: Structure, Function, and Mechanisms of Antifungal Activity / 185
WOON SIK JANG AND MIRA EDGERTON

SECTION III
HOST-PATHOGEN INTERACTIONS (THE PATHOGEN) / 195

14 The Cell Wall: Glycoproteins, Remodeling, and Regulation / 197
CAROL MUNRO AND MATHIAS L. RICHARD
CONTENTS

15 Stress Responses in Candida / 225
ALISTAIR J. P. BROWN, KEN HAYNES, NEIL A. R. GOW, AND JANET QUINN

16 Adhesins in Opportunistic Fungal Pathogens / 243
REBECCA ZORDAN AND BRENDAN CORMACK

17 Encounters with Mammalian Cells: Survival Strategies of Candida Species / 261
SLAVENA VYLKÓVA AND MICHAEL C. LORENZ

18 Gene Expression during the Distinct Stages of Candidiasis / 283
DUNCAN WILSON, FRANCOIS MAYER, AND BERNHARD HUBE

19 Biofilm Formation in Candida albicans / 299
JONATHAN SEWELL FINKEL AND AARON P. MITCHELL

20 Candida spp. in Microbial Populations and Communities: Molecular Interactions and Biological Importance / 317
AMY E. PIISPANEN AND DEBORAH A. HOGAN

21 Back to the Future: Candida Mitochondria and Energetics / 331
DEEPU ALEX, RICHARD CALDERONE, AND DONGMEI LI

SECTION IV

ANTIFUNGAL DRUGS, DRUG RESISTANCE, AND DISCOVERY / 343

22 Antifungals: Drug Class, Mechanisms of Action, Pharmacokinetics/Pharmacodynamics, Drug-Drug Interactions, Toxicity, and Clinical Use / 345
JENIEL E. NETT AND DAVID R. ANDES

23 The Impact of Antifungal Drug Resistance in the Clinic / 373
RUSSELL E. LEWIS AND DIMITRIOS P. KONTOYIANNIS

24 Insights in Antifungal Drug Discovery / 387
FRANÇOISE GAY-ANDRIEU, JARED MAY, DONGMEI LI, NUO SUN, HUI CHEN, RICHARD CALDERONE, AND DEEPU ALEX

25 Multidrug Resistance Transcriptional Regulatory Networks in Candida / 403
P. DAVID ROGERS AND KATHERINE S. BARKER

SECTION V

CANDIDIASIS, EVOLVING DIAGNOSTICS, AND TREATMENT PARADIGMS / 417

26 Mucosal Candidiasis / 419
SANJAY G. REVANKAR AND JACK D. SOBEL

27 Systemic Candidiasis: Candidemia and Deep-Organ Infections / 429
CORNELIUS J. CLANCY AND M. HONG NGUYEN

28 New Developments in Diagnostics and Management of Invasive Candidiasis / 443
SUJATHA KRISHNAN AND LUIS OSTROSKY-ZEICHNER

29 The Epidemiology of Invasive Candidiasis / 449
MICHAEL A. PFALLER AND DANIEL J. DIEKEMA

SECTION VI

COOL TOOLS FOR RESEARCH / 481

30 Cool Tools 1: Development and Application of a Candida albicans Two-Hybrid System / 483
BRAM STYNEN, PATRICK VAN DIJCK, AND HÉLÈNE TOURNU

31 Cool Tools 2: Development of a Candida albicans Cell Surface Protein Microarray / 489
A. BRIAN MOCHON

32 Cool Tools 3: Large-Scale Genetic Interaction Screening in Candida albicans / 497
YEISSA CHABRIER-ROSELLÓ, ANUJ KUMAR, AND DAMIAN KRYSAN

33 Cool Tools 4: Imaging Candida Infections in the Live Host / 501
SOUMYA MITRA, THOMAS H. FOSTER, AND MELANIE WELLINGTON

34 Cool Tools 5: The Candida albicans ORFeome Project / 505
MÉLANIE LEGRAND, CAROL MUNRO, AND CHRISTOPHE D’ENFERT

Index / 511
Contributors

DEEPU ALEX
Georgetown University Medical Center, Washington, DC 20057

DAVID R. ANDES
Department of Medicine, Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792

KATHERINE S. BARKER
Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Children’s Foundation Research Center, Le Bonheur Children’s Hospital, Memphis, TN 38163

JUDITH BERMAN
Department of Genetics, Cell Biology and Development and Department of Microbiology, University of Minnesota, Minneapolis, MN 55455

ALISTAIR J. P. BROWN
School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom

GERALDINE BUTLER
School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland

RICHARD A. CALDERONE
Department of Microbiology and Epidemiology, Medical School, Georgetown University, Washington, DC 20057

YEISSA CHABRIER-ROSELLÓ
Department of Pediatrics, University of Rochester, School of Medicine and Dentistry, Box 850, 601 Elmwood Ave., Rochester, NY 14642

HUI CHEN
Georgetown University Medical Center, Washington, DC 20057

CORNELIUS J. CLANCY
Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261

DAVID COLEMAN
Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental School & Hospital, Trinity College Dublin, University of Dublin, Dublin 2, Ireland

BRENDAN CORMACK
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205

CHRISTOPHE D’ENFERT
Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, and INRA, USC2019, F-75015 Paris, France

DANIEL J. DIEKEMA
Departments of Pathology and Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242

MIRA EDGERTON
Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214

PAUL L. FIDEL, JR.
Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, School of Dentistry, New Orleans, LA 70119

SCOTT G. FILLER
David Geffen School of Medicine at the University of California Los Angeles (UCLA), and Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502

JONATHAN SEWELL FINKEL
Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213
GABRIELA R. MOURA
Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

CAROL MUNRO
Aberdeen Fungal Group, University of Aberdeen, School of Medical Sciences, Institute of Medical Sciences, Aberdeen, AB25 2ZD, United Kingdom

MIHAI G. NETEA
Department of Medicine and Nijmegen University Centre for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

JENIEL E. NETT
Department of Medicine, Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792

M. HONG NGUYEN
Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261

MAIRI C. NOVERR
Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, School of Dentistry, New Orleans, LA 70119

LUIS OSTROSKY-ZEICHNER
Division of Infectious Diseases, University of Texas Medical School at Houston, Houston, TX 77030

MICHAEL A. PFALLER
Department of Pathology, University of Iowa Carver College of Medicine, and Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52242

AMY E. PIISPANEN
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755

JANET QUINN
Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom

SANJAY G. REVANKAR
Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI 48201

MATHIAS L. RICHARD
MICrobiologie de l’ALimmentation au service de la Santé, Equipe “Virulence et Infection Fongique,” INRA UMR1319 AgroParisTech, 78850 Thiverval Grignon, France

P. DAVID ROGERS
Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Children’s Foundation Research Center, Le Bonheur Children's Hospital, Memphis, TN 38163

LUIGINA ROMANI
Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy

MANUEL A. S. SANTOS
Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

JACK D. SOBEL
Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI 48201

DAVID R. SOLL
Department of Biology, The University of Iowa, Iowa City, IA 52242

BRAD SPELLBERG
Division of General Internal Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles (UCLA) Medical Center, and David Geffen School of Medicine at UCLA, Torrance, CA 90502

BRAM STYNEN
VIB Department of Molecular Microbiology, K.U. Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, Postbus 2438, B-3001 Leuven, Belgium

DEREK SULLIVAN
Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental School & Hospital, Trinity College Dublin, University of Dublin, Dublin 2, Ireland

NUO SUN
Georgetown University Medical Center, Washington, DC 20057

HÉLÈNE TOURNU
VIB Department of Molecular Microbiology, K.U. Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, Postbus 2438, B-3001 Leuven, Belgium

PATRICK VAN DIJCK
VIB Department of Molecular Microbiology, K.U. Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, Postbus 2438, B-3001 Leuven, Belgium

SLAVENTA VYLKOVA
Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030

DUNCAN WILSON
Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena (HKI), Beutenbergstrasse 11a, D-07745 Jena, Germany

REBECCA ZORDAN
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
Preface

Over the past three decades, as one of the editors himself has witnessed, the experimental approaches and desired outcomes in the study of Candida spp. and the infections they cause naturally have changed. The overwhelming focus now is in molecular biology at a number of levels of research, such as genome comparisons and assessing virulence factors and host responses, as well as the promise of translational research into new antifungal drug discovery, diagnostics, and vaccines. The Candida community has been fortunate to witness the sharing of mutant libraries, strains, techniques, vectors, and probes; collaboration among laboratories seems to be increasing, a development that will be needed to solve the increasing complexity of research that requires interdisciplinary and “systems biology” approaches. Through genomics, we can now identify similarities and differences among Candida species, other human pathogenic and nonpathogenic fungi, and nonfungal species. “Omic” studies and databases are especially useful in designing new targets for drug discovery, but their application extends beyond this goal, to showing why pathogens are pathogens. That knowledge is in many cases at our fingertips.

This is the fourth in a series of volumes on Candida and candidiasis (candidosis) and the first that is coedited to reflect a more thorough treatise of human disease, treatment, and expectations in health care delivery. Each of the preceding books emphasized different things. Candida and Candidosis (University Park Press, Baltimore, MD, 1979) and Candida and Candidosis: A Review and Bibliography, 2nd Ed. (Baillière Tindall, Oxford, U.K., 1988), both written by Frank C. Odds, focused on the species that cause candidiasis, including their morphogenesis, virulence, and structure; the first of these books included special emphasis on the types of candidiasis. Dr. Odds gave us meaning and direction, a unification to address new problems that existed. The third book, Candida and Candidiasis, edited by Richard A. Calderone, was published in 2002 by ASM Press.

The present book, Candida and Candidiasis, 2nd Edition, is a natural extension of the previous three. In this volume are emphasized genomes and variability, host-pathogen interactions, antifungal resistance and new drug discovery, and evolving diagnostics. Variability among Candida species is described with regard to genomes, molecular adaptation to the external milieu whether in a host or in vitro, and sexuality of Candida albicans; we have learned how variability contributes to resistance to triazole drugs. Traditional areas of interest remain. For example, research in morphogenesis and the cell cycle (and, ultimately, growth) has provided new heights of understanding. Major advances in immune responses are also covered in this volume. Chapters discuss vaccine candidates in the community and how host responses may be useful in diagnosis of blood-borne candidiasis. Virulence attributes are now placed in the context of gene families. While the cell wall is critically included, it is represented more now as an entity that interacts with the innate host system. Broad representation of specific pieces of the cell is included, ultimately reflecting the current interests among like scientists. Biofilms, either mixed-species or monospecific, tell us much about the survival of the fungus in the host.

Discovery has continued, and translational research is moving toward attainable goals. But have we made a difference in increasing awareness of public health issues in candidiasis? An answer to that question is not easily discerned. Candidiasis is the third most frequent hospital-acquired infection. But who knows that fact, beyond the candidiasis community? In reality, new drug discovery features little more than remodeled old drugs. The search for that magic bullet that can kill all 100+ fungal pathogens still survives, at least partially, but this objective lacks sense and is not part of the paradigm in antibacterial drug discovery.

We must lose the notion that we cannot do better. The greatest risk for the next decade is that candidiasis research will become lost in the current economic times, at least in the United States. Emphasis on other important, nonfungal pathogens has overwhelmed the goal of controlling candidiasis, cryptococcosis, aspergillosis, the endemic mycoses, and dermatophytosis in public health. Solutions to this dilemma are not easy. To a much broader extent, we in this field must educate the public by choosing leaders among us, especially physician-scientists, who can testify to the importance of these diseases. These leaders should be called on to seize the interest of “think tanks” and other groups that influence policy makers. But also, each of us needs to remind our professional societies, the major advocates of microbiology, that this field demands equal attention with all the other pathogenic microorganisms, whether in newsletters, public education, or influence peddling.

Even within our discipline, we cannot keep up with everything. Both of us marveled at the outstanding research presented at the most recent “Candida and Candidiasis”
conference, held in Miami Beach, Florida, in March of 2010. That message should continue to be carried to the public, in a language that conveys the importance of these diseases. For this reason, just as the present volume offers the most current information in this critical field, new books on *Candida* and candidiasis should continue to present new discoveries and developments.

RICHARD A. CALDERONE
CORNELIUS J. CLANCY
Index

A
ala and α/α cells, in mating, 75–84
ABC transporters, in drug resistance, 66
Abdomen, candidiasis in, 433–434
Abscess, brain, 434
Accidental infections, versus opportunistic infections, 1–2
Ace2 protein
 in biofilm formation, 301, 306
 in carbon metabolism, 335
 in cell cycle, 117
Acetic acid, stress response to, 228–229
N-Acetylglucosamine
 in chitin synthesis, 197
 in switching, 81, 83
Acid stress response, 228–229
Acinetobacter baumannii, Candida albicans interactions with, 319–320
Aco1 protein
 in kidney lesions, 290
 in liver lesions, 292
Acs1 protein, in kidney lesions, 290
Actin, in cell cycle, 106–107
Active immunization, 5, 175–178
Ada2 protein, in multidrug resistance, 410
Adaptive immunity
 activation of, 156–157
 in gastrointestinal candidiasis, 141
Adh proteins
 in biofilm formation, 301, 307–308
 in morphogenesis, 334
Adhesins, 243–259
 in biofilms, 249–250, 303–304
 in Candida albicans, 245–250
 in Candida glabrata, 250–253
 cell wall structure and, 243
 for endothelial cell invasion, 289–290
 evolution of, 254–255
 functions of, 243
 in Saccharomyces cerevisiae, 253–254
 structures of, 243–254
 types of, 270–272
Adhesion
 Als protein family in, 31–32
 cell-cell, in biofilm formation, 304–306
Adhesin molecules, in oropharyngeal candidiasis, 139
Afbgt1 protein, in cell wall, 199
Affirm test, for mucosal candidiasis, 424
Agglutinin-like sequence genes, 15–16, 30–32
Ahp1 protein, in histatin response, 190
AI-2 protein, in fungal-bacterial interactions, 320
AIDS, see HIV/AIDS
AIRE gene, polymorphisms of, 161
Albaconazole, 396
Alkylolation, reversal of, 62
O-Alkylguanine-DNA alkyltransferase II, in DNA repair, 66
Als protein family, 31–32
 adherence properties of, 245–247, 270–272
 amyloid formation and, 246–247
 in Candida albicans, 15–88, 245–247
 in cell wall, 206, 208, 210
 in colonization, 286
 in dissemination, 289–290
 evolution of, 254–255
 in invasion, 288
 iron acquisition and, 246
 in kidney lesions, 291
 in liver lesions, 293
 regulation of, 247
 strain variation due to, 94, 96
 structures of, 200, 245–247
 in vaccine development, 175–178
Alternative oxidase pathway, for respiration, 331
Ambiguous-intermediate theory, of codon reassignment, 46–48
Amino acids
 formation of, in biofilm formation, 307
 starvation of, 261
Aminocandin, 396
Amphotericin B deoxycholate
 advantages of, 346
 disadvantages of, 346
 for endophthalmitis, 433
 flucanazole with, 3
Ams1 protein, in dissemination, 290
Amyloid formation, Als proteins and, 246–247
Aneploidy
 genetic instability and, 58–60
 in strain variation, 94
Angular cheilitis, 12, 420
Anidulafungin, 358–360
 advantages of, 346
 for candidemia, 430–431
 chemical structure of, 349
 disadvantages of, 346
 dosing of, 351
 drug-drug interactions of, 353
 for mucosal candidiasis, 421
 spectrum of activity of, 349
 susceptibility to, 465–466, 468
Animal models
 for adhesion action, 2
 Candida imaging in, 501–503
 for disseminated candidiasis, 2, 4, 95–96
 for gastrointestinal candidiasis, 141–142
 for oropharyngeal candidiasis, 139
 for vulvovaginal candidiasis, 143, 145
 Animals, strain variation found in, 95
Annexin, in oropharyngeal candidiasis, 139
Anp1 protein, in DNA repair, 62
Antibiotics, vulvovaginal candidiasis due to, 172, 422
Antifungal drugs, see also specific drug classes (polyenes) and individual drug names
 for Candida albicans, 16
 clinical characteristics of, 345
Antifungal drugs (continued)

discovery of approaches to, 391

current developments in, 395–396
genomic approaches to, 394–395

global candidiasis incidence and, 387–388

myths about, 396–397

traditional approaches to, 391–394
treatment difficulties and, 388–391

for disseminated candidiasis, 3–5, 9

economic costs of, 390–391

historical overview of, 345

mitochondria as targets of, 335–336

pharmacodynamics of, 356–357

pharmacokinetics of, 356–357

resistance to genetic instability and, 65–67

multidrug, 404–412

spectrum of activity of, 354

targeting mitochondria, 335–336

toxicity of, 357

ATP-binding cassette transporters, in multidrug resistance, 404

Autoxyph, 268

Azp proteins, adhesive properties of, 253

Azoles, 352–358; see also individual drugs

chemistry of, 354

clinical uses of, 357–358

drug-drug interactions of, 357

mechanism of action of, 354

monitoring of, 356

new, 396

pharmacodynamics of, 356–357

pharmacokinetics of, 354–356

preemptive, 44

susceptibility to, see Drug resistance; Susceptibility

Antigen(s), cell surface, protein microarray analysis for, 489–496

Antigen-presenting cells, in innate immunity, 159

Antiglucan antibodies, for vaccines, 174–175

Anti-hepatitis shock protein antibodies, for vaccines, 175

Antimannan antibodies as biomarkers, 445

for vaccines, 174

Antimicrobial peptides, in oropharyngeal candidiasis

Antimycin (complex III), 331–336

Antigen(s), cell surface, protein microarray analysis for, 489–496

ATP, in histatin action, 190

Azoles for, 354

echinocandins for, 360

flucytosine for, 352

Aspergillus flavus, azoles for, 354

Aspergillus fumigatus

antifungal drugs for, 349

azoles for, 354

carbohydrate-activite enzymes of, 199

cell wall of, glycoproteins of, 211, 213

farnesol effects on, 323

histatin action against, 185

infections due to, health care costs of, 390

meiosis in, 34

Aspergillus glabrata, glycoproteins of, 214

Aspergillus nidulans

azoles for, 354

farnesol effects on, 323

genetic instability in, 58

Aspergillus terreus, azoles for, 354

Atg proteins, in nutrient starvation, 268

ATP, in histatin action, 190

ATP-binding cassette transporters, in multidrug resistance, 404

B

B6.1 antibody, for vaccines, 174

B lymphocytes, in immune response, 156–157

Bacillus subtilis

Bacterial microbiota, in gastrointestinal tract, 142

Bait proteins, in two-hybrid system, 409–410

RAL815 (isavuconazole), 396

Bar1 protein, in mating, 80

B-cell epitopes, in immune response, 156–157

Basal septin band, 108

Base excision repair, 62–63

Bcr1 protein in biofilms, 249, 301, 304, 306

in cell wall, 198

in multidrug resistance, 404

BENr transporter, in multidrug resistance, 410

Benzoic acid, stress response to, 228–229

Beta glucan test, 3

Bifidobacterium

in gastrointestinal tract, 142

Bifidobacterium infantis, for candidiasis, 322

Bilg protein in cell wall, 199

Biofilms, 85, 299–315

on abiotic surfaces, 317–318

as adhesins, 249–250

Als protein family in, 31–32

Candida albicans in, 299–315

Candida glabrata in, 252

Candida in, 145–146

drug resistance within, 309–310, 317–318

formation of, 323

Candida mating and, 309

cell-cell communication in, 308–309

early functions in, 303–304

genetic control of, 300–303

late functions in, 306–308

middle functions in, 304–306

overview of, 299–300

polymicrobial, 317–318

substrates containing, 299

in vulvovaginal candidiasis, 423

Biomarkers for invasive candidiasis, 443–446

protein microarray analysis for, 489–496

Blastomyces dermatitidis

antifungal drugs for, 349

azoles for, 354

polyenes for, 347

Blood cultures, disadvantages of, 2–3

Bloodstream, organism spread and escape by, 289–290

Bone infections, 435

Brain, candidiasis of, 434

Break-induced replication, 28, 60–61

Broad Institute database, 37

Bud proteins, in cell cycle, 106–107

Bud site selection, 104, 106

Burkholderia cenocepacia, Candida albicans interactions with, 320

Burkholderia cepacia

Candida albicans interactions with, 319–320

C

CaAda2 protein, in multidrug resistance, 410

Cables, in cell cycle, 106–107

CaCrm1 protein, in multidrug resistance, 410

CaCr1 protein, in multidrug resistance, 410–411

Cadherins, in oropharyngeal candidiasis, 139

Cadmium, stress response to, 229

CaFcr proteins, in multidrug resistance, 411

Cag1 protein in mating, 79, 84, 85

in reproduction, 75

Calcineurin, 156–157

drug resistance and, 310

in multidrug resistance, 410–411

Calcium-binding proteins, in vulvovaginal candidiasis, 145

CalFpg protein, n DNA repair, 62–63

Calprotectin, in oropharyngeal candidiasis, 140

CaMcm1 protein, in multidrug resistance, 409

Candida

imaging of, in animals, 501–503

number of species in, 11

phylogeny of, 27

stress response in, 225–242

taxonomy of, 11

Candida africana, 92–93

Candida albicans, 14–16

adaptive immune response to, 156–157

adhesins of, 245–250, 270–272

adjuvant immunotherapy for, 162–163

azoles for, 354

in bacteria-fungi populations disseminated infections due to, 318–319

drug resistance and, 317–318

farnesol effects on, 324

gram-negative bacteria and, 319–320

gram-positive bacteria and, 320–321

in oral environment, 319

in biofilms, 249–250, 299–315, 317–318

versus C. dubliniensis, 33

cell cycle in checkpoints of, 119–120

perturbation of, 119

stationary phase of, 119

cell wall of, 157–158

glycoproteins of, 200–214
Candida holmii
antifungal susceptibility of, 466
distribution of, 453

Candida humicola
antifungal susceptibility of, 465, 466
distribution of, 453

Candida inconspicua, 18
antifungal susceptibility of, 465–467
distribution of, 453, 461

Candida intermedia
antifungal susceptibility of, 466–467
distribution of, 453

Candida kefyr, 18
antifungal susceptibility of, 466–469
distribution of, 453
resistance in, 375

Candida krussei
antifungal susceptibility of, 349–350,
distribution of, 453
description of, 18
distribution of, 453–460
echinocandins for, 359
flucytosine for, 352
infections due to, see Candida krussei
infections
MLST methods for, 94
polymers for, 347
quorum sensing in, 322
related to CTG clade, 11
resistance in, 373, 375–376, 379, 389,
403
vaccines for, 175

Candida krussei infections, 18
animal models for, 2
candidemia, 431–432
invasive, 127, 131–132
mucosal, 425
oropharyngeal, 419

Candida lambica
antifungal susceptibility of, 465–467
distribution of, 453

Candida lipolytica, 18
antifungal susceptibility of, 466–467,
469
distribution of, 453
meiosis in, 34–35
mitochondria of, 331

Candida lipolytica Hansenii, 11
antifungal susceptibility of, 349–350,
465–469
azoles for, 354
cell wall of, glycoproteins of, 203–208
in CTG clade, 11
description of, 18
distribution of, 453–455, 458, 461
flucytosine for, 352
gene families of, 31–32
genome of, 27, 31–32, 34–35, 37
horizontal gene transfer to, 37
infections due to, 18
mating type-like locus of, 34
mitochondria of, 338
phylogeny of, 27
repetitive DNA elements in, 29–30
resistance in, 375, 377, 389

Candida marinii
antifungal susceptibility of, 465, 466
distribution of, 453

Candida metapsilosis, 17, 92
antifungal susceptibility of, 465, 469
discovery of, 11
distribution of, 454, 462
genome of, 29, 34
mating type-like locus of, 34
repetitive DNA elements in, 29

Candida nivariensis, 18, 454, 462
candidiasis
antifungal susceptibility of, 465–467
distribution of, 453, 461

discovery of, 11
distribution of, 454, 462
genome of, 27, 29, 33
mitochondria of, 331
polyenes for, 347

Candida orthobipolaris, 17, 92
antifungal susceptibility of, 465, 469
discovery of, 11
distribution of, 454, 462
genome of, 27, 29, 33
mitochondria of, 331
polyenes for, 347

Candida parapsilosis
antifungal susceptibility of, 17, 349–350,
465, 467, 468
azoles for, 354
in biofilms, 299, 304
cell wall of, glycoproteins of, 203–208
in CTG clade, 11
description of, 17
distribution of, 17, 453–460
echinocandins for, 359
flucytosine for, 352
gene families of, 31–33
genome of, 27, 29–34, 36–37
groups of, 92
horizontal gene transfer to, 36–37
immunity modulation and, 270
infections due to, see Candida parapsilosis
infections
mating type-like locus of, 34
mitochondria of, 331–333, 335, 338
phylogeny of, 322
polymers for, 347
quorum sensing in, 322
repetitive DNA elements in, 30
resistance in, 375–376, 378, 389
single nucleotide polymorphisms of, 27
strains of, 17
vaccines for, 175
virulence of, 17

Candida parapsilosis infections, 17
candidemia, 431–432
incidence of, 388
oropharyngeal, 419

Candida parapsilosis strains resembling, 91
in biofilms, 299

Candida pelliculosa
antifungal susceptibility of, 350, 465–469
distribution of, 453–454

Candida pulcherrima
antifungal susceptibility of, 466
distribution of, 453

Candida puerularis
antifungal susceptibility of, 350, 465–469
distribution of, 453–454

Candida pulsumera
antifungal susceptibility of, 466
distribution of, 453

Candida rugosa
antifungal susceptibility of, 350, 465–466, 468–469
azoles for, 354
description of, 18
distribution of, 453–454, 461
infections due to, 18
resistance in, 377, 389

Candida sake, 18
antifungal susceptibility of, 466–467
distribution of, 453

Candida sojae
genome of, 29
repetitive DNA elements in, 29

Candida sojae
antifungal susceptibility of, 466
distribution of, 453

Candida subhashii, 91–92
antifungal susceptibility of, 18, 349–350,
465–468
azoles for, 354
in biofilms, 299

Candida subhastii resembling, 91
in cell wall of, glycoproteins of, 203–208
in CTG clade, 11
distribution of, 453–458, 460
mitochondria of, 339
flucytosine for, 352
gene families of, 31–33
genome of, 27, 29–31, 37
horizontal gene transfer to, 37
immunity modulation and, 270
infections due to, see Candida tropicalis
infections
mating type-like locus of, 34
mitochondria of, 331
MLST methods for, 94
phagocytosis of, 264
polyenes for, 347
probioptic effects on, 321
quorum sensing in, 322
repetitive DNA elements in, 29–30
resistance in, 375–376, 378, 404–405
single nucleotide polymorphisms of, 27
switching in, 77–78
vaccines for, 175, 176

Candida tropicalis infections, 17–19
candidemia, 431–432
incidence of, 388
oropharyngeal, 419

Candida thyldes
antifungal susceptibility of, 466
distribution of, 453
mitochondria of, 331

Candida tropicalis
antifungal susceptibility of, 465–468
distribution of, 453

Candida zeayquonoides, 18
antifungal susceptibility of, 466–467
codon reassignment in, 46
distribution of, 453

Candida zeylanoides, 18
antifungal susceptibility of, 465–468
distribution of, 453

Candida zeylanoides resembling, 91
in biofilms, 299

Candiasis
clinical characteristics of, 429–430
costs associated with, 463–465
drugs for, 430–432
epidemiology of, 449–480
shifts in, 451–452
species distribution, 453–452
immunology of, 127–136
incidence of, 388
length of stay in, 463–465
mortality in, 373–376, 463–465
organisms causing, 17–18
protein microarray analysis in, 489–496
reservoirs for, 453
risk factors for, 430, 449
treatment of, 430–432

Candidiasis
deep-organ, see Deep-organ infections
disseminated, see Disseminated candidiasis
esophageal, see Esophageal candidiasis
gastrointestinal, see Gastrointestinal candidiasis
gene expression in, 283–298
history of, 11
incidence of, 387–388
oropharyngeal, see Oropharyngeal candidiasis
species causing, 11–18; see also specific species
vulvovaginal, see Vulvovaginal candidiasis
Candiduria, 435
CaNdt80 protein, in multidrug resistance, 405–406
Cdc1 protein
in cell cycle, 107
in multidrug resistance, 405–406
in stress response, 228, 233–234, 266, 278
Car proteins, in invasion, 288
Carbohydrate-active enzymes, 199
Carbon
acquisition of, in kidney lesions, 290–291
in liver lesions, 292
metabolism of, mitochondria in, 336–337
starvation in, 291
perturbation of, 119
Cell cycle
in cell biological features and, 104–109
checkpoints in, 119–120
cyclin regulation in, 109–119
morphological forms and, 101–104
perturbation of, 119
stationary phase in, 119
Cell dispersal, in biofilm formation, 306–308
Cell elongation, 108
Cell surface protein microarray, for Candida albicans, 489–496
Cell wall
197–223
assembly of, gene families for, 32–33
biosynthesis of, 214–216
glycoproteins of, 200–204
histatin binding to, 187–188
immune system recognition of, 157–158
polysaccharides of, 197–199
remodeling of, 198, 215–216
structure of, 157, 243
synthesis of, 198
Cell-cell communication, in biofilms, 308–309
Cell-mediated immunity, in invasive candidiasis, 283–285
Central nervous system, candidiasis of, 434
Centromeres, 29–30
Centromere proteins, 29–30
Cerebrospinal fluid, candidiasis of, 434
Cerebral blood flow, 243
Cf proteins, in biofilm formation, 305–306
Cfd proteins, in liver lesions, 293
Cfh1 protein, in multidrug resistance, 404
CGOBL online tool, 38
CgFlu1 protein, in multidrug resistance, 404
CgPDR1 transcription regulator, in drug resistance, 410
Chaperone gene, Candida albicans, 14
Chf proteins, in biofilm formation, 304
in mating, 79, 84
“Crabtree-positive” and “Crabtree-negative” organisms, 334, 337
Cdr1 protein, in general stress response, 230
Cdh proteins, in cell wall, 202, 204, 211–213
Cck1 protein, in biofilm formation, 308
Clr1 protein, in multidrug resistance, 410
Cryptococcus
fluconazole for, 352
polyenes for, 3
Cryptococcus neoformans
antifungal drugs for, 349
azoles for, 354
histatin action against, 185
invasive properties of, 275
nutrient starvation in, 268
resistance in, 378
Crl1 protein
in cell wall, 198
in multidrug resistance, 410–411
Epa proteins
adherence properties of, 270–272
binding specificities of, 251
in biofilm formation, 302
of Candida glabrata, 16, 250–253
functions of, 250–251
regulation of, 251–252
structures of, 244, 250–251
Epithelial cells
Als protein adhesion to, 245–246
Candida interactions with, 262
Epa adhesion to, 251
invasion of, 288–289
oral, colonization of, 285–287
in oropharyngeal candidiasis, 139
vaginal, colonization of, 287
in vulvovaginal candidiasis, 144
Erg proteins
in biofilm formation, 308
in invasion, 288
in carbon starvation, 268
in carbon metabolism, 336
F ferritin, 293
Fbp1 protein, in carbon metabolism, 336
Fcr proteins
Fcr1 protein, in dissemination, 290
in resistance, 65–67, 405, 408
in strain variation, 9
Fcr2 protein, in dissemination, 290
in resistance, 65–67, 405, 408
in strain variation, 9
Fcr3 protein, in dissemination, 290
in resistance, 65–67, 405, 408
in strain variation, 9
Fcr4 protein, in dissemination, 290
in resistance, 65–67, 405, 408
in strain variation, 9
Ferritin, 293
Fgl2 protein, in carbon starvation, 268
Flo proteins
adhesive properties of, 253–254
in biofilm formation, 301
invasion of, 254–255
Flucytosine, 16
for Candida albicans, 16
for candidemia, 431–432
for cardiovascular candidiasis, 434–435
for central nervous system candidiasis, 434
chemical structure of, 348
clinical uses of, 357–358
disadvantages of, 346
for disseminated candidiasis, 3
dosing of, 350
drug-drug interactions of, 353
for endophthalmitis, 433
for hepatosplenic candidiasis, 433
for invasive candidiasis, 388–389
for mucosal candidiasis, 421
for osteomyelitis, 435
for peritonitis, 433–434
pharmacodynamics of, 356
pharmacokinetics of, 355
for vulvovaginal candidiasis, 424
Flocculation, 290
invasion of, 288
in carbon starvation, 268
in carbon metabolism, 336
Fps1 protein, in osmotic stress response, 227
Flucytosine
advantages of, 346
for Candida albicans, 16
for candidemia, 431–432
for cardiovascular candidiasis, 434–435
for central nervous system candidiasis, 434
chemical structure of, 348
clinical uses of, 357–358
disadvantages of, 346
for disseminated candidiasis, 3
dosing of, 350
drug-drug interactions of, 353
for endophthalmitis, 433
for hepatosplenic candidiasis, 433
for invasive candidiasis, 388–389
for mucosal candidiasis, 421
for osteomyelitis, 435
for peritonitis, 433–434
pharmacodynamics of, 356
pharmacokinetics of, 355
for vulvovaginal candidiasis, 424
Flucytosine
advantages of, 346
for central nervous system candidiasis, 434
chemical structure of, 348
clinical uses of, 352
disadvantages of, 346
dosing of, 350
drug-drug interactions of, 352
for endophthalmitis, 433
mechanism of action of, 351
pharmacodynamics of, 352
pharmacokinetics of, 352
resistance to, 403
spectrum of activity of, 349, 352
for vulvovaginal candidiasis, 424
Flocculation, 290
invasion of, 288
in carbon starvation, 268
in carbon metabolism, 336
Fps1 protein, in osmotic stress response, 227
Flucytosine
advantages of, 346
for central nervous system candidiasis, 434
chemical structure of, 348
clinical uses of, 352
disadvantages of, 346
dosing of, 350
drug-drug interactions of, 352
for endophthalmitis, 433
mechanism of action of, 351
pharmacodynamics of, 352
pharmacokinetics of, 352
resistance to, 403
spectrum of activity of, 349, 352
for vulvovaginal candidiasis, 424
Flocculation, 290
invasion of, 288
in carbon starvation, 268
in carbon metabolism, 336
Fps1 protein, in osmotic stress response, 227
Flucytosine
advantages of, 346
for central nervous system candidiasis, 434
chemical structure of, 348
clinical uses of, 352
disadvantages of, 346
dosing of, 350
drug-drug interactions of, 352
for endophthalmitis, 433
mechanism of action of, 351
pharmacodynamics of, 352
pharmacokinetics of, 352
resistance to, 403
spectrum of activity of, 349, 352
toxicity of, 352
Fluorescent markers, for Candida imaging, 501–503
5-Fluorocytosine, see Fluconazole
Fox proteins
for Candida albicans, 497–500
Genetics, Candida albicans, 14
Génolevures database, 38
Genomes, 27–43; see also individual organisms, genome of
databases for, 36–38
gene families, 30–33
gene families, 30–33
gene transfer, horizontal, 35–37
general stress response, 227–230
genes, 27–43; see also individual organisms, genome of
databases for, 36–38
gene families, 30–33
gene transfer, horizontal, 35–37
point mutation and, 57–58
point mutation and, 57–58
rearrangement of, strain variation and, 94
repetitive DNA elements in, 29–30
single nucleotide polymorphisms in, 27–28
Geographical locations, strain variation and, 95
gene families, 30–33
gene transfer, horizontal, 35–37
point mutation and, 57–58
rearrangement of, strain variation and, 94
repetitive DNA elements in, 29–30
single nucleotide polymorphisms in, 27–28
Germ tubes, formation of, 106, 110
Gpr proteins, in biofilm formation, 301, 306
β-Glucan(s), in cell wall, 157–158
β-1,2-Glucan, in cell wall, 157–158, 443–445
β-1,3-Glucan, in cell wall, 197, 199
β-1,6-Glucan, in cell wall, 199
Glucan antibodies, for vaccines, 174–175
Glucanostatintransferases, in cell wall, 202, 211
Glucocerebrosidase, carbon starvation and, 268
Glutathione peroxidase, in stress response, 227
Glutathione peroxidase, in stress response, 227
Glutathione, in stress response, 226
Glutathione, in stress response, 226
Glycerol, accumulation of, in osmotic stress response, 227
Glycerol, accumulation of, in osmotic stress response, 227

Glycerol 3-phosphatase, in osmotic stress response, 227
Glycerol 3-phosphate dehydrogenase, in osmotic stress response, 227
Glycolases, in DNA repair, 62
Glycolysis
Glycosylphosphatidylinositol-anchored
Glycoside hydrolases, in cell wall, 202
Glycoproteins, cell wall, 200–214
Glycolysis
Glycolases, in DNA repair, 62
Glycerol-3-phosphate dehydrogenase, in
518
Heliacases, in immune response, 158
Heavy metal stress response, 229
Heat shock protein antibodies, for vac-
Heat shock, response to, 226–227
Heart, candidiasis of, 434–435
Hda1 protein, in switching, 82
Hcg1 protein, in dissemination, 289–290
Hd1 protein, in switching, 82
Heart, candidiasis of, 434–435
Heat shock response to, 226–227
Heat shock protein antibodies, for vac-
cines, 175
Heavy metal stress response, 229
Helicases, in immune response, 158
Hepatosplenic candidiasis, 433
Heterozygosity, genetic instability and, 57–58
Hog1 protein, in cell cycle, 101, 110, 111, 117–119
HIS genes, for histatin, 185–194
Histatins, 185–194
binding to Candida, 187–188
Candida response to, 190
family members of, 185–186
fungicidal activity of, 188–190
interaction with membranes, 187
intracellular effects of, 190
levels in saliva, 186
in oropharyngeal candidiasis, 140
overview of, 185
resistance to, 190
secretion of, 185
spectrum of activity of, 185
structure of, 186–188
targeting mitochondria, 335
uptake of, 188
Histoplasma capsulatum
antifungal drugs for, 349
azoles for, 354
polyenes for, 347
Hit compounds, in drug development, 393
HIV/AIDS
candidiasis incidence in, 387–388
colonization in, 286
histatin levels in, 186
mucosal candidiasis in, 137
oralpharyngeal candidiasis in, 12, 172, 419–420
vaccinations in, 172–173
vulvovaginal candidiasis in, 424
Hkr1 protein
in cell wall, 199
in stress response, 232
HmX proteins, in liver lesions, 293
Hmt1 protein, in oxidative stress response, 278
Hog1 protein
in general stress response, 229
in histatin response, 190
in respiration, 338
in stress response, 230–233, 266
Homologous recombination
in DNA repair, 63–64
in genetic instability, 57–58
Horizontal gene transfer, 35–37
Hormone replacement therapy, vulvovagi-
Hormone replacement therapy, vulvovagi-
al candidiasis in, 422
Host, environmental role of
matting process in, 81
switching process in, 81
Hsf proteins
in heat shock response, 226–227
in stress response, 235
Hsp proteins
in histatin response, 191
in liver lesions, 293
in weak acid stress response, 228
Hst7 protein, in mating, 85
Human immunodeficiency virus infection, see HIV/AIDS
Humoral immunity, 156, 489–496
HWP1 gene, Candida albicans, 15
Hwp1 protein
in biofilm formation, 303, 304, 306, 309
candidiasis, 422
in colonization, 286
in invasion, 288
Hyr proteins
adherence properties of, 272
in biofilm formation, 206
in cell wall, 207
in colonization, 286
in kidney lesions, 291
Hyr/lff protein family, 32–33
I
Icl1 protein
in carbon metabolism, 336
in carbon starvation, 268
in invasion, 288
in kidney lesions, 291
in oxidative stress response, 278
Iclofungipen, 396
Ifla proteins, 33
Ild proteins, in biofilm formation, 301, 307, 308
Ifp proteins
adherence properties of, 272
in cell wall, 201, 207, 210–211
In flp proteins, in heavy metal stress response, 229
Imidazoles, 354
Immune reconstitution inflammatory syn-
drome, 128
Immunity
adaptive, see Adaptive immunity
Candida survival strategies in, 261–282
innate, see Innate immunity
modulation of, 268–270
mucosal, see Mucosal immunity
Immunization, see Active immunization;
Passive immunization; Vaccines
Immunodeficiency, see also HIV/AIDS
invasive candidiasis in, 172–174
orpahyngeal candidiasis in, 12
vulvovaginal candidiasis in, 423
Immunology, of invasive candidiasis, 127–136
Immunoregulation, in gastrointestinal
tract, 142
Indolamine 2,3-dioxygenase, in resistance, 128, 132–133
Infections, candidal, see Candidiasis
Infectious Diseases Society of America, sus-
ceptibility testing guidelines of, 379
Inflammase, protein in immune response, 160
Inflammatory response
in candidiasis, 128
innate immunity in, 156
Innate immunity, 155–170
adaptive responses in, 157
adjuvant therapy and, 163–164
Candida cell wall and, 157–158
Candida escape from, 160–161
Candida killing capacity and, 156–157
in gastrointestinal candidiasis, 141
genes of, polymorphisms of, 161–163
host susceptibility and, 161–163
in invasive candidiasis, 129–130
killing of organisms in, 156
pattern recognition receptors in, 157–160
phagocytosis in, 156
in vulvovaginal candidiasis, 143
Instability, genetic, see Genetic instability
Integrins, immunity modulation and, 270
Interaction assay, for Candida albicans, 483–487
Interferon-γ in immune response, 164
in invasive candidiasis, 132–133
Interleukin(s) in gastrointestinal candidiasis, 142
in oropharyngeal candidiasis, 139–140
in resistance, 128
in vulvovaginal candidiasis, 422
Interleukin-10, in invasive candidiasis, 132
Interleukin-17, in innate immunity, 157
Intra-abdominal candidiasis, 433–434
Intracellular trafficking, interference with, 269–270
Invasive candidiasis, see also Candidaemia;
Disseminated candidiasis biomarkers for, 443–446
costs associated with, 463–465
definition of, 12
diagnosis of, 358, 445–446
drugs for, 388–391, 444–446, 465–469
drug resistance in, 428
epidemiology of, 443, 449–480
community onset, 449–451
incidence, 449–451
species distribution, 453–463
gene expression in, 287–289
host niche status and, 226
immunology of, 127–136
acquired immunity in, 130–132
dendritic cells in, 131
inflammatory response in, 128
innate immune receptors in, 129–130
resistance of, 132–133
shape of, 127–128, 132–133
tolerance of, 127–128, 132–133
incidence of, 12–13, 127, 388
length of stay in, 464–465
mechanisms of, 272–274
mortality of, 373–376, 463–465
organisms causing, 12–14
reservoirs for, 453
risk factors for, 463
vaccines for, 171–184
Ipl protein in oxidative stress response, 278
Ire1 protein, in biofilm formation, 301, 306
Iron, stress response to, 229
Iron acquisition
Als proteins and, 246
in kidney lesions, 291
in liver lesions, 293
Isavaconazole, 396
Isw2 protein, in oxidative stress response, 278
Itraconazole advantages of, 346
for candidemia, 431
chemical structure of, 348
clinical uses of, 357–358
disadvantages of, 346
dosing of, 350
drug-drug interactions of, 353, 357
monitoring of, 356
for mucosal candidiasis, 421
pharmacokinetics of, 355
spectrum of activity of, 349, 354
toxicity of, 357
for vulvovaginal candidiasis, 424
J
Joint infections, 435
K
Kar2 protein, in histatin response, 190
Kem1 protein, in biofilm formation, 301, 304
Ketoconazole, for vulvovaginal candidiasis, 424
Kgd proteins, in liver lesions, 292
Kidney, Candida invasion of, 290–291, 435
Killing, of Candida, 156
Klebsiella pneumoniae, Candida albicans interactions with, 318
Knr4 protein, in cell wall, 199
Kre proteins, in cell wall, 207
Kynurenines, in resistance, 128, 132–133
Kre6 protein, in histatin response, 190
Kre proteins, in cell wall, 207
Kynurenines, in resistance, 128, 132–133
L
Lactic acid, stress response to, 228–229
Lactobacillus
gastrointestinal, 142
vaginal, 422–423
Lactobacillus acidophilus, 421
Lactococcus lactis, 421
Lipases, in immunity modulation, 269
Lif1 protein, in DNA repair, 64
Lif proteins, in histatin response, 190
Libraries, for drug discovery, 392–395
Libral regulatory system, 74
Liberalist regulatory system, 74
Lic1 protein, in cell wall, 200
Lic proteins, in histatin response, 190
Lic proteins, in cell wall, 207
Lignein, 387
Major facilitator superfamily transporters, 199
Mak proteins, in stress response, 232–233
Mal proteins, in liver lesions, 292
mannan antibodies to as biomarker, 445
for vaccines, 174
in cell wall, 157
Mannoproteins, in cell wall, 157, 243
Mannose receptor in immune response, 156, 159
in invasive candidiasis, 129
Mannose-binding lectin, in immune response, 156
MAPK (mitogen-activated protein kinase) pathway, in stress response, 230–232
Mating in biofilm formation, 309
Candida albicans, see Candida albicans, mating in
demonstration of, 76–77
discovery of, 77–78
host environment for, 81
pheromones in, 78–80, 84–85
same-sex, 80
switching requirements for, see Switching
Mating locus, Candida albicans, 75–76
Mating type-like locus, evolution of, 34
Mcm1 protein, in multidrug resistance, 409
MDR1 gene, in multidrug resistance, 404–407, 409–410
MDr1 protein, in biofilm formation, 304
in drug resistance, 66, 310
Mds proteins, in biofilm formation, 302, 304
Mechanical ventilation, 319–320, 436
Meiosis, evolution of, 34–35
Meningitis, 343
Met proteins in colonization, 286
in heavy metal stress response, 229
in invasion, 288
Methyl mismatch repair, 60–61
N-Methyl-N’-nitro-N-nitrosoguanidine, in DNA repair, 62
MFα1 gene, in mating, 79
MFα1 gene, in mating, 79
MMF complex, in mitochondrial function, 337–339
MGCD290 (histone deacetylase inhibitor), 396
MGIT1 gene, in DNA repair, 62
MIC (minimum inhibitory concentration), 346–347
Micafungin, 2358–360
advantages of, 346
Loss of heterozygosity, genetic instability and, 57–58
Lsp1 protein, in mating, 84
Lung, Candida invasion of, 436
M
Macrophages, in immune response, 156, 157
Mad2 protein, in cell cycle, 119–120
MAG1 gene, in DNA repair, 62
Magnaporthe grisea, cell wall of, 210
Major facilitator superfamily transporters, in multidrug resistance, 404–405
Major repeat sequences, 29, 94
Mak proteins, in stress response, 232–233
Mal proteins, in liver lesions, 292
Mannan antibodies to as biomarker, 445
for vaccines, 174
in cell wall, 157
Mannoproteins, in cell wall, 157, 243
Mannose receptor in immune response, 156, 159
in invasive candidiasis, 129
Mannose-binding lectin, in immune response, 156
MAPK (mitogen-activated protein kinase) pathway, in stress response, 230–232
Mating in biofilm formation, 309
Candida albicans, see Candida albicans, mating in
demonstration of, 76–77
discovery of, 77–78
host environment for, 81
pheromones in, 78–80, 84–85
same-sex, 80
switching requirements for, see Switching
Mating locus, Candida albicans, 75–76
Mating type-like locus, evolution of, 34
Mcm1 protein, in multidrug resistance, 409
MDR1 gene, in multidrug resistance, 404–407, 409–410
MDr1 protein, in biofilm formation, 304
in drug resistance, 66, 310
Mds proteins, in biofilm formation, 302, 304
Mechanical ventilation, 319–320, 436
Meiosis, evolution of, 34–35
Meningitis, 343
Met proteins in colonization, 286
in heavy metal stress response, 229
in invasion, 288
Methyl mismatch repair, 60–61
N-Methyl-N’-nitro-N-nitrosoguanidine, in DNA repair, 62
MFα1 gene, in mating, 79
MFα1 gene, in mating, 79
MMF complex, in mitochondrial function, 337–339
MGCD290 (histone deacetylase inhibitor), 396
MGIT1 gene, in DNA repair, 62
MIC (minimum inhibitory concentration), 346–347
Micafungin, 2358–360
advantages of, 346
INDEX

Micafungin (continued)
for candidemia, 430–431
chemical structure of, 349
disadvantages of, 346
dosing of, 351
drug-drug interactions of, 353
for mucosal candidiasis, 421
spectrum of activity of, 349
susceptibility to, 465, 468
Miconazole, for mucosal candidiasis, 421, 425
Microarray analysis, for Candida albicans, 489–496
Microbial populations and communities, 317–330
on abiotic surfaces, 317–318
in biofilms, 317–318; see also Biofilms
in disseminated infections, 318–319
gram-negative bacteria in, 319–320
gram-positive bacteria in, 320–321
non-Candida species in, 321
in oral environment, 319
probiotics and, 321–322
quorum sensing in, 322–324
resistance in, 317–318
Microscopic examination of animal models of, 501–503
for vulvovaginal candidiasis, 423–424
Microtubules, 106
MIBM protein, in cell wall, 201
Miltifolin, 396
Mincle
in immune response, 160
in invasive candidiasis, 129–130
Minimum inhibitory concentration (MIC), 346–347
Mitochondria, 331–341
in Candida, 331–337
carbon metabolism and, 336–337
description of, 331
as drug targets, 351–356
environmental niches and, 336–337
functions of, 331–339
histatin interactions with, 188–189
historical perspective of, 331
in Saccharomyces cerevisiae, 337–339
structure of, 337
Mitogen-activated protein kinase pathway
in oxidative stress response, 278
Molecular testing, for drug resistance, 489–496
Molecular Libraries Program Centers Network, 392
Molecular testing, for drug resistance, 379–380
Monocytes, in immune response, 156
Morphogenesis
biofilm formation and, 299–300
of Candida albicans, 331–336
in oxidative stress, 278
in phagocytosis, 262, 264
Morphogenesis checkpoint, 119–120
Morphological forms, Candida
in cell cycle checkpoints in, 119–120
in cell cycle perturbation and, 119
cyclin regulation in, 109–119
distinguishing features of, 104–109
in stationary phase, 119
types of, 101–104
Morphology index, 104
Mortality, drug resistance related to, 373–376
MRX complex, in DNA repair, 64
Msb2 protein
in cell wall, 198, 215
in stress response, 232
Msn proteins, in stress response, 229, 234
MTH genes, in mating, 75–76, 78, 81
MTT assay, in drug development, 393
Mucocutaneous candidiasis
in oral candidiasis, 139–140
invasive candidiasis; Oropharyngeal candidiasis; Gastrointestinal candidiasis;
Vulvovaginal candidiasis
Mucosal immunity, 137–154
Mucosal candidiasis
in oral candidiasis, 139–140
historical perspective of, 137–138
in anatomical sites of, 419
Mucosal immunity
in immune response, 160
in invasive candidiasis, 129–130
Mucosal candidiasis
biofilm formation and, 299–300
in oxidative stress response, 278
Molecular libraries, for drug discovery, 392
Mutant libraries, for drug discovery, 392
Mut proteins, in methyl mismatch repair, 229, 234
Mut proteins, in stress response, 405
Mut proteins, in multidrug resistance, 408–409
Neurospora crassa, stress response in, 232
Neutropenia
as risk factor, 1
vaccinations in, 173
Neutrophils
in immune response, 156
in oropharyngeal candidiasis, 139–140
NGT genes, in DNA repair, 62
Niches
Candida albicans, 14, 225–226, 336–337
Candida glabrata, 16
Candida parapsilosis, 17
Nkl1 protein, in stress response, 232
Nikkomycin Z, 396
Nitric oxide, stress response to, 228
Nitrogen acquisition
in kidney lesions, 291
in liver lesions, 292
Nitrosative stress response, 228, 264–267, 269
NLRP3 gene, polymorphisms of, 163
Nonhomologous end joining, in DNA repair, 64
Ngf1 protein
in cell cycle, 117–119
in heavy metal stress response, 229
in morphology, 103
N-terminal domain, of adhesins, 244
Nhl1 protein, in oxidative stress response, 278
Nuclear division, in cell cycle, 108–109
Nuclear migration, 106
Nucleotide excision repair, 63
Nup proteins, in biofilm formation, 302, 304
Nutrient acquisition, in kidney lesions, 290–291
Nutrient starvation, 267–268
Nystatin
liposomal formulation of, 396
for mucosal candidiasis, 421
O
Och1 protein, in biofilm formation, 302
Odynophagia, in oral candidiasis, 420
OG1 gene, in DNA repair, 62
Op4 protein
in mating, 80
in switching, 81
Opaque cells, see also Switching
in mating, 76–78, 81
in morphology of, 103–104
Opb proteins, in mating, 76
Opportunistic infections, 12
versus accidental infections, 1–2
adhesins in, 243–259
Opre protein, in mating, 84
Oral contraceptives
vulvovaginal candidiasis
areas affected in, 138
biofilms in, 146
clinical manifestations of, 420
denture stomatitis, 140, 146
Downloaded from www.asmscience.org by
IP: 54.70.40.11
Pseudomonas aeruginosa, Candida albicans interactions with, 318–320, 324
Pwp proteins, adhesive properties of, 293
Pxa proteins, in invasion, 288
Pyelonephritis, 435
Pyk proteins
 in carbon metabolism, 336
 in kidney lesions, 291
 in morphogenesis, 334
Pyrimidine dimers, reversal of, 62
Q
Quorum sensing
 for oxidative stress, 227
 in histatin action, 188–189
 in oxidative stress response, 264–265
 in switching, 322–323
Quorum sensing
 in cell cycle, 107–108
 in mating, 80
 Risk factors, for candidiasis, 1–2
disseminated, 1–2, 171–172
 esophageal, 2
 oropharyngeal, 2
 vulvovaginal, 145, 172
RNA, transfer, 46–47
RNA, transfer, 46–47
Rotenone (complex I), in respiration, 330
Rotenone (complex I), in respiration, 330
Rpd3 protein, in switching, 82
Rpd3 protein, in switching, 82
Saccharomyces cerevisiae
 adhesins in, 253–254
 Als protein studies in, 246
 bud site selection in, 106
 cell cycle of, 111–115, 119–120
 cell wall of, 157
 glycoproteins of, 200, 209, 212,
 214–215
 polysaccharides in, 197–199
 synthesis of, 198
 chitin synthase in, 197
 CUN codons of, 46
 cyclins of, 110, 117
 DNA repair in, 57–60, 62–63, 65
 farnesol effects on, 324
 histatin and, 185, 187–188
 immunology of, 131–132
 infections due to, 131–132
 mating of, 75, 77, 79–80, 82
 mutant library of, 394–395
 nutrient starvation in, 268
 pseudohyphae of, 101–102
 resistance in, 403–404, 408, 411
 role in drug discovery, 391, 393–395
 septation in, 108
 stress response of, 51, 225–235
 tRNA of, 47
 yapsins in, 213
 yeast cells of, 101–102
 Saliy hydrosorcin acid pathway, in respiration, 331–336
 Salivary histatins, see Histatins
 Salmonella enterica serovar Typhimurium,
 Candida albicans interactions with, 320
 Salt stress, response to, 227
 Same-sex mating, Candida albicans, 80
 Sap proteins
 in cell wall, 202–204, 213
 in colonization, 287
 in immune modulation, 269
 in invasion, 288
 in kidney lesions, 291
 in liver lesions, 292
 in mating, 80
 in switching, 81
 SAPK (stress-activated protein kinase)
 pathway, in stress response, 230–232
 SAPs (secreted aspartyl proteinases),
 Candida albicans, 15–16
Sas10 protein, in oxidative stress response, 278
Scaffolds, for drug discovery, 392
Sceosporium
 antifungal drugs for, 349
 azoles for, 354
 polyenes for, 347
Schizosaccharomyces pombe
 cyclins of, 110
 stress responses in, 225–227, 229–230,
 232–233
Schmosoa, in reproduction, 75
Screening
 in drug development, 392
 genetic interaction, 497–500
 Sdh12 protein, in kidney lesions, 290
 Sec proteins, in colonization, 286
 Secreted aspartyl proteinases, 30–32
 Candida albicans, 15–16
 in cell wall, 213
 Sed proteins, in cell cycle, 210
 Septation, in cell cycle, 108–109
 Septic arthritis, 435
 Septins
 in cell cycle, 108–109
 genes for, 114
 Ser residues, in adhesins, 244
 Serratia marcescens, Candida albicans inter-
 actions with, 318, 320
 Serum beta glucan test, 3
 Sexual transmission, of candidiasis, 423
 She3 protein, in cell cycle, 117
 Shol protein
 in cell wall, 198
 in stress response, 232
 Single nucleotide polymorphisms, 27–28
 Single-strand annealing, in DNA repair,
 64–65
 Sir proteins, adherence properties of, 272
 Sln7 protein, in stress response, 234
 Sok1 protein, in cell wall, 198
 Sll1 protein, in cell wall, 154
 Sln proteins, in stress response, 232
 Slt2 protein, in cell wall, 199
 Smil protein, in cell wall, 199
 Snq2 protein, in multidrug resistance, 405,
 408
 Sod proteins
 in cell wall, 204, 213
 in colonization, 286
 in histatin response, 190
 in invasion, 288
 in liver lesions, 293–294
 in oxidative stress response, 264–265,
 277
 in stress response, 334–335
 Sorbitol, stress response to, 227
 Sordarins, 396
 Spa2 protein, in cell cycle, 107–108
 Specific codon usage, in Candida albicans,
 51–53
 Spectrophotometry, in drug development, 393
 Spi proteins, in cell cycle, 210
 Spinal cord, candidiasis of, 434
 Spindles, 106
 Spitzenkörper, 107–108
U
Uec1 protein, in invasion, 273, 288
Ultraviolet light damage, DNA repair in, 62, 63
Ume6 protein
 in biofilm formation, 302
 in cell cycle, 118
 in morphology, 102–103
Upc proteins, in drug resistance, 66
URA3 gene, Candida albicans, 15
Ura proteins, in nutrient starvation, 267–268
Urinary tract, candidiasis of, 435
Utr proteins, in cell wall, 202, 204
Uvr proteins, in DNA repair, 63
V
Vaccines, 171–184
 for active immunization, 175–178
 adjuvants for, 177
 barriers to efficacy of, 172–174
 development of, 163–164
 for mucosal candidiasis, 425
 for passive immunization, 174–175
 rationale for, 171–174
Vaccular inheritance, 108
Vaginal candidiasis, see Vulvovaginal candidiasis
Vaginal-relapse theory, 423
Ventilator-related infections, 319–320, 436
Viralence factors, see also specific organisms
 drug resistance and, 375–376
 versus host defenses, 155
 in oral candidiasis, 420
 strain variation and, 96
 stress responses and, see Stress responses
Voriconazole
 advantages of, 346
 for Candida albicans, 16
 for candidemia, 431–432
 chemical structure of, 348
 clinical uses of, 358
 disadvantages of, 346
 dosing of, 351
 drug-drug interactions of, 353, 357
 monitoring of, 356
 for mucosal candidiasis, 421
 pharmacokinetics of, 355
 spectrum of activity of, 349, 354
 susceptibility to, 465–467
Vps51 protein
 of Candida albicans, 262
 in invasion, 273
Vulvar vestibulitis syndrome
gene polymorphisms in, 162–163
Vulvovaginal candidiasis
 animal models for, 143, 145
 biofilms in, 146
 complicated, 424
 drugs for, 421, 424
 epidemiology of, 420
 gene expression in, 287
 immunity to, 142–145
 incidence of, 145, 387–388
 microbiology of, 420, 422–423
 natural history of, 144
 pathogenesis of, 420, 422–423
 pathophysiology of, 155
 recurrent, 145, 162, 172
 risk factors for, 145, 172, 422–423
 species causing, 11–12
 treatment of, 424
 vaccines for, 172
W
Wap proteins
 in cell wall, 205
 in liver lesions, 293
Weak acid stress response, 228–229
Whi1 protein
 in mating, 84
 in switching, 81
White cells, see also Switching
 in mating, 76–78
White-opaque switch, Candida albicans, 15
Whole-genome duplication, in cell cycle, 110
Wildlife, strain variation found in, 95
Wor proteins, in switching, 82–83, 104
Wpre protein, in mating, 84
X
Xanthomonas campestris, Candida albicans interactions with, 320
Y
Yak1 protein, in biofilm formation, 302, 306
Yap proteins
 in multidrug resistance, 405–406
 in stress response, 233–234
Yapsins, 213
Yarrowia lipolytica
 cell wall of, 209
 cyclins of, 110
Yck proteins, in invasion, 288
Yeast cells, morphology of, 101–103, 299–300
Yeast Gene Order Browser, 38
Ygb proteins, in liver lesions, 293
YHB1 protein, in histatin response, 190
Yhb proteins
 in invasion, 288
 in liver lesions, 293
 in nitrosative stress response, 228
 in stress response, 266–267
Yku protein, in DNA repair, 64
Yps7 protein, in cell wall, 204
YTTYPL tandem repeats, in cell wall, 210
Ywp1 protein, in biofilm formation, 302, 303–304
Z
Zap proteins, in biofilm formation, 302, 307
Zinc, stress response to, 229
Zygomycetes, antifungal drugs for, 349