Genome Plasticity and Infectious Diseases
Genome Plasticity and Infectious Diseases

EDITED BY
Jörg Hacker
German National Academy of Sciences Leopoldina
Halle (Saale), Germany

Ulrich Dobrindt
University of Münster
Münster, Germany

Reinhard Kurth
President Emeritus
Robert Koch Institute
Berlin, Germany

ASM PRESS WASHINGTON, DC
CONTENTS

Contributors vii
Preface xi

I. BACTERIAL INFECTIONS / 1

1. Impact of Genome Plasticity on Adaptation of \textit{Escherichia coli} during Urinary Bladder Colonization / 3
 Ulrich Dobrindt, Jaroslaw Zdziarski, and Jörg Hacker

2. Genotypic Changes in Enterohemorrhagic \textit{Escherichia coli} during Human Infection / 16
 Alexander Mellmann, Martina Bielaszewska, and Helge Karch

3. Genomic Fluidity of the Human Gastric Pathogen \textit{Helicobacter pylori} / 27
 Niyaz Ahmed, Singamaneni Haritha Devi, Shivendra Tenguria, Mohammad Majid, Syed Asad Rahman, and Seyed E. Hasnain

4. Genome Structure and Variability in Coagulase-Negative Staphylococci / 44
 Wilma Ziebuhr

5. Genome Plasticity in \textit{Legionella pneumophila} and \textit{Legionella longbeachae}: Impact on Host Cell Exploitation / 58
 L. Gómez Valero, C. Rusniok, and C. Buchrieser

6. Genome Plasticity in \textit{Salmonella enterica} and Its Relevance to Host-Pathogen Interactions / 84
 Rosana B. Ferreira, Michelle M. Buckner, and B. Brett Finlay

7. Mechanisms of Genome Plasticity in \textit{Neisseria meningitidis}: Fighting Change with Change / 103
 Roland Schwarz, Biju Joseph, Matthias Frosch, and Christoph Schoen
CONTENTS

8. Selfish Elements and Self-Defense in the Enterococci / 125
 Kelli L. Palmer and Michael S. Gilmore

II. VIRAL INFECTIONS / 141

9. Host-Driven Plasticity of the Human Immunodeficiency Virus Genome / 143
 Stephen Norley and Reinhard Kurth

10. Genome Plasticity of Influenza Viruses / 162
 Silke Stertz and Peter Palese

11. Plasticity of the Hepatitis C Virus Genome / 178
 Joerg Timm and Michael Roggendorf

12. Genome Diversity and Host Interaction of Noroviruses / 191
 Eckart Schreier

13. Genome Diversity and Evolution of Rotaviruses / 214
 Jelle Matthijnssens and Ulrich Desselberger

14. Genome Plasticity of Papillomaviruses / 242
 Hans-Ulrich Bernard

15. Genome Plasticity of Herpesviruses: Conservative yet Flexible / 248
 Mirko Trilling, Vu Thuy Khanh Le, and Hartmut Hengel

III. PARASITIC AND FUNGAL INFECTIONS / 267

16. Genome Diversity, Population Genetics, and Evolution of Malaria Parasites / 269
 Xin-zhuan Su and Deirdre A. Joy

17. The Fundamental Contribution of Genome Hypervariability to the Success of a Eukaryotic Pathogen, *Trypanosoma brucei* / 286
 J. David Barry

18. Genome Plasticity in *Candida albicans* / 303
 Claude Pujol and David R. Soll

19. Genome Plasticity of Aspergillus Species / 326
 Thorsten Heinemann and Axel A. Brakhage

IV. HOST SUSCEPTIBILITY / 343

20. DNA Polymorphisms and Their Relevance for Infections with Human Cytomegalovirus and *Aspergillus fumigatus* / 345
 Markus Mezger, Hermann Einsele, and Jürgen Loeßlter

21. Host Genetic Variation, Innate Immunity, and Susceptibility to Urinary Tract Infection / 358
 Bryndís Ragnarsdóttir and Catharina Svanborg

Index / 379
CONTRIBUTORS

Niyaz Ahmed
Pathogen Biology Laboratory, School of Life Sciences, University of Hyderabad, and Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India

J. David Barry
Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom

Hans-Ulrich Bernard
Department of Molecular Biology and Biochemistry and Program of Public Health, University of California Irvine, Irvine, CA 92697

Martina Bielaszewska
Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany

Axel Brakhage
Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, and Department of Microbiology and Molecular Biology, Friedrich Schiller University Jena, Beutenbergstraße 11a, D-07745 Jena, Germany

C. Buchrieser
Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires and CNRS URA 2171, 28, rue du Dr. Roux, 75724 Paris Cedex 15, France

Michelle M. Buckner
Michael Smith Laboratories and Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada

Ulrich Desselberger
Department of Medicine, University of Cambridge and Addenbrooke’s Hospital, Cambridge, United Kingdom

Singamaneni Haritha Devi
Pathogen Biology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad, India
CONTRIBUTORS

Ulrich Dobrindt
Institute for Molecular Biology of Infectious Diseases, Julius Maximilians University Würzburg, Josef-Schneider-Str. 2/Bau D15, D-97080 Würzburg, and Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany

Hermann Einsele
Medizinische Klinik and Poliklinik II, Josef-Schneider-Str. 2, D-97070 Würzburg, Germany

Rosana B. Ferreira
Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada

B. Brett Finlay
Michael Smith Laboratories and Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada

Matthias Frosch
Institute for Hygiene and Microbiology, University of Würzburg, D-97080 Würzburg, Germany

Michael S. Gilmore
Schepens Eye Research Institute, 20 Staniford St., Boston, MA 02144

L. Gomez Valero
Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires and CNRS URA 2171, 28, rue du Dr. Roux, 75724 Paris Cedex 15, France

Jörg Hacker
Institute for Molecular Biology of Infectious Diseases, Julius Maximilians University Würzburg, Josef-Schneider-Str. 2/Bau D15, D-97080 Würzburg, and German Academy of Sciences Leopoldina, Emil-Abderhalden-Str. 37, D-06108 Halle/Saale, Germany

Seyed E. Hasnain
Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, and School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India

Thorsten Heinekamp
Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, and Department of Microbiology and Molecular Biology, Friedrich Schiller University Jena, Beutenbergstraße 11a, D-07745 Jena, Germany

Hartmut Hengel
Institute for Virology, Heinrich Heine University, Düsseldorf, Germany

Biju Joseph
Institute for Hygiene and Microbiology, University of Würzburg, D-97080 Würzburg, Germany

Deirdre A. Joy
Parasitology and International Programs Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892

Helge Karch
Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany

Reinhard Kurth
Chairman of the Foundation Council, Ernst Schering Foundation, and President Emeritus, Robert Koch Institute, Berlin, Germany

Vu Thuy Khanh Le
Institute for Virology, Heinrich Heine University, Düsseldorf, Germany
Juergen Loeffler
Medizinische Klinik and Poliklinik II, Josef-Schneider-Str. 2, D-97070 Würzburg, Germany

Mohammad Majid
Pathogen Biology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad, India

Jelle Matthijssens
Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium

Alexander Mellmann
Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany

Markus Mezger
Kindergarten, Hoppe-Seyler-Str. 1, D-72026 Tübingen, Germany

Stephen Norley
Robert Koch Institute, Berlin, Germany

Peter Palese
Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave Levy Pl., New York, NY 10029-6574

Kelli L. Palmer
Schepens Eye Research Institute, 20 Staniford St., Boston, MA 02144

Claude Pujol
Department of Biology, The University of Iowa, Iowa City, IA 52242

Bryndís Ragnarsdóttir
Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden

Syed Asad Rahman
EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom

Michael Roggendorf
Institute of Virology, University of Duisburg-Essen, Virchowstrasse 179, D-45147 Essen, Germany

C. Rusniok
Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires and CNRS URA 2171, 28, rue du Dr. Roux, 75724 Paris Cedex 15, France

Christoph Schoen
Institute for Hygiene and Microbiology, University of Würzburg, D-97080 Würzburg, Germany

Eckart Schreier
Department of Infectious Diseases, Robert Koch Institute, Nordufer 20, D-13353 Berlin, Germany

Roland Schwarz
Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, United Kingdom

David R. Soll
Department of Biology, The University of Iowa, Iowa City, IA 52242

Silke Stertz
Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave Levy Pl., New York, NY 10029-6574
CONTRIBUTORS

Xin-zhuan Su
Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892

Catharina Svanborg
Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden, and Singapore Immunology Network (SIgN), Biomedical Sciences Institutes, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Immunos, Biopolis, Singapore 138648

Shivendra Tenguria
Pathogen Biology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad, India

Joerg Timm
Institute of Virology, University of Duisburg-Essen, Virchowstrasse 179, D-45147 Essen, Germany

Mirko Trilling
Institute for Virology, Heinrich Heine University, Düsseldorf, Germany

Jarosław Zdziarski
Institute for Molecular Biology of Infectious Diseases, Julius-Maximilians-University Würzburg, Josef-Schneider-Str. 2/Bau D15, D-97080 Würzburg, Germany

Wilma Ziebuhr
Institut für Molekulare Infektionsbiologie, Universität Würzburg, Josef-Schneider Str. 2, D-97080 Würzburg, Germany
Genetic information determines the characteristics of all living organisms. On the basis of the key principles of Darwinian evolution, differences in genetic composition result in biodiversity. Genetic variation in microorganisms exists at the level of individual genes as well as at the level of genome size and organization. The acquisition or loss of genetic information via recombination or point mutations has been shown to contribute to genetic variation. These processes represent well-known mechanisms for diversification of microorganisms, including microbial pathogens, and the shaping of their genomes. However, genetic variation may affect not only the general genome content or the intrinsic properties of gene products, but also gene expression patterns. Therefore, genome plasticity can contribute to microbial adaptation in response to changing environmental conditions.

Several mechanisms of infectious disease and microbial adaptation have come to be understood through a variety of physiological, biochemical, and genomic studies, and this research has led to the development of vaccines, anti-infectives, and a range of biological control methods. Modern molecular genetic techniques have facilitated the study of genetic variation. The amount of genomic information about microbes as well as their hosts is constantly increasing. Access to complete genome sequences of multiple isolates of a genus or species and comparative genomics enable us to analyze the impact of genetic variation on (macro)evolution and diversification of pathogenic microorganisms. Furthermore, genetic variation as a means of microbial adaptation can be assessed. Valid genetic markers associated with important microbial (virulence) traits or with host susceptibility to different infections can also be identified and used for improved diagnostics and risk assessment. The analysis of microevolutionary processes due to genome plasticity will reveal additional modes of pathogen-host interactions. Although genomic differences between pathogenic and nonpathogenic variants have been described, the processes responsible for the constantly
ongoing genome plasticity involved in adaptation or pathogenicity at the molecular level are still insufficiently understood, especially those that occur in vivo.

The impact of genome plasticity on the adaptation of microbial pathogens has been studied with several model organisms. The ability of many pathogens to acquire genetic information from related organisms and, due to close interactions, sometimes even from their hosts has meanwhile been well documented, as has the occurrence of mutations and genomic recombination events. Recombination events play an important role in diversification and adaptation of bacteria, viruses, and eukaryotic pathogens, as they may lead to genomic reassortments and gene rearrangements. Furthermore, genome instability of pathogenic microbes might influence clinical outcomes and has an impact on diagnosis, epidemiology, and evolution. It has become clear that the host response promotes genome plasticity in microbial pathogens and thus represents a driving force for the above-mentioned mechanisms by which pathogens can evade the immune system.

Our knowledge of determinants of host susceptibility to infections and genetic variation that influences host defenses is still limited. Only in recent years, defined clinical risk factors which increase the possibility of infection, as well as single-nucleotide polymorphisms (SNPs) in various genes relevant to immunity, have been shown to genetically determine susceptibility to microbial infection.

In conclusion, the genome plasticity of microbial pathogens represents a significant hurdle for the development of both effective vaccines and novel therapeutic interventions. In addition, there is a great clinical need to identify genetic variants on the host side that improve resistance or increase the susceptibility to infectious pathogens. This book provides an overview of and introduction to the field of genome plasticity of microbial pathogens and genetic variation of the host and its relevance for infection.

JÖRG HACKER
ULRICH DOBRINDT
REINHARD KURTH
INDEX

ABC transporters, *Legionella*, 64
Accelerated resistance to multiple drugs, malaria parasites, 277
N-Acetylglactosamine, in uropathogenic *Escherichia coli* metabolism, 8
N-Acetylglucosamine, in uropathogenic *Escherichia coli* metabolism, 8
Acyclovir, resistance to, 259
Adhesins
Neisseria meningitidis, 114
uropathogenic *Escherichia coli*, 4
Aflatoxin, 331
African sleeping sickness, see *Trypanosoma brucei*
Aft1 protein, *Aspergillus*, 334–335
Afut proteins, *Aspergillus*, 334
AIDS, see Human immunodeficiency virus
Allergic bronchopulmonary aspergillosis, 346
ALS genes, *Candida albicans*, 308, 316–317
Amantadine, resistance to, 169
Amoebas, *Legionella* interactions with, 76–77
Anaerobe sulfide reductase complex, *Salmonella enterica*, 93
AnCF protein, *Aspergillus*, 331–332
Aneuploidy, *Candida albicans*, 312–313
Anguilid herpesvirus, 248
Animal(s)
EHEC in, 16–17
herpesviruses in, 248–249, 252–254, 256–260
HPV in, 243–246
influenza virus in, 164, 166
malaria parasites in, 269, 271–272
noroviruses in, 195–197
Trypanosoma brucei in, 286–302
Ankryins and ankyrin repeats, *Legionella*, 66, 67, 72
Antibodies
hepatitis C virus, 183–184
HIV escape from, 150–152
Trypanosoma brucei, 287
Antigenic drift and shift
HIV, 147–148
influenza virus, 165
Antigenic variation
Trypanosoma brucei, 288–295
uropathogenic *Escherichia coli*, 5, 7
Antimicrobial peptides, resistance to in coagulase-negative staphylococci, 49–50
Antiretroviral drugs
for hepatitis C, 184–186
resistance to, 155–156
Apical membrane antigen, malaria parasites, 276–277
Apyrases, *Legionella*, 66
Aspergilus, 326–341
beneficial species of, 326
genomes of, 328–331
intragenic tandem repeats in, 335–336
life cycle of, 326–327
pathogenic, 326–328
secondary metabolites of, 331–333
species of, 326
transposable elements of, 334–335
Aspergillus clavatus
genomes of, 328–330
secondary metabolites of, 333
transposable elements of, 335
Aspergillus flavus
genomes of, 328–329
intragenic tandem repeats in, 336
secondary metabolites of, 331–332
transposable elements of, 335

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Tue, 13 Aug 2019 20:49:33
Aspergillus fumigatus
- clinical relevance of, 345–346
- distribution of, 345–346
- genomes of, 328–331
- intragenic tandem repeats in, 336
- life cycle of, 326–328
- pathobiology of, 345–346
- secondary metabolites of, 331–333
- single-nucleotide polymorphisms of, 345–350
- transposable elements of, 334–335

Aspergillus Genome Base, 328

Aspergillus nidulans
- genomes of, 328–329
- intragenic tandem repeats in, 335–336
- secondary metabolites of, 331–332
- transposable elements of, 334–335

Aspergillus niger, 328, 332

Aspergillus oryzae
- genomes of, 328–329
- intragenic tandem repeats in, 336
- transposable elements of, 334–335

Aspergillus parasiticus, 331

Aspergillus terreus
- genomes of, 328
- intragenic tandem repeats in, 335–336
- secondary metabolites of, 332

Avian influenza viruses, 164, 166, 169
Avian rotaviruses, 230

BACmids, herpesvirus, 257
Bacteriocins, Salmonella enterica, 90
Bacteriophages, Salmonella enterica, 90–91
Bacteriuria, asymptomatic
- Escherichia coli in, 3–15
- in innate immunity defects, 359, 364–365
BarA protein, uropathogenic Escherichia coli, 7–9
Base excision repair, Neisseria meningitidis, 107, 109
bcfC gene, Salmonella enterica, 92
Biofilm formation
- coagulase-negative staphylococci, 49–52
- uropathogenic Escherichia coli, 4–5
Bistable flagellar expression, uropathogenic Escherichia coli, 7
Bladder, Escherichia coli in, 3–15
Bloodstream expression sites, Trypanosoma brucei, 291–298
Borreli a hermsii, antigenic variation in, 295
Bottlenecking
- hepatitis C virus, 181–182
- Neisseria meningitidis, 104
Bovine herpesvirus, 248
Bruton's tyrosine kinase, 361
cag genes, Helicobacter pylori, 31, 33–35, 38–40
Caliciviridae, see also Norovirus(es)
- taxonomy of, 191–192
Cancer, HPV in, 242, 246–247
Candida albicans, 303–325
- aneuploidy in, 312–313
- chromosome polymorphisms in, 309–315
- clades of, 307
- as commensal, 303
- description of, 303–304
- developmental programs of, 303–304
- drug resistance in, 313–315
- heterozygosity in, 315–318
- laboratory strains of, 318
- mating in, 305–309
- ploidy level of, 304
- population genetics of, 306–308
- recombination in, 305–309
- retrotransposons in, 304–305
- WO-1 strain, 318
Candida dubliniensis, 310–312
Candida guilliermondii, 304
Candida lusitaniae, 306
Cas proteins, enterococci, 133–135
Caspase, Legionella, 74–75
Cattle, EHEC colonization in, 16
CCAT-binding complex, Aspergillus, 331–332
CCRs
- in Aspergillus fumigatus infections, 347
- in cytomegalovirus infections, 351, 353
- in HIV infection, 144
- in urinary tract infections, 366
CD8 T lymphocytes, hepatitis C virus and, 184
CD14, in Toll-like receptor action, 364
CD81, hepatitis C virus, 180
CDR genes, Candida albicans, 313
Cellular immunity, hepatitis C virus and, 184
Central Aspergillus Data Repository, 328
Ceramide, in glycosphingolipid action, 363
Che proteins, Legionella, 75
Chemokines and chemokine receptors
- in Aspergillus fumigatus infections, 347, 348
- in cytomegalovirus infections, 351, 353
- in HIV infection, 144, 149–150
- in urinary tract infections, 366–370
Chloroquine resistance, 275–277
Chromosomal polymorphisms, Candida albicans, 309–315
Chronic cavitary pulmonary aspergillosis, 346
Chronic necrotizing pulmonary aspergillosis, 346
Ciluprevir, for hepatitis C, 186
Claudin-1, hepatitis C virus, 180
Clk1 protein, 3–15
Clonal complexes, Neisseria meningitidis, 104–105
Clonal populations
- Candida albicans, 306–308
- malaria parasites, 275
Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci
- coagulase-negative staphylococci, 49
- enterococci, 133–135
Coagulase-negative staphylococci, 44–57
in biofilms, 49–52
fitness in, 45–47
gene transfer among, 48–49
genetic instability of, 50–51
genomes of
mobile genetic elements in, 47–48
oriC environ of, 47
unbalanced structure of, 47
heterogeneous gene expression in, 51–52
nosocomial isolates of, 44
phenotypic instability of, 50–51
resistance in, 44, 50–51
virulence factors of, 45–47

Coinfection, herpesviruses, 257–258

Colonization, uropathogenic Escherichia coli, 3–15
com genes, Helicobacter pylori, 33, 35

Common variable immunodeficiency, hepatitis C in, 183

Competence islands, Helicobacter pylori, 35

Concatemerization, herpesviruses, 256

Conidia, Aspergillus fumigatus, 327–328

Conjugation, in gene transfer, 85

Conservation, herpesviruses, 258–259

Copia transposable elements, Aspergillus, 334–335

Correia elements, Neisseria meningitidis, 114

CrgA protein, Neisseria meningitidis, 114

CRISPR (clustered, regularly interspaced, short palindromic repeat) loci
in coagulase-negative staphylococci, 49
enterococci, 133–135

CsrA/B system, uropathogenic Escherichia coli, 7–8

CXCs and CXCRs
in HIV infection, 144, 149–150
in urinary tract infections, 366–370

CXCLs, in Aspergillus fumigatus infections, 347, 348

Cytoadherence, malaria parasites, 272

Cytokines and cytokine receptors, polymorphisms of, in Aspergillus fumigatus infections, 347, 348

Cytokinin oxidase, Legionella, 66

Cytolethal distending toxin, EHEC, 17, 18

Cytolsins, enterococci, 126, 129–130

Cytomegalovirus(es)
clinical relevance of, 350–351
genomes of, 251–256
pathobiology of, 350–351
single-nucleotide polymorphisms of, 350–353
virology of, 248–250

Cytotoxic T lymphocytes, in HIV infection, 152–156

Damage-associated molecular patterns, 362

DC-SIGN, in cytomegalovirus infections, 353

Deltapapillomavirus, 245

Dihydroxynaphthalene melanin, Aspergillus, 332–333

Dimethylallyl tryptophan synthase, Aspergillus, 331

DinB protein, Neisseria meningitidis, 110

Drug resistance
Candida albicans, 313–315
coagulase-negative staphylococci, 44, 50–51
enterococci, 126–131
herpesviruses, 259
HIV, 155–156
influenza virus, 169
malaria parasites, 275–277
Salmonella enterica, 87
Staphylococcus epidermidis, 45
dupA gene, Helicobacter pylori, 39–40
eae genes, EHEC, 18–19, 21–22
EHEC, see Enterohemorrhagic Escherichia coli

Enterococci, 125–140
genome plasticity in
CRISPR and, 133–135
defense mechanisms and, 131–133
evidence of, 126–128
in nosocomial infections, 125–126
species of, 125

Enterococcus faecalis, see Enterococci

Enterococcus faecium, see Enterococci

Enterococcus gallinarum, 125

Enterococcus raffinosus, 125

Enterohemorrhagic Escherichia coli, 16–26
EHEC-LST, 19–22
epidemiology of, 16–17
evolution of, 22
genetic changes in
identification of, 18–20
stx loss, 20–22

genomes of, 17–18
K-12, genomes of, 17–18
O26, genomes of, 18
O26:H11, 22
O26:H11/H−, 16, 18, 20
O91:H21, 16
O103, genomes of, 18
O103:H2, genetic changes in, 18
O103:H2/H−, 16
O111, genomes of, 18
O111:H8/H−, genetic changes in, 18
Enterohemorrhagic *Escherichia coli* (continued)

<table>
<thead>
<tr>
<th>Serotype/Genotype</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>O111:H8/H10/H−</td>
<td>16</td>
</tr>
<tr>
<td>O113:H21</td>
<td>16</td>
</tr>
<tr>
<td>O121:H19</td>
<td>16</td>
</tr>
<tr>
<td>O145:H28/H−</td>
<td>genetic changes in, 18</td>
</tr>
<tr>
<td>O145:H28/H25/H−</td>
<td>16</td>
</tr>
<tr>
<td>O157:H−</td>
<td>16</td>
</tr>
</tbody>
</table>

Evolution of
- O157:H7
 - genomes of, 17–18, 20
 - overview of, 16–17
- O157:H7/H−
 - genetic changes in, 18
- O157:NM
 - genetic changes in, 19–20, 22
 - overview of, 16–17
- O111:H8
 - pathogenicity of, 16–17

Genes
- *env* gene, HIV, 144, 151–152
- F-box motifs, *Legionella*, 63–78
- FhlB protein, *Salmonella enterica*, 91
- Flavohemoglobin, in nitric oxide detoxification, 10
- Flucuronate, in *uropathogenic Escherichia coli* metabolism, 8
- *GSTD6* gene, *Candida albicans*, 310
- Glucuronate, in *uropathogenic Escherichia coli* metabolism, 8
- GTPases, *Legionella*, 67
- Gypsy transposable elements, *Aspergillus*, 334–335
- Gyra protein, *uropathogenic Escherichia coli*, 7

Pathogenicity
- *Helicobacter acinonychis*, genomes of, 29–31
- *Helicobacter ceteronii*, 36
- *Helicobacter hepaticus*, 29–31
- GTPases, *Legionella*, 67
- Gypsy transposable elements, *Aspergillus*, 334–335
- Gyra protein, *uropathogenic Escherichia coli*, 7

Expression site body sites
- Trypanosoma brucei, 293
- Epstein-Barr virus
 - genome of, 253–254
 - virology of, 250
- Envelope proteins, hepatitis C virus, 179–180
- Epidemic populations, malaria parasites, 275
- *FHA* gene, *Neisseria meningitidis*, 114
- *GFP* gene family, *Candida albicans*, 310
- Mesosome, *uropathogenic Escherichia coli*, 6–7
- Flagella
 - *Legionella*, 74–75
 - *uropathogenic Escherichia coli*, 4, 7
- Flavohemoglobin, in nitric oxide detoxification, 10
- Fluconazole resistance, 313–315

Phage
- *Foscarnet*, resistance to, 259
- Frp proteins, *Neisseria meningitidis*, 114
- Gut cells, *Salmonella enterica*, 91
- GTPases, *Legionella*, 67
- Gypsy transposable elements, *Aspergillus*, 334–335
- Gyra protein, *uropathogenic Escherichia coli*, 7

Pathogenicity
- *Helicobacter acinonychis*, genomes of, 29–31
- *Helicobacter ceteronii*, 36
- *Helicobacter hepaticus*, 29–31
- GTPases, *Legionella*, 67
- Gypsy transposable elements, *Aspergillus*, 334–335
- Gyra protein, *uropathogenic Escherichia coli*, 7

Expression site body sites
- Trypanosoma brucei, 293
- Epstein-Barr virus
 - genome of, 253–254
 - virology of, 250
- Envelope proteins, hepatitis C virus, 179–180
- Epidemic populations, malaria parasites, 275
- *FHA* gene, *Neisseria meningitidis*, 114
- *GFP* gene family, *Candida albicans*, 310
- Mesosome, *uropathogenic Escherichia coli*, 6–7
- Flagella
 - *Legionella*, 74–75
 - *uropathogenic Escherichia coli*, 4, 7
- Flavohemoglobin, in nitric oxide detoxification, 10
- Fluconazole resistance, 313–315

Phage
- *Foscarnet*, resistance to, 259
- Frp proteins, *Neisseria meningitidis*, 114
- Gut cells, *Salmonella enterica*, 91
- GTPases, *Legionella*, 67
- Gypsy transposable elements, *Aspergillus*, 334–335
- Gyra protein, *uropathogenic Escherichia coli*, 7

Pathogenicity
- *Helicobacter acinonychis*, genomes of, 29–31
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin receptor, Neisseria meningitidis,</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Hemolysin, of EHEC</td>
<td>17, 18</td>
<td></td>
</tr>
<tr>
<td>Hemolytic-uremic syndrome</td>
<td>Clinical features of</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Diagnosis of</td>
<td>20–21</td>
</tr>
<tr>
<td></td>
<td>EHEC identification in</td>
<td>18–20</td>
</tr>
<tr>
<td></td>
<td>Frequency of</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Outbreaks of</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Outcome of</td>
<td>22</td>
</tr>
<tr>
<td>Hepatitis C virus</td>
<td>Epidemiology of</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Genotype organization of</td>
<td>179–180</td>
</tr>
<tr>
<td></td>
<td>Negative selection pressure in</td>
<td>186–188</td>
</tr>
<tr>
<td></td>
<td>Phylogeny of</td>
<td>178–179</td>
</tr>
<tr>
<td></td>
<td>Positive selection pressure in</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>by antiviral drugs</td>
<td>184–186</td>
</tr>
<tr>
<td></td>
<td>by cellular immune response</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>by humoral immune response</td>
<td>183–184</td>
</tr>
<tr>
<td></td>
<td>Quasispecies nature of</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Reinfecion with</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Replication of</td>
<td>179–181</td>
</tr>
<tr>
<td></td>
<td>Sequence differences in</td>
<td>182–186</td>
</tr>
<tr>
<td></td>
<td>Spontaneous resolution of viremia in</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Subtypes of</td>
<td>178–179</td>
</tr>
<tr>
<td></td>
<td>Transmission of</td>
<td>181–182</td>
</tr>
<tr>
<td>Herpes simplex virus</td>
<td>Genotype of</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Type 1</td>
<td>Genotype of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Virolgy of</td>
</tr>
<tr>
<td></td>
<td>Type 2</td>
<td>Genotype of</td>
</tr>
<tr>
<td>Herpesvirus(es)</td>
<td>248–265</td>
<td>In animals, 248–249, 252–254, 256–260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coinfection with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conservation in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DNArepair in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Episomes of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Genomes of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infections due to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isomerization in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MicroRNAs of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molecular piracy in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mutations of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nonclonal virus preparations of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pathogenicity of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Types of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Virolgy of</td>
</tr>
<tr>
<td>Heterozygosity, loss of, Candida albicans,</td>
<td>313–318</td>
<td></td>
</tr>
<tr>
<td>Highly active antiretroviral therapy (HAART)</td>
<td></td>
<td>155–156</td>
</tr>
<tr>
<td>Histo-blood group antigens, norovirus</td>
<td></td>
<td>200, 203–206</td>
</tr>
<tr>
<td>HIV, see Human immunodeficiency virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV Sequence Compendium, 147–148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HlfA protein, Legionella, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HlyD-like proteins, Legionella, 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HmbR protein, Neisseria meningitidis, 117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homologous recombination, in Salmonella enterica, 86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal gene transfer</td>
<td>Coagulase-negative staphylococci, 48–49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Legionella, 75–77</td>
<td></td>
</tr>
<tr>
<td>HPV, see Human papillomaviruses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human herpesvirus 6, genome of</td>
<td></td>
<td>254</td>
</tr>
<tr>
<td>Human herpesviruses</td>
<td>Coinfection with</td>
<td>257–258</td>
</tr>
<tr>
<td></td>
<td>Conserving in</td>
<td>258–260</td>
</tr>
<tr>
<td></td>
<td>Genomes of</td>
<td>251–256</td>
</tr>
<tr>
<td></td>
<td>Mutations of</td>
<td>259, 261</td>
</tr>
<tr>
<td></td>
<td>Nonclonal virus preparations of</td>
<td>256–257</td>
</tr>
<tr>
<td></td>
<td>Virolgy of</td>
<td>248–250</td>
</tr>
<tr>
<td>Human immunodeficiency virus, 143–161</td>
<td>Animal models of</td>
<td>149–150</td>
</tr>
<tr>
<td></td>
<td>Compartmentalization of</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Cytotoxic T-lymphocyte mechanisms in</td>
<td>152–156</td>
</tr>
<tr>
<td></td>
<td>Drug resistance in</td>
<td>155–156</td>
</tr>
<tr>
<td></td>
<td>Epidemiology of</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Evolution of</td>
<td>149–153</td>
</tr>
<tr>
<td></td>
<td>Global</td>
<td>147–149</td>
</tr>
<tr>
<td></td>
<td>In human population</td>
<td>153–155</td>
</tr>
<tr>
<td></td>
<td>In single individual</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Genome of</td>
<td>144–146</td>
</tr>
<tr>
<td></td>
<td>Groups of</td>
<td>148–149</td>
</tr>
<tr>
<td></td>
<td>Infection due to</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Cytomegalovirus infections with</td>
<td>351–352</td>
</tr>
<tr>
<td></td>
<td>In innate immunity defects</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Progression of</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>With two strains</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Lifecycle of</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Natural resistance to</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Neutralizing antibodies against</td>
<td>150–152</td>
</tr>
<tr>
<td></td>
<td>Origin of</td>
<td>146–147</td>
</tr>
<tr>
<td></td>
<td>Quasispecies of</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Subtypes of</td>
<td>146, 148–149</td>
</tr>
<tr>
<td></td>
<td>Type 1 vs. type 2</td>
<td>146</td>
</tr>
<tr>
<td>Human leukocyte antigens</td>
<td>In cytomegalovirus infections</td>
<td>351–353</td>
</tr>
<tr>
<td></td>
<td>In hepatitis C</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>In HIV infection</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>In influenza</td>
<td>172–173</td>
</tr>
<tr>
<td>Human papillomaviruses, 242–247</td>
<td>Ancient diversity of</td>
<td>244–245</td>
</tr>
<tr>
<td></td>
<td>Evolution of</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Genomes of</td>
<td>242, 244–246</td>
</tr>
<tr>
<td></td>
<td>Medical considerations with</td>
<td>246–247</td>
</tr>
<tr>
<td></td>
<td>Pathogenicity of</td>
<td>242–244</td>
</tr>
<tr>
<td></td>
<td>Taxonomy of</td>
<td>242–245</td>
</tr>
<tr>
<td></td>
<td>Vaccines for</td>
<td>246</td>
</tr>
<tr>
<td>Humoral immunity, hepatitis C virus and</td>
<td>183–184</td>
<td></td>
</tr>
<tr>
<td>Hydrogen sulfide production, Salmonella enterica,</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Hyperfilamentation, Candida albicans,</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>Hypermutation, Neisseria meningitidis,</td>
<td>110–111</td>
<td></td>
</tr>
<tr>
<td>Hypervariability, Trypanosoma brucei,</td>
<td>288–290</td>
<td></td>
</tr>
<tr>
<td>Hypervariable regions, hepatitis C virus,</td>
<td>181, 183–184</td>
<td></td>
</tr>
<tr>
<td>Hypofilamentation, Candida albicans,</td>
<td>310</td>
<td></td>
</tr>
</tbody>
</table>
ica genes, coagulase-negative staphylococci, 45, 51
Icm proteins, Legionella, 64–67
Ilo proteins, Legionella, 68–73, 75
Immune response, to influenza virus, 170–173
Immunodeficiency
Aspergillus fumigatus infections in, 345–346
cytomegalovirus infections in, 350–352
urinary tract infections in, 358–360
chemokine receptor polymorphisms and, 366–370
Toll-like receptors and, 360–366
Ims protein, Salmonella enterica, 89
Indels, malaria parasites, 272
Influenza virus(es), 162–177
A, 162–164, 168–169
animal models for, 173
in animals, 164
in Asian flu pandemic of 1957, 164
avian, 164, 166, 169
B, 162, 164, 169
C, 164
drug resistance in, 169
glycoproteins of, 165–167
hemagglutinin of, 162–167
H1N1, 164, 166, 167
H3N2, 169
H5N1
lethal nature of, 164, 166, 167
NS1 protein of, 168
PB1 protein of, 168
H7N7, 166–167
host factors affecting, 170–173
immune response to, 173–174
infection due to
epidemiology of, 164
individual immunity status and, 170–172
symptoms of, 164
neuraminidase of, 162–167, 169
nomenclature of, 162
NS1 protein of, 168–169
in pandemic of 1918 (Spanish flu), 164, 169–171
in pandemic of 1968, 165
in pandemic of 2009, 164, 166, 167, 169
PB1 and PB2 proteins of, 163, 165, 167–168
polymerase complex of, 167
polymorphisms of, 173–174
replication of, 170
segments of, compatibility of, 169–170
structure of, 162–164
subtypes of, 162
taxonomy of, 162
transmission of, 173
virulence factors of, 165, 170
Innate immunity defects, urinary tract infection susceptibility in, 358–377
chemokine receptor polymorphisms and, 366–370
Toll-like receptors and, 360–366
Insertion, herpesviruses, 254
Integrases, Salmonella enterica, 90
Integration host factor, Neisseria meningitidis, 111
Interferon(s)
in Aspergillus fumigatus infections, 348
for hepatitis C, 184–185
influenza virus inhibition of, 168
Interleukin(s)
in Aspergillus fumigatus infections, 347, 348
in cytomegalovirus infections, 351–353
herpesvirus interactions with, 254–255
in uropathogenic Escherichia coli colonization, 10
Internal repeat long region, herpesviruses, 252
Internal ribosomal entry site, hepatitis C virus, 179–181
Intragenic tandem repeats, Aspergillus, 335–336
Invasins, uropathogenic Escherichia coli, 4
Inversion, herpesviruses, 256
IS elements
coagulase-negative staphylococci, 48
enterococci, 130–131
Neisseria meningitidis, 114–115
Islands of horizontally transferred DNA, Neisseria meningitidis, 115–116
Isochromosomes, Candida albicans, 314
Isomerization, in herpesviruses, 255–256
jhp genes, Helicobacter pylori, 37–39
Kaposi’s sarcoma-associated herpesvirus (HHV-8)
genome of, 254–255
virology of, 250
KatP protein, of EHEC, 18
Ketogluconate, in uropathogenic Escherichia coli metabolism, 8
LaeA protein, Aspergillus, 331
Late genes, herpesviruses, 250
Latency, in herpesviruses, 248–251
Lateral gene transfer, Salmonella enterica, 85–86
Lbp proteins, Neisseria meningitidis, 113
Lectin genes, in Aspergillus fumigatus infections, 348
Legionella, 58–83
distribution of, 58–60
epidemiology of, 59
eukaryotic proteins and effectors of, 63–78
genomes of, 60–63
horizontal gene transfer in, 75–77
in human infections, 58–59, 74
life cycles of, 59
secretion systems of, 63–66
Sgl strain, 74
strains of, 60–71
surface structures of, 74–75
susceptibility to, 364

Legionella longbeachae, 58–83
98072 strain, 62, 68–73, 75
ATCC 39462 strain, 62–64, 68–73, 75
C-4E7 strain, 62, 68–73, 75
D-4986 strain, 62–64, 75
NSW 150 strain, 62–65, 68–74

Legionella pneumophila, 58–83
Corby strain, 60–71
Lens strain, 60–71
Paris strain, 60–71
Philadelphia-1 strain, 60–71

LepB protein, *Legionella*, 67
Leucine-rich repeat ectodomain, of Toll-like receptors, 360
Lid proteins, *Legionella*, 67
LigB protein, *Legionella*, 65–66
Lipopolysaccharide, *Legionella*, 74
Llo proteins, *Legionella*, 67, 74, 76
“Localized sex,” *Neisseria meningitidis*, 104–105
Loss of heterozygosity, *Candida albicans*, 313–318
Lpc proteins, *Legionella*, 68–71
Lpg proteins, *Legionella*, 68–71
Lpn proteins, *Legionella*, 67
Lpx proteins, *Legionella*, 74
Lsp proteins, *Legionella*, 67
Lss proteins, *Legionella*, 64
LubX protein, *Legionella*, 74
Lvh proteins, *Legionella*, 65
Ly49H, herpesvirus, 259

Macrophages, *Legionella* in, 58–60, 63–64
Maf proteins, *Neisseria meningitidis*, 114
Major histocompatibility complex
in cytomegalovirus infections, 352
in HIV infection, 152–155
Major repeat sequences, *Candida albicans*, 310–312
“Malaria Eve” hypothesis, 274–275
Malaria parasites, 269–285

age of, 274–275
in animals, 269, 271–272
drug resistance in, 275–277
epidemiology of, 269
genomes of, 270–278
clonality of, 274–275
diversity of, 273–278
generic mapping of, 275–276
genotyping of, 274
Plasmodium falciparum, 271–278
structures of, 270–271
vaccine development and, 276–277
in innate immunity defects, 359
life cycle of, 269–270
population structure of, 277–278
recombination in, 273–274
replication of, 270
species of, 269
Mannose-binding lectin, in *Aspergillus fumigatus* infections, 347–349
Marek’s disease virus, 254
Mariner transposable elements, *Aspergillus*, 334–335
MarRA protein, uropathogenic *Escherichia coli*, 7
MarT protein, *Salmonella enterica*, 89
Mating
Aspergillus, 326–327
Candida albicans, 305–309
Matrix proteins M1 and M2, influenza virus, 162–164
MC1 gene, in cytomegalovirus infections, 351, 353
Meningococci, see *Neisseria meningitidis*
Merozoites, malaria parasites, 269–270
age of, 274–275
in animals, 269, 271–272
drug resistance in, 275–277
epidemiology of, 269
genomes of, 270–278
clonality of, 274–275
diversity of, 273–278
generic mapping of, 275–276
genotyping of, 274
structures of, 270–271
vaccine development and, 276–277
in innate immunity defects, 359
life cycle of, 269–270
Multidrug resistance
enterococci, 126–128
Salmonella enterica, 87
Multilocus sequence typing, *Candida albicans*, 307
Multiple long terminal repeat transposons, *Candida albicans*, 304–305
Murine gammaherpesvirus 68, 252, 254
Murine norovirus, 192, 203
Mut proteins, *Neisseria meningitidis*, 107, 109–110

Mutations
- hepatitis C virus, 181
- herpesviruses, 259, 261
- mouse cytomegalovirus, 259
- *Neisseria meningitidis*, 107, 109–111
- rotaviruses, 221–222
- varicella-zoster virus, 259

Myeloid differentiation factor 88, 359–366

NadA protein, *Neisseria meningitidis*, 111

Natural killer cells, herpesvirus interactions with, 259

 nef gene, HIV, 144, 152

Neisseria meningitidis, 103–124
- chromosome structure diversity in, 111–114
- epidemiology of, 103
- genome plasticity of, 107–116
 - DNA repair in, 107, 109
 - hypermutation in, 109–111
 - mutation in, 107, 109–111
 - at population level, 104–105
 - in pregenomic era, 105
 - recombination in, 111–116
 - repetitive DNA in, 111–116
 - genomes of, 105–108
 - mutator strains of, 109–110
 - serotypes of, 106
 - virulence factors of, 116–117
- Neisserial intergenic mosaic elements, 111, 113
- Neofunctionalization, *Trypanosoma brucei*, 298

Neosartorya fischeri
- genomes of, 328–330
- intragenic tandem repeats in, 336
- secondary metabolites of, 333

Neosartorya fumigata, 327

NEP protein, influenza virus, 164

Neuraminidase, influenza virus, 162–167, 169

Neutralizing antibodies
- hepatitis C virus, 183–184
- HIV escape from, 150–152

Neutrophils, in uropathogenic *Escherichia coli* colonization, 10

Nf1 phage, *Neisseria meningitidis*, 113, 117

NgoVII, *Neisseria gonorrhoeae*, 133

Nitric oxide, detoxification of, 10

OxyR protein, uropathogenic *Escherichia coli*, 10

Oxidative stress, uropathogenic *Escherichia coli*, 10

OxyR protein, uropathogenic *Escherichia coli*, 7

PB1 and PB2 proteins, influenza virus, 163, 165, 167–168

P50 protein, 362

p65 protein, 362

PagN protein, *Salmonella enterica*, 90

Panmictic populations, malaria parasites, 275

Pathogen-associated molecular patterns, 362

Pathogenicity islands
- enterococci, 126, 128–130
- *Salmonella enterica*, 87–90

uropathogenic *Escherichia coli*, 5

PB1 and PB2 proteins, influenza virus, 163, 165, 167–168
PCR, malaria parasites, 274
PD-1 gene, in cytomegalovirus infections, 352–353
Pegylated alpha interferon, for hepatitis C, 184–185
PenA protein, *Neisseria meningitidis*, 115
Penicillium terlikowskii, 332
Pentatricopeptide repeat domains, *Legionella*, 74
Peramivir, resistance to, 169
Pes-associated genes, *Aspergillus*, 333
pfm genes, malaria parasites, 272, 277
Phages
 enterococci, 130–131
 Neisseria meningitidis, 113
Phase variation, *Neisseria meningitidis*, 110–111
Phasevarion, *Neisseria meningitidis*, 110
Phenol-soluble modulins, coagulase-negative staphylococci, 50
Pheromone-responsive plasmids, enterococci, 129–130
Phosphatidylinositol 4,5-bisphosphate-binding domain, 360–361
Pie effector proteins, *Legionella*, 67
PIK genes, *Candida albicans*, 305, 308
Pilins, *Neisseria meningitidis*, 113–115
Pip proteins, 90
Plasmids, enterococci, 128–131
Plasminogen, in *Aspergillus fumigatus* infections, 350
Ploidy, *Candida albicans*, 304
Pneumocystis jirovecii infections, in immunodeficiency, 358
Point mutations, in rotaviruses, 221–222
pol gene
 HIV, 144
 SIV, 146
Polyketide synthase, *Aspergillus*, 331–333
Polymerase complex, influenza virus, 167
Polyomorphic multi-amino-acid repeats, malaria parasites, 272
Polymorphism(s), single-nucleotide, see Single-nucleotide polymorphisms
Poly-N-acetylg glucosamine, coagulase-negative staphylococci, 49
Poly-A protein, *Neisseria meningitidis*, 113
Primates, African, SIV in, see Simian immunodeficiency virus
pro gene, HIV, 144
Programmed death 1 gene, in cytomegalovirus infections, 352
Proofreading, herpesviruses, 254
Prophages
 enterococci, 130
 islands of horizontally transferred DNA, 116
Proteases, hepatitis C virus, 180
Protein tyrosine phosphatase coreceptor type 22, in cytomegalovirus infections, 351, 353
Provirus, HIV, 144
Pseudogenes, *Trypanosoma brucei*, 293–294, 296–297
Pseudorabies virus, 256
Pullorum disease, 95–97
Pyelonephritis, 359
Pyrococcus furiosus, CRISPR of, 134
RaLF protein, *Legionella*, 67
RdRp gene
 noroviruses, 194, 200–202
 rotaviruses, 221
Reactive nitrogen species, 6–7, 10
Reactive oxygen species, 10
Reassortment, in rotaviruses, 221–222
REBASE database, 131–133
Rec proteins
 Helicobacter pylori, 33
 Legionella, 63
 Neisseria meningitidis, 112, 114–115
Recombination
 Candida albicans, 305–309
 herpesviruses, 257–258
 malaria parasites, 273–274
 Neisseria meningitidis, 111–116
 noroviruses, 197–199
 rotaviruses, 221, 223
 Trypanosoma brucei, 297
Red blood cells, malaria parasites in, 269–270
REP2 sequence, *Neisseria meningitidis*, 114
Replication-enhancing mutations, hepatitis C virus, 181
Resistance
 to antimicrobial peptides, 49–50
 to drugs, see also Drug resistance multiple, 87, 126–128
Restriction-modification, enterococci, 131–133
Retrotransposons, *Candida albicans*, 304–305
rev gene, HIV, 144
Reverse transcriptase, HIV, 144–145
Ribavirin, for hepatitis C, 184–186
Ribonucleoprotein complexes, influenza virus, 162–163
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>rifin gene, malaria parasites</td>
<td>272</td>
</tr>
<tr>
<td>Rimantadine, resistance to</td>
<td>169</td>
</tr>
<tr>
<td>RNA interference mechanisms, enterococci</td>
<td>133</td>
</tr>
<tr>
<td>RNA polymerase</td>
<td>181</td>
</tr>
<tr>
<td>hepatitis C virus</td>
<td>215</td>
</tr>
<tr>
<td>rotaviruses</td>
<td>215</td>
</tr>
</tbody>
</table>
evolution of, 149–150
genomic variation in, 145–146
origin of, 146
Single-nucleotide polymorphisms
in Aspergillus fumigatus infections, 345–350
in cytomegalovirus infections, 350–353
description of, 345
in malaria parasites, 271–276
in Salmonella enterica, 86
Sit proteins, Salmonella enterica, 88
SIV, see Simian immunodeficiency virus
Sleeping sickness, see Trypanosoma brucei
Small-colony variants, uropathogenic Escherichia coli, 5
SMURF (Secondary Metabolite Unique Regions Finder), 331
SNPs, see Single-nucleotide polymorphisms
SOCS1 protein, in Toll-like receptor signaling, 365–366
Sod proteins, Salmonella enterica, 90–91
Sop phages, Salmonella enterica, 91
Sop proteins, Salmonella enterica, 88–90
SP pathogenicity islands, Salmonella enterica, 88–90
Specific immune response, in urinary tract infections, 368, 370
SpfA proteins, EHEC, 21
Sphingosine-1 phosphatase lyase, Legionella, 66, 76
Sphingosine kinase, Legionella, 66
Sporogony, malaria parasites, 269–270
spv operon, Salmonella enterica, 91
SRA protein, Trypanosoma brucei, 298
Ssc proteins, Salmonella enterica, 89
Sse proteins, Salmonella enterica, 89
Ssr proteins, Salmonella enterica, 89
Staphylococci, coagulase-negative, see Coagulase-negative staphylococci
Staphylococcus aureus infections, in immunodeficiency, 359
Staphylococcus capitis, 45
Staphylococcus carnous, 45–46, 48
Staphylococcus epidermidis
in biofilms, 49, 51–52
CRISPR of, 133–134
gene transfer among, 48–49
genomes of, 48
heterogeneous gene expression in, clinical impact of, 51
phenotypic instability of, 50–51
resistance in, 45
virulence factors of, 45–46
Staphylococcus haemolyticus
in biofilms, 49
virulence factors of, 45–50
Staphylococcus hominis, 45
Staphylococcus lugdunensis, 45
Staphylococcus saprophyticus, 45–46
Staphylococcus warneri, 45
Stevor gene, malaria parasites, 272
“Stochastic swarm,” of antigenic variants, 288
Streptococcus pneumoniae infections, in immunodeficiency, 359
Streptococcus thermophilus, CRISPR of, 133
Structural proteins, hepatitis C virus and, 179
Subfunctionalization, Trypanosoma brucei, 298
Subtelomeres
Aspergillus, 331
Trypanosoma brucei, 296–298
Subtilase cytotoxin, EHEC, 17
Sugar acids, in uropathogenic Escherichia coli metabolism, 8–9
Surface coat, of antigenic variants, 288–290
Surfactant proteins, in Aspergillus fumigatus infections, 350
Switching, Trypanosoma brucei, 287–288, 293–295
T lymphocytes
cytotoxic, in HIV infection, 152–156
hepatitis C virus and, 184
TAB proteins, 361
TAC1 gene, Candida albicans, 313–314
Taf1 protein, Aspergillus, 334–335
TAK proteins, 361–362
Tandem repeats, intragenic, Aspergillus, 335–336
TANK (TRAF family member–associated nuclear factor kB activator), 362
tat gene, HIV, 144, 152
Tbp proteins, Neisseria meningitidis, 113
Terminal repeat long region, herpesviruses, 252
Tetrathionate reductase complex, Salmonella enterica, 93
Tetrathionate respiration proteins, Salmonella enterica, 89
TIR (Toll/interleukin–1 receptor) domain, 360
TIR domain-containing adaptor protein inducing beta interferon (TRIF), 360, 362, 365–366
TIR domain-containing adaptor protein (TIRAP), 360–362, 366
TIRAP (TIR domain-containing adaptor protein), 360–362, 366
TNFR2 gene, in Aspergillus fumigatus infections, 347, 349
TnPZ transposons, Helicobacter pylori, 36
Toll/interleukin–1 receptor (TIR) domain, 360
Toll-like receptors, 364
in Aspergillus fumigatus infections, 346–347, 349
in cytomegalovirus infections, 352–353
genetic variations in, 364–366
promoters of, 365
regulation of, 365–366
in signaling, 359–366
in urinary tract infections, 360–366
in uropathogenic Escherichia coli colonization, 4, 9–10
ToxB protein, EHEC, 18
Index

Toxoplasma gondii infections, in immunodeficiency, 358

TRAF family member-associated nuclear factor-κB
activator (TANK)-binding kinase 1, 362
TRAF proteins, 361–362
TRAM (TRIF-related adaptor molecule), 360, 362

Transduction, in gene transfer, 85

Transferrin receptors, Trypanosoma brucei, 298

Transformation
in gene transfer, 85

Neisseria meningitidis, 114

Translocation, Candida albicans, 311–312

Transposable elements, Aspergillus, 334–335

Transposons, coagulase-negative staphylococci, 48

Triad 3A, in Toll-like receptor signaling, 365–366

Trichoderma virens, 332

TRIF (TIR domain-containing adaptor protein
inducing beta interferon), 360, 362, 365–366

TRIF-related adaptor molecule (TRAM), 360, 362

Triple-layer particles, rotaviruses, 215, 217

Trisomy, chromosome 5, Candida albicans, 312–313

Trypanosoma brucei, 286–302

antigenic variation in, 288–295
distribution of, 286
Trypanosoma brucei rhodesiense, 298
tsfs genes, Helicobacter pylori, 36

Tubulin-tyrosine ligase, Legionella, 67

Tumor necrosis factor alpha, in Aspergillus fumigatus infections, 347, 349

Type I secretion systems
Legionella, 64
Neisseria meningitidis, 115

Type II secretion systems
enterococci, 131–133
Legionella, 64–66

Type III secretion systems, Salmonella enterica, 88–89

Type IV secretion systems
Helicobacter pylori, 34–36
Legionella, 64–67

Typhoid fever, see also Salmonella enterica serovar
Paratyphi; Salmonella enterica serovar Typhi
in chickens, 94, 96–97

U-box motifs, Legionella, 66, 74

Unique long region, herpesviruses, 252, 255–256, 258–259

Unique short region, herpesviruses, 255–256

Urinary tract infections, 358–377, see also

Urarepathogenic Escherichia coli
animal models of, 359–360
chemokine receptor polymorphisms and, 366–370
Genetic factors in, 359–360
Toll-like receptors in, 360–366

Urarepathogenic Escherichia coli
host interactions with, 6–7, 9–10
intravesicle growth of, 7–9
metabolism of, 7–9
motility of, 7
natural reservoir of, 6
reductive evolution of, 4–6
strain 83972, 4, 6–9
susceptibility to, 362–370
Symptomatic infections due to, 4–5
Virulence factors of, 4–6

Uropathogenic staphylococci, 46

UvrY protein, uropathogenic Escherichia coli, 7–8

Vac proteins, Helicobacter pylori, 39

Vaccines
Helicobacter pylori, 39–40
HPV, 246
influenza virus, 172–173
malaria, 276–277
rotaviruses, 214, 232–233
for urinary tract infections, 368, 370
varicella-zoster virus, 256

var genes, malaria parasites, 272

Variant surface glycoproteins and VSG genes,
Trypanosoma brucei, 286–298
antigenic variation and, 287–288
evolution of, 295–298
loci of, 290–292
regulation of, 291, 293
structures of, 288–290
switching of, 293–295

Varicella-zoster virus
gene of, 252, 255–256
mutations of, 259
virology of, 250

Via proteins, Salmonella enterica, 90

vif gene, HIV, 144

Vip proteins, Legionella, 67

vir genes, Helicobacter pylori, 33, 35–36
VirB10 protein, 2, 66

Viroploasms, rotaviruses, 215, 217

Virulence factors
Aspergillus, 330
coagulase-negative staphylococci, 45–46
EHEC, 17
enterococci, 128–131
influenza virus, 165, 170
Legionella, 63–75
Neisseria meningitidis, 116–117

Uropathogenic Escherichia coli, 4–6

Virus-like particles, noroviruses, 192

VP proteins
noroviruses, 193–194
rotaviruses, 215–216

vpr gene
HIV, 144
SIV, 145

vpu gene, HIV, 144
vpx gene, SIV, 145
VSG genes, see Variant surface glycoproteins and VSG genes

WaaM protein, *Legionella*, 74
Warts, HPV in, 243
White-opaque transition, *Candida albicans*, 305

Whole-gene sequencing, rotaviruses, 228–230
Zanamivir, resistance to, 169
Zinc metalloproteinase, *Legionella*, 66
Zoonotic transmission, rotaviruses, 223, 225–227
Zorro elements, *Candida albicans*, 304–305

doi:10.1128/9781555817213.index