SECOND EDITION

URINARY TRACT INFECTIONS
MOLECULAR PATHOGENESIS AND CLINICAL MANAGEMENT
To the memories of Walter Stamm, MD and Carleen Collins, PhD and to the courage of Richard Grady, MD and Laura Hart, MD
Contents

Contributors ix
Foreword xvii
Preface xix

I. CLINICAL ASPECTS OF URINARY TRACT INFECTIONS

1 Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection 3
Duane R. Hickling, Tung-Tien Sun, and Xue-Ru Wu

2 Clinical Presentations and Epidemiology of Urinary Tract Infections 27
Suzanne E. Geerlings

3 Diagnosis, Treatment, and Prevention of Urinary Tract Infection 41
Paula Pietrucha-Dilanchian and Thomas M. Hooton

4 Urinary Tract Infections in Infants and Children 69
Theresa A. Schlager

5 The Vaginal Microbiota and Urinary Tract Infection 79
Ann E. Stapleton

6 Asymptomatic Bacteriuria and Bacterial Interference 87
Lindsay E. Nicolle

7 Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions 121
John N. Krieger and Praveen Thumbikat

8 Urosepsis: Overview of the Diagnostic and Treatment Challenges 135
Florian M. E. Wagenlehner, Adrian Pilatz, Wolfgang Weidner, and Kurt G. Naber

II. ORIGINS AND VIRULENCE MECHANISMS OF UROPATHOGENIC BACTERIA

9 Reservoirs of Extraintestinal Pathogenic Escherichia coli 161
Amee R. Manges and James R. Johnson

10 Origin and Dissemination of Antimicrobial Resistance among Uropathogenic Escherichia coli 179
Lisa K. Nolan, Ganwu Li, and Catherine M. Logue
11 Population Phylogenomics of Extraintestinal Pathogenic
Escherichia coli 207
Jérôme Tourret and Erick Denamur

12 Virulence and Fitness Determinants of Uropathogenic
Escherichia coli 235
Sargurunathan Subashchandrabose and Harry L. T. Mobley

13 Uropathogenic Escherichia coli-Associated Exotoxins 263
Rodney A. Welch

14 Structure, Function, and Assembly of Adhesive Organelles
by Uropathogenic Bacteria 277
Peter Chahales and David G. Thanassi

15 Pathoadaptive Mutations in Uropathogenic Escherichia coli 331
Evgeni Sokurenko

16 Invasion of Host Cells and Tissues by Uropathogenic Bacteria 359
Adam J. Lewis, Amanda C. Richards, and Matthew A. Mulvey

17 Proteus mirabilis and Urinary Tract Infections 383
Jessica N. Schafer and Melanie M. Pearson

18 Epidemiology and Virulence of Klebsiella pneumoniae 435
Steven Clegg and Caitlin N. Murphy

19 Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection,
and the Emerging Microbiota of the Urinary Tract 459
Kimberly A. Kline and Amanda L. Lewis

20 Integrated Pathophysiology of Pyelonephritis 503
Ferdinand X. Choong, Haris Antypas, and Agneta Richter-Dahlfors

III. HOST RESPONSES TO URINARY TRACT INFECTIONS
AND EMERGING THERAPEUTICS

21 Susceptibility to Urinary Tract Infection: Benefits and Hazards of the
Antibacterial Host Response 525
Ines Ambite, Karoly Nagy, Gabriela Godaly, Manoj Puthia, Björn Wullt,
and Catharina Svanborg

22 Innate Immune Responses to Bladder Infection 555
Byron W. Hayes and Soman N. Abraham

23 Host Responses to Urinary Tract Infections and Emerging
Therapeutics: Sensation and Pain within the Urinary Tract 565
Lori A. Birder and David J. Klumpp

24 Drug and Vaccine Development for the Treatment and Prevention of
Urinary Tract Infections 589
Valerie P. O’Brien, Thomas J. Hannan, Hailyn V. Nielsen,
and Scott J. Hultgren

Index 647
Contributors

Soman N. Abraham
Departments of Pathology, Molecular Genetics & Microbiology, and Immunology
Duke University Medical Center
Durham, NC 27710
Program in Emerging Infectious Diseases
Duke-National University of Singapore
Singapore 169857

Ines Ambite
Department of Microbiology, Immunology and Glycobiology
Institute of Laboratory Medicine
Lund University
Lund, S-223 62
Sweden

Haris Antypas
Swedish Medical Nanoscience Center
Department of Neuroscience
Karolinska Institutet
SE-171 77, Stockholm
Sweden

Lori A. Birder
Departments of Medicine and Pharmacology and Chemical Biology
University of Pittsburgh School of Medicine
Pittsburgh, PA 15261

Peter Chahales
Center for Infectious Diseases and Department of Molecular Genetics and Microbiology
Stony Brook University
Stony Brook, NY 11794

Ferdinand X. Choong
Swedish Medical Nanoscience Center
Department of Neuroscience
Karolinska Institutet
SE-171 77, Stockholm
Sweden
Contributors

Steven Clegg
Department of Microbiology
University of Iowa College of Medicine
Iowa City, IA 52242

Erick Denamur
UMR 1137 INSERM and Université Paris Diderot, IAME,
Sorbonne Paris Cité
75018 Paris
France

Suzanne E. Geerling
Department of Internal Medicine, Division of Infectious Diseases
Center for Infection and Immunity Amsterdam (CINIMA)
Academic Medical Center
1105 AZ Amsterdam
The Netherlands

Gabriela Godaly
Department of Microbiology, Immunology and Glycobiology
Institute of Laboratory Medicine
Lund University
Lund, S-223 62
Sweden

Thomas J. Hannan
Department of Pathology & Immunology
Washington University Medical School
St. Louis, MO 63110

Byron W. Hayes
Department of Pathology
Duke University Medical Center
Durham, NC 27710

Duane R. Hickling
Division of Urology, Ottawa Hospital Research Institute
The Ottawa Hospital, University of Ottawa
Ottawa, ON K1Y 4E9
Canada

Thomas M. Hooton
Department of Medicine
University of Miami Miller School of Medicine
Miami, FL 33136

Scott J. Hultgren
Department of Molecular Microbiology
Center for Women's Infectious Disease Research
Washington University Medical School
St. Louis, MO 63110
James R. Johnson
Infectious Diseases Section
Veterans Affairs Medical Center
Minneapolis, MN 55417
Department of Medicine
University of Minnesota
Minneapolis, MN 55455

Kimberly A. Kline
Singapore Centre on Environmental Life Sciences Engineering
School of Biological Sciences
Nanyang Technological University
Singapore 637551

David J. Klumpp
Departments of Urology and Microbiology-Immunology
Feinberg School of Medicine
Northwestern University
Chicago, IL 60610

John N. Krieger
Department of Urology
University of Washington School of Medicine
Seattle, WA 98195

Adam J. Lewis
Division of Microbiology and Immunology
Pathology Department
University of Utah School of Medicine
Salt Lake City, UT 84112

Amanda L. Lewis
Department of Molecular Microbiology
Washington University School of Medicine
St. Louis, MO 63110

Ganwu Li
Department of Veterinary Microbiology and Preventive Medicine
College of Veterinary Medicine
Iowa State University
Ames, IA 50011

Catherine M. Logue
Department of Veterinary Microbiology and Preventive Medicine
College of Veterinary Medicine
Iowa State University
Ames, IA 50011

Amee R. Manges
School of Population and Public Health
University of British Columbia
Vancouver, BC V6T 1Z3
Canada
Contributors

Harry L.T. Mobley
Department of Microbiology and Immunology
University of Michigan Medical School
Ann Arbor, MI 48109

Matthew A. Mulvey
Division of Microbiology and Immunology
Pathology Department
University of Utah School of Medicine
Salt Lake City, UT 84112

Caitlin N. Murphy
Department of Microbiology
University of Iowa College of Medicine
Iowa City, IA 52242

Kurt G. Naber
Technical University
80333 Munich
Germany

Karoly Nagy
Department of Urology
South-Pest Hospital
Budapest 1204
Hungary

Lindsay E. Nicolle
Department of Internal Medicine and Medical Microbiology
University of Manitoba
Winnipeg, MB R3T 2N2
Canada

Hailyn V. Nielsen
Department of Molecular Microbiology
Center for Women's Infectious Disease Research
Washington University Medical School
St. Louis, MO 63110

Lisa K. Nolan
Department of Veterinary Microbiology and Preventive Medicine
College of Veterinary Medicine
Iowa State University
Ames, IA 50011

Valerie P. O'Brien
Department of Molecular Microbiology
Center for Women's Infectious Disease Research
Washington University Medical School
St. Louis, MO 63110
Melanie M. Pearson
Department of Microbiology
New York University Langone Medical Center
New York, NY 10016

Paula Pietrucha-Dilanchian
Department of Medicine
University of Miami Miller School of Medicine
Miami, FL 33136

Adrian Pilatz
Clinic for Urology, Pediatric Urology and Andrology
Justus-Liebig-University Gießen
D-35390 Gießen
Germany

Manoj Puthia
Department of Microbiology, Immunology and Glycobiology
Institute of Laboratory Medicine
Lund University
Lund, S-223 62
Sweden

Amanda C. Richards
Division of Microbiology and Immunology
Pathology Department
University of Utah School of Medicine
Salt Lake City, UT 84112

Agneta Richter-Dahlfors
Swedish Medical Nanoscience Center
Department of Neuroscience
Karolinska Institutet
SE-171 77, Stockholm
Sweden

Jessica N. Schaffer
Department of Microbiology
New York University Langone Medical Center
New York, NY 10016

Theresa A. Schlager
Department of Emergency Medicine
University of Virginia
Charlottesville, VA 22908

Evgeni Sokurenko
University of Washington
Seattle, WA 98195
Ann E. Stapleton
Division of Allergy and Infectious Diseases
Department of Medicine
University of Washington
Seattle, WA 98195

Sargurunathan Subashchandrabose
Department of Microbiology and Immunology
University of Michigan Medical School
Ann Arbor, MI 48109

Tung-Tien Sun
Departments of Cell Biology, Biochemistry and Molecular Pharmacology
Departments of Dermatology and Urology
New York University School of Medicine
New York, NY 10016

Catharina Svanborg
Department of Microbiology, Immunology and Glycobiology
Institute of Laboratory Medicine
Lund University
Lund, S-223 62
Sweden

David G. Thanassi
Center for Infectious Diseases and Department of Molecular Genetics and Microbiology
Stony Brook University
Stony Brook, NY 11794

Praveen Thumbikat
Department of Urology
Northwestern University School of Medicine
Chicago, IL 60611

Jérôme Tourret
Département d’Urologie, Néphrologie et Transplantation Groupe
Hospitalier Pitié-Salpêtrière
Assistance Publique-Hôpitaux de Paris
Université Pierre et Marie Curie
UMR 1137 INSERM and Université Paris Diderot, IAME, Sorbonne Paris Cité
75018 Paris
France

Florian M.E. Wagenlehner
Clinic for Urology, Pediatric Urology and Andrology
Justus-Liebig-University Gießen
D-35390 Gießen
Germany
Wolfgang Weidner
Clinic for Urology, Pediatric Urology and Andrology
Justus-Liebig-University Gießen
D-35390 Gießen
Germany

Rodney A. Welch
Department of Medical Microbiology and Immunology
University of Wisconsin School of Medicine and Public Health
Madison, WI 53706

Xue-Ru Wu
Departments of Urology and Pathology
New York University School of Medicine
Veterans Affairs, New York Harbor Healthcare Systems, Manhattan Campus
New York, NY 10016

Björn Wullt
Department of Microbiology, Immunology and Glycobiology
Institute of Laboratory Medicine
Lund University
Lund, S-223 62
Sweden
Urinary tract infection (UTI), the second most common infection of humans after pneumonia, has likely plagued the population for as long as humans have walked the face of the earth. The inception of antibiotics provided adequate therapy but did not prevent infections from recurring. While symptoms of the infections were well documented, little was known about the primary infecting pathogen, *Escherichia coli*. In 1976, Svanborg and colleagues demonstrated that *E. coli* causing acute pyelonephritis adhered in greater numbers to uroepithelial cells (1). Further research by several groups revealed that the adherence factor P fimbria was responsible. This structure was found to be comprised of a multi-protein complex with the actual adhesin placed at the tip of the fimbria. With the advent of molecular techniques, other advances arrived quickly. For example, in 1981, Welch and colleagues demonstrated that a knock out of the hemolysin gene attenuated *E. coli* in an intraperitoneal model (2). As discoveries abounded, some 14 years later, I teamed up with infectious diseases physician John W. Warren to edit a 15-chapter book titled *Urinary Tract Infections: Molecular Pathogenesis and Clinical Management*. This treatise covered the clinical aspect of UTI (5 chapters) and the molecular mechanisms of bacterial pathogenesis of UTI (10 chapters).

Now two decades have passed, and it was essential to update this broad topic. Editors Matthew A. Mulvey, David J. Klumpp, and Ann E. Stapleton have taken on the task of a second edition. The editors assembled an all-star lineup to cover the topic of clinical aspects of UTIs in eight chapters that include the anatomical and physiological aspects of UTI, clinical presentations, diagnosis and treatment, infections in children, involvement of the vaginal microbiome, asymptomatic UTI, prostatitis, pyelonephritis, and urosepsis (the most serious complication). In the second section (12 chapters), experts deal with reservoirs of infection, antimicrobial resistance, phylogeny, virulence, and fitness factors including exotoxins, structure of adhesins, adaptive mutations, and intracellular persistence, and this section includes chapters on other important uropathogens: *Proteus mirabilis*, *Klebsiella pneumoniae*, and Gram-positive pathogens. In the final section on host responses to UTI and emerging therapeutics (4 chapters), authors summarize the host response to UTI, innate immunity, sensation and pain in the bladder, and drug and vaccine development. Overall, this volume brings us up to date on the broad topic of UTI. Those interested in these common infections, whether it be in the laboratory or the clinic, will find the second
edition of *Urinary Tract Infections: Molecular Pathogenesis and Clinical Management* an indispensable book that should be on your shelf or on your computer. It is gratifying to see this critical topic brought up to date.

Harry L. T. Mobley
Frederick G. Novy Distinguished University Professor and Chair,
Department of Microbiology and Immunology
University of Michigan Medical School
Ann Arbor, Michigan

Preface

For centuries the pain and other symptoms associated with urinary tract infections (UTIs) were erroneously ascribed to the wrath of gods, bile, phlegm, bad air, or numerous other culprits. The treatments for UTIs were at times equally off-target and included the use of bleeding and enemas, while the administration of narcotics and certain herbs provided palliative support. In the late 1800s, as evidence for the germ theory of disease mounted in the wake of Pasteur and Koch, the idea that microbes were responsible for UTIs took hold. This led to the development of more efficacious treatment options, culminating in the discovery and optimization of antibiotics that continue to this day. These achievements coincided with stunning advancements in our understanding of cellular functions and developmental processes within the urinary tract, inflammatory responses, microbiology, and the roles of both innate and adaptive host defenses. Still, despite this progress, UTIs continue to rank among the most common of infectious diseases, with most UTIs being attributable to strains of uropathogenic Escherichia coli (UPEC).

In 1996, for the first edition of this book, Harry L. T. Mobley and John W. Warren assembled an all-star cast of authors to highlight the multiple host and bacterial factors that impact the pathogenesis and treatment of UTIs. A lot has happened since, including remarkable progress in our ability to sequence and manipulate both bacterial and host genomes. The first *E. coli* genome, belonging to the nonpathogenic strain MG1655, was sequenced in 1997, followed a few years later by the urosepsis isolate and reference UPEC strain CFT073. Today, several thousand *E. coli* genomes have been sequenced, including many UPEC isolates. These data have revealed a huge amount of diversity among UPEC isolates, while also shedding light on the evolution and adaptability of uropathogens. These developments overlapped with the adoption of new, more facile approaches to manipulate UPEC genomes, greatly enhancing our ability to disrupt and functionally test specific pathogen-associated loci. This work is providing leads for the generation of more efficacious therapeutics for the treatment and prevention of UTIs.

Though powerful, antibiotics have not provided a cure-all for UTIs. Many individuals endure multiple recurrent UTIs despite antibiotic treatments, while circumstances such as catheterization render others prone to chronic infections. Many UPEC isolates are now resistant to multiple antibiotics, including some drugs that should be reserved as last resort choices. In terms of medical costs and loss of life, the rapid emergence and expansion of multidrug-resistant UPEC and related strains in recent years is considered by some to be more problem-
atic than methicillin-resistant *Staphylococcus aureus* (MRSA) was over the past two decades. The rising tide of antibiotic-resistant UPEC strains is showing no signs of subsiding, being driven in part by the overuse and misuse of antibiotics in both the clinic and in agriculture. Epidemiology informed by sequencing data is showing how antibiotic resistance and other genetic elements move among UPEC strains, facilitated by human activities such as global travel and the utilization of high-throughput animal processing and food distribution networks. To better combat UTIs, and antibiotic-resistant strains in particular, scientists are working to create effective anti-UTI vaccines and new antibiotics that have fewer off-target effects. Some researchers are optimizing the use of probiotic bacterial strains that can interfere with UPEC colonization of the urinary tract, while others aim to develop antivirulence strategies that modify virulence mechanisms and host responses rather than the bacteria themselves. The realization that UPEC can act as facultative intracellular pathogens in both humans and mice is also spurring the development of new treatment approaches while at the same time challenging long-held views concerning the etiology of chronic and recurrent UTIs.

Advances in bacterial genomics have been complemented by the development of new approaches to identify UTI susceptibility factors in human populations. This work, coupled with robust UTI model systems, is beginning to explain why some individuals are more prone to UTIs, making links with innate host defense regulators, adaptive immunity, inflammatory responses, and pain perception within the urinary tract. Clinically, we are gaining a much more complete understanding of the host and bacterial factors that contribute to the onset and progression of UTIs, as well as variables that can confound treatments. These variables include patient age, sex, and catheterization, as well as the makeup of protective microbial communities within the vaginal microbiota, the gut, and potentially even the bladder itself.

In this book, leading experts have reviewed the clinical diagnostics and management of UTIs in adults and children, along with associated complications such as urosepsis and prostatitis. In other chapters we take a detailed look at the origins of UPEC and associated antibiotic-resistance factors, with consideration of bacterial population dynamics, genome architecture, and evolution. The mechanisms by which uropathogens colonize the urinary tract and cause disease are thoroughly examined, with analysis of the adhesive organelles and myriad other bacterial and host factors that affect UPEC survival and virulence within the urinary tract. This includes an assessment of innate and adaptive host responses that are triggered during the course of a UTI, and the protective effects of microbial communities within the urogenital tract. The molecular biology and clinical importance of other uropathogens, including *Klebsiella pneumoniae*, *Proteus mirabilis*, and Gram-positive opportunists such as *S. aureus*, are also discussed in detail. Finally, we turn our attention to emerging antibacterial therapeutics, including the use of probiotics and bacterial interference measures. Much of the information presented in the following pages builds on work that was just coming to light when the first edition of this book was published nearly 2 decades ago. We are eager to see where the next 20 years take the field and hope that this new book, like the first edition, serves as both a resource for the community and a stimulus for future research endeavors.

Matthew A. Mulvey
David J. Klumpp
Ann E. Stapleton
Index

ABC transporters, 237, 241, 573

Klebsiella pneumoniae, 440

Proteus mirabilis, 414–416

Staphylococcus aureus, 465

Abdominal stoma conduit, bacteriuria and, 93

Abscess

perirenal, 150

prostatic, 151

renal, 150

Accidental pathogen, 332

Acetohinocholine, 572–573

Acinetobacter baumannii, 180

ACTH (adrenocorticotrophic hormone), 138–139

Actinobacteria (phylum), 473, 476, 478, 480

Actinobaculum, 473–477, 482–484

Actinomyces, 478, 484

Activator protein 1 (AP-1), 525

Acute kidney injury (AKI), 513–514

Adaptive immunity

involvement in UTI, 543

recurrent UTI and, 610–611

Adenovirus, acute hemorrhagic cystitis and, 70

Adherence

interplay between adherence and motility, 245

in renal tubule, 506–507

Adherence factors. See Adhesins

Adhesins, 277–312

E. coli, 70–71

prostatitis isolates, 125–131

uropathogenic *E. coli* (UPEC), 592–599

Enterococcus, 466

Gram-negative uropathogens, 279–301

autotransporters, 293–300

Iha, 300

pili, 279–293

TosA, 300–301

Gram-positive uropathogens, 281, 301–311

EfbA, 307

MSCRAMMs, 301–307

pili, 307–311

Klebsiella pneumoniae, 442–445

overview, 277–279

pathoadaptive mutation and, 341–343

prostatitis isolates, 125–131

Staphylococcus saprophyticus, 463–464

as virulence factors, 334–335

Adjuvants, vaccine, 615–616

Adrenocorticotrophic hormone (ACTH), 138–139

Aerobactin, 126, 129, 238–239, 440, 602

Aerococcus, 472–473, 484

* Aeromonas hydrophila* aerolysin, 268–269

Afa/Dr family of pili, 281, 283–284

Afferent nerves, 567–569

Ag43, 298–299, 534

aggR gene, 125

Aging female

anatomy and physiology, 13–14

asymptomatic bacteriuria

diagnosis, 89

incidence, 93–94

microbiology of, 99

prevalence, 92, 94–95

immune breakdown in, 560

incidence of UTI, 79

prevalence of UTI, 13–14

Aging male, asymptomatic bacteriuria in

diagnosis, 89

incidence, 93–94

microbiology of, 99

prevalence, 92, 95

Agmatine, *Proteus mirabilis* swarming and, 397

AIDA-I, 293, 295

AIP autotransporter, 412

AKI (acute kidney injury), 513–514

Akt, 268

Algorithm, for management of urosepsis, 148–150

Allelic variation under positive selection, 214–215

Alldynia, 577–583

Alloscardovia omnicolens, 478

α-hemolysin (Hly), 126, 128–129, 246, 246, 253, 264–269

host response to, 507–508

mechanism, 267–269

renal damage and, 603–604

structure, 266–267

toxoid vaccine, 620

uropathogenic *E. coli* (UPEC), 264–269, 507–508

as virulence factor, 264–266

α-keto acids, 414

Aluminum-based adjuvants, 615

Acute kidney injury (AKI), 513–514

Adaptive immunity

involvement in UTI, 543

recurrent UTI and, 610–611

Adenovirus, acute hemorrhagic cystitis and, 70

Adherence

interplay between adherence and motility, 245

in renal tubule, 506–507

Adherence factors. See Adhesins

Adhesins, 277–312

E. coli, 70–71

prostatitis isolates, 125–131

uropathogenic *E. coli* (UPEC), 592–599

Enterococcus, 466

Gram-negative uropathogens, 279–301

autotransporters, 293–300

Iha, 300

pili, 279–293

TosA, 300–301

Gram-positive uropathogens, 281, 301–311

EfbA, 307

MSCRAMMs, 301–307

pili, 307–311

Klebsiella pneumoniae, 442–445

overview, 277–279

pathoadaptive mutation and, 341–343

prostatitis isolates, 125–131

Staphylococcus saprophyticus, 463–464

as virulence factors, 334–335

Adjuvants, vaccine, 615–616

Adrenocorticotrophic hormone (ACTH), 138–139

Aerobactin, 126, 129, 238–239, 440, 602

Aerococcus, 472–473, 484

Aeromonas hydrophila aerolysin, 268–269

Afa/Dr family of pili, 281, 283–284

Afferent nerves, 567–569

Ag43, 298–299, 534

aggR gene, 125

Aging female

anatomy and physiology, 13–14

asymptomatic bacteriuria

diagnosis, 89

incidence, 93–94

microbiology of, 99

prevalence, 92, 94–95

immune breakdown in, 560

incidence of UTI, 79

prevalence of UTI, 13–14

Aging male, asymptomatic bacteriuria in

diagnosis, 89

incidence, 93–94

microbiology of, 99

prevalence, 92, 95

Agmatine, *Proteus mirabilis* swarming and, 397

AIDA-I, 293, 295

AIP autotransporter, 412

AKI (acute kidney injury), 513–514

Akt, 268

Algorithm, for management of urosepsis, 148–150

Allelic variation under positive selection, 214–215

Alldynia, 577–583

Alloscardovia omnicolens, 478

α-hemolysin (Hly), 126, 128–129, 246, 246, 253, 264–269

host response to, 507–508

mechanism, 267–269

renal damage and, 603–604

structure, 266–267

toxoid vaccine, 620

uropathogenic *E. coli* (UPEC), 264–269, 507–508

as virulence factor, 264–266

α-keto acids, 414

Aluminum-based adjuvants, 615
Ambient temperature fimbria (ATF), 409
Amikacin
 origin of, 195
 resistance, 196
Aminoglycoside acetyltransferase, 191
Aminoglycosides
 for catheter-associated UTI, 34
 indications, 195
 mechanism of action, 196
 origin of, 195
 resistance, 144, 591
 mechanisms, 196
 prevalence, 196
 side effects, 195
 for uncomplicated pyelonephritis, 54
 for urosepsis, 141–143, 146
 for UTI in children, 74
Amoxicillin
 for asymptomatic bacteriuria, 106
 resistance, 58
Amoxicillin-clavulanic acid
 for asymptomatic bacteriuria, 106
 for ESBL-producing E. coli, 49
 for pyelonephritis during pregnancy, 31
 for uncomplicated cystitis, 51–52
 for UTI during pregnancy, 31
 for UTI in children, 74
Ampicillin resistance, 124, 145
Amplification of gene copies, 337
Amygdala, 582
Anaerococcus, 483
A. lactolyticus, 482
Analgesia in the bladder, bacterial, 580, 582–583
Anatomy, 3–18
 abnormalities, 10–14
 in aging female, 13–14
 asymptomatic bacteriuria and, 100
 bladder-outlet obstruction, 12–13
 calyceal diverticula, 11
 in children, 71
 medullary sponge kidney, 10–11
 pelvic anatomy, 13
 ureteral obstruction, 11–12
 vesicoureteric reflux, 12
 bladder, 4–5
 microscopic, 6–8
 upper urinary-collecting system, 4
 ureterovesical junction, 4, 5
 urethra, 5–6
 vagina, 6
Animal models, for polymicrobial UTI, 461–462
Anterior vaginal-wall prolapse (cystocele), 14
Antibacterial peptides, UTI susceptibility and, 538
Antibiotic prophylaxis. See Antimicrobial prophylaxis
Antibiotics. See Antimicrobial(s)
Anticholinergic medications, for neurologic patients, 17
Antigen 43, 249
Antimicrobial(s)
 growth promoters, 170
 intracellular bacterial communities, effectiveness against, 600
 stewardship, 170
 use in food animals, 170
Antimicrobial peptides, 556
 Klebsiella pneumoniae interactions with, 439
 in neutrophil granules, 509
 produced by nephron urothelium, 509
Antimicrobial prophylaxis, 56–58, 591
 in catheterized patients, 33
 continuous prophylaxis, 57
 postcoital prophylaxis, 56–57
 self-diagnosis and self-treatment, 57–58
 special considerations about, 58
 with vesicoureteral reflux, 75
Antimicrobial resistance, 179–198
 avian pathogenic E. coli (APEC), 183–187, 197
 ExPEC, 162–167, 170
 Klebsiella pneumoniae, 448–449
 mechanisms of, 187–198
 aminoglycosides, 195–196
 β-lactams, 191–193
 fluoroquinolones, 190–191
 fosfomycin, 194
 nitrofurantoin, 193–194
 overview, 187–188
 silver-containing agents, 197–198
 tetracyclines, 194–195
 trimethoprim-sulfamethoxazole, 189–190
 origins of, 180–187
 overview, 48–49
 in UTI prophylaxis, 58
 vancomycin-resistant S. aureus (VRSA), 144–145
Antimicrobial therapy
 in children, 73–74
 in pregnant women, 31–32
 pyelonephritis, 514–515
 for urosepsis, 141–147
 vaginal microbiotic alterations with, 82
AP-1 (activator protein 1), 525
APEC. See Avian pathogenic E. coli
Apoptosis, FimH-dependent urothelial, 575–578
Arginine, Proteus mirabilis swarming and, 397
Arthrobacter, 484
Aspiratory samples, 89, 90
Asymmetric unit membrane (AUM), 365, 566
Asymptomatic bacteriuria, 87–111
 analgesic activity, 580, 582–583
 ASB strains as therapy, 607–608
 bacterial interference, 110–111
 in children, 71
 co-evolution of bacteria and host, 541
Corynebacterium urealyticum, 473
defined, 87
deliberate establishment of, 542
in diabetics, 34–35
diagnosis, 88–91
aspiration samples, 90
catheter specimens, 90
inflammatory markers, 90–91
in men, 89–90
pyuria, 90–91
quantitative urine culture, 88
voided urine specimens, 88–90
in women, 88–89
differential diagnosis, 543–544
epidemiology, 91–94
prevalence, 36, 91–93, 529
group B Streptococcus, 469–470
innate immune system and, 561
microbiology of, 97–100
catheterized patients, 99–100
diabetic women, 98–99
healthy women, 98
infants and children, 98
institutionalized elderly, 99
older women and men, 99
pregnant women, 98
as model for pathoadaptive mutation in UPEC, 339–340
molecular characteristics of susceptibility, 529, 532, 534, 539–541
morbidity and mortality, 100–104
after invasive genitourinary procedures, 104
catheterized patients, 103–104
diabetic women, 101–102
elderly patients, 102–103
healthy women, 101
infants and children, 100–101
pregnant women, 102
mutation in strains, 345–346
natural history, 97–104
microbiology, 97–100
morbidity and mortality, 100–104
overview, 28–29, 87
pathogenesis, 94–97
host factors, 94–95
organism factors, 95–97
in pregnant women, 31, 469–470, 611
prevalence of, 36, 91–93, 529
Proteus mirabilis, 383
reductive evolution in, 529
screening for and treatment of, 104–110
after invasive genitourinary procedures, 109
children, 104–105
diabetic patients, 107
elderly institutionalized patients, 107
indwelling urethral catheter patients, 107–108
older women, 107
pregnant women, 105–107
renal transplant patients, 109–110
spinal cord injury patients, 109
in vivo evolution of E. coli strains, 215
ATF (ambient temperature fimbria), 409
Atopobium, 483
ATP, as autocrine mediator, 573–574
Atrophic vaginitis, 82
Attachment inhibitors, 60, 542
Attenuated vaccines, 619
Augmentation cystoplasty, bacteriuria and, 93
AVM (asymmetric unit membrane), 365
Autotransporter toxins, 247
Autotransporters, 248–249, 271, 293–300, 534
functions in uropathogenic E. coli (UPEC), 298–300
Ag43, 298–299
FdeC, 300
UpaB, 299
UpaG, 299
UpaH, 299
overview, 293–295
Proteus mirabilis, 411–412
secretion pathway, 296–298
structure, 295–296
Avian pathogenic E. coli (APEC), 166, 168, 208
antimicrobial resistance, 183–187, 197
relationship to NMEC and UPEC strains, 216
sequencing of O1:K1:H7 strain, 212
Bacillus cereus pili, 308
Bacterial interference, 110–111
Bacterial prostatitis. See Prostatitis
Bacterial spectrum in urosepsis, 143–144
Bacterial vaginosis (BV), 82, 472–477, 477, 480, 482–483, 485
Bacteriuria
asymptomatic, 28–29, 45, 55
catheter-associated, 32–33, 460
Gardnerella vaginalis, 477
interpretation of urine culture results, 44–45
microbiology of, 97–100
natural history of, 97–104
patterns of response to therapy, 35
in pregnancy, 15, 469–470
in prostatitis, 122, 124
rapid detection strategies, 45
threshold for diagnosis, 27
Bacteroides, 479, 482
Bam complex, 297–298
BarA-UvRY two-component system, 601
Barrier function, urothelial, 569
Bedwetting, 72
Behavioral risk factors for asymptomatic bacteriuria, 94
Benign prostatic hyperplasia (BPH) and bladder-outlet obstruction, 13
β-defensin, 542, 556
β-hemolysin, group B Streptococcus, 471
Beta-lactam antibiotics
mode of action of, 191
recurrence of UTI associated with, 82
resistance
mechanism, 192
prevalence, 192–193
for uncomplicated cystitis, 50–52
for uncomplicated pyelonephritis, 53–54
for urosepsis, 141–142
for UTI during pregnancy, 31
β-lactam inhibitor (BLI), for urosepsis, 146
β-lactamases, 180, 192–193
extended-spectrum beta lactamases (ESBL), 28, 49, 74, 162–163, 165–166, 168, 192
New Delhi metallo (NDM) β-lactamases, 163, 193, 214
Biarylmannose-derivative FimH antagonists, 605–606
Bifidobacterium, 478, 483
Biofilms, 90, 95, 97
catheter-associated bacteria, 460–462
CAUTI and, 605, 609
curl, 247
Enterococcus, 466–467, 604–605, 609
Klebsiella pneumoniae, 436, 444–448
matrix composition, 247
prevention of urinary catheter biofilm formation, 421–422
Proteus mirabilis, 385, 405–406, 417, 419, 421–422
Staphylococcus epidermidis, 465
uropathogenic E. coli (UPEC), 247–248
gene expression within, 248
inhibition of formation, 248
regulation of formation, 248
in urosepsis, 143
Bladder
anatomy, 4–5
diabetic cystopathy, 14
filling and emptying, neural control of, 567–568
micturition cycle, 9–10
neurogenic, 42, 71, 218
primary bladder-neck obstruction (PBNO), 16
urothelium, 7
Bladder cells, bacterial invasion of, 360–371
Bladder epithelial cells, 556–557
Bordetella pertussis, 293, 296
Bruton’s tyrosine kinase (BTK), 531
BV. See Bacterial vaginosis
“By-product of commensalism” hypothesis, 224
Cadherin, 570
Calcitonin gene-related peptide (CGRP), 568, 572
Calcium (Ca^{2+}) signaling, 508
Calyceal diverticula, 11
Calyces, 4
Candida spp., asymptomatic bacteriuria and, 97
Capsule
E. coli prostatitis isolates, 125–128
group B Streptococcus, 471
group II type, 248, 249
Klebsiella pneumoniae, 436–439
K1-type, 249
Proteus mirabilis swarming and, 395–396
shift in antigenicity, 338
Staphylococcus saprophyticus, 464
uropathogenic E. coli (UPEC), 248, 249–250
Carbapenem
resistance, 144, 448
for urosepsis, 146
CARS (counter-regulatory anti-inflammatory response syndrome), 138
CAS (chrome azul S) assay, 414, 417
Caspases, 576
Cathelicidin, 370, 509–510, 538, 556
Catheter-acquired bacteriuria
morbidity, 103–104
treatment, 107–108
Catheter-associated urinary tract infections (CAUTIs)
biofilms and, 460–462, 605, 609
daily risk, 590
Enterococcus faecalis, 306, 310–311, 461, 466–469, 604–605, 609
Escherichia coli strains infecting, 218
Gram-positive uropathogens, 460–462, 465
Klebsiella pneumoniae, 435–436, 445, 448–450
overview, 32–34
percentage of health care-associated infections, 590
polymicrobial, 462
prevention using probiotic E. coli, 561
Proteus mirabilis, 384, 385, 419–422
role of adherence and biofilm formation in, 605
Staphylococcus epidermidis, 465
treatment, 33–34
Catheterization
clean intermittent catheterization (CIC), for neurologic patients, 17
risk increase for asymptomatic bacteriuria, 95
Catheters
bacterial interferences and, 110–111
biofilms on, 90, 95, 97, 447–448
indwelling, 32–34, 93
bacterial interference, 111
bacteriuria, 95, 103, 107–108
obstruction, 385
prevention of urinary catheter biofilm formation, 421–422
silver-coated, 197
urine samples for asymptomatic bacteriuria
diagnosis, 90
Cats, as ExPEC reservoir, 165–166
Cavernitis, 151
CCLs, 535
ccmA, 396
CDC42, 533
Cefixime, for bacterial prostatitis, 124–125
Cefotaxime resistance, 144–145, 192
Ceftazidime resistance, 144
Ceftriaxone, for uncomplicated pyelonephritis, 54
Cell membrane receptors, genetic variants affecting, 396
Cell-cell communication, 251
Cellobiose metabolism, by Klebsiella pneumoniae, 448
Cellular invasion, by Proteus mirabilis, 399–400
Central nervous system circuits in cystitis pain, 581–582
Cephalosporin for pyelonephritis during pregnancy, 31
resistance, 49, 144, 476, 591
for urosepsis, 142–147
for UTI in children, 74
Cephalothin resistance, 124
Ceramide, 289, 532
CGRP (calcitonin gene-related peptide), 568, 572
Chaperone/usher (CU) assembled pili, 243, 251,
279–289
adhesins, 283–284, 592
assembly at outer membrane, 285–286
chaperone-subunit complex formation, 284–285
fiber, 281–283
functions of, 287–289
gene clusters, 282
inhibitors, 607
Klebsiella pneumoniae, 443
P pili, 289
pilus usher, 286–287
structure, 281–284
type 1 pili, 287–288
Chemotaxis, 245
Children
asymptomatic bacteriuria
diagnosis, 88
incidence, 93
microbiology, 99
morbidity, 100–101
prevalence, 92
screening, 104–105
treatment, 104–105
urinary tract infection in, 69–75
clinical presentation, 72
diagnosis, 72–73
epidemiology, 69–70
imaging, 74–75
laboratory work-up, 72–73
management and treatment, 73–74
overview, 30–31
pathogenesis, 70–71
prophylaxis, 75
treatment, 31
vesicoureteral reflux, 70–72
vesicoureteral reflux, 70–72, 100, 105
Chitosan, as bladder cell exfoliant, 372
Chrome azul S (CAS) assay, 414, 417
Chronic pelvic pain syndrome (CPPS)
E. coli in, 129–132
pathogenesis of, 131–132
virulence factors in, 130
Chronic prostatitis/chronic pelvic pain syndrome
(CP/CPPS), 36
Chronic urinary retention, 13
ChuA, 239, 240
Ciprofloxacin
for asymptomatic bacteriuria, 108
for prophylaxis, 57–58
resistance, 144–145, 191, 476, 591
for uncomplicated cystitis, 50–52
for uncomplicated pyelonephritis, 53–54
for urosepsis, 142–147
Circumcision, 71
Citrobacter
asymptomatic bacteriuria, 97
C. freundii
adhesins, 280
intracellular bacterial communities (IBCs), 600
Clathrin-coated pits, 595
Claudins, 566
Clean intermittent catheterization (CIC), for
neurologic patients, 17
Clean-catch technique, 43–44
ClfA, 301–302, 304
Clinical diagnosis of urinary tract infection, 41–42
Clinical syndromes
acute pyelonephritis, 30
asymptomatic bacteriuria, 28–29
complicated UTI, 29–30
prostatitis, 30
special patient groups
catheterized patients, 32–34
children, 30–31
diabetes mellitus, 34–35
men, 31
pregnant women, 31–32
uncomplicated cystitis, 29
urosepsis, 30
Clostridium difficile
antimicrobial resistance, 180
colitis, 591
diarrhea, UTI prophylaxis and, 58
INDEX

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clot formation, in pyelonephritis</td>
<td>511–512</td>
</tr>
<tr>
<td>Clue cells</td>
<td>480, 485</td>
</tr>
<tr>
<td>CmA</td>
<td>395–396</td>
</tr>
<tr>
<td>Cna</td>
<td>301–302, 304</td>
</tr>
<tr>
<td>CNA-1, See Cytotoxin necrotizing factor-1</td>
<td></td>
</tr>
<tr>
<td>Coagulase-negative staphylococci, asymptomatic bacteriuria and</td>
<td>97</td>
</tr>
<tr>
<td>Colibactin</td>
<td>126, 128–129</td>
</tr>
<tr>
<td>Colicin</td>
<td>126</td>
</tr>
<tr>
<td>Collagen hug model of ligand binding</td>
<td>302–304</td>
</tr>
<tr>
<td>Colony morphology, variation in E. coli</td>
<td>337–338</td>
</tr>
<tr>
<td>Commensals</td>
<td>529</td>
</tr>
<tr>
<td>as opportunistic pathogens</td>
<td>332</td>
</tr>
<tr>
<td>as virulence as by-product of commensalism</td>
<td>224</td>
</tr>
<tr>
<td>Community-acquired UTI</td>
<td>28</td>
</tr>
<tr>
<td>Companion animal reservoirs of ExPEC</td>
<td>165–166</td>
</tr>
<tr>
<td>Comparative genomics, of UPEC strains</td>
<td>211</td>
</tr>
<tr>
<td>Compensatory endocytosis</td>
<td>365</td>
</tr>
<tr>
<td>Complement-mediated phagocytosis</td>
<td>556–557</td>
</tr>
<tr>
<td>Complicated urinary tract infection (UTI)</td>
<td>28, 460</td>
</tr>
<tr>
<td>defined</td>
<td></td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>604–605</td>
</tr>
<tr>
<td>Gram-positive uropathogens</td>
<td>460</td>
</tr>
<tr>
<td>overview of clinical syndrome</td>
<td>29–30</td>
</tr>
<tr>
<td>treatment</td>
<td>29–30</td>
</tr>
<tr>
<td>Condom catheter</td>
<td>89, 95</td>
</tr>
<tr>
<td>Conjugate vaccines</td>
<td>619–620</td>
</tr>
<tr>
<td>Conjugative plasmids</td>
<td>180, 182</td>
</tr>
<tr>
<td>Conjugative transposons</td>
<td>182</td>
</tr>
<tr>
<td>Contamination, of voided urine sample</td>
<td>43–44</td>
</tr>
<tr>
<td>Contraceptive method, effect on vaginal microbiota</td>
<td>82</td>
</tr>
<tr>
<td>Convergent evolution</td>
<td>350</td>
</tr>
<tr>
<td>Corticotropin-releasing factor/hormone</td>
<td>139, 568, 571–572</td>
</tr>
<tr>
<td>Corynebacterium</td>
<td>484</td>
</tr>
<tr>
<td>C. diptheriae pilis</td>
<td>278, 307, 308, 310</td>
</tr>
<tr>
<td>C. renale pilis</td>
<td>278</td>
</tr>
<tr>
<td>C. urealyticum</td>
<td>473</td>
</tr>
<tr>
<td>Cost of urinary tract infections</td>
<td>36–37, 79–80, 236, 556</td>
</tr>
<tr>
<td>Counter-regulatory anti-inflammatory response syndrome (CARS)</td>
<td>138</td>
</tr>
<tr>
<td>Cox2, 537–538</td>
<td></td>
</tr>
<tr>
<td>COX-2 (cyclooxygenase-2) inhibitors</td>
<td>558</td>
</tr>
<tr>
<td>CP923, 618–619</td>
<td></td>
</tr>
<tr>
<td>CP/CPPS (chronic prostatitis/chronic pelvic pain syndrome)</td>
<td>36</td>
</tr>
<tr>
<td>cps gene cluster</td>
<td>438</td>
</tr>
<tr>
<td>Cpx</td>
<td>601</td>
</tr>
<tr>
<td>Cranberry</td>
<td>55, 75, 372, 515, 608–609</td>
</tr>
<tr>
<td>Crosstalk, molecular</td>
<td>513</td>
</tr>
<tr>
<td>csg gene cluster</td>
<td>290–292</td>
</tr>
<tr>
<td>CsrA, 394</td>
<td></td>
</tr>
<tr>
<td>CTX-M</td>
<td></td>
</tr>
<tr>
<td>CTX-M-1, 168</td>
<td></td>
</tr>
<tr>
<td>CTX-M-9, 168</td>
<td></td>
</tr>
<tr>
<td>CTX-M-15, 162–163</td>
<td></td>
</tr>
<tr>
<td>CTX-M-32, 168</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>213–215</td>
</tr>
<tr>
<td>extended-spectrum beta-lactamase (ESBL)</td>
<td>49, 192</td>
</tr>
<tr>
<td>CueO, 339</td>
<td></td>
</tr>
<tr>
<td>Culture-negative urine</td>
<td>481</td>
</tr>
<tr>
<td>Curli, 247, 278, 289–293</td>
<td></td>
</tr>
<tr>
<td>assembly machinery</td>
<td>292</td>
</tr>
<tr>
<td>assembly on the bacterial surface</td>
<td>291–292</td>
</tr>
<tr>
<td>extracellular nucleation-precipitation</td>
<td>292</td>
</tr>
<tr>
<td>functions in UPEC, 292–293</td>
<td></td>
</tr>
<tr>
<td>structure</td>
<td>292–293</td>
</tr>
<tr>
<td>as virulence factor</td>
<td>534</td>
</tr>
<tr>
<td>Curlicide</td>
<td>607</td>
</tr>
<tr>
<td>CXCL1, 559</td>
<td></td>
</tr>
<tr>
<td>CXCL2, 537–560</td>
<td></td>
</tr>
<tr>
<td>CXCL8, 534–535</td>
<td></td>
</tr>
<tr>
<td>CXCR1, 504, 508, 535, 540, 560</td>
<td></td>
</tr>
<tr>
<td>CXCR2, 535</td>
<td></td>
</tr>
<tr>
<td>Cyclic adenosine monophosphate (cAMP) and UPEC expulsion</td>
<td>599</td>
</tr>
<tr>
<td>Cyclooxygenase-2 (COX-2) inhibitors</td>
<td>558, 603</td>
</tr>
<tr>
<td>Cyclophosphamide-induced cystitis</td>
<td>581</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>338</td>
</tr>
<tr>
<td>Cystitis</td>
<td></td>
</tr>
<tr>
<td>acute cystitis, modeling the outcomes of</td>
<td>602–603</td>
</tr>
<tr>
<td>acute hemorrhagic cystitis</td>
<td>70</td>
</tr>
<tr>
<td>acute uncomplicated cystitis</td>
<td></td>
</tr>
<tr>
<td>antimicrobial treatment</td>
<td>29</td>
</tr>
<tr>
<td>clinical diagnosis</td>
<td>42</td>
</tr>
<tr>
<td>overview</td>
<td>29</td>
</tr>
<tr>
<td>treatment</td>
<td>49–53</td>
</tr>
<tr>
<td>clinical diagnosis</td>
<td>42</td>
</tr>
<tr>
<td>clinical picture</td>
<td>150</td>
</tr>
<tr>
<td>CNS circuits in pain</td>
<td>581–582</td>
</tr>
<tr>
<td>Corynebacterium urealyticicum encrusting cystitis</td>
<td>473</td>
</tr>
<tr>
<td>cyclophosphamide-induced cystitis</td>
<td>581</td>
</tr>
<tr>
<td>dipstick diagnosis</td>
<td>46–47</td>
</tr>
<tr>
<td>incidence</td>
<td>36</td>
</tr>
<tr>
<td>interpretation of urine culture results</td>
<td>44</td>
</tr>
<tr>
<td>modeling outcomes of acute, 602–603</td>
<td></td>
</tr>
<tr>
<td>polymicrobial</td>
<td>481</td>
</tr>
<tr>
<td>symptoms</td>
<td>29, 527, 589</td>
</tr>
<tr>
<td>Cystocele</td>
<td>14</td>
</tr>
<tr>
<td>Cytokines</td>
<td></td>
</tr>
<tr>
<td>as markers of the septic response</td>
<td>138</td>
</tr>
<tr>
<td>pro-inflammatory</td>
<td>138–139</td>
</tr>
<tr>
<td>response to infection</td>
<td>534–535</td>
</tr>
<tr>
<td>Cytolethal-distending toxin</td>
<td>126</td>
</tr>
<tr>
<td>DAF (decay-accelerating factor)</td>
<td>342–343</td>
</tr>
<tr>
<td>DamX, 371</td>
<td></td>
</tr>
</tbody>
</table>
Debilitated patients, *Escherichia coli* strains infecting, 218
Decay-accelerating factor (DAF), 342–343
Defensins, 439, 509, 538
DegP periplasmic protease, 285
Denaturing high-performance liquid chromatography (DHPLC), 482
Dendritic-cell maturation, *Klebsiella pneumoniae* induction of, 439
Detrusor-external sphincter dyssynergia (DESD), 16–17
Dexamethasone, 53
DHFR (dihydrofolate reductase), 182, 189
DHPLC (denaturing high-performance liquid chromatography), 482
DHPPP (dihydro-6-hydroxymethylpterin-pyrophosphate), 189
DHP (dihydropteroylpyrophosphate), 189
Diabetes mellitus, 14–15
asymptomatic bacteriuria, 95
diagnosis, 89
microbiology of, 98–99
morbidity, 101–102
prevalence, 92
treatment, 107
Enterococcus UTI, 466
UTI in, 34–35
asymptomatic bacteriuria, 34–35
complications, 34
risk of recurrent, 34
treatment, 34
Diabetic cystopathy, 14
Diagnosis, 27, 41–48
asymptomatic bacteriuria, 88–91
aspiration samples, 90
catheter specimens, 90
inflammatory markers, 90–91
in men, 89–90
pyuria, 90–91
quantitative urine culture, 88
voided urine specimens, 88–90
in women, 88–89
clinical, 41–42
Gram-positive UTI, 460
laboratory, 43–48, 72–73, 460
dipsticks, 46–48, 460
interpretation of culture results, 44–45
LE (leukocyte esterase), 46–48
nitrite testing, 46–48
pyuria, 45
rapid detection for bacteriuria, 45
voided urine collection techniques, 43–44
voided urine contamination, 43–44
voided urine culture, 43
point of care for UTI, 460
self, 57–58
UTI in children, 72–73
Dialister, 482
Dibekacin, origin of, 195
Dienes line, 401–402
Differential diagnosis, molecular tools for, 543–544
Dihydrofolate reductase (DHFR), 182, 189
Dihydro-6-hydroxymethylpterin-pyrophosphate (DHPPP), 189
Dihydropilloate synthase (DHPS), 189
Dimercaptosuccinic acid (DMSA) scans, 527
Dipsticks, 43, 46–48, 73, 460
DisA decarboxylase, 393–394
D-mannose, 60
DMSA (dimercaptosuccinic acid) scans, 527
DNA gyrase, 190, 336
DNA microarrays, 254
DNA topoisomerase IV, 190
DNA-mismatch repair genes, 338–339
Dock, lock, and latch model, 304
Dogs, as ExPEC reservoir, 165–166
Doppler ultrasonography, for renal scarring detection, 75
Doripenem, 143
Dorsal-root ganglia, 567
Doxycycline, for bacterial prostatitis, 124–125
Dr adhesins
mutations in, 342–343
vaccine targeting, 622
DraE adhesin, 343
DsdA, 339
Dynamin2, 367
Dysfunctional voiding, 16
Dysuria
in cystitis, 29
in prostatitis, 122, 124
EAEC (enteroaggregative *Escherichia coli*)
prostatitis, 125
Ehp, 307–311, 467, 596, 605, 624
Eco-evo view of bacterial pathogens, 331–333
Ecto-enzymes, 574
Efflux pumps
in aminoglycosides, 196
β-lactam resistance, 192
fluoroquinolone resistance, 190–191
Klebsiella pneumoniae, 449
EHEC (enterohemorrhagic *E. coli*), quorum-sensing system in, 251
EibD autotransporter, 296
Epidermal-growth factor (EGF), 572
Elderly individuals
immune breakdown in, 560
invasive group B *Streptococcus* disease in, 470
Encopresis, 30
Encrusting cystitis, *Corynebacterium urealyticum* and, 473
Endocytosis
compensatory, 365
urothelial, 569
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endothelial NOS (eNOS)</td>
<td>573</td>
</tr>
<tr>
<td>Endotoxin</td>
<td>138</td>
</tr>
<tr>
<td>endotoxemia</td>
<td>611</td>
</tr>
<tr>
<td>vaccine</td>
<td>619</td>
</tr>
<tr>
<td>Enterogagregative Escherichia coli (EAEC) prostatitis</td>
<td>125</td>
</tr>
<tr>
<td>Enterobacter</td>
<td></td>
</tr>
<tr>
<td>antimicrobial resistance</td>
<td>48</td>
</tr>
<tr>
<td>E. cloacae</td>
<td></td>
</tr>
<tr>
<td>antimicrobial resistance</td>
<td>145</td>
</tr>
<tr>
<td>pyelonephritis</td>
<td>150</td>
</tr>
<tr>
<td>intracellular bacterial communities (IBCs)</td>
<td>600</td>
</tr>
<tr>
<td>urinary tract infection in children</td>
<td>70</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td></td>
</tr>
<tr>
<td>asymptomatic bacteriuria</td>
<td>97</td>
</tr>
<tr>
<td>fluoroquinolone resistance</td>
<td>190</td>
</tr>
<tr>
<td>incompatibility groups</td>
<td>187</td>
</tr>
<tr>
<td>plasmid replicons</td>
<td>187</td>
</tr>
<tr>
<td>UTI in children</td>
<td>70</td>
</tr>
<tr>
<td>Enterobacterial-repetitive intergenic-consensus (ERIC) polymerase chain reaction (PCR)</td>
<td>213, 217</td>
</tr>
<tr>
<td>Enterobactin</td>
<td>238–239, 534, 602</td>
</tr>
<tr>
<td>Enterochelin</td>
<td>440</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>459, 461–462, 466–469</td>
</tr>
<tr>
<td>asymptomatic bacteriuria</td>
<td>97</td>
</tr>
<tr>
<td>catheter-associated UTI (CAUTI)</td>
<td>461, 466–469</td>
</tr>
<tr>
<td>E. faecalis</td>
<td></td>
</tr>
<tr>
<td>Ace</td>
<td>301–304, 306</td>
</tr>
<tr>
<td>adhesins</td>
<td>281, 301–302, 307–311</td>
</tr>
<tr>
<td>antimicrobial resistance</td>
<td>144–145</td>
</tr>
<tr>
<td>biofilm</td>
<td>604–605, 609</td>
</tr>
<tr>
<td>catheter-associated UTI (CAUTI)</td>
<td>306, 310–311, 461, 591, 604–605, 609</td>
</tr>
<tr>
<td>Ebp pilus</td>
<td>605</td>
</tr>
<tr>
<td>inhibition biofilm formation</td>
<td>248</td>
</tr>
<tr>
<td>invasion of host cells</td>
<td>372</td>
</tr>
<tr>
<td>laboratory model for study of</td>
<td>461</td>
</tr>
<tr>
<td>nosocomial UTIs</td>
<td>301, 306</td>
</tr>
<tr>
<td>pili</td>
<td>307–311, 467, 596</td>
</tr>
<tr>
<td>sortases</td>
<td>604–605</td>
</tr>
<tr>
<td>urine contamination</td>
<td>480</td>
</tr>
<tr>
<td>UTI</td>
<td>459, 461–462, 466–469</td>
</tr>
<tr>
<td>E. faecium</td>
<td>604</td>
</tr>
<tr>
<td>adhesins</td>
<td>281</td>
</tr>
<tr>
<td>antimicrobial resistance</td>
<td>144–145</td>
</tr>
<tr>
<td>pili</td>
<td>307–311</td>
</tr>
<tr>
<td>epidemiology of UTI</td>
<td>466</td>
</tr>
<tr>
<td>frequency of urinary tract colonization</td>
<td>504</td>
</tr>
<tr>
<td>immune responses to</td>
<td>467–469</td>
</tr>
<tr>
<td>urosepsis</td>
<td>143</td>
</tr>
<tr>
<td>UTI in children</td>
<td>70</td>
</tr>
<tr>
<td>vaccines</td>
<td>624</td>
</tr>
<tr>
<td>virulence factors</td>
<td>466–467</td>
</tr>
<tr>
<td>Enterohemorrhagic E. coli (EHEC), quorum-sensing system in</td>
<td>251</td>
</tr>
<tr>
<td>Enteropathogenic Escherichia coli (EPEC) intimin protein</td>
<td>300</td>
</tr>
<tr>
<td>Environmental reservoirs of ExPEC</td>
<td>164–165</td>
</tr>
<tr>
<td>EPEC (enteropathogenic Escherichia coli) intimin protein</td>
<td>300</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>36–37</td>
</tr>
<tr>
<td>asymptomatic bacteriuria</td>
<td>91–94</td>
</tr>
<tr>
<td>incidence</td>
<td>93–94</td>
</tr>
<tr>
<td>prevalence</td>
<td>91–93</td>
</tr>
<tr>
<td>ExPEC strains</td>
<td>215–219</td>
</tr>
<tr>
<td>urinary tract infection</td>
<td>590, 592</td>
</tr>
<tr>
<td>in children</td>
<td>69–70</td>
</tr>
<tr>
<td>of enterococcal</td>
<td>466</td>
</tr>
<tr>
<td>group B Streptococcus UTI</td>
<td>469</td>
</tr>
<tr>
<td>polymicrobial</td>
<td>461–462</td>
</tr>
<tr>
<td>Staphylococcus saprophyticus</td>
<td>462–463</td>
</tr>
<tr>
<td>urosepsis</td>
<td>136, 137</td>
</tr>
<tr>
<td>Epidermal growth-factor receptor (EGFR)</td>
<td>569–570</td>
</tr>
<tr>
<td>Epididymitis, clinical picture</td>
<td>151</td>
</tr>
<tr>
<td>Epithelial cells, bladder</td>
<td>556–557</td>
</tr>
<tr>
<td>Epithelial integrity, infection-associated breakdown of</td>
<td>511</td>
</tr>
<tr>
<td>EQUC (expanded-quantitative urine culture)</td>
<td>484</td>
</tr>
<tr>
<td>ERIC (enterobacterial-repetitive intergenic-consensus) polymerase chain reaction (PCR)</td>
<td>213, 217</td>
</tr>
<tr>
<td>Erk</td>
<td>581</td>
</tr>
<tr>
<td>ESBL (extended-spectrum beta lactamases)</td>
<td>28, 49, 74, 162–163, 165–166, 168, 192</td>
</tr>
<tr>
<td>Escherichia coli. See also Extraintestinal pathogenic E. coli; Uropathogenic Escherichia coli</td>
<td></td>
</tr>
<tr>
<td>acute hemorrhagic cystitis</td>
<td>70</td>
</tr>
<tr>
<td>adhesins</td>
<td>280, 281, 293, 295, 334–335, 341–343</td>
</tr>
<tr>
<td>AIDA-I</td>
<td>293, 295</td>
</tr>
<tr>
<td>α-hemolysin (Hly)</td>
<td>126, 128–129, 246, 253, 264–269, 507–508</td>
</tr>
<tr>
<td>analgesic activity</td>
<td>580, 582–583</td>
</tr>
<tr>
<td>antimicrobial resistance</td>
<td>48–49, 124, 144–146, 162–167, 170, 179–198</td>
</tr>
<tr>
<td>asymptomatic bacteriuria</td>
<td>28, 71, 88, 95–97, 97–100, 561</td>
</tr>
<tr>
<td>avian pathogenic E. coli (APEC)</td>
<td>166, 168, 208</td>
</tr>
<tr>
<td>antimicrobial resistance</td>
<td>183–187, 197</td>
</tr>
<tr>
<td>relationship to NMEC and UPEC strains</td>
<td>216</td>
</tr>
<tr>
<td>sequencing of O1:K1:H7 strain</td>
<td>212</td>
</tr>
<tr>
<td>bacterial interference</td>
<td>110–111</td>
</tr>
<tr>
<td>biofilms</td>
<td>143</td>
</tr>
<tr>
<td>catheter-associated UTI (CAUTI)</td>
<td>33</td>
</tr>
<tr>
<td>chromosome</td>
<td>209</td>
</tr>
<tr>
<td>colony type variations</td>
<td>337–338</td>
</tr>
<tr>
<td>commensal strains</td>
<td>208</td>
</tr>
<tr>
<td>curli</td>
<td>289–293</td>
</tr>
<tr>
<td>in diabetics</td>
<td>14–15</td>
</tr>
<tr>
<td>diseases caused by</td>
<td>208</td>
</tr>
<tr>
<td>eco-evo categories of</td>
<td>332</td>
</tr>
<tr>
<td>enteraggregative E. coli (EAEC) prostatitis</td>
<td>125</td>
</tr>
</tbody>
</table>
enterohemorrhagic *E. coli* (EHEC), quorum-sensing system in, 251
enteropathogenic *E. coli* (EPEC) intimin protein, 300
epidemiology, 36
extended-spectrum beta lactamases (ESBL), 28, 49, 74, 162–163, 165–166, 168
fimbriae
 - innate immune activation, 532–534
 - P fimbriae, 532–533
 - type 1 fimbriae, 533–534
genetic population structure, 208–209
horizontal gene transfer, 335
lactobacilli inhibition of, 81
multidrug-resistant strains, 213–214, 556–558
NDM-1 β-lactamase, 193
neonatal meningitis *Escherichia coli* (NMEC), 208, 216, 218–219
number of cells on Earth, 208
periurethral colonization, 70
phylogenetic groups, 128
pili, 280–281
polymicrobial extraintestinal infections, 221–223
population-genetics structure of *E. coli* species, 208–209
probiotic, 333–334, 561
prostatitis, 121–132, 151
pyelonephritis, 150
renal and perirenal abscess, 151
sexual transmission, 333
swarming by, 389
urosepsis, 143
UTI in children, 74
Variome database, 351
virulence factors, 96
in vivo evolution of strains, 215
Escherichia fergusonii, 212
Esp, 466
EstA autotransporter, 295–296
Estradiol-releasing vaginal ring (Estring), 82
Estriol cream, 609
Estrogen
 - decline of contributing factor to UTI, 560–561
 - effect of loss on vaginal microbiota, 81–82
 - lactobacilli effect on, 14
 - supplementation, 561, 609
 - therapy, 609
 - urothelial structure, effect on, 570
Estrogen cream, 36, 82, 609
Estrogen-replacement therapy, 609
Evolution
 - allelic variation under positive selection, 214–215
 - “by-product of commensalism” hypothesis, 224
 - co-evolution of bacteria and host, 541
 - ExPEC virulence, 224
 - host environment and, 529
 - molecular-convergent, 350
pathoadaptive mutations in UPEC, 331
reductive, 529
role of recombination in, 209
in vivo evolution of *E. coli* strains, 215
Exfoliation
 - of bladder epithelial cells, 557
 - as host defense, 370
Exocytosis, 573–574
 - stretch-induced, 569, 573
 - vesicular, 573
Expanded-quantitative urine culture (EQUC), 484
Extended-spectrum beta lactamas (ESBL), 28, 49, 74, 162–163, 165–166, 168, 192
External sphincterotomy, 17
External-urethral sphincter, 6, 9, 16–17
Extraintestinal pathogenic *E. coli* (ExPEC), 161–170. See also Uropathogenic *Escherichia coli*
avian pathogenic *E. coli* (APEC), 166
companion animal reservoirs, 165–166
environmental reservoirs, 164–165
foodborne reservoirs, 167–169
beef and cattle sources, 169
pork and pig sources, 169
poultry sources, 167–169
human reservoir, 163–164
important lineages, 162–163
mutation rate, 214–215
population phylogenomics, 207–225
 - allelic variation under positive selection, 214–215
 - “by-product of commensalism” hypothesis, 224
 - CGA (clonal group A), 212–213, 217, 219, 221
 - clinical relevance of intrinsic virulence, 219–221
 - diversity within clones, 215
 - epidemiologic data based on proxy markers, 215–219
 - infants, UPEC and NMEC strains infecting, 218–219
 - origin of UPEC strains, 216–217
 - phylogenetics, 209–212
 - polymicrobial infections, 221–223
 - population-genetics structure, 208–209
 - relatedness of UPEC, NMEC, and APEC strains, 216
 - strains infecting debilitated patients, 218
 - UPEC-specific genes, search for, 211–214
 - virulence factors, phylogeny and, 217–218
 - public health perspectives, 169–170
 - UpaG autotransporter, 299
 - virulence factors, 123, 125–128, 208
 - F-actin, 366, 369
 - FIC fimbriae, 96, 125–126, 128, 244
 - FdeC, 300, 623

Downloaded from www.asmscience.org by
IP: 54.70.40.11
Febrile urinary tract infections, 29–30, 543, 591 in children, 69
clinical presentation, 72
Female-genital cutting (FGM), 460
Fenobam, 582
Ferric citrate transport, in *Proteus mirabilis*, 414–415
Ferric iron uptake, in *Klebsiella pneumoniae*, 440
Ferric-uptake regulator (Fur), 237–238, 440
Ferrous iron uptake, 240, 414–415
FGL chaperones, 285
Fibroblast-growth factor, 570
fim operon, 209, 213–214
fim switch, 507
FimB, 507
Fimbria 14 operon, *Proteus mirabilis*, 409
Fimbriae. See also Pili
ambient temperature fimbria (ATF), 409
biofilms and, 247–248
FIC, 96, 125–126, 128, 244
gene clusters, 244, 251
innate immune activation, 532–534
Klebsiella pneumoniae, 442–445
gene clusters, 442–444
role in virulence, 444
structure and genetics, 443–444
lack of gene expression in vivo, 253–254
mannose-resistant (MR), 402–407
motility, effect on, 245
mutations, 341–343, 346–348
origin of term, 278
P fimbriae, 7, 243–244, 243, 506–507, 532–533
phase variation, 507
pilicides, 244
Pix fimbria, 244
Proteus mirabilis, 14, 402–411, 623–624
ambient temperature fimbria (ATF), 409
conservation and expression of, 409–410
mannose-resistant *Klebsiella*-like (MR/K), 402–403, 407
mannose-resistant *Proteus*-like (MR/P), 402–407
Proteus mirabilis fimbria (PMF), 408–409
Proteus mirabilis P-like fimbria (PMP), 409
regulation of transition between swimming and swarming, 410–411
uroepithelial cell adhesin (UCA), 402–403, 407–408
vaccine potential of, 421
pyelonephritis and, 506–507
S fimbriae, 244, 539
synergistic effects of P and type 1 fimbriae in vivo, 506
type 1 fimbriae, 243, 245
innate immune-response activation by, 533–534
Klebsiella pneumoniae, 442–445
mutations, 341–342, 346–348
phase variation, 507
Salmonella, 443
synergy with P fimbriae, 506–507
uropathogenic *E. coli* (UPEC), 243, 506–507
uropathogenic *E. coli* (UPEC), 7, 242–244, 506–507, 532–533
Yad fimbria, 244
Ygi fimbria, 244
fim-gene cluster, *Klebsiella pneumoniae*, 443
FimH, 60, 71, 125, 127, 284, 287, 360–361, 365–368,
507, 533, 559
antagonists, 605–606
in *E. coli* prostatitis, 130
immunization against, 543
inhibition of attachment, 542
mediation of UPEC adherence to and invasion of urothelial cells, 595
mutations in, 341–342, 346–348
P fimbriae, 96
pathoadaptive mutation in UPEC clinical isolates, 595
phase variation, 7
uroplakin interaction, 7
urothelial dysfunction and, 575–578
vaccines targeting, 620–621
FlaA, 387–389, 398
FlaAB, 387
FlaB, 387–388, 390
FlaC, 387
FlaD, 389, 399
Flagella
ascension to kidneys and, 603
loss of expression, 338
phase variation, 7
regulation of motility in uropathogenic *E. coli* (UPEC), 242
as virulence factor, 534
Flagellin, 245, 624
flgN, 390
flhA, 390
flhDC, 387, 390–391, 394–395
flg, 391
flIL, 391
flu gene, 298–299
Fluoroquinolones
for catheter-associated UTI (CAUTI), 33
mode of action, 190
for prophylaxis, 57–58
for prostatitis, 31
resistance, 48–49, 162, 181, 338, 591
mechanism, 190–191
prevalence, 191
side effects, 51, 58
for uncomplicated cystitis, 50–52
for uncomplicated pyelonephritis, 53–55
for urosepsis, 141–146
INDEX 657

Focal nephritis, 150
Folk remedies, 515
Foodborne reservoirs of human ExPEC, 167–169
Forskolin, 599
Fosfomycin
for asymptomatic bacteriuria, 106
for ESBL-producing E. coli, 49
mode of action, 194
for prophylaxis, 57
for Proteus mirabilis, 419
resistance
mechanism, 194
prevalence, 194
for uncomplicated cystitis, 49, 51
Fournier’s gangrene, 151–152
frdA, 399
Fumarate, Proteus mirabilis swarming and, 397
fumC, 399
Functional analysis, pathoadaptive mutations and, 346–348
Fur (ferric-uptake regulator), 237–238, 440
“Fur boxes,” 237
Fusiform vesicles, 557, 569, 599
Fusobacteria, 482
FyuA, 240, 622
Galabiose PapG antagonists, 606–607
Gap junctions, 567, 572
Gardnerella vaginalis, 471, 477–480, 482, 485
GBS. See Group B Streptococcus
Gene activation, 336, 339–340
Gene amplification, 337
Gene cassettes, 182
Gene clusters
fimbriae, 244, 251
fimbrial in Klebsiella pneumoniae, 442
pili, 282
Gene expression
global regulators of, 250–251
Proteus mirabilis during UTI, 418–419
uropathogenic E. coli (UPEC) gene expression
in vivo, 253–254
Gene therapy, 542
Genetic drift, 337, 350
Genetic population structure, Escherichia coli, 208–209
Genetic variation, pathoadaptive evolution and, 337
Genetics
asymptomatic bacteriuria and genetic factors, 94
immune breakdown, 560
predisposition to UTIs, 17, 35
renal scarring and, 72
susceptibility, to pyelonephritis, 504
Genome evolution, role of recombination in, 209
Genome organization, Proteus mirabilis, 418
Genome sequences, for uropathogenic E. coli (UPEC) strains, 251–253
Genome stability, UPEC, 339
Genomic islands, Escherichia coli, 210–215, 252–253
Genotoxins, 129
Gentamicin
for catheter-associated UTI (CAUTI), 33
discovery, 195
resistance, 144, 145, 196
Glial cells, 569
Glomerular filtration
in pyelonephritis, 512–513
rate, urosepsis and, 140
Glutamine, Proteus mirabilis swarming and, 396
Gram-negative uropathogens, adhesins expressed by, 279–301
autotransporters, 293–300
Iha, 300
pili, 279–293
TosA, 300–301
Gram-positive uropathogens, 459–486
Actinobaculum schaalii, 473–477
Aerococcus, 472–473
catheter-associated UTI (CAUTI), 460
complicated UTI, 460
Corynebacterium urealyticum, 473
Enterococcus, 459, 461–462, 466–469
catheter-associated UTI (CAUTI), 461, 466–469
epidemiology of UTI, 466
immune responses to, 467–469
virulence factors, 466–467
Gardnerella vaginalis, 471, 477–480
group B Streptococcus (GBS), 459–460, 462, 469–471
bacteriuria in pregnancy, 469–470
epidemiology, 469
immune response to, 470–471
invasive disease in elderly, 470
virulence factors, 470–471
laboratory models for study of UTI, 461
point of care diagnosis of UTI, 460
polymicrobial UTI, 461–462, 480–481
Staphylococcus saprophyticus, 459–466
epidemiology of UTI, 462–463
host response to UTI, 465–466
laboratory models of UTI, 461
polymicrobial UTI, 461
virulence factors, 463–465
uncomplicated UTI, 459
uncultivated bacterial inhabitants of the urinary tract, 481–485
urine contamination with, 480–481
Group B Streptococcus (GBS), 459–460, 462, 469–471
bacteriuria in pregnancy, 469–470
in children, 70
epidemiology, 469
immune response to, 470–471
Group B Streptococcus (GBS) (continued)
- invasive disease in elderly, 470
- treatment during pregnancy, 32
- urine contamination, 480
- UTI, 70, 459–460, 462, 469–471
- vaccine, 470
- virulence factors, 470–471
- Growth in urine, 236–237
- Growth promoter, 170
- GspB, 463
- GTPase, 514, 533
- Guarding reflex, 9

Haemophilus
- capsule biogenesis system of, 249
- H. influenzae Hia adhesin, 295–296
- Hammock theory, 14
- HCN3 (hyperpolarization-activated cation-3), 9
- Hedgehog/Wnt signaling, 570
- Helicobacter pylori, VacA cytotoxin of, 293
- Hematuria, in prostatitis, 124
- Heme uptake
 - Proteus mirabilis, 414–416
 - receptor-mediated, 239
- Hemolysin
 - α-hemolysin (Hly), 126, 128–129, 246, 253, 264–269
 - host response to, 507–508
 - mechanism, 267–269
 - renal damage and, 603–604
 - structure, 266–267
 - toxoid vaccine, 620
 - uropathogenic E. coli (UPEC), 264–269, 507–508
 - as virulence factor, 264–266
- β-hemolysin, group B Streptococcus, 471
- Proteus mirabilis, 412–413
- Hia adhesin, 295–296
- High-pathogenicity island (HPI), 214
- Histamine, 559
- Histidine, Proteus mirabilis swarming and, 397
- Histone-like nucleoid structuring protein (H-Ns), 250
- Hma, 239, 240, 622
- Homologous recombination, gene exchange by, 335
- Horizontal gene transfer (HGT), 25, 35–336, 181
- Hospital-acquired UTI, 28
- Host defenses, 71, 370. See also Innate immune system
 - bacteriuria and, 94
 - exfoliation of bladder epithelial cells, 557
 - innate immune response to bladder infection, 555–562
 - in pyelonephritis, 507–508
- Host factor Q-beta (Hfq), 250–251
- Host response to staphylococcal UTI, 465–466
- HPI (high-pathogenicity island), 214
- hpmA, 387–388, 391, 398–400, 412–413
- Human reservoir of ExPEC, 163–164
- hydB, 399
- Hydrogen peroxide production by lactobacilli, 80–81
- Hydronephrosis
 - imaging guidelines, 74
 - infected, 152
 - perinatal, 71
 - in pregnancy, 15
 - vesicoureteral reflux with, 71
- Hypercolonization phenotype, 339
- Hyperglycosuria, 14
- Hyperpolarization-activated cation-3 (HCN3), 9
- Hypogastric nerves, 567
- Hypothalamic-pituitary-adrenal axis
 - stress activation of, 571
 - system inflammation and, 139
- Hypoxia, nephron, 511, 514

IBCs. See Intracellular bacterial communities
- Ibuprofen, 52, 603
- IDSA (Infectious Diseases Society of America), 48
- IgA, 615–616, 618, 622, 624
- IgA1 protease, 293
- IgG, 615–616, 618, 622, 624
- Iha, 300, 335, 599
- IL-1R-associated kinase 4 (IRAK4), 531–532
- Imaging children after their first urinary tract infection, 74
- Imidazolium salts, as bladder cell exfoliant, 372
- Immune response. See also Innate immune response
 - enterococcal UTI, 467–469
 - group B Streptococcus, 470–471
 - in pyelonephritis, 508–510
 - to Staphylococcus saprophyticus, 466–467
- Immunocompromised individuals, E. coli strains infecting, 218
- Immunotherapeutic compounds, 624–625
- Incidence
 - in aging females, 79
 - of asymptomatic bacteriuria, 93–94
 - of Proteus mirabilis UTI, 384
 - of recurrent urinary tract infections, 590
 - of urinary tract infection, 36, 236
 - of uropathogenic Escherichia coli (UPEC) UTI, 556
- Incontinence, urinary-urgency, 481, 484
- Inducible nitric-oxide synthase (iNOS), 573
- Indwelling catheters, 32–34, 93
- bacterial interference, 111
- bacteriuria, 95, 103, 107–108
- Infants
 - asymptomatic bacteriuria
 - microbiology, 99
 - morbidity, 100–101
 - UTI in, 69–75 (See also Children)
 - vesicoureteral reflux, 100
Infectious Diseases Society of America (IDSA), 48

Inflammation

acute kidney injury, 513–514

in Enterococcus UTIs, 467–469

mast cells and, 559, 562

neutrophil-associated tissue damage, 558, 561–562

UTI pain and, 577–578

Inflammatory markers, in asymptomatic bacteriuria, 90–91

Infundibulum, 4

Innate immune response

bacteriuria and, 94
to bladder infection, 555–562

epithelial cells, 556–557

immune breakdown, 560–561

gene therapy, 542

Receptor analogues, 542

vaccination, 543

UTI susceptibility and activation, 529–534

autotransporters, 534

curli, 534

Iron acquisition systems, 534

P fimbriae, 532–533

TLR4, 531–532

toxins, 534

type 1 fimbriae, 533–534

“In-series tension receptors,” 568

Insertion sequences (IS elements), 181

Integral theory, 13–14

Integrase, 182–183

Integrins, 366–368, 372, 592

Integrins, 182–184

Interferon (IFN)-β, 537

Interferon (IFN)-γ, 513

Interferon regulatory factors (IRFs), 525, 533

Interleukins

IL-1, 138, 511, 514

IL-4, 139

IL-6, 508, 511, 514, 527, 534, 556

levels in pyelonephritis, 543

urine, 90–91

IL-8, 508, 509, 534, 543, 558

IL-10, 139, 559

IL-1β, 556

Intermittent catheterization

bacterial interference, 111

bacteriuria and, 103–104

Internal-urethral sphincter, 5

Inter-organ communication during infection, 513

Interstitial cystitis

interstitial cystitis/bladder-pain syndrome (IC/BPS), 569

urothelial damage during, 57–576

Intimin, 300

Intracellular bacterial communities (IBCs)

expulsion of UPEC, 599

formation, 599–600

Klebsiella pneumoniae, 444, 450

UPEC dispersal and further IBC formation, 600–601

Intrinsic virulence, ExPEC, 220–221

Invasin, 300

Invasion of host cells, 359–372. See also Intracellular bacterial communities

antibacterial defenses and liabilities, 370–371

fates of intracellular UPEC, 360–363

intracellular bacterial communities (IBCs), 361–364, 369–370

of kidney cells, 371

mechanisms of bladder cell invasion, 365–368

regulation of intracellular growth and persistence, 368–369

relevance to UTIs, 364–365

targeting intracellular pathogens, 372

Invasive genitourinary procedures, bacteriuria and, 104, 109

IRAK4 (IL-1R-associated kinase 4), 531–532

IreA, 240, 622

IRF3, 537, 540

IroN, 602, 622

Iron acquisition

Escherichia coli, 214, 238–239, 534, 602

ferrous iron uptake, 240

Klebsiella pneumoniae, 440–441

role in virulence, 441

siderophore production, 440

pathogenesis, 602

Proteus mirabilis, 396, 413–416

receptor-mediated heme uptake, 239

redundant systems, 239

regulation of iron uptake, 237–238

siderophores, 238–239, 534

E. coli prostatitis, 125–129, 130

Klebsiella pneumoniae, 440–441

pathogenesis, 602

Proteus mirabilis, 414–415

uropathogenic E. coli (UPEC), 238–239, 534, 602

uropathogenic E. coli (UPEC), 238–239, 534, 602
Loss-of-function mutations, 337
Lower urinary tract dysfunction, 71
Lrp, 243–244, 391–393
LuxS, 447
Lysosomes, 368–369, 557
LysR regulators, 446
Macrophages
Enterococcus faecalis survival within, 468
response to bladder infection, 559–560, 562
uropathogenic E. coli (UPEC) survival within,
371
magA, 438
Malate, Proteus mirabilis swarming and, 397
Mannose-resistant Klebsiella-like (MR/K) hemagglutinin, 407
Mannose-resistant Proteus-like (MR/P) fimbriae assembly,
biofilm formation, 405
expression, 404–405
 genetic organization, 403–404
role in infection, 405–407
Mannosides, 372, 605–606
Mast cell-derived adjuvants, 616
Mast cells, response to bladder infection, 559, 562
MCP-1 (monocyte-chemotactic protein-1), 535
mecA gene, 462
Mechanoreceptor, 568
Mechanosensitive afferent nerves, 568
Medullary sponge kidney, 10–11
Men
aging, asymptomatic bacteriuria in
diagnosis, 89
incidence, 93–94
microbiology of, 99
prevalence, 92, 95
asymptomatic bacteriuria
incidence, 93–94
prevalence, 92
clinical diagnosis in, 42
overview of clinical syndromes, 31
voided urine specimens for asymptomatic bacteriuria diagnosis, 89–90
Metabolism
during Proteus mirabilis swarming, 398–399
of uropathogenic E. coli (UPEC) during infection,
241–242
Metal acquisition systems. See also Iron acquisition
Proteus mirabilis, 413–416
zinc acquisition
Escherichia coli, 240–241
Proteus mirabilis, 396, 416
Metallo-β-lactamase, 193
Metalloproteases
metalloproteinase-9, 558, 560
Proteus mirabilis, 413, 416
Metals
competition for, 237
 iron acquisition, 237–240
 zinc acquisition, 240–241
Methicillin resistance, 462, 465
Methicillin-resistant S. aureus (MRSA), 70, 144–145, 465
Methyl-accepting chemotaxis, 388
MF59, 615
MHC class I molecules, curli adherence and, 293
Microbiology of bacteriuria, 97–100
Micturition, normal, 9–10
Midstream clean catch technique, 43–44
Mismatch-repair system, 338–339
MLEE (multilocus enzyme electrophoresis), 208
MLST. See Multilocus-sequence typing
Mobilome, 181
Molecular Koch’s postulates, 236, 264–265, 532
Molecular tools for risk assessment and prediction of UTI susceptibility, 543–544
Monocyte-chemotactic protein-1 (MCP-1), 535
Monophosphoryl lipid A (MPL), 615–616
Morganella morganii, 411
Motility, uropathogenic Escherichia coli (UPEC),
244–246
adherence and, 245
chemotaxis, 245
PapX as inhibitor of, 246
at population level, 245
regulation of flagellar, 242
MPL (monophosphoryl lipid A), 615–616
mrk-gene cluster, Klebsiella pneumoniae, 444
MrpA, 421, 623–624
MrpH, 421, 623–624
MrpJ, 410–411
MRSA (methicillin-resistant S. aureus), 70, 144–145, 465
MSCRAMMs, 301–307
Ace, 301–304, 306
assembly, 305
collagen hug model, 302–304
dock, lock, and latch model, 304–305
functions in uropathogenic bacteria, 305–307
overview, 301–302
SdrI, 307
structure, 302, 303
UafA, 304–305, 306
UafB, 306–307
Mucosal integrity, infection-associated disruption of, 510–511
Mucoviscosity-associated gene (magA), 438
Multidrug-resistant (MDR) pathogens, 590–591
emergence of, 180
enterococcal strains, 466
Escherichia coli, 556
Klebsiella pneumoniae, 448–449
Multilocus enzyme electrophoresis (MLEE), 208
Multilocus-sequence typing (MLST)
E. coli isolates in prostatitis, 124, 125
ExPEC, 161–162
MutaFlor, 333
Mutation(s)
pathoadaptive, 331–351
synonymous and nonsynonymous changes, 340–341, 345–346, 350
Mutation rates
asymptomatic bacteriuria strains, 345–346
commensals, 345
with mutator phenotype, 338
Shigella, 345
upropathogenic \(E. coli\) (UPEC) strains, 214–215,
\(345–346, 350\)
Mutator phenotype, 338–339
Mycobacterium tuberculosis, 70, 180
Myeloid differentiation primary response gene 88 (MYD88), 526–527, 531–533, 541, 604
Myeloperoxidase, 81
N-acetyl-neuraminic acid regulator (NanR), 249–250
Nalidixic acid, 190, 191
Na1P protease, 293, 296
Natural history of bacteriuria, 97–104
Natural killer cells, 560
NDM (New Delhi metallo) \(\beta\)-lactamases, 163, 193, 214
Necrotizing fasciitis, 151–152
Negative (purifying) selection, 341
Neisseria
capsule biogenesis system of, 249
\(N. meningitidis\) Na1P protease, 293, 296
Neomycin resistance, 196
Neonatal meningitis \(Escherichia coli\) (NMEC), 208
relationship to UPEC and APEC strains, 216
strains infecting infants, 218–219
Neonates, urinary tract infection prevalence in, 69
Nephritis, focal, 150
Nephron
download of epithelial integrity, 511
clotting, ischemia, and hypoxia in, 511–512
number of, 504
obstruction, 512–513
structure of, 504
Nerve growth factor, 569, 573
Nerves, afferent, 567–569
Netlimicin, 195
Neuro-endocrine axis, systemic inflammation and, 139
Neurogenic bladder
in children, 71
diagnosis of UTI, 42
\(E. coli\) strains infecting patients, 218
Neurologic patients, 16–17
Neutrophils
macrophage ingestion of apoptotic, 560, 562
neutrophil-associated tissue damage, 558, 561–562
neutrophil-dependent clearance of infection, 536
neutrophil-induced oxidative injury of renal cells, 513–514
response to bladder infection, 558, 561–562
New Delhi metallo (NDM) \(\beta\)-lactamases, 163, 193,
214
NF-\(\kappa\)B (nuclear factor kappa-light-chain-enhancer of activated B cells), 138–139, 508
Nisssle-1917 strain, 333–334
Nitric oxide, 573
Nitrites, 43, 46–48, 73, 460
Nitrofurantoin, 193
Nitrofurantoin for asymptomatic bacteriuria, 105–106, 110
creatinine clearance (CrCl) and, 50, 58
for prophylaxis, 57–58
for \(Proteus mirabilis\), 419
resistance mechanism, 193
prevalence, 193–194
side effect, 50–51, 58
for uncomplicated cystitis, 49–51
for UTI during pregnancy, 31
NMEC. See Neonatal meningitis \(Escherichia coli\)
NOD1, 556, 561
Nonoxynol-9, 82
Non-ribosomal peptide siderophore system (Nrp), 414, 417
Norfloxacin
for asymptomatic bacteriuria, 110
for prophylaxis, 33
resistance, 191
Novobiocin resistance, 462
Nrp (non-ribosomal peptide siderophore system), 414, 417
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-\(\kappa\)B), 138–139, 508
Nutraceuticals, 608–609
Nutrient requirements, uropathogenic \(Escherichia coli\) (UPEC), 236–241
competition for metals, 237
growth in urine, 236–237
iron acquisition, 237–240
zinc acquisition, 240–241
Nutritional competence, 223
O-antigen
loss of, 337–338
as rheostat for LPS-induced pain, 578–580
Obstruction
nephron, 512–513
primary bladder-neck, 16
ureteral, 11–12
ureteropelvic-junction, 15
urosepsis and, 139–141
Occludins, 566
Ofloxacin resistance, 191
Oligella, 484
OM-89, 624–625
Opportunistic pathogens
features of, 332
Klebsiella pneumoniae, 436
uropathogenic E. coli (UPEC) as, 332–333
Opsonophagocytosis, 438, 464
Orchitis, clinical picture, 151
Ornithine, Proteus mirabilis swarming and, 397
Orthoptic bladder substitution, bacteriuria and, 93
Outer membrane, assembly of the pilus fiber at, 285–286
Outer membrane proteins, uropathogenic E. coli (UPEC), 248–249
Outer-membrane-associated adhesins of UPEC, 300
Outer-membrane iron receptors, 240
Outer-membrane vesicles (OMVs), 620
Overactive bladder, 573
OXA-derived β-lactamases, 192
P blood group
as pyelonephritis risk factor, 560
UTI susceptibility and, 538–539
P fimbriae, 7, 125, 128–129
innate immune activation, 532–533
mutation, 343
P blood group and UTI susceptibility, 538–539
uropathogenic E. coli (UPEC), 243–244
P pili
assembly, 596
functions, 289
pathogenesis, 597–598
vaccines targeting, 621–622
P1 (adenosine) receptors, 574
pAA virulence plasmid, 125
Pain
bacterial analgesia in the bladder, 580–581
bacterial-pain phenotypes, 582
central sensitization, 579–580
chronic from transient infection, 579–581
CNS circuits in cystitis pain, 581–582
future directions and implications, 582–583
inflammatory, 577–578
interstitial cystitis/bladder-pain syndrome, 569
LPS-induced, 578–580
pathophysiological mechanisms, 569
TLR4-dependent UTI pain, 577–578, 583
UTI as visceral-pain model, 576–577
PAIs (pathogenicity islands), 70, 129, 183–186, 212, 220, 224, 243, 252–253, 335
p-amino benzoic acid (PABA), 189
PAML program, 214
PAMPS (pathogen-associated molecular patterns), 616
Pangenome, 209–210
pap operon, 213
PapA, 289
PapB, 244, 507
PapD chaperone, 285
PapDG vaccine, 621–622
PapE, 289
PapF, 289
PapG, 243, 289, 335, 506, 526, 532, 592, 597–598
antagonists, 606–607
mutation, 343
vaccines targeting, 621–622
PapI, 343
PapK, 289
PapX, 244, 246, 507
Pathoadaptive mutations
detection of, 348–350
functional analysis and, 346–348
 genetic mechanisms for, 336–348
in uropathogenic E. coli, 331–351
Pathogen-associated molecular patterns (PAMPs), 616
Pathogenesis
asymptomatic bacteriuria, 94–97
host factors, 94–95
organism factors, 95–97
chronic pelvic pain, 131–132
complicated UTI, 604–605
Enterococcus faecalis, 604–605
recent discoveries in, 591–605
uncomplicated UTI, 592–604
urinary tract infection in children, 70–71
uropathogenic E. coli (UPEC), 592–604
ascension to and colonization of kidneys, 603–604
central metabolism and two-component systems, 601–602
cyclic AMP, 599
escape from endocytic vesicle, 599
FimH, 595
IBCs, 599–601
metal ions, 602
modeling outcomes of acute cystitis, 602–603
P pili, 596–598
type 1 pili, 592, 595
vagina role in, 80
Pathogenicity islands (PAIs), 70, 129, 183–186, 212, 220, 224, 243, 252–253, 335
Pathophysio gram of pyelonephritis, 515–516
Pathophysicsiology
pyelonephritis, 503–517
of urosepsis, 137–139
PathoSystems Resource Integration Center (PATRIC), 351
Pattern-recognition receptors (PRRs), 508, 529, 559, 616
Paxillin, 269
PBNO (primary bladder-neck obstruction), 16
PBP (penicillin-binding protein), 147, 191–192, 462
PCR testing, 45
PDGFRA (platelet-derived growth factor-receptor-α), 567
Pelvic anatomy, abnormal, 13
Pelvic nerves, 567
Penicillinase, 180
Penicillin-binding protein (PBP), 147, 191–192, 462
Pentraxin-related protein 3 (PTX3), 556–558
Peptostreptococcus, 483
Pelvic abscess, 150–151
Peristalsis, 9
Persistence of bacteria, 35
Pertactin, 293, 296
Phagocytosis complement-mediated, 556–557
Klebsiella pneumoniae impairment of, 438
by macrophages, 560, 562
by neutrophils, 558
Pharmacokinetic/pharmacodynamic (PK/PD) properties, in treatment of severe UTI, 142
Phase variation, 7, 507
Phenazopyridine, 52
Phenol-soluble modulins (PSM), 464–465
Phenotypic variations, observations of in UPEC, 337–338
PhoP, 250
PhoP-PhoQ two-component system, 601
Phosphate transport, in Proteus mirabilis, 416–417
Photorhabdus temperata, 411
Phylogenetics, of Escherichia coli, 209–212
Physiology abnormalities, 14–17
diabetes mellitus, 14–15
dysfunctional voiding, 16
neurologic patients, 16–17
pregnancy, 15
primary bladder-neck obstruction, 16
ureteropelvic-junction obstruction, 15
microscopic, 6–8
micturition, 9–10
urine transport, 9–10
Pic (protease involved in colonization), 246–247
PicU (protein involved in intestinal colonization), 265
Pili. See also Fimbriae
Afa/Dr family, 281, 283–284
Bacillus cereus, 308
chaperone/usher (CU) assembled, 243, 251, 279–289
adhesin, 283–284
assembly at outer membrane, 285–286
chaperone-subunit complex formation, 284–285
fiber, 281–283
functions of, 287–289
gene clusters, 282
P pilus, 289, 596–598
pilus usher, 286–287
structure, 281–284
type 1 pilus, 287–288, 592, 595
Corynebacterium, 278, 307, 308, 310
Enterococcus faecalis, 307–311, 467
gene clusters, 282
Gram-negative uropathogens, 279–301
Gram-positive uropathogens, 281, 301–311
assembly, 310
function in UTIs, 310–311
structure, 308–310
mannose-resistant (MR), 278, 403–407
mannose-sensitive (MS), 278
models of pilus assembly in Gram-negative and Gram-positive pathogens, 596
origin of term, 278
pathogenesis, 592–599
Proteus mirabilis, 281, 412
S pilus, vaccine targeting, 622
type 1
bladder cell invasion and, 360–361, 365–368, 371
functions, 287–288
pathogenesis, 592, 595
structure, 286–287
vaccines targeting, 620–621
type IV, 243, 412
as vaccine candidates, 620–622
Pilicides, 60, 244, 372, 607
Pilus adhesin, 283–284
Piperacillin/tazobactam resistance, 144
for urosepsis, 146
Pivmecillinam
for asymptomatic bacteriuria, 106
for uncomplicated cystitis, 49
Pix pilus, 244
Plasmid replicons, 187
Plasmids
fluoroquinolone resistance, 190–191
horizontal gene transfer, 335
incompatibility groups, 187
resistance, 183–187
Platelet-derived growth factor-receptor-α (PDGFRA), 567
Point of care diagnosis of UTI, 460
Polymicrobial UTI, 461, 479, 480–481
Polymorphonuclear cells (PMNs), recruitment of, 508–509
Population phylogenomics of extraintestinal pathogenic Escherichia coli, 207–225
Population-genetics analyses, 350
Positive selection
allelic variation under, 214–215
Proteus mirabilis (continued)
ambient temperature fimbria (ATF), 409
conservation and expression of, 409–410
mannose-resistant Klebsiella-like (MR/K), 402, 403, 407
mannose-resistant Proteus-like (MR/P), 402–407
Proteus mirabilis fimbria (PMF), 408–409
Proteus mirabilis P-like fimbria (PMP), 409
regulation of transition between swimming and swarming, 410–411
uroepithelial cell adhesin (UCA), 402–403, 407–408
vaccine potential of, 421
flagella, 386–388
antigenic variation, 387
characteristics, 386–387
constitutive elongation mutants, 391
contribution to swarming, 389–395
flagella contribution to, 389–395
flhDC regulation, 391
genes contributing to, table of, 392–393
DNA replication without septation during, 395–396
extracellular contributors to, 396–397
flagella contribution to, 389–395
quorum sensing, 398
swarming, 388–402
boull’s-eye pattern on media, 389
capsule and, 395–396
cellular invasion and, 399–400
Dienes line formation, 401–402
DisA, 393–394
DNA replication without septation during, 389
extracellular contributors to, 396–397
flagella contribution to, 389–395
Pseudomonas aeruginosa
antimicrobial resistance, 48
autochrophs, 338
biofilms, 143
EstA autotransporter, 295–296
frequency of urinary tract colonization, 504
inhibition biofilm formation, 248
LPS variation, 338
mucoid phenotype, 336
polymicrobial UTI, 462
urosepsis, 143
Pseudorabies virus, 581
PSM (phenol-soluble modulins), 464–465
Pta autotransporter, 412
PTK2, 533
PTX3 (pentraxin-related protein 3), 556–558
Pyelitis, Corynebacterium urealyticum, 473
Pyelonephritis, 503–517
Actinobaculum schaali, 477
acute, 503, 515, 527
clinical diagnosis, 42
complicated pyelonephritis, clinical diagnosis, 42
incidence, 36

overview of clinical syndrome, 30
susceptibility, 527, 529–531, 536, 539–541
symptoms, 30, 527
treatment, 53–55
uncomplicated pyelonephritis, 42, 53–55
acute kidney injury (AKI), 513–514
asymptomatic bacteriuria, 29
bacterial colonization in renal tubular environment, 506
bacterial toxins and host responses, 506–508
chronic, 503
cinematic view of, 504–517
clinical diagnosis, 42
clinical picture, 150
defined, 503
differential diagnosis, 543
emphysematous, 150
future projections on, 515–517
Gardnerella vaginalis, 479
genetic risk factors, 35
group B Streptococcus, 469
innate immune responses, 508–510
inter-organ communication, 513
interpretation of urine culture results, 44
mucosal integrity disruption, 510–511
nephron-obstruction, 512–513
P blood group as risk factor for, 560
P fimbriae and type 1 fimbriae synergy, 506–507
pathophysigram, 515
pathophysiology, 503–517
in pregnant women, 15, 31, 102, 105–107
prevention of dissemination, 511–512
Proteus mirabilis, 383
quantitative urine culture, 73
risk factors, 504
Staphylococcus saprophyticus, 462, 466
sterile, 479
symptoms, 503, 589
treatment, 514–515
acute uncomplicated pyelonephritis, 42, 53–55
in children, 74
urosepsis, 139
vaccine, 611, 617, 619–621
vesicoureteric reflux and, 71, 72
Pyonephrosis, 152
Pyuria, 460
asymptomatic bacteriuria, 90–91, 107
catheter-associated UTI (CAUTI), 468
in children, 73
Gardnerella vaginalis, 477
laboratory diagnosis, 45
prostatitis, 122, 124, 126
QepA1, 163
QseBC two-component system, 601
Quantitative urine culture, 44–45, 73, 88, 484
Quiescent intracellular reservoirs (QIRs), 8, 603
Quinolones
Proteus mirabilis, 419
resistance, 336
Quorum sensing
Klebsiella pneumoniae, 446
Proteus mirabilis, 398
quorum-sensing (Qse) system, 251
R (resistance) plasmids, 183–184, 195–196
Rab35, 369
Rab27b, 366–367, 533
RAB27b+ vesicles, 557
RAC1, 533
Random-amplified polymorphic DNA (RAPD), 208, 217
RANTES promoter variant, 540
Rapid detection strategies for bacteriuria, 45
RarA, 449
rbs operon, 223
RcsBC, 394–395
Receptor analogues, to prevent bacterial attach-ment, 542
Receptor-mediated uptake of heme, 239
Recombination, role in genome evolution, 209
Recurrent urinary tract infections
asymptomatic bacteriuria strains as therapy, 607–608
in children, 69–70
defined, 35
genetic predisposition to, 35
incidence of, 590
overview, 35–36
prevention, 36, 55–60
antimicrobial prophylaxis, 56–58
antimicrobial-sparing approaches, 55
attachment inhibitors, 60
in postmenopausal women, 58–59
probiotics, 59
vaccines, 59–60
protective immunity and, 610–611
Reductive evolution, 529
Reflux. See Vesicoureteral reflux
Reinfection, 35
Relapse, 35
Renal abscess, 150–151
Renal function, impairment in urosepsis, 139–141
Renal papillae, 4
Renal pelvis, 4
Renal pelvis aspiration, 90
Renal scarring, 72, 75, 100, 509, 513, 531, 540, 590, 603
Renal transplant patients
asymptomatic bacteriuria, 29
bacteriuria, 104, 109–110
Renal-cortical scintigraphy, 74–75
Repair, urothelial, 570–572
Repeats-in-toxin (RTX) family, 25, 300–301
 E. coli hemolysin, 264–269
 UpxA, 269
Resiniferatoxin, 572
Resistance, urosepsis treatment and, 144
Reverse vaccinology, 622–623
RfaH, 248, 269
Rheumatoid arthritis, 384
Rho GTPases, 246–247
Ribonuclease 7, 556
Ribosomal DNA (rDNA) restriction fragment-length polymorphism analyses, 208
Risk assessment, molecular tools for, 543
Risk factors, 35, 590
Risk increase for asymptomatic bacteriuria, 95
RmpA, 438
RmtB, 163
RNA polymerase II, 541–542
RNA-seq, 254
RpoS, 223
RppAB, 395
RrgA, 467
RsbA, 394–395
RseA, 250
RsmA, 394
RTX family of toxins. See Repeats-in-toxin (RTX) family
S. fimbriae, 244, 539
S. pili, vaccine targeting, 622
SadA, 299
Salmochelin, 126, 128, 238–239
 in *E. coli* prostatitis, 130
 uropathogenic *E. coli* (UPEC), 534, 602
Salmonella
 curli, 289, 291
 SadA, 299
 serovar Typhimurium
 cellular invasion, 399
 iron chelation, 414
 Sit genes, 240
 swarming by, 389
 typhi, cellular invasion and, 399
Schistosomiasis haematobium, 70
SdrG, 301, 304
SdrI, 307, 463
Sec systems, 463
Secondary vesicoureteric reflux, 15
Secreted autotransporter toxin (Sat), 246–247, 265, 271
Selfish DNA, 209
Self-preservation and nutritional competence (SPANC), 223
Sensation within the urinary tract, 565–583
Sepsis. See also Urosepsis classifications of, 135
cytokines as markers, 138
diagnostic criteria for, 136, 137
epidemiology of, 136–137
Surviving Sepsis Campaign guidelines, 147–148
Septic shock
 clinical diagnostic criteria of, 137
 prevention, 152
Serine-protease autotransporter toxins of *Enterobacteriaceae* (SPATE), 247, 271
Serratia marcescens
 antimicrobial resistance, 145
 swarming, 398
Sewage, as ExPEC reservoir, 164
Sexual activity
 as asymptomatic bacteriuria risk factor, 94
 Gardnerella vaginalis infectious dose of, 334
 SHV-1 β-lactamases, 192
Siderophores
 E. coli prostatitis, 125–129, 130
 Klebsiella pneumoniae, 440–441
 pathogenesis, 602
 Proteus mirabilis, 414–415
 uropathogenic *E. coli* (UPEC), 238–239, 534, 602
Sigma E, 250
Signalization, 566, 570, 572–575
Signature-tagged mutagenesis (STM)
 Klebsiella pneumoniae biofilm gene identification, 446–448
 Proteus mirabilis, 388, 417–418
Silver compounds, 197
Single-nucleotide polymorphisms (SNPs), 17, 337
SIRS (systemic inflammatory response syndrome), 135, 138
Sit system, 240
16S rRNA methylation, 196
Small colony-forming variants, 338
Sneathia, 483
SNPs (single-nucleotide polymorphisms), 17, 337
SolcoUrovac, 617–618
Soluble tumor necrosis factor receptors (sTNFR-1), 102
Sortases, 305, 310, 604–605
 Enterococcus faecalis, 467
 Staphylococcus saprophyticus, 463
SPA (suprapubic-bladder aspiration) in children, 72–73
Space of Retzius, 5
SPANC (self-preservation and nutritional competence), 223
SPATE (serine-protease autotransporter toxins of *Enterobacteriaceae*), 247, 271
Spermicide use, as risk factor for asymptomatic bacteriuria, 94
Spinal cord injuries, asymptomatic bacteriuria and, 109
 incidence, 93–94
 prevalence, 93
SraP, 463
Ss1E, 623
Ssp, 463
SssF, 463
Staphylococcus, 483, 484
 S. aureus
 antimicrobial resistance, 144–145, 180
 autotrophs, 338
 ClfA, 301–302, 304
 Cna, 301–302, 304
 inhibition biofilm formation, 248
 methicillin-resistant, 70, 144–145, 465
 phenol-soluble modulin (PSM), 465
 renal and perirenal abscess, 151
 SraP, 463
 α-toxin, 268–269
 toxin A, 138
 urosepsis, 143
 UTI, 70, 465
 vancomycin-resistant S. aureus (VRSA), 144–145
 S. epidermidis, 465
 inhibition biofilm formation, 248
 SdrG, 301, 304
 S. saprophyticus, 459–466
 adhesins, 281, 306–307
 antibiotic resistance in, 462
 in children, 70
 community-acquired UTIs, 301
 epidemiology of UTI, 462–463
 frequency of urinary tract colonization, 504
 host response to UTI, 465–466
 invasion of host cells, 372
 laboratory models of UTI, 461
 polymicrobial UTI, 461
 SdrI, 307
 UafA, 304, 306
 UafB, 306–307
 virulence factors, 463–465
STM. See Signature-tagged mutagenesis
STNFR-1 (soluble tumor necrosis factor receptors), 102
Streptococcus, 483, 484
 group A, host cell invasion by, 366
 S. agalactiae, 459, 469 (see also group B Streptococcus)
 asymptomatic bacteriuria, 95
 frequency of urinary tract colonization, 504
 invasion of host cells, 372
 S. gordonii GspB, 463
 S. pneumoniae RrgA, 304, 467
 S. pyogenes Spy0128 pilin, 304
 S. suis, 606
 viridans streptococci group, urinary tract colonization by, 504
Streptomycin
 discovery, 195
 resistance, 196
Stress, urothelial consequences of, 571
Stretch-induced exocytosis, 569–570
StroVac, 617–618
Struvite crystals, Corynebacterium urealyticum, 473
Substance P, 568, 572
Sulfamethoxazole and trimethoprim
 for asymptomatic bacteriuria, 106, 108, 109
 for bacterial prostatitis, 124–125
 mode of action, 189
 for prophylaxis, 56–58
 for prostatitis, 31
 for Proteus mirabilis, 419
 resistance, 48–49, 51, 58, 124, 213, 219, 419–420, 606
 mechanism, 189–190
 prevalence, 190
 for uncomplicated cystitis, 49–51
 for uncomplicated pyelonephritis, 53–54
 for UTI children, 74
Sulfamethoxazole and trimethoprim (SMZ-TMP)
 resistance, 419–420
Sulfamethoxazole-resistance genes, 182
Sulfonamide resistance, 124, 472
Suprapubic aspirate, 72–73, 89, 90
Surviving Sepsis Campaign, 147–148
Susceptibility to urinary tract infection
 antimicrobial peptides, 538
 asymptomatic bacteriuria, 529, 532, 534, 539–541
 chemokine receptors and, 535, 537
 cytokine response, 534–535
 definitions, 525–529
 innate immune activation and, 529–534
 autotransporters, 534
 curli, 534
 iron acquisition systems, 534
 P fimbriae, 532–533
 TLR4, 531–532
 toxins, 534
 type 1 fimbriae, 533–534
 Irf3 or IfnB defects, 537
 molecular determinants and genetics, 538–541
 adaptor gene polymorphisms, 539
 CXCRI expression, 540
 genetic variation, 539–541
 IRF3 expression, 540
 low TLR4 expression, 539
 promoter polymorphisms, 539–541
 receptors for bacterial adhesins, 538–539
 molecular tools for risk assessment and predictions, 543–544
Susceptibility to urinary tract infection (continued)
neutrophil recruitment, 535–536
pyelonephritis, 527, 529–531, 536, 539–541
therapeutic approaches to modify, 542–543
deliberate establishment of asymptomatic bacteriuria, 542
gene therapy, 542
receptor analogue, 542
vaccination, 543
Tlr5, Tlr11, Thp, and COX2 defects, 537–538
Swarming motility of Proteus mirabilis, 383, 388–402
Systemic inflammatory response syndrome (SIRS), 135, 138
Systems vaccinology, 616–617
T cells, γβ, 560
TA (toxin-antitoxin) systems, 369
TaaP autotransporter, 412
Tamm-Horsfall protein (THP), 509, 533, 537–538
TCA (tricarboxylic acid) cycle, 601
TcpC, 527, 604
Temperature-sensitive hemagglutinin (Tsh), 247
Tendonitis, fluoroquinolones and, 58
Tension receptors, 568
Tetracyclines
mode of action, 194
resistance, 124, 182, 420
mechanism, 194–195
prevalence, 195
TGF (tubuloglomerular feedback), 513
TGF-β1 polymorphism, 541
Tigecycline, 194
Tight junctions, 7, 566, 575
TimeZone software package, 350
TIR domain proteins, 541
TIR domain-containing adaptor adaptor protein (TIRAP), 531–532
Tissue microbiology, 516–517
TNF-α (tumor necrosis factor-α), 138–139, 511, 514, 560
Toll-like receptors (TLRs)
in Enterococcus UTIs, 466–467
as pattern-recognition receptors (PRRs), 616
role in pyelonephritis response, 508
TcpC impairment of, 527
TLR1, 534, 560
TLR2, 534
TLR4, 526, 530–533, 556–557, 560, 592, 599, 604
low expression in patients with ABU, 539
MPL as agonist, 615
promoter variation, 539
recognition of LPS lipid A, 619
TLR4-dependent host defenses, 370–371
TLR4-dependent UTI pain, 577–578, 583
TLR5, 534, 537–538, 561
TLR11, 537–538
TonB system, 602
Klebsiella pneumoniae, 440–441
TonB-dependent receptors, in Proteus mirabilis, 414–415
TonB-ExbB-ExbD complex, 237
Topical vaginal estrogen therapy, 82
Torsades de pointe, fluoroquinolones and, 58
TosA, 252, 269, 300–301
Toxic-shock syndrome toxin 1, 138
Toxin-antitoxin (TA) systems, 369
Toxins
autotransporter, 247
E. coli prostatitis isolates, 125–129
pyelonephritis and, 507–508
RTX family, 252
uropathogenic E. coli (UPEC), 246–247, 263–272, 604–605
actions and epidemiology, table of, 265
autotransporter family, 271
cytotoxic necrotizing factor type 1 (CNFI), 265, 269–270
hemolysin (HylA), 264–269, 507–508
PicU, 265
secreted autotransporter toxin (Sat), 265, 271
type V secretion family, 270–271
Vat, 265
Toxoid, 619–620
TraDIS (transposon-directed insertion-site sequencing), 255
TRAM, 526, 531–533, 539
Transcription, during Proteus mirabilis swarming, 398–399
Transcriptional profiling, 253–254
Transcriptomics
in pyelonephritis, 513
uropathogenic E. coli (UPEC), 253
Transfer RNA (tRNA) genes, 252
Transferrin, 441
Transitional stratified epithelium, 504
Transposase, 184
Transposon mutagenesis, 254
Transposon-directed insertion-site sequencing (TraDIS), 255
Transposons, 181–182, 189–190, 195–196
Transurethral-bladder catheterization, in children, 72–73
Treatment, 48–55
acute uncomplicated cystitis, 49–53
acute uncomplicated pyelonephritis, 53–55
antimicrobial resistance, 48–49, 179–198
anti-virulence therapies, 605–609
asymptomatic bacteriuria, 104–110
after invasive genitourinary procedures, 109
children, 104–105
diabetic patients, 107
elderly institutionalized patients, 107
indwelling urethral catheter patients, 107–108
older women, 107
pregnant women, 105–107
renal transplant patients, 109–110
spinal cord injury patients, 109
bacterial prostatitis, 124–125
catheter-associated UTI (CAUTI), 609
chaperone/usher pathway inhibitors, 607
in children, 73–74
cranberry products, 608–609
curlicides, 607
drug and vaccine development, 589–626
estrogen therapy, 609
FimH antagonists, 605–606
ibuprofen, 603
intravesicular therapy, 607–608
need for new therapies, 589–591
nutraceuticals, 608–609
PapG antagonists, 606
probiotics, 608
pyelonephritis, 514–515
self, 57–58
vaccines (see Vaccines)
Tricarboxylic acid (TCA) cycle, 601
TRIF-related adaptor molecule (TRAM), 526, 531–533, 539
Trigone of the bladder, 5
Trimethoprim resistance, 476
Trimethoprim-sulfamethoxazole. See Sulfamethoxazole and trimethoprim
Tubular necrosis, 513
Tubuloglomerular feedback (TGF), 513
Type V secretion system, 293
autotransporters in Proteus mirabilis, 411–412
Toxins in, 270–271
Type IV secretion system, 534
Type IV pili, 243, 412
Type I fimbriae
innate immune-response activation by, 533–534
Klebsiella pneumoniae, 442–445
mutations, 341–342, 346–348
Salmonella, 443
Salmonella, 443
synergy with P fimbriae, 506–507
Type I pili
bladder cell invasion and, 360–361, 365–368
Salmonella, 443
Synergy with P fimbriae, 506–507
uropathogenic E. coli (UPEC), 243, 506–507
Type II secretion system, 251, 418
Type II toxin-antitoxin systems (TA), UPEC, 534
UafA, 301–304, 306, 463
UBT (uroepithelial cell adhesin), 407–408
UcaA, 624
Umo proteins, 394
Uncomplicated urinary tract infection
defined, 28
demographics of, 459
Gram-positive uropathogens, 459
overview of clinical syndrome, 29
risk factors, 590
symptoms, 459
uropathogenic E. coli (UPEC), 592–604
Uncultivated bacterial inhabitants of the urinary tract, 481–485
UpaB, 248–249, 299
UpaC, 248–249
UpaG, 299
UpaH, 299, 534
UPEC. See Uropathogenic Escherichia coli
UPEC-specific genes, search for, 211–214
UPJO (ureteropelvic-junction obstruction), 15
UP1a, 360, 365–368
Upper urinary-collecting system, 4
UpxA, 269
Urease
Corynebacterium urealyticum, 473
Klebsiella pneumoniae, 441–442
role in virulence, 441–442
Proteus mirabilis, 383, 384–386
Staphylococcus aureus, 465
Staphylococcus saprophyticus, 463
virulence mechanism, 385
Ureter, 4
obstruction, 11–12, 139–140
urine transport, 9
Ureteral stents, bacteriuria and, 93
Ureteropelvic junction, 4
Ureteropelvic-junction obstruction (UPJO), 15
Ureterovesical junction, 4, 5, 71
Urethra
anatomy, 5–6
length, 13, 27, 236
Urethral catheterization, interpretation of urine culture results from, 44–45
Urethra-to-anus distance, 13
Urinary continence, female
in aging female, 13–14
hammock theory, 14
integral theory, 13–14
Urinary malakoplakia, 371
Urinary retention, chronic, 13
Urinary stones, 461
Proteus mirabilis and, 385–386, 420
Staphylococcus saprophyticus, 463–464
Urinary-bactericidal titer (UBT), 143
Urinary-urgency incontinence (UUI), 481, 484
Urinary cultures
 in children, 72–73
 interpretation of results, 44–45
 quantitative, 44–45, 73, 88, 484
 voided urine, 43
Urinary-urgency incontinence (UUI), 481, 484
Urinary-bactericidal titer (UBT), 143
Urinary-urgency incontinence (UUI), 481, 484
Urinary cultures
 in children, 72–73
 interpretation of results, 44–45
 quantitative, 44–45, 73, 88, 484
 voided urine, 43
Urine, uropathogenic Escherichia coli growth in,
 236–237
Urine interleukin-8 (IL-8), 91
Urine sample
 collection in children, 72–73
 contamination, 480–481
Urine transport, 9–10
Uro-adherence factor A (UafA), 385–386, 420
Uro-adherence factor B (UafB), 463
Uroepithelial cell adhesin (UCA), 407–408
Uromune, 624
Uropathogenic Escherichia coli (UPEC), 208. See also Escherichia coli
 adhesions, 70–71, 506–507, 592–599
 allelic variation under positive selection, 214–215
 antimicrobial resistance, 179–198
 asymptomatic bacteriuria, 96
 attachment, 60
 autotransporter adhesins, 298–300
 in chronic pelvic pain syndrome, 129–132
 curli, 290, 292–293
 cytokine response to infection, 534–535
 dispersal, 600
 ecological cycle, 333
 escape from endocytic vesicle, 599
 expulsion of internalized, 599
 fimbriae, 242–244, 506–507
 FIC fimbria, 244
 gene clusters, 244, 251
 lack of gene expression in vivo, 253–254
 P fimbriae, 7, 243–244, 506–507, 532–533
 phase variation, 507
 pilicides, 244
 Pix fimbria, 244
 S fimbria, 244
 type 1 fimbriae, 243, 245, 506–507
 Yad fimbria, 244
 Ygi fimbria, 244
 frequency of urinary tract colonization, 504
 genome sequences, 251–253
 heterogeneity of strains, 610
 incidence of UTI, 556, 590
 initiation of the innate immune response by,
 526
 invasion of host cells, 359–372
 antibacterial defenses and liabilities, 370–371
 fates of intracellular UPEC, 360–363
 intracellular bacterial communities (IBCs), 361–364, 369–370
 of kidney cells, 371
 mechanisms of bladder cell invasion, 365–368
 regulation of intracellular growth and persistence, 368–369
 relevance to UTIs, 364–365
 targeting intracellular pathogens, 372
 iron acquisition, 238–239, 534, 602
 lysosome neutralization, 557
 as a model organism for uncomplicated UTI, 591
 motility, 244–246
 adherence and, 245
 chemotaxis, 245
 PapX as inhibitor of, 246
 at population level, 245
 regulation of flagellar, 242
 multi-drug resistance, 591
 mutation rate, 214
 nutrient requirements, 236–241
 competition for metals, 237
 growth in urine, 236–237
 iron acquisition, 237–240
 zinc acquisition, 240–241
 as opportunistic pathogen, 332–333
 origin of strains, 216–217
 pathoadaptive mutations, 331–351
 amplification of gene copies, 337
 detection of, 348–350
 evidence of occurrence, 337–338
 functional analysis of traits, 346–348
 gene inactivation, 336–337, 339–340
 genetic variation, 337, 340
 genome instability, 339
 genome-wide screens for prevalence of,
 343–346
 horizontal gene transfer compared, 336
 mutator phenotype, 388–399
 phenotypic variations, observations of,
 337–338
 pathogenesis, 592–604
 ascension to and colonization of kidneys,
 603–604
 central metabolism and two-component systems, 601–602
 cyclic AMP, 599
 escape from endocytic vesicle, 599
 FimH, 595
 IBCs, 599–601
 metal ions, 602
 modeling outcomes of acute cystitis, 602–603
P pili, 596–598
type 1 pili, 592, 595
phylogeny and virulence factors, 217–218
pili function, 287–289
P pili, 289
type 1 pili, 287–288
polymicrobial UTI, 461–462
prostatitis, 125–127, 130–131
pyelonephritis, 150, 505–513
QIR, 603
relationship to APEC and NMEC strains, 216
strains both resistant and virulent, 219
strains infecting infants, 218–219
toxins, 263–272, 603–604, 620
actions and epidemiology, table of, 265
autotransporter family, 271
cytotoxic necrotizing factor type 1 (CNF1), 265, 269–270
hemolysin (HylA), 264–269, 507–508
PicU, 265
secreted autotransporter toxin (Sat), 265, 271
type V secretion family, 270–271
Vat, 265
transcriptional control of the innate immune response to, 530
uroplakin interaction, 7
urothelial damage, 575–578
urothelium interactions, 571, 575–579
UTI in children, 70–71
vaccines, 60, 612–623
virulence and fitness determinants, 235–255
autotransporter, 534
biofilm, 247–248
capsule, 249–250
curli, 534
flagella, 534
gene expression in vivo, 253–254
genome sequences, 251–253
global regulators of gene expression, 250–251
innate immunity induction by, 534
metabolism, 241–242
motility, 244–246
nutrient requirements, 236–241
outer membrane proteins, 248–249
overview, 236
P fimbriae, 7, 506–507, 532–533
pathogenesis, 592–599
phylogeny and, 217–218
prevalence and sites of action, 594–595
siderophores, 534
surface structures, 242–244
toxins, 246–247, 534
Uroplakins, 6–8, 360, 365–368, 533, 555, 566, 571, 576, 595
Urosepsis, 135–153
Actinobaculum schaalii, 477
algorithm for management of, 148–150
antimicrobial therapy, 141–147
aminoglycosides, 142–143
bacterial spectrum of pathogens, 143–144
beta-lactams, 142
biofilm infection, 143
fluoroquinolones, 142–143
pharmacokinetic/pharmacodynamics and, 142
selection of antimicrobials for empiric therapy, 144–147
clinical pictures of severe urogenital infections, 150–152
acute prostatitis, 151
cavernitis, 151
cystitis, 150
epididymitis/orchitis, 151
Fournier’s gangrene, 151–152
prostatic abscess, 151
pyelonephritis, 150
renal and perirenal abscess, 150–151
cytokines as markers, 138
definition, 135–136
diagnostic criteria of sepsis and septic shock, 137
epidemiology, 136–137
Gardnerella vaginalis, 479
neuro-endocrine axis and, 139
overview, 30
pathophysiology, 137–139
prevention, 152
renal function alterations, 139–141
Surviving Sepsis Campaign (SSC), 147–148
treatment, 515
Uroseptic shock, 30
Urostim, 624
Urothelial plaques, 7
Urothelial-cell turnover, 7
Urothelium, 6
barrier function, 569
cell interactions, 572–580
cells and repair, 570–572
damage during UTI, 575–576
FimH mediation of UPEC adherence to, 595
functioning, 566
signaling, 566, 572–575
structure of, 565–566
turnover rate, 570
Urovac, 617–618, 625
UroVaxom, 624
Urvakol, 624
Ushers, 286–287, 443
UUI (urinary-urgency incontinence), 481, 484
VacA cytotoxin, 293
Vaccines
candidate vaccines, table of, 612–613
challenges in developing, 610–617
adjuvant choice, 615–616
Vaccines (continued)
 choice of immunogens, 611, 614–615
 choice of recipients, 611
 recurrent UTI and protective immunity, 610–611
 route of administration, 615
Enterococcus vaccines, 624
 ExPEC, 170
group B Streptococcus, 470
 historical perspective, 609–610
 iron receptors as candidates for, 240
 OM-89/UroVaxom, 624–625
 P pili, 289, 621
Proteus mirabilis, 420–421, 623–624
 pyelonephritis, 611
 reverse vaccinology, 622–623
 specific-antigen vaccines in development, 611, 614, 619–623
 conjugate vaccines, 619–622
 FimH, 620–621
 P pili, 621
 PapDG vaccine, 621–622
 as candidates, 620–622
 reverse vaccinology, 622–623
 subunit vaccines, 614, 622–623
 toxoid vaccines, 620
 susceptibility to UTI and, 543
 systems vaccinology, 616–617
 uropathogenic E. coli (UPEC), 612–623
 whole-cell vaccines in development, 611, 617–619
 attenuated vaccines, 619
 CP923, 618–619
 inactivated vaccines, 617
 SolcoUrovac, 617–618
 StroVac, 617–618
Vacuolating autotransporter toxin (Vat), 265
Vagina, 6
 protective role of lactobacilli in, 80–81
 role in the pathogenesis of urinary tract infection, 80
Vaginal estrogen treatment, 36, 609
Vaginal Lactobacillus suppositories, 608
Vaginal microbiota, 79–83
 alterations associated with antimicrobial therapy, 82
 alterations associated with loss of estrogen, 81–82
 alterations associated with UTI, 81
 bacterial vaginosis, 471–472
 clinical implications, 82–83
 contraceptive method effect on, 82
 protective role of lactobacilli, 80–81
Vancomycin resistance, 145, 466
Vancomycin-resistant S. aureus (VRSA), 144–145
Variome Project, 351
Vasoactive-intestinal polypeptide (VIP), 568
Vat (vacuolating autotransporter toxin), 265
VEGF-promoter variants, 541
Veillonella, 483
Vesicoureteral junction, 100
Vesicoureteral reflux, 4, 5, 12, 590, 611
 antimicrobial prophylaxis, 75
 in children, 70, 71–72, 100, 105
 primary, 71–72
 as pyelonephritis risk factor, 504
 secondary, 72
Vesicular exocytosis, 573
Vesicular recycling, 569
Vesicular trafficking, 8
VIP (vasoactive-intestinal polypeptide), 568
Viridans streptococci group, urinary tract colonization by, 504
Virulence
 acute prostatitis E. coli, 123, 125–129
 chronic prostatitis E. coli, 130
 determinants of uropathogenic E. coli (UPEC), 235–255
 evolution of
 genetic mechanisms, 333–336
 horizontal gene transfer, 335–336
 pathoadaptive mutations, 336–351
 extraintestinal, 219–221
 “by-product of commensalism” hypothesis, 224
 clinical correlation, 220–221
 hierarchical organization of factors involved, 221–222
 intrinsic virulence, 220–221
 measuring virulence, 219–220
Proteus mirabilis, 384–419
Virulence factors. See also specific virulence factors
 acquisition of, 334
 adhesins, 334–355
 Enterococcus faecalis urinary tract infection, 466
 group B Streptococcus, 470–471
 horizontal gene transfer and, 335–336
 Klebsiella pneumoniae, 436–449
 phylogeny, correlation with, 217–218
 Staphylococcus saprophyticus UTI, 463–465
 uropathogenic E. coli (UPEC), 130, 592–599
Visceral pain, UTI as model of, 576–577
Visceral-pain hypersensitivity, 569
Voided urine specimens
 asyptomtatic bacteriuria, 88–90
 men, 89–90
 women, 88–89
 collection techniques, 43–44
 contamination, 88–89
 Voiding cystourethrography, 74
 Voiding dysfunction, 16, 504
 VRSA (vancomycin-resistant S. aureus), 144–145
Waterways, E. coli in, 165
Whole-cell vaccines in development, 611, 617–618
Whole-genome sequencing, 45
Wildlife, as *E. coli* reservoir, 165
Wolffian ducts, 5
Women
 aging female
 anatomy and physiology, 13–14
 asymptomatic bacteriuria, 89, 92–95, 99
 immune breakdown in, 560
 incidence of UTI, 79
 UTI prevalence in, 13–14
 asymptomatic bacteriuria in aging
diagnosis, 89
 incidence, 93–94
 microbiology of, 99
 prevalence, 92, 94–95
 asymptomatic bacteriuria in healthy
 incidence, 93–94
 microbiology of, 99
 prevalence, 92, 94–95
 asymptomatic bacteriuria in healthy
treatment, 105
lifetime risk of UTI, 79
postmenopausal
 immune breakdown in, 560
 recurrent UTI in, 58–59
 vaginal microbiota alterations in, 81–82
pregnant
 antimicrobial use in, 31–32
 asymptomatic bacteriuria, 31, 611
diagnosis, 88–89
 incidence, 93
 microbiology of, 98
 morbidity, 102
 prevalence, 92
 screening for, 105–107
 treatment, 105–107
 group B *Streptococcus* (GBS) in, 32, 469–470
 physiology and anatomy changes, 15
 pyelonephritis, 31, 102, 105–107
 voided urine specimens for asymptomatic
 bacteriuria diagnosis, 88–89
WosA, 394
Xenorhabdus nematophila, 411
Yad fimbriae, 244
YadA adhesin, 295
Yersinia
 Y. pestis YadA adhesin, 295
 Y. pseudotuberculosis invasion protein, 300
Yersiniabactin, 126, 128–129, 238–239, 253, 534, 602
Ygi fimbriae, 244
ZapA, 391, 398, 413, 416, 420
Zinc acquisition
 Escherichia coli, 240–241
 Proteus mirabilis, 396, 416
ZnuACB system, 241–242
Zonal-Phylogeny analysis, 350