INTRACELLULAR PATHOGENS I

Chlamydiales
INTRACELLULAR PATHOGENS I

Chlamydiales

EDITED BY

Ming Tan
Departments of Microbiology & Molecular Genetics, and Medicine,
University of California, Irvine, CA

Patrik M. Bavoil
Departments of Microbial Pathogenesis, and Microbiology & Immunology,
University of Maryland, Baltimore, MD

Lead Editor, Ming Tan
Cover image: 3D model of *Chlamydia*-infected cell. EM reconstruction of a HeLa cell infected with *C. trachomatis* serovar L2 (L2/434/Bu), based on 3View serial block face SEM with 390 sections (each 60 nm thick, for a total thickness of ~23 µm). A representative EM section is shown below the 3D model. The inclusion membrane is shown in green, the nucleus is light blue, and the plasma membrane of the infected cell is pink. Elementary bodies are blue, and reticulate bodies are yellow. Courtesy of Jennifer Lee, Christine Suetterlin, and Ming Tan (University of California, Irvine, CA) and Masako Terada, Eric Bushong, Andrea Thor, Mark Ellisman, and Daniela Boassa (National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA).

Copyright © 2012 by ASM Press. ASM Press is a registered trademark of the American Society for Microbiology. All rights reserved. No part of this publication may be reproduced or transmitted in whole or in part or reused in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

Disclaimer: To the best of the publisher’s knowledge, this publication provides information concerning the subject matter covered that is accurate as of the date of publication. The publisher is not providing legal, medical, or other professional services. Any reference herein to any specific commercial products, procedures, or services by trade name, trademark, manufacturer, or otherwise does not constitute or imply endorsement, recommendation, or favored status by the American Society for Microbiology (ASM). The views and opinions of the author(s) expressed in this publication do not necessarily state or reflect those of ASM, and they shall not be used to advertise or endorse any product.

Library of Congress Cataloging-in-Publication Data

Intracellular Pathogens I: Chlamydiales / edited by Ming Tan, Patrik M. Bavoil; lead editor, Ming Tan.

p. ; cm.
Chlamydiales
Includes bibliographical references and index.
I. Tan, Ming, M.D. II. Bavoil, Patrik M. III. Title: Chlamydiales.
[DNLM: 1. Chlamydia Infections. 2. Chlamydiales—pathogenicity. WC 600]

LC 614.5735—dc23
2011043432
doi:10.1128/9781555817329

10 9 8 7 6 5 4 3 2 1

All Rights Reserved
Printed in the United States of America

Address editorial correspondence to ASM Press, 1752 N St., N.W., Washington, DC 20036-2904, USA

Send orders to ASM Press, P.O. Box 605, Herndon, VA 20172, USA
Phone: 800-546-2416; 703-661-1593
Fax: 703-661-1501
E-mail: books@asmusa.org
Online: http://estore.asm.org
We dedicate this book to our families, who had to share us with the book in the summer of 2011.

To Ru-ching, Julien, and Lei-Lei

To Christine, Toby, and Lucas
CONTENTS

<table>
<thead>
<tr>
<th>Contributors</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1. Chlamydia Infection and Epidemiology
Byron E. Batteiger

2. Deep and Wide: Comparative Genomics of Chlamydia
Garry S. A. Myers, Jonathan Crabtree, and Heather Huot Creasy

3. Lessons from Environmental Chlamydiae
Alexander Siegl and Matthias Horn

4. The Chlamydial Cell Envelope
David E. Nelson

5. Chlamydial Adhesion and Adhesins
Johannes H. Hegemann and Katja Moelleken

6. Initial Interactions of Chlamydiae with the Host Cell
Ted Hackstadt

7. Temporal Gene Regulation during the Chlamydial Developmental Cycle
Ming Tan

8. Cell Biology of the Chlamydial Inclusion
Marcela Kokes and Raphael H. Valdivia

9. Protein Secretion and Chlamydia Pathogenesis
Kenneth A. Fields
10. Immune Recognition and Host Cell Response during *Chlamydia* Infection
 Uma M. Nagarajan
 217

11. *Chlamydia* Immunopathogenesis
 Toni Darville and Catherine M. O’Connell
 240

12. Chlamydial Persistence Redux
 Gerald I. Byrne and Wandy L. Beatty
 265

13. In Vivo Chlamydial Infection
 Roger G. Rank
 285

14. *Chlamydia* Vaccine: Progress and Challenges
 Ashlesh K. Murthy, Bernard P. Arulanandam, and Guangming Zhong
 311

15. Chlamydial Genetics: Decades of Effort, Very Recent Successes
 Brendan M. Jeffrey, Anthony T. Maurelli, and Daniel D. Rockey
 334

16. Biomathematical Modeling of *Chlamydia* Infection and Disease
 Andrew P. Craig, Patrik M. Bavoil, Roger G. Rank, and David P. Wilson
 352

Index
381
CONTRIBUTORS

Bernard P. Arulanandam
South Texas Center for Emerging Infectious Diseases,
Department of Biology, University of Texas at San Antonio,
San Antonio, TX 78249

Byron E. Batteiger
Department of Medicine, Division of Infectious Diseases,
Indiana University School of Medicine, Indianapolis, IN 46202

Patrik M. Bavoil
Department of Microbial Pathogenesis, University of Maryland,
Baltimore, MD 21201

Wandy L. Beatty
Department of Molecular Microbiology, Washington University at
St. Louis, St. Louis, MO 63110

Gerald I. Byrne
Department of Microbiology, Immunology, and Biochemistry,
University of Tennessee Health Science Center, Memphis, TN 38163

Jonathan Crabtree
Institute for Genome Sciences, University of Maryland School of
Medicine, Baltimore, MD 21201

Andrew P. Craig
The Kirby Institute, University of New South Wales, Sydney,
NSW 2010, Australia

Toni Darville
Children’s Hospital of Pittsburgh of UPMC, Rangos Research Center,
Pittsburgh, PA 15224

Kenneth A. Fields
Department of Microbiology and Immunology,
University of Miami Miller School of Medicine, Miami, FL 33136
Ted Hackstadt
Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840

Johannes H. Hegemann
Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany

Matthias Horn
Department of Microbial Ecology, University of Vienna, 1090 Vienna, Austria

Heather Huot Creasy
Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201

Brendan M. Jeffrey
Department of Biomedical Sciences and Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331-4804

Marcela Kokes
Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University, Durham, NC 27710

Anthony T. Maurelli
Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814-4799

Katja Moelleken
Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany

Ashlesh K. Murthy
Department of Pathology, Midwestern University, Downers Grove, IL 60515

Garry S. A. Myers
Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201

Uma M. Nagarajan
Children’s Hospital of Pittsburgh of UPMC, Rangos Research Center, Pittsburgh, PA 15224

David E. Nelson
Department of Biology, Indiana University, Bloomington, IN 47405

Catherine M. O’Connell
Children’s Hospital of Pittsburgh of UPMC, Rangos Research Center, Pittsburgh, PA 15224

Roger G. Rank
Department of Microbiology and Immunology, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital Research Institute, Little Rock, AR 72202
Daniel D. Rockey
Department of Biomedical Sciences and Molecular and Cellular Biology
Program, Oregon State University, Corvallis, OR 97331-4804

Alexander Siegl
Department of Microbial Ecology, University of Vienna,
1090 Vienna, Austria

Ming Tan
Departments of Microbiology and Molecular Genetics, and Medicine,
University of California, Irvine, CA 92697-4025

Raphael H. Valdivia
Department of Molecular Genetics and Microbiology and
Center for Microbial Pathogenesis, Duke University, Durham, NC 27710

David P. Wilson
The Kirby Institute, University of New South Wales, Sydney,
NSW 2010, Australia

Guangming Zhong
Department of Microbiology and Immunology,
University of Texas Health Science Center, San Antonio, TX 78229
More cases of *Chlamydia* infection are reported to the CDC each year than all other infectious diseases combined. This dubious distinction is due to a steady increase in the number of chlamydial infections while other major infectious diseases have become less common because of successful diagnosis, treatment, and prevention. Reported chlamydial infections almost doubled over 10 years to 1.2 million cases for 2009, which is the latest year for which statistics are available (CDC, 2011). In contrast, rates of gonorrhea have declined about fourfold since the mid-1970s. As a result of these opposite trends, *Neisseria gonorrhoeae* is no longer the most common bacterial cause of sexually transmitted infection and has ceded that “honor” to *Chlamydia trachomatis* since the mid-1990s (CDC, 2010).

The burden of chlamydial infections is even higher because the CDC numbers are almost exclusively for genital infections caused by *Chlamydia trachomatis* and do not include other infections caused by *Chlamydia* spp. Tens of millions in underdeveloped parts of the world suffer from trachoma, which is an infectious form of blindness that is also caused by *C. trachomatis*. In addition, the majority of individuals will have a *Chlamydia pneumoniae* respiratory infection at some point in their lifetime even though it may not be formally diagnosed. *Chlamydia* spp. are also a significant cause of disease in animals, and new evidence suggests that human chlamydial isolates have been acquired in our evolutionary past from animal hosts. To set the stage for this book, Byron Batteiger discusses the range of chlamydial infections in chapter 1 (“*Chlamydia* infection and epidemiology”), with an emphasis on relating clinical knowledge to the fundamental biology of *Chlamydia*.

A fascinating aspect of chlamydial biology is how these organisms have evolved to become such successful intracellular parasites while having one of the smallest bacterial genomes. In chapter 2 (“Deep and wide: comparative genomics of *Chlamydia*”), Garry Myers offers a glimpse of the enormous impact genomic analysis has had and continues to have on our understanding
of chlamydial biology and evolution. At last count, 33 chlamydial genome sequences were publicly available. Most of the sequenced genomes have come from reference strains, but many more clinical isolates will be sequenced in the coming years. The high level of sequence coverage with modern whole-genome sequencing methods (“deep sequencing”) suggests that individual chlamydial isolates are not homogenous but rather consist of a “metapopulation” of genomic variants. Comparative genome sequencing of different chlamydial species and isolates (“wide sequencing”) has demonstrated strain-specific differences within the overall context of genus-wide conservation and has provided a powerful means to learn about chlamydial biology in the absence of an experimental genetic system.

In chapter 3 (“Lessons from environmental chlamydiae”), Alexander Siegl and Matthias Horn discuss Chlamydia-like organisms within the order Chlamydiales. This is an expanding group of intracellular bacteria, such as the Parachlamydiaceae, with several new families identified in just the last few years. As descendants of an ancestral bacterium that learned to survive and replicate in eukaryotic cells, Chlamydia and the environmental chlamydiae are cousins, and much can be learned by comparing the biology of these two groups. For example, the genomes of environmental chlamydiae are two to three times larger than those of Chlamydia; many metabolic pathways that are truncated in Chlamydia are more completely represented in the environmental chlamydiae, supporting the notion that Chlamydia spp. have undergone reductive evolution of their genomes.

The first step in the intracellular chlamydial infection is adherence of elementary bodies (EBs) to epithelial cells at specific mucosal surfaces in the body.
Binding between ligands on the chlamydial envelope and receptors on the surface of epithelial cells facilitates the internalization of chlamydiae. Chapter 4 (“The chlamydial cell envelope”) by David Nelson and chapter 5 (“Chlamydial adhesion and adhesins”) by Johannes Hegemann and Katja Moelleken give the most up-to-date reviews of the chlamydial envelope and describe how specific envelope components mediate these surface interactions between chlamydiae and susceptible cells. The proposed two-step binding process represents the culmination of 4 decades of painstaking research by many researchers. This model is elegant in its simplicity and has clarified what was once a confusing aspect of chlamydial pathogenesis.

Once inside a eukaryotic cell, Chlamydia grows and replicates within the safe confines of a membrane-bound vacuole called the chlamydial inclusion (Fig. 1). How chlamydiae initiate these events by manipulating the host cytoskeleton, establishing the inclusion, and converting from an EB into a reticulate body (RB) is comprehensively described by Ted Hackstadt in chapter 6 (“Initial interactions of chlamydiae with the host cell”). Further details about how chlamydiae interact with the host cell and subvert a range of cellular processes are discussed in chapter 8 (“Cell biology of the chlamydial inclusion”) by Raphael Valdivia and Marcela Kokes and in chapter 9 (“Protein secretion and Chlamydia pathogenesis”) by Ken Fields. These host-pathogen interactions provide the environment within the inclusion so that RBs can replicate and eventually convert into EBs that can infect a new host cell.

This serial conversion between two specialized forms is a unique feature of chlamydial biology, and two models have emerged to account for the progression of the chlamydial developmental cycle. In chapter 7 (“Temporal gene regulation during the chlamydial developmental cycle”), Ming Tan proposes a gene regulation model in which the sequential expression of chlamydial genes in developmental classes is controlled by the temporal expression of key regulators through a domino effect. For example, soon after an EB enters a cell, there is expression of early gene products including DNA gyrase, which is an enzyme that increases DNA supercoiling. Higher global supercoiling levels, which have been shown to peak in mid-cycle, are then proposed to upregulate mid genes through their supercoiling-responsive promoters. Among the mid gene products that are expressed is σ28, which subsequently directs the transcription of a subset of late genes to mediate RB-to-EB conversion. In chapter 16 (“Biomathematical modeling of Chlamydia infection and disease”), David Wilson describes the Type III secretion (T3S), contact-dependent model, which he has proposed together with Patrik Bavoil and colleagues. This model hypothesizes that contact between an RB and the inclusion membrane via T3S injectisomes is necessary for the RB stage and that loss of contact and associated disruption of T3S translocating activity induce RB-to-EB conversion. These two models are not mutually exclusive, however, and it is likely that gene regulation is coupled to external stimuli such as contact between an RB and the inclusion membrane and the activity state of the T3S apparatus.

As we learn more about how members of the Chlamydiaceae successfully infect and interact with eukaryotic cells, it is helpful and instructive to examine what aspects of this unusual biology are conserved features. Comparative genomic analysis makes clear that Chlamydia spp. are closely related and share a
core set of 668 conserved proteins, which amounts to about two-thirds of the genome (see chapter 2). However, a number of chlamydial proteins that are proposed to have important roles in the biology and pathogenesis of Chlamydia are not encoded in the genomes of environmental chlamydiae that have been sequenced (see chapter 3). For example, environmental chlamydiae do not have Tarp (translocated actin recruiting phosphoprotein), an actin-nucleating chlamydial protein that is proposed to promote EB entry into a host cell. Intriguingly, they also lack both the late temporal regulator σ28 and its target gene hctB, which encodes the histone-like protein Hc2 that plays a role in the condensation of DNA in EBs. Almost all environmental chlamydiae do not have MOMP, which is the major outer membrane protein and immunodominant antigen of Chlamydia, or IncA, which is involved in the homotypic fusion of chlamydial inclusions. Thus, these Chlamydia-specific factors are not strictly necessary for the intracellular lifestyle of Chlamydiales, and they may represent specializations that contribute to the ability of Chlamydia spp. to infect vertebrate host cells and cause disease.

The host immune response is important for protection against an infection, but chlamydial diseases exemplify the role that the immune system can play in pathogenesis. In chapter 10 (“Immune recognition and host cell response during Chlamydia infection”), Uma Nagarajan describes a number of mechanisms by which chlamydiae are recognized by the host immune system. In chapter 11 (“Chlamydia immunopathogenesis”), Toni Darville and Catherine O’Connell review how chlamydiae induce and modulate host immune responses and describe how these innate and adaptive responses to chlamydiae contribute to pathology. Distinguishing between protective and pathologic immune responses is of course critical in the ongoing efforts to develop a vaccine.

The natural history as well as the hallmark of untreated chlamydial infection is a chronic infection that can lead to tissue damage and sequelae such as tubal infertility. In chapter 12 (“Chlamydial persistence redux”), Gerry Byrne and Wandy Beatty take a fresh approach to the oft-described but incompletely understood phenomenon of persistent chlamydial infection by noting the similarities and differences between persistent infections caused by Chlamydia and those caused by other human pathogens. In chapter 13 (“In vivo chlamydial infection”), Roger Rank discusses how animal models of chlamydial infection have been used to study chlamydial persistence and pathogenesis. These animal studies have been invaluable for learning how Chlamydia causes disease in humans and have a continuing role to play in the development of a vaccine and new antichlamydial agents.

A safe, effective chlamydial vaccine has been elusive. In chapter 14 (“Chlamydia vaccine: progress and challenges”), Ashlesh Murthy, Bernard Arulanandam, and Guangming Zhong review the considerable progress that has been made both in the selection of candidate vaccine antigens and in our understanding of the types of immune response that a vaccine must elicit. It might be sufficient if a chlamydial vaccine prevents disease rather than infection as a strategy for reducing long-term complications such as infertility in women. It might even be possible to develop a therapeutic vaccine or some other immunomodulatory approach to prevent long-term complications after the initial infection.
We appear to be at the dawn of a new age in *Chlamydia* research with the first published report of stable transformation of chlamydiae. In chapter 15, “Chlamydial genetics: decades of effort, very recent successes,” Brendan Jeffrey, Tony Maurelli, and Dan Rockey describe the groundbreaking work by Yibing Wang, Simona Kahane, Ian Clarke, and colleagues, wherein EBs have been transformed with a hybrid shuttle vector constructed from the chlamydial plasmid and an *Escherichia coli* plasmid containing a penicillin resistance gene. The researchers successfully selected for penicillin-resistant *C. trachomatis* and demonstrated that they could produce green fluorescent inclusions from chlamydiae expressing green fluorescent protein. This much-awaited breakthrough was published just as this book was about to go to press and followed on the heels of three other methodologic advances in developing an experimental genetic system. In the first approach, isogenic strains have been generated by chemical mutagenesis followed by identification of strains with specific sequence mutations. In a second approach, recombinant progeny with a specific phenotype, such as tetracycline resistance, have been produced by coinfecting a host cell with two parental chlamydial strains. In the third approach, transformation of chlamydiae and allelic exchange have been accomplished by electroporating EBs with plasmid DNA. These experimental tools will have a transformative effect on *Chlamydia* research because it is hoped that they will soon allow researchers to test the function of individual chlamydial genes with genetic approaches.

The book concludes with chapter 16 (“Biomathematical modeling of *Chlamydia* infection and disease”) by David Wilson, Andrew Craig, and colleagues. This is the first review of biomathematical modeling in a *Chlamydia* book. Mathematical modeling tools have been used to study and predict the behavior of viral infections, and the chapter describes how this approach is being applied to chlamydial infections with good success. Refinements of these models that take into account more parameters of the chlamydial infection and the host response will surely follow in the coming years and hold the promise of providing new insights into chlamydial biology and pathogenesis.

Of the major changes and developments in *Chlamydia* research that are described in this book, one more to mention is the new taxonomy, which amounts to a “family reunion.” Within the *Chlamydia* field, the *Chlamydiaceae* are now considered to consist of only the single genus *Chlamydia*; the genus name *Chlamydophila* is no longer in use, although the species names, such as *muridarum*, *caviae*, and all other veterinary species that were introduced in 1999, have not changed (Kuo et al., 2010).

This book showcases a wide range of *Chlamydia* basic research that is being done by hundreds of individuals around the world. We have selected authors who are playing a leading role in scientific discovery and who can summarize and synthesize the latest in *Chlamydia* research. We also wish to acknowledge the many other chlamydiologists who have contributed to the book through their superb work—your continued efforts are critical, and each individual has an important part to play if we are to reduce the number of chlamydial infections and their impact on public health.

This book is intended for those who are interested in the latest in *Chlamydia* research, which includes scientists, physicians, medical students, public health professionals, epidemiologists, biocomputational scientists, and government
policy makers. Because of the interdisciplinary nature of modern science, this audience also includes scientists studying other causes of sexually transmitted disease and other obligate intracellular pathogens. The esteemed chlamydologist Dr. Gerry Byrne, in his introduction to the previous Chlamydia book published in 2006 (Bavoil and Wyrick, 2006), laid down a challenge to future editors: we have accepted the challenge and hope that we have faithfully represented the exciting developments in Chlamydia research.

REFERENCES

MING TAN

PATRIK M. BAVOIL
INDEX

A
“Aberrant bodies,” 58
Abi1 protein, 131
Acanthamoeba, 52–54, 57, 59
Acanthamoeba polyphaga, 61–62
Actin
in inclusion integrity, 183
nucleation, 127–131
Adaptive immune response, 249–252, 364–365
Adhesion and adhesins, 97–125
attachment components, 102–103
glycosaminoglycans, 101–102
list of, 97–100
model for, 118
polymorphic membrane proteins, 77–78, 99,
109–117
receptors for, 117–118
AHNAK cellular actin binding protein, 130–131,
203
Animal models, 286–310
developmental cycle, 289–296
host impact, 303–304
mathematical models for, 304–305
pathogenicity, 300–303
persistence, 297–300
types, 286–289
vaccines, 313, 320
Animal pathogens, see also specific pathogens
environmental chlamydiae, 63–64
genomics, 37–43
models for, see Animal models
persistence, 274, 278–279
Antibiotic(s), based on secretion systems, 209
Antibiotic resistance, 265
Chlamydia trachomatis, 14
in genetic transformation, 336–338
Antibodies, function, 313–314
Antigen(s), for vaccines, 316–324
Antigenic variation, polymorphic outer membrane
proteins, 115–117
Anti-sigma factors, in developmental cycle, 156–157
Apolipoproteins, 118
Apoptosis, prevention, 183–184
Arp proteins, 131
ASC protein, in immune recognition, 223, 225
Asthma, 20–21
Atherosclerosis, 19–20
Autonomous immunity, 184
Autophagy, 184
Azithromycin
for genital infections, 14
for trachoma, 8
B
B cells, immune function, 252, 313–314
BAD protein, 183
Basic reproduction number, in biomathematical
modeling, 365–366
Betaproteobacteria, 55
Biomathematical modeling, 352–379
adaptive immune response variations, 364–365
for animal models, 304–305
basic reproduction number in, 365–366
competing strains, 366–369
epidemiological, 353, 355
future, 376–377
infectivity variations, 361–363
innate immune response variations, 363–364
microbiology and, 377–378
Biomathematical modeling (continued)
overview, 353–355
parameter choices, 359
predator-prey framework, 355–365
Type III secretion system-mediated, 369–376
viral dynamics equations in, 355–369
Blindness, in trachoma, 5–8, 272–273
Blue Score Ratio, 33

Cancer, cervical, 15
Candidatus family, 55–56, 64, 67
CARD (caspase recruitment domain, NLRC), 222–223, 225–226
Caspase, effectors for, 225–226
Caspase recruitment domain (CARD), 222–223, 225–226
Cds proteins, secretion systems, 197–201, 208
Cell envelope, 74–96
composition, 74–85
developmental cycle and, 84–88
Cellular adaptive response, 249–252
Cellular hypothesis, 317
Cellular paradigm, of pathogenesis, 242–246
Centrosomes, inclusion migration to, 174
Cervical cancer, 15
Chaperones, 200–201
Chemical mutagenesis, 342–344
Chemokines, 243–244
Chimera, 281
Chlamydia abortus
adhesins, 109
antigens, 322
cell envelope, 77
genetic modification, 342
genomics, 27–28, 32–36
host cell interactions with, 139
persistence, 273, 281
Chlamydia caviae
adhesins, 97–99, 102, 105, 117
in animal model, 286, 288, 290, 299, 303–305
antibodies, 315
cell envelope, 82
genomics, 27–28, 33, 34
host cell interactions with, 127, 131, 135, 139–140
immune recognition, 231
inclusions, 178–179, 181, 185
secretion systems, 202–203
Chlamydia felis
genomics, 27–28, 33–34, 41
host cell interactions with, 139
Chlamydia muridarum
in animal models, 286–288, 290, 292, 295, 297–304, 313
antigens, 321–324
cell envelope, 81
genetic modification, 344
genomics, 27–28, 33–36
host cell interactions with, 127–128, 131, 139–140
inclusions, 184
persistence, 279
secretion systems, 202–203, 205
Chlamydia muridarum infections
immune recognition, 218–222, 225, 227–228, 231
immunopathogenesis, 248, 249–252, 254
Chlamydia pecorum
cell envelope, 75, 80
genomics, 27–28, 32–36, 41, 43, 46
persistence, 274
Chlamydia pneumoniae, see also Chlamydia pneumoniae infections
in animal models, 286, 299
antigens, 321–324
cell envelope, 76–78, 80–82
developmental cycle, 151, 159
elementary bodies, 57
genomics, 28–30, 32–42, 45–46
host cell interactions with, 126–128, 130–131, 140, 142
inclusions, 175–176, 181
persistence, 2, 19, 274, 278–279, 281
secretion systems, 198, 202, 204–205, 207, 209
Chlamydia pneumoniae infections, 16–21
asthma and, 20–21
atherosclerosis and, 19–20
clinical features, 18
diagnostic tests, 17–18
epidemiology, 18–19
immune recognition, 218–219, 222, 225, 227, 230
Chlamydia psittaci
adhesins, 98–100, 103, 106, 118
in animal models, 286, 288, 301
cell envelope, 78, 80–81, 85
developmental cycle, 158
genetic modification, 345–347
genomics, 27–28, 32–46
host cell interactions with, 139
inclusions, 181
persistence, 268–269, 273, 276
secretion systems, 205, 207
Chlamydia suis
adhesins, 117
in animal models, 297
genetic modification, 344
genomics, 31, 41
lateral gene transfer, 339–341
persistence, 273, 278, 281

Chlamydia trachomatis, see also Chlamydia trachomatis infections

adhesins, 97–118
in animal models, 286–289, 297–304
antigens, 316, 320–325
cell envelope, 76–82, 85–87
clinical features, 10, 16
developmental cycle, 149–151, 155–157, 159, 162
diagnostic tests, 9–10
discovery, 56
elementary bodies, 58
genetic modification, 342, 344, 346–347
genomics, 27, 29–30, 32–36, 38, 41, 43–46, 196
historical view, 266
host cell interactions with, 126–131, 134–142
lateral gene transfer, 339
persistence, 2, 266–267, 269–270, 274, 278–279, 280
secretion systems, 193, 196, 198–199, 201, 203–206
serovars, 5, 16
tissue tropism, 16

Chlamydia trachomatis infections

antibiotic resistance, 14
asymptomatic, 3–4, 10–11, 242
biomathematical modeling, 353
conjunctivitis, 5–7, 240–264, 286–289
genital, 9–15
repeated, 3, 14
sexually transmitted, 9–15
trachoma, see Trachoma

Chlamydia outer membrane complex, 75–79, 84–85, 87–88, 102–103
Chlamydia protease/proteasome-like factor (CPAF)
in cytosol, 323
in immune recognition, 226
in secretion systems, 192, 204
Chlamydiales families in, 53–54
Chlamydia-like bacteria, see Environmental chlamydiae

Cholesterol
in host cell interaction, 136–138

Chromatin decondensation, 160–161
ChxR, transcription factor, in developmental cycle, 154–155
Coding sequences, 31–32
COMC (chlamydial outer membrane complex), 75–79, 84–85, 87–88, 102–103
Conjunctivitis, 5–7
animal models for, 286–297
immunopathogenesis, 240–246
Contraceptives, animal studies using, 303–304
Cop proteins, in secretion, 200–202, 208
Crescent bodies, 58
Cryptic Chlamydia psittaci, 268–269
CT Inc proteins, 174–175, 198, 200–203
CTIG270, developmental cycle, 162–163
CTL proteins, 79
Cystic fibrosis transmembrane conductance receptor, 102, 117–118
Cytokines, in immune recognition, 217–239, 243–244
Cytosol, antigens in, 323–324
Cytosolic lipid transfer protein, 178
Cytotoxin, chlamydial, 34, 36, 42–43, 131

D

Developmental cycle
animal models for, 289–297
cell envelope, 84–88
environmental chlamydiae, 56–59
gene expression during, 134
gene regulation in, 149–169
inclusions in, see Inclusion(s)
overview, 149–152
Type III secretion system and, 207–208
Waddlia chondrophila, 58

Differentiation, 133–134

Disease, See also specific diseases, eg, Conjunctivitis; Trachoma
causes, 4
epidemiology, see Epidemiology versus infections, 4
symptoms, 4
syndromes caused by, 2
DNA gyrase, in developmental cycle, 154
DNA sensors, in immune recognition, 228–229
DNA supercoiling, in developmental cycle, 152–154, 161
Doxycycline, for genital infections, 14
Dynein, 174
INDEX

E
Early genes, regulation, 160–161
Effector proteins, 202–205
Elementary bodies, 56–59, 74–75
adhesins, see Adhesion and adhesins
animal models, 289–297
attachment, 84
chlamydial outer membrane complex and, 75–79, 84–85, 87–88
in developmental cycle, 84–88
DNA introduction into, 335–336
endosome fusion with, 171
exit, 87–88
function, 149–152
glycoproteins, 80
glycosaminoglycans, 80–81
host cell entry, 84–85
in host cell interactions, 126–135
isolated versus intact, 75
lipids, 79–80
outer membrane modeling, 82–84
polymorphic outer membrane proteins, 77–78
porins, 78–79
reticulate body transition to/from, 86–87, 134, 142, 208, 294, 296
Endocytosis, 171–174
Endosomes, 171–172, 180–181
Envelope, see Cell envelope
Environmental chlamydiae, 51–73
developmental cycle, 56–59
diversity, 51–54
genomics, 64–66
host cell interactions, 59–60
host range, 54–56
pathogenicity, 60–64
Environmental factors, in pathogenesis, 256
Epidemiology, 1, 2–3
biomathematical modeling and, 352, 353
Chlamydia pneumoniae, 18–19
Chlamydia trachomatis, 5–6, 9
Epithelial cells
immune response, 243–244
polarized, 141–142
Epitheliocystis, 55, 63–64
Estrella, 52
EUO protein, 2, 158
Exoglycolipids, 81
Exosomes, 179–180
Extrusion, inclusions, 184–185
F
Fish, chlamydiae in, 55–56, 63–64, 67
Flagellar proteins, 196, 198
G
Gammaproteobacteria, 55
Gastrointestinal tract, Chlamydia in, 300–302
Gel electrophoresis, for antigen detection, 318–319
Gene regulation, in developmental cycle,
see Temporal gene regulation
Genetic predisposition, 8, 254–255, 301–303
Genetic transformation technology, 334–351
challenges in, 335–338
chemical mutagenesis, 342–344
lateral gene transfer, 338–341
plasmids, 345–347
recombination, 344–345
Genital infections
animal models for, 286–289
cervical cancer and, 15
Chlamydia trachomatis, 9–15
clinical features, 9–10
complications, 10–11
diagnostic tests, 9–10
immune recognition in, 217–232
lymphogranuloma venereum, 14–16
natural history, 12–13
repeated, 14
screening for, 11–12
serovars and, 16
vaccines for, 311–312
Genomics, 27–50, 64–66, 265, see also specific Chlamydia spp.
animal models for, 300–303
animal pathogens, 37–43
for antigen detection, 319
future research, 45–47
lateral gene transfer and, 338–341
pangenome, 31–32
plasticity zone, 32–37
sequencing techniques for, 27–28, 31
Type III secretion system, 194–196
Glucosylceramide, in host cell interaction, 141–142
Glycerophospholipids, in inclusions, 176–177
Glycoproteins, 81
Glycosaminoglycans, 81–82, 101–102
Golgi apparatus, interactions with, 136–138, 177–179
Guinea pig models, 288
H
Hc proteins, 133–134, 159
Heparan sulfate, 81–82, 101
Heparin, 81–82, 101, 106
Herpes simplex virus infections, 304
Histone-like proteins, in developmental cycle, 133–134, 158–161
HIV infection, 254
Hormones, animal studies using, 304–305
Host(s)
 animal studies concerning, 303–304
 environmental chlamydiae, 54–56
 lysis, 184–185
Host cells
 actin nucleation machinery, 131–132
 chlamydia effects on, 46–47
 chlamydia recognition by, see Immune recognition
 chlamydiae interactions with, 126–148
 entry into, 84–85, 126–128
 gene expression modulation in, 204–205
 Golgi apparatus invasion of, 136–138
 inclusion interactions with, see Inclusion(s)
 microtubule-dependent trafficking in, 138–139
 polarized epithelial barrier in, 141–142
 proteolysis, 204
 toxin effects on, 131
 T3S effectors effects on, 130–131
 tyrosine phosphorylation and, 128–130
 vesicle trafficking in, 139–141
Human papillomavirus, in cervical cancer, 15

I
IhtA protein, in developmental cycle, 162–163
Immune recognition, 218–229
 NOD proteins in, 222–226
 nucleic acids and nucleotide sensors in, 227–229
 signaling after, 229–231
 Toll-like receptors in, 218–222, 229–231, 246–249, 253–254
Immune response, in trachoma, 8
Immunity, autonomous, 184
Immunity-related GTPases, 184
Immunoblotting, for antigen detection, 317–318
Immunoglobulins, function, 314–315
Immunopathogenesis, 240–264
 adaptive response in, 249–252
 clinical implications, 246
 in coinfections, 254–255
 environmental factors, 255
 genetic factors, 253–254
 innate immune mechanisms in, 242–246
 pathogen recognition receptor signaling in, 217–218, 223, 231, 246–249
 physiologic factors, 254
Immunoproteomics, for antigen detection, 319
In vivo studies, see Animal models
Inc proteins, 140–141, 172–174, 178
 secretion and, 203–204
 for vaccines, 321–324
Inclusion(s), 170–191
 animal models, 289–297
 in apoptosis prevention, 183–184
 autophagy and, 184
 biogenesis, 203–204
 cellular interactions with, 134–139
 developmental cycle and, 181–182
 endosome association with, 180–181
 extrusion, 184–185
 function, 132–133, 174–182
 Golgi body fragmentation and, 178–179
 host lipid acquisition, 176–180
 in innate immunity defense, 182–184
 integrity, 183
 migration, 174
 mitochondria association with, 181
 nascent, 171–174
 vesicle interactions with, 139–141
Indolamine 2,3-dioxygenase, 270
Infections, see also Genital infections;
 Trachoma; individual Chlamydia species
 asymptomatic, 3–4, 10–11, 242
 versus disease, 4
 epidemiology, see Epidemiology
 immune recognition in, 218–229
 natural history, 2–3
 pathogenesis, see Pathogenicity
 persistence, see Persistence, chlamydial repeated, 3
Inflammasomes, 224–225
Injectisomes, 195, 208
Innate immunity
 in biomathematical modeling, 363–364
 defenses against, 182–184
 interferon(s), production, 315
 interleukin-1, in immunopathogenesis, 245
 invasion-associated effectors, 202–203

K
Koala, Chlamydia pneumoniae, 37–39

L
Late genes, regulation, 155–158
Lateral gene transfer, 338–341
Lipid(s)
 cell envelope, 80–81
 in host cell interactions, 136–138
 inclusion acquisition, 176–180
 lipid droplets, 180
 lipid rafts, 128
Lipopolysaccharides, 80–81, 102–103, 219
Lymphogranuloma venereum, 14–16
Lysophospholipids, in inclusions, 176–177

M
Major histocompatibility complex molecules, for antigen detection, 320
Major outer membrane protein (MOMP), 75–86, 99, 102, 150, 317–318, 321–322
Malaria, persistence, 266–269
Mannose receptor, 118
Matrix metalloproteinases, in immunopathogenesis, 245–246
MAVS protein, in immune recognition, 227
Membrane attack complex/perforin protein, 34, 180
Membrane contact sites, 177–178
Microarray studies, developmental cycle, 150–152
Microbe-associated molecular patterns (MAMPs), 217–221, 227
Microtubule(s), in host cell interactions, 138–139
Microtubule-organizing center, 174
Midcycle genes, regulation of, 152–155
Miscarriage, Waddlia chondrophila in, 61–62
Mitochondria, interactions with, 181
Models
animal, 286–310
mathematical, see Biomathematical modeling
Monkeys, as animal models, 289–290
Mouse models, 287–289
Mucosa, immune response, 243–244
Multiple cargo secretion chaperone, 201
Multivesicular bodies, 179–180
Mutagenesis, chemical, 343–345
Mycobacterium tuberculosis, persistence, 276–278, 281–282
MyD88, immune recognition, 220–221, 227

N
Neogleria, chlamydia associated with, 52
Nascent inclusions, 171–174
National Institutes of Health, psittacosis and, 41
Natural history
infections, 2–3
trachoma, 7
Neochlamydia hartmannellae, 52
Neochlamydia vermiformis, 52
Neutrophils, in immunopathogenesis, 246
NLRC proteins, 222–223, 225–226
NLRPs (Pyrin domain, PYD), 222–226
NOD proteins, 222–226
Nuclear factor-κB, 142, 204–206, 230–231
Nucleic acids, in immune recognition, 227–229
Nucleotide oligomerization domain (NOD) proteins, 222–226
Nucleotide sensors, in immune recognition, 227–229
Nutrient acquisition, 174–182

O
Omp proteins, 75–76, 79, 83
Opr proteins, 79
Outer membrane, structure, 82–83, 86
Outer membrane complex, 75–79, 84–85, 87–88
Outer membrane proteins, 75–86
Outer membrane vesicles, 194

P
Pangenome, Chlamydiaceae, 31–32
Parachlamydia
in animals, 63
secretion systems, 195
Parachlamydia acanthamoebae, 52, 59
Parachlamydiaceae, 55
chlamydia associated with, 53
discovery, 52
diseases due to, 63
genomics, 66
Partner switching, in developmental cycle, 156–157
Pathogen recognition receptors (PPRs), 217–218, 223, 231, 246–249
Pathogenicity
animal models for, 300–303
environmental chlamydiae, 60–64
immune recognition in, 218–229
protein secretion in, 192–216
Pelvic inflammatory disease, 10–14, 242
Persistence, chlamydial, 2–3, 265–284
animal models for, 297–300
versus persistence in other pathogens, 266–278
Phagocytosis, 59–60
Plants, chlamydiae associated with, 54–55
Plasmid(s), chlamydial, 65–66, 345–347
Plasmid glycoprotein, 323
Plasmodium vivax, persistence, 266–269
Plasticity zone, 32–37
Pneumonia, 16–21, 63
Polymorphic outer membrane (Pmp) proteins, 77–78, 99, 109–117
Polymorphonuclear leukocytes, animal models, 290, 292–297, 300
Porins, 78–79, 322

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Mon, 16 Dec 2019 01:36:32
Predator-prey framework, for biomathematical modeling, 355–365

Primate models, 288–289

Proctocolitis, 15

Protective antigens, 319

Protein(s), secretion, see Secretion systems; Type III secretion system

Protein disulfide isomerase (PDI), 97, 118–119, 127

Proteoglycans, 101–102

Proteolysis, host proteins, 204

Proteomics, for antigen detection, 319

Protochlamydia, 58–60, 155

Protochlamydia amoebophila, 52, 58–60, 63–65

Protochlamydia naegleriophila, 52, 63

Psittacosis, 27–28, 32–46

Rab family of GTPases, 140–141, 171–172, 174–176, 179

Rac protein, 131

Radioimmunoprecipitation, 318

Reactivation, *Chlamydia trachomatis*, 270

Reactive arthritis, 11, 281

Recombination, 339, 344–345

Repeat motifs, polymorphic outer membrane proteins, 114–115

Respiratory infections, animal models for, 286

Reticulate bodies, 56, 58, 74–75, 207

animal models, 289–297

DNA introduction into, 336

elementary body transition to/from, 86–87, 134, 142, 208, 294, 296

function, 149–152, 199

growth, 86–87

lipids, 79–80

Rhabdochlamydiaceae, 56

Rig-like receptors (RLRs), 227–229

RNA polymerases, in developmental cycle, 152, 155–156, 159–160

RNAs, small, in developmental cycle, 161–163

RsbW, in developmental cycle, 156–157

S

SAFE strategy, 8–9

Salmonella enterica serovar Typhi, persistence, 277–278

Sanger sequencing, 28

Scarring, 3, 5–7, 240–241, 272

Scc4 transcription regulator, 159–160

SCH1 protein, 130

Secretion systems, see also Type III secretion system definition, 192

effector proteins in, 202–207

therapeutic uses, 208–209

types, 192–194

Serovars, *Chlamydia trachomatis*, 5, 16

Sexually transmitted infections, *Chlamydia trachomatis*, 9–15

Sigma factors, in developmental cycle, 155–158

Simkania, 57

Simkania negevensis, 52, 65–66

SNARE (soluble NSF attachment protein receptor) proteins, 139–140, 172–173, 177

Sphingolipids, in inclusions, 176–177

Sphingomyelin, in host cell interaction, 136–138, 141–142

Sphingomyelin synthases, 178

Spindle assembly checkpoint, 182

Sponges, chlamydiae associated with, 54–55

STING protein, in immune recognition, 227–228

Supercoiling, DNA, in developmental cycle, 152–154, 161

Supernumerary centrosomes, 181–182

Surface, chlamydial, see Cell envelope

Symbiosis, environmental chlamydia, 52

Syphilis, persistence, 271–275, 279–281

T

T cells

for antigen detection, 319

immune function, 250–252, 314–315

Targeted induced local lesions in genomes (TILLING), 342–344

Tarp (translocated actin recruiting phosphoprotein), 127–131, 199, 202–203, 205

Temporal gene regulation, in developmental cycle, 149–169

eye genes, 160–161

in elementary bodies, 158–160

late genes, 155–158

midcycle genes, 152–155

model for, 163–165

overview, 149–152

small RNAs in, 161–163

Tetracycline, for trachoma, 8

TILLING (targeted induced local lesions in genomes), 342–344

Tim-Tom mitochondrial protein import complex, 181

Tissue tropism, *Chlamydia trachomatis*, 16

Toll-like receptors, 218–222, 229–231, 246–249, 253–254

Topoisomerases, in developmental cycle, 154

Toxoplasmiasis, persistence, 269–271, 279–280
Trachoma, 5–9
 animal models for, 289
 clinical features, 5–7
 control efforts, 8–9
 distribution, 5–6
 epidemiology, 5–6
 genetic predisposition, 8
 grading, 6–7
 immune mechanisms in, 8
 immunopathogenesis, 240–264
 natural history, 7
 pathogenesis, 315–316
 persistence, 273
 serovars and, 16
 transmission, 5–6
 vaccines for, 311–312, 315–316
Transcriptional profiles, developmental cycle, 150–152
Transcriptional repressor, in developmental cycle, 157–158
Transferrin, 180–181
Transformation, see Genetic transformation technology
Translocated actin recruiting phosphoprotein (Tarp), 127–131, 199, 202–203, 205
Translocation
 definition, 192
 effector, 201–207
 mechanisms, 193–194
Transposons, 339–341
Treponema pallidum, persistence, 271–275, 279–282
Trichiasis, 7, 240–241
TRIF, in immunopathogenesis, 247–248
Tryptophan, deficiency, 276–277
Tryptophan operon, 34
Tsp protein
 in immunopathogenesis, 249
 in secretion system, 205
Tuberculosis, persistence, 266–269, 280–281
Tumor necrosis factor alpha, in immunopathogenesis, 244–245
Type IV secretion system, 194
Type V secretion system, 194, 206
Typhoid fever, persistence, 277–278, 280–281
Tyrosine phosphorylation, 128–130

U
Urethritis, 11

V
Vaccines, 208–209, 311–333
 animal models for, 320
 antigens for, 316–324
 available for use, 311
 clinical trials, 324–325
 goals, 313
 historical perspective, 311–313
 pathogenic responses, 315–316
 protective immunity, 313–315
Vamp proteins, 172–173
VAP proteins, in inclusions, 178
Vesicles, outer membrane, 194
Vesicular trafficking, 177
Virulence factors and mechanisms, 249, 303
Vivax malaria, persistence, 266–269, 280–281

W
Waddlia chondrophila
 in animals, 63
 chlamydiae associated with, 55
 developmental cycle, 58
 discovery, 52
 genomics, 64–65
 host cell interactions with, 60
 miscarriage due to, 61–62
WAVE2 protein, 131
Whiteflies, chlamydiae associated with, 55–56
Whole-genome shotgun sequencing, 27–31
Wiskott-Aldrich syndrome protein homology domain, 128
World Health Organization, trachoma grading system, 6–7

X
Xenoturbella, chlamydiae associated with, 55, 57

Y
Yersinia, secretion systems, 197, 199–201

Z
Zoonotic pathogens, see Animal pathogens