Dedication

We dedicate the third edition of the *Clinical Microbiology Procedures Handbook* to Henry D. Isenberg. Henry was a pioneer in clinical microbiology who spearheaded the field of microbial diagnosis for more than a half century. He was a gifted mentor, scholar, and scientist who inspired several generations of clinical microbiologists. We are very fortunate to have worked with such an outstanding microbiologist and colleague.
Contents

VOLUME 1
Editorial Board ix
Contributors xi
How To Use This Handbook xvii
Abbreviations xix
Preface xxiii
Acknowledgments xxv
Reader Response Form xxvii
Disclaimer xxix
1 Procedure Coding, Reimbursement, andBilling Compliance 1.0.1
2 Specimen Collection, Transport, and Acceptability 2.0.1
3 Aerobic Bacteriology 3.0.1
4 Anaerobic Bacteriology 4.0.1

VOLUME 2
5 Antimicrobial Susceptibility Testing 5.0.1
6 Aerobic Actinomycetes 6.0.1
7 Mycobacteriology and Antimycobacterial Susceptibility Testing 7.0.1
8 Mycology and Antifungal Susceptibility Testing 8.0.1
9 Parasitology 9.0.1

VOLUME 3
10 Viruses and Chlamydiae 10.0.1
11 Immunology 11.0.1
12 Molecular Diagnostics 12.0.1
13 Epidemiologic and Infection Control Microbiology 13.0.1
14 Quality Assurance, Quality Control, Laboratory Records, and Water Quality 14.0.1
15 Biohazards and Safety 15.0.1
16 Bioterrorism 16.0.1

INDEX I.1
Editorial Board

SECTION EDITORS

Vickie S. Baselski
Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, Memphis, TN 38163

Kathleen G. Beavis
Stroger Hospital of Cook County, 1901 W. Harrison Street, LL-926, Chicago, IL 60612

Deirdre Church
Division Head, Microbiology, Calgary Laboratory Services, 9-3535 Research Rd. N.W., Calgary, Alberta T2L 2K8, Canada

Lorraine Clarke
Biopreparedness Laboratory Response Network, New York State Department of Health, Wadsworth Center, P.O. Box 509, Albany, NY 12201-0509

Judy Daly
Primary Children’s Medical Center, University of Utah, 100 North Mario Capecchi Drive, Salt Lake City, UT 84113-1100

Phyllis Della-Latta
Columbia-Presbyterian Medical Center, Clinical Microbiology Service, CHONY 3S, 622 W. 168th St., New York, NY 10032

Thomas N. Denny
Duke Human Vaccine Institute and Center for HIV/AIDS Vaccine Immunology, 106 Research Drive, MSRB II Building, Room 4077, DUMC Box 103020, Durham, NC 27710

Gerald A. Denys
Clarian Health Partners, Inc., Clarian Pathology Laboratory, 350 West 11th Street, Room 6027B, Indianapolis, IN 46202-4108

Maurice Exner
Focus Diagnostics Inc., 11221 Valley View Street, Cypress, CA 90630

Lynne S. Garcia
LSG & Associates, 512-12th St., Santa Monica, CA 90402-2908

Larry D. Gray
TriHealth Laboratories and Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 619 Oak Street, Cincinnati, OH 45206

Dan Gregson
Infectious Diseases, Calgary Health Region Laboratory Services, University of Calgary, 9-3535 Research Rd. NW, Calgary, Alberta T2L 2K8, Canada

Gerri S. Hall
Clinical Microbiology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195

Kevin C. Hazen
Department of Pathology, University of Virginia Health System, P.O. Box 800904, Charlottesville, VA 22908-0904

Janet Fick Hindler
Clinical Microbiology (171315), Department of Pathology and Laboratory Medicine, UCLA Medical Center, 10833 LeConte Ave., Los Angeles, CA 90095-1713

Susan A. Howell
Mycology, St. John’s Institute of Dermatology, GSTS Pathology, St. Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, United Kingdom

Stephen G. Jenkins
Department of Pathology, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203-5871
Contributors

Maria E. Aguero-Rosenfeld
Department of Pathology, New York Medical College and Westchester Medical Center, Valhalla, NY 10595

Cindy D. Bethel
Clinical Microbiology, University of Chicago Medical Center, 5841 Maryland Ave., Chicago, IL 60637

Matthew Arduino
Centers for Disease Control and Prevention, Mail Stop C-16, 1600 Clifton Rd. N.E., Atlanta, GA 30333

Walter Bond
3366 Station Ct., Lawrenceville, GA 30044

H. Ruth Ashbee
Mycology Reference Centre, Department of Microbiology, Leeds General Infirmary, Leeds LS1 3EX, United Kingdom

Subhbit Boonlayangoor
Clinical Microbiology, University of Chicago Medical Center, 5841 Maryland Ave., Chicago, IL 60637

Martha Bale
ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108

Philip G. Bowler
Bristol-Myers Squibb, ConvaTec GDC, First Avenue, Deeside Industrial Park, Deeside, Flintshire CH5 2NU, United Kingdom

Steve Barriere
Gilead Pharmaceuticals, 333 Lakeside Dr., Foster City, CA 94404

June M. Brown
Meningitis and Special Pathogens Branch, Division of Bacterial and Mycotic Diseases, Centers for Disease Control and Prevention, Bldg. 17, Room 2207, Mail Stop G-34, Atlanta, GA 30333

Matthew Arduino
Centers for Disease Control and Prevention, Mail Stop C-16, 1600 Clifton Rd. N.E., Atlanta, GA 30333

David A. Bruckner
Clinical Microbiology (171315), UCLA Medical Center, Los Angeles, CA 90024

Vickie Baselski
Department of Pathology, University of Tennessee at Memphis, 930 Madison Ave., Memphis, TN 38163

Sandra Bullock-Iacullo
Public Health Practice Program Office, Division of Laboratory Services, Centers for Disease Control and Prevention, Mail Stop A-16, Atlanta, GA 30333

Kathleen G. Beavis
Stroger Hospital of Cook County, 1901 W. Harrison Street, LL-926, Chicago, IL 60612

Linda Byrd
Microbiology Department, Parkland Health and Hospital, Dallas, TX 75235

Richard C. Barton
Mycology Reference Centre, Department of Microbiology, Leeds General Infirmary, Leeds LS1 3EX, United Kingdom

Angela M. Caliendo
Emory University Hospital and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322

Marina E. Aguero-Rosenfeld
Department of Pathology, New York Medical College and Westchester Medical Center, Valhalla, NY 10595

Steve Barriere
Gilead Pharmaceuticals, 333 Lakeside Dr., Foster City, CA 94404

Martha Bale
ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108

Vickie Baselski
Department of Pathology, University of Tennessee at Memphis, 930 Madison Ave., Memphis, TN 38163

Kathleen G. Beavis
Stroger Hospital of Cook County, 1901 W. Harrison Street, LL-926, Chicago, IL 60612

Michael Bell
Centers for Disease Control and Prevention, Mail Stop A-26, 1600 Clifton Rd. N.E., Atlanta, GA 30333

Kathryn Bernard
National Microbiology Laboratory Health Canada, 1015 Arlington St., Room H5040, Winnipeg, Manitoba R3E 3R2, Canada

Contributors

Maria E. Aguero-Rosenfeld
Department of Pathology, New York Medical College and Westchester Medical Center, Valhalla, NY 10595

Cindy D. Bethel
Clinical Microbiology, University of Chicago Medical Center, 5841 Maryland Ave., Chicago, IL 60637

Matthew Arduino
Centers for Disease Control and Prevention, Mail Stop C-16, 1600 Clifton Rd. N.E., Atlanta, GA 30333

Walter Bond
3366 Station Ct., Lawrenceville, GA 30044

H. Ruth Ashbee
Mycology Reference Centre, Department of Microbiology, Leeds General Infirmary, Leeds LS1 3EX, United Kingdom

Subhbit Boonlayangoor
Clinical Microbiology, University of Chicago Medical Center, 5841 Maryland Ave., Chicago, IL 60637

Martha Bale
ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108

Philip G. Bowler
Bristol-Myers Squibb, ConvaTec GDC, First Avenue, Deeside Industrial Park, Deeside, Flintshire CH5 2NU, United Kingdom

June M. Brown
Meningitis and Special Pathogens Branch, Division of Bacterial and Mycotic Diseases, Centers for Disease Control and Prevention, Bldg. 17, Room 2207, Mail Stop G-34, Atlanta, GA 30333

David A. Bruckner
Clinical Microbiology (171315), UCLA Medical Center, Los Angeles, CA 90024

Sandra Bullock-Iacullo
Public Health Practice Program Office, Division of Laboratory Services, Centers for Disease Control and Prevention, Mail Stop A-16, Atlanta, GA 30333

Linda Byrd
Microbiology Department, Parkland Health and Hospital, Dallas, TX 75235

Richard C. Barton
Mycology Reference Centre, Department of Microbiology, Leeds General Infirmary, Leeds LS1 3EX, United Kingdom

Angela M. Caliendo
Emory University Hospital and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322

Kathryn Bernard
National Microbiology Laboratory Health Canada, 1015 Arlington St., Room H5040, Winnipeg, Manitoba R3E 3R2, Canada
Contributors

Karen C. Carroll
Division of Medical Microbiology, Departments of Pathology and Medicine, The Johns Hopkins University School of Medicine, Meyer B1-193, 600 N. Wolfe St., Baltimore, MD 21287

Marilyn J. Carroll
J A Turner Diagnostic Parasitology Lab, 519 W. Carson St., Suite 104, Carson, CA 90745

Deirdre Church
Division Head, Microbiology, Calgary Laboratory Services, 9-3535 Research Rd. N.W., Calgary, Alberta T2L 2K8, Canada

Lorraine Clarke
Bioresparedness Laboratory Response Network, New York State Department of Health, Wadsworth Center, P.O. Box 509, Albany, NY 12201-0509

Jill Clarridge III
Veterans Administration Medical Center, University of Washington, 1660 S. Columbian Way, Seattle, WA 98108

Judith H. Cook-White
Harbor-UCLA Medical Center, 1000 W. Carson St., Torrance, CA 90509

J. H. Cox
U.S. Military HIV Research Program, Suite 200, 13 Taft Court, Rockville, MD 20850

Paul Crede
Microbiology Unit, State Public Health Laboratory, 307 W. McCarty St., Jefferson City, MO 65101(retired)

Judy Daly
Primary Children’s Medical Center, University of Utah, 100 North Mario Capecchi Drive, Salt Lake City, UT 84113-1100

Phyllis Della-Latta
Columbia-Presbyterian Medical Center, Clinical Microbiology Service, CHONY 3S, 622 W. 168th St., New York, NY 10032

Thomas N. Denny
Duke Human Vaccine Institute and Center for HIV/AIDS Vaccine Immunology, 106 Research Drive, MSRB II Building, Room 4077, DUMC Box 103020, Durham, NC 27710

Gerald A. Denys
Clarian Health Partners, Inc.,Clarian Pathology Laboratory, 350 West 11th Street, Room 6027B, Indianapolis, IN 46202-4108

Lynn B. Duffy
Diagnostic Mycoplasma Laboratory BBRB, 609, University of Alabama at Birmingham, 845 19th St. S., Birmingham, AL 35294

J. Stephen Dumler
Division of Medical Microbiology, Department of Pathology, The Johns Hopkins Medical Institutions, Meyer B1-193, 600 N. Wolfe St., Baltimore, MD 21287

W. Michael Dunne, Jr.
Department of Pathology and Immunology, Division of Laboratory Medicine, Washington University School of Medicine, 660 S. Euclid, Box 8118, St. Louis, MO 63110

Paul H. Edelstein
Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, 3400 Spruce St., Philadelphia, PA 19104-4283

Carolyne B. Ellis
VA Medical Center, 3200 Vine St., Cincinnati, OH 45220

Glyn V. Evans
Welsh Mycology Reference Laboratory, Department of Medical Microbiology and PHLS, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom (deceased)

Maurice Exner
Focus Diagnostics Inc., 11221 Valley View Street, Cypress, CA 90630

Sheila M. Farnham
bioMérieux Vitek, Inc., 595 Anglum Dr., Hazelwood, MO 63042

Guido Ferrari
Department of Surgery and Center for HIV/AIDS Vaccine Immunology, La Salle Street ext, SORF Bldg. Room 208, DUMC Box 2926, Durham, NC 27710

Patricia I. Fields
Foodborne and Diarrheal Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333

Thomas R. Fritsche
JMI Laboratories, 345 Beaver Creek Centre, Suite A, North Liberty, IA 52317-7110

Ambrosia Garcia-Louza
Duke University, DHVI—QCA Center, DUMC 103020, Durham, NC 27710

Zenaida C. Garcia
UMDNJ, New Jersey Medical School, 185 S. Orange Ave., MSB F522, Newark, NJ 07103

Lynne S. Garcia
LSG & Associates, 512-12th St., Santa Monica, CA 90402-2908

Cheryl Gedris
Westchester Medical Center, Grasslands Road, Valhalla, NY 10595

Mahmoud A. Ghannoum
Center for Medical Mycology, University Hospitals of Cleveland, and Case Western Reserve University, 11100 Euclid Ave., LKS 5028, Cleveland, OH 44106-5028

Mary J. R. Gilchrist
University Hygienic Laboratory, University of Iowa, Iowa City, IA 52242

Peter Gilligan
Clinical Microbiology-Immunology Laboratories, University of North Carolina Hospitals, UNC Hospitals CB 7600, Chapel Hill, NC 27514

Steven Glenn
Public Health Practice Program Office, Centers for Disease Control and Prevention, Mail Stop A-16, Atlanta, GA 30333

Judith G. Gordon
Gordon Recourses Consultants, Inc., Reston, Va. (retired)

Eileen Gorr
TriHealth Laboratories and Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 619 Oak Street, Cincinnati, OH 45206

Dan Gregson
Infectious Diseases, Calgary Health Region Laboratory Services, University of Calgary, 9-3535 Research Rd. NW, Calgary, Alberta T2L 2K8, Canada

Jane Griffin
4605 TVC Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232

Beatrice Grininas
bioMérieux Vitek, Inc., 595 Anglum Dr., Hazelwood, MO 63042

Gerrit S. Hall
Clinical Microbiology, Cleveland Clinic 9500 Euclid Avenue, Cleveland, OH 44195

Nancy H. Hall
Oakdall Hall, University Hygienic Laboratory, Iowa City, IA 52242

Jay Hardy
Hardy Diagnostics, 1430 W. McCoy Ln., Santa Maria, CA 93455

Kevin C. Hazen
Department of Pathology, University of Virginia Health System, P.O. Box 800904, Charlottesville, VA 22908-0904
Contributors

Mary Henry
Clinical Laboratories, University of California Medical Center, Box 0100, Room L515, San Francisco, CA 94143

Sharon L. Hillier
Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Hospital of the University of Pittsburgh Medical Center, 300 Halket St., Pittsburgh, PA 15213

Janet Fick Hindler
Clinical Microbiology (171315), Department of Pathology and Laboratory Medicine, UCLA Medical Center, 10833 LeConte Ave., Los Angeles, CA 90095-1713

Lisa Hochstein
Division of Microbiology, Catholic Medical Center of Brooklyn and Queens, 88-25 153rd St., Jamaica, NY 11432

Richard L. Hodinka
Clinical Virology Laboratory, Department of Pathology, Children Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104

Judy Holden
Microbiology Laboratory, Massachusetts General Hospital, Gray 526, 55 Fruit St., Boston, MA 02114

Harvey Holmes
Centers for Disease Control and Prevention, Mail Stop C-16, 1600 Clifton Rd. N.E., Atlanta, GA 30333

Anne Howell
1200 N. Veitch St., 1238, Arlington, VA 22201

Susan A. Howell
Myology, St. John’s Institute of Dermatology, GSTS Pathology, St. Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, United Kingdom

Henry D. Isenberg
Long Island Jewish Medical Center, 270-05 76th Ave., New Hyde Park, NY 11040 (deceased)

Nancy Isham
Center for Medical Mycology, University Hospitals of Cleveland, and Case Western Reserve University, 11100 Euclid Ave., LKS 5028, Cleveland, OH 44106-5028

Robert Jacobson
Bureau of Laboratories, Michigan State Department of Health, 3350 N. Martin Luther King Jr. Blvd., P.O. Box 3005, Lansing, MI 48909-0035

Stephen G. Jenkins
Department of Pathology, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203-5812

Robert C. Jerris
DeKalb Medical Center, 2701 N. Decatur Rd., Decatur, GA 30033

Cheryl A. Jordan
Clinical Microbiology, University of Wisconsin Hospital and Clinics, A4 204 Clinical Science Center, 600 Highland Ave., Madison, WI 53792

Raymond L. Kaplan
Quest Diagnostics, 1777 Montreal Cir., Tucker, GA 30084

Gary Keck
1610 E. Cherry Ln., Bloomington, IN 47401

John L. Kempf
University of Iowa Hygienic Laboratory, Oakdale Research Campus, Iowa City, IA 52242

Timothy E. Kiehn
Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021

Julie D. Kingery
Department of Pathology and Lab Medicine, Portland VA Medical Center, 3710 SW US Veterans Hospital Rd. P2PATH, Portland, OR 97239

Brandon Kitchel
Centers for Disease Control and Prevention, NCEZID/DHQPCEMB, Antimicrobial Resistance And Characterization Laboratory, 1600 Clifton Road, NE, Mailstop G-08, Atlanta, GA 30333

Cynthia Knapp
TreK Diagnostic Systems, 982 Keynote Cir., Suite 6, Cleveland, OH 44131

Karen Krisher
The Clinical Microbiology Institute, 9725 S.W. Commerce Cir., Suite A-1, Wilsonville, OR 97070

Vincent LaBombardi
Microbiology, St. Vincent Hospital and Medical Center, 153 W. 11th St., New York, NY 10011

Mark LaRocco
St. Luke Episcopal Hospital, 6720 Bertner Ave., P.O. Box 20269, MC 4-265, Houston, TX 77030-2697

Amy L. Leber
Department of Laboratory Medicine, Nationwide Children’s Hospital, Bldg C, Rm. 1868, 700 Children’s Drive, Columbus, OH 43205

Lillian V. Lee
BioThreat Response Laboratory, The City of New York Department of Health and Mental Hygiene, 455 First Ave., New York, NY 10016

Andrea J. Linscott
Department of Pathology, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA 70121

Michael Loeffelholz
Department of Pathology, 301 University Blvd., University of Texas Medical Branch, Galveston, TX 77555-0740

David L. Lonsway
Centers for Disease Control and Prevention, NCEZID/DHQPCEMB, Antimicrobial Resistance And Characterization Laboratory, 1600 Clifton Road, NE, Mailstop G-08, Atlanta, GA 30333

Raul Louzao
Duke Human Vaccine Institute and Center for HIV/AIDS Vaccine Immunology, 106 Research Drive, MSRB II Building, Room 4077, DUMC Box 103020, Durham, NC 27710

Judith C. Lovchik
Indiana State Department of Health, 550 W. 16th Street, Indianapolis, IN 46202

Dyan Luper
Christus Spohn Health System, 6845 Fawn Ridge Dr., Corpus Christi, TX 78413-4830

James I. Mangels
Sutter Medical Center of Santa Rosa, 3325 Chanate Rd., Santa Rosa, CA 95404

David McDevitt
University of Pittsburgh Medical Center, 200 Lothrop St., Room A-807, Pittsburgh, PA 15213

Karin L. McGowan
Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Room 5060A Main Bldg., 3400 Civic Center Blvd., Philadelphia, PA 19104

Michael M. McNeil
Epidemiology and Surveillance Division, National Immunization Program, Centers for Disease Control and Prevention, Mail Stop E-61, 1600 Clifton Rd., Atlanta, GA 30333

J. Michael Miller
Laboratory Response Branch, Bioterrorism Preparedness and Response Program, Centers for Disease Control and Prevention, Mail Stop C-18, Atlanta, GA 30333

Julia Moody
Infection Control and Microbiology, Lakeland Regional Medical Center, 1324 Lakeland Hills Blvd., Lakeland, FL 33804

Arlene Morton
Clinical Microbiology Laboratory, Stanford University Hospital, 300 Pasteur Dr., Stanford, CA 94305 (retired)
Contributors

Ross M. Mulder bioMérieux Vitek, Inc., 595 Anglum Dr., Hazelwood, MO 63042

Susan Munro Clinical Microbiology Laboratory, Stanford University Medical Center, 3375 Hillview Ave., Room 1600, Palo Alto, CA 94304

Irving Nachamkin Department of Pathology and Laboratory Medicine, University of Pennsylvania, Medical Center, 3400 Spruce St., Philadelphia, PA 19104-4283

Ron Neimeister Continuing Education and Technology Evaluation Section, Division of Laboratory Improvement, Pennsylvania Department of Health, P.O. Box 500, Exton, PA 19341 (deceased)

Mabel Ann Nicholson Foodborne and Diarrheal Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333

Susan Novak-Weekley Clinical Microbiology, Kaiser Regional Laboratories, 11668 Sherman Way, N. Hollywood, CA 91605

Sandra L. Novick ViroMed Laboratories, Minnetonka, MN 55343

Michele Paessler The Children’s Hospital of Philadelphia, Abramson Research Center 1204K, 34th Street and Civic Center Blvd., Philadelphia, PA 19104

A. William Pascalle University of Pittsburgh Medical Center, Room A-807, 200 Lothrop St., Pittsburgh, PA 15213

Ellena Peterson Department of Pathology, Medical Science, Bldg., Room D-440, University of California, Irvine, Irvine, CA 92697-4800

Marie Pezzlo Medical Microbiology Division, University of California Irvine Medical Center, 101 The City Dr. S., Orange, CA 92868

Michael A. Pfaller Department of Pathology, University of Iowa College of Medicine, Iowa City, IA 52242

Susan F. Plaeger Division of AIDS, NIAID, NIH, HHS, 6700-B Rockledge Drive, Room 4101, Bethesda, MD 20892-7626

Perkins B. Poon Microbiology Laboratory, Department of Laboratory Medicine, Huntington Memorial Hospital, 100 W. California Blvd., Pasadena, CA 91106 (deceased)

Nancy E. Rafiery Department of Immunologic and Infectious Diseases, The Children’s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104

J. Kamile Rasheed Centers for Disease Control and Prevention, NCEZID/DHQ/CEMB, Antimicrobial Resistance and Characterization Laboratory, 1600 Clifton Road, NE, Mailstop G-08, Atlanta, GA 30333

Megan E. Reilly Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 628, Baltimore, MD 21205

Barbara Robinson-Dunn Clinical Microbiology Laboratory, William Beaumont Hospital, 3811 W. Thirteen Mile Rd., Royal Oak, MI 48073-6769

Patricia Rodrigues-Wong Clinical Laboratories, University of California Medical Center, Box 0100, Room L515, San Francisco, CA 94143

Darcie Roe-Carpenter DadeBehring MicroScan 4008 P2, 1584 Enterprise Blvd., W. Sacramento, CA 95691

Kathryn L. Ruff Dartmouth Hitchcock Medical Center, One Medical Center Dr., Lebanon, NH 03756

Maria Saragias TB Laboratory, Columbia-Presbyterian Medical Center, Clinical Microbiology Service, CHONY 3S, 622 W. 168th St., New York, NY 10032

Ron B. Schiffman Diagnostics, Southern Arizona VA Healthcare System, Tucson, AZ 85723

John L. Schmitz University of North Carolina Hospitals, 101 Manning Drive, Chapel Hill, NC 27514

Paul C. Schreckenberger Clinical Microbiology Laboratory, University of Illinois Medical Center at Chicago, 840 S. Wood St., Room 238 CSB, MC 750, Chicago, IL 60612

Stephanie B. Schwartz Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333

Lynne Sehulster Centers for Disease Control and Prevention, Mail Stop A-35, 1600 Clifton Rd. N.E., Atlanta, GA 30333

David L. Sewell Pathology and Laboratory Medicine Service, Veterans Affairs Medical Center, and Department of Pathology, Oregon Health and Sciences University, Portland, OR 97239

Sandip Shah Bureau of Laboratories, Michigan State Department of Health, 3350 N. Martin Luther King Jr. Blvd., P.O. Box 3005, Lansing, MI 48909-0035

Gillian S. Shankland Mycology Laboratory, Robertson Building 56, Dumbarton Rd., Glasgow G11 6NU, Scotland

Susan E. Sharp Microbiology, Kaiser Permanente Airport Way Regional Laboratory, 13705 N.E. Airport Way, Suite C, Portland, OR 97230

Ribhi Shawar 14732 S.E. 66th St., Bellevue, WA 98006

Yvonne R. Shea Microbiology Service, Department of Laboratory Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bldg. 10, Room 2C385, 10 Center Dr., MSC 1508, Bethesda, MD 20892-1508

Susan L. Shiflett Bureau of Laboratories, Michigan State Department of Health, 3350 N. Martin Luther King Jr. Blvd., P.O. Box 3005, Lansing, MI 48909-0035

Robyn Y. Shimizu Clinical Microbiology (171315), UCLA Medical Center, Los Angeles, CA 90024

Stanford T. Shulman Department of Pediatrics, The Children’s Memorial Hospital, The Finkbeiner School of Medicine, Northwestern University Medical School, 2300 Children Plaza No. 20, Chicago, IL 60614-3394

Susan Shuptar Diagnostic Microbiology Laboratory, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021

Salman Siddiqui Becton Dickinson, 7 Loveton Cir., Sparks, MD 21152

James W. Snyder Department of Pathology, Division of Laboratory Medicine, University of Louisville School of Medicine and Hospital, 530 S. Jackson St., Louisville, KY 40202

Lynne Steele Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA 30333
Dana Stein
Flow Cytometry Core Laboratory, UMDNJ
New Jersey Medical School, 185 S. Orange Ave., MSB F522, Newark, NJ 07103

Kirsten St. George
Laboratory of Viral Diseases, Wadsworth Center–DAI, New York State Department of Health, P.O. Box 22002, Albany, NY 12001-2002

Andrew J. Streifel
Department of Environmental Health and Safety, University of Minnesota, Minneapolis, MN 55455

Paula Summanen
Research Service, VA Medical Center West Los Angeles, Los Angeles, CA 90073

Richard C. Summerbell
Centraalbureau voor Schimmelcultures, P.O. Box 85167, 3508 AD Utrecht, The Netherlands

Deborah F. Talkington
Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333

Lorraine Tamashiro
Department of Pathology and Laboratory Medicine, UCLA Medical Center, 10833 Le Conte Ave., Los Angeles, CA 90095-1713

Richard B. Thomson, Jr.
Department of Pathology and Laboratory Medicine, Evanston Northwestern Healthcare, 2650 Ridge Ave., Evanston, IL 60201

Melissa M. Traylor
FzioMed, Inc., 231 Bonetti Drive, San Luis Obispo, CA 93401

Nancy B. Tustin
Department of Immunologic and Infectious Diseases, 34th Street and Civic Center Blvd., Philadelphia, PA 19104

Richard Tustin III
Department of Immunologic and Infectious Diseases, The Children’s Hospital of Philadelphia Research Institute, 34th Street and Civic Center Blvd., Philadelphia, PA 19104

James Versalovic
Department of Pathology, Texas Children Hospital, and Baylor College of Medicine, Houston, TX 77030

Govinda S. Visvesvara
Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., Atlanta, GA 30341-3724

Ken B. Waites
Department of Pathology, WP 230, University of Alabama at Birmingham, 619 19th St. S., Birmingham, AL 35249-7331

Thomas J. Walsh
Immunocompromised Host Section, Pediatric Oncology Branch, National Cancer Institute, Bldg. 10, Room 13N240, Bethesda, MD 20892

Alice S. Weissfeld
Microbiology Specialists Inc., 8911 Interchange Dr., Houston, TX 77054-2507

Irene Weitzman
Columbia University College of Physicians and Surgeons, New York, NY 10032, and Department of Microbiology, Arizona State University, Tempe, AZ 85287

David F. Welch
Laboratory Corporation of America, 7777 Forest Ln., Suite C-350, Dallas, TX 75230

Glennis Westbrook
Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA 30333

Portia P. Williams
Centers for Disease Control and Prevention, Mail Stop C-16, 1600 Clifton Rd. N.E., Atlanta, GA 30333

Marie T. Wilson
Department of Immunologic and Infectious Diseases, The Children Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104

Frank G. Witebsky
Microbiology Service, Department of Laboratory Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bldg. 10, Room 2C385, 10 Center Dr., MSC 1508, Bethesda, MD 20892-1508

Betty K. Wong
Centers for Disease Control and Prevention, NCEZID/DHQ/CEMB, Antimicrobial Resistance And Characterization Laboratory, 1600 Clifton Road, NE, Mailstop G-08, Atlanta, GA 30333

Gail Woods
Department of Pathology and Lab Services, UAMS, Mail Slot 502, 4301 West Markham Street, Little Rock, AR 72205

Mary K. York
MKY Microbiology Consulting, 248 Dantley Way, Walnut Creek, CA 94598
How To Use This Handbook

General Format
The third edition of this handbook has been divided into three volumes containing the front matter, 16 sections (composed of “procedures”), and an index. Volume 1 contains the front matter of the handbook plus sections 1 through 4. Volume 2 contains sections 5 through 9. Volume 3 contains sections 9 through 16 and the index.

Included at the front of each volume is a short table of contents listing the items contained in the front and back matter and the 16 sections of the handbook. In addition to the table of contents for the entire handbook, each section is immediately preceded by a detailed table of contents for that section, giving the section editors’ names, the procedure titles included in that section, and the authors’ names for each procedure.

Sections
The content of the handbook has been organized into 16 sections as follows:

- Section 1: Procedure Coding, Reimbursement, and Billing Compliance
- Section 2: Specimen Collection, Transport, and Acceptability
- Section 3: Aerobic Bacteriology
- Section 4: Anaerobic Bacteriology
- Section 5: Antimicrobial Susceptibility Testing
- Section 6: Aerobic Actinomycetes
- Section 7: Mycobacteriology and Antimycobacterial Susceptibility Testing
- Section 8: Mycology and Antifungal Susceptibility Testing
- Section 9: Parasitology
- Section 10: Viruses and Chlamydiae
- Section 11: Immunology
- Section 12: Molecular Diagnostics
- Section 13: Epidemiologic and Infection Control Microbiology
- Section 14: Quality Assurance, Quality Control, Laboratory Records, and Water Quality
- Section 15: Biohazards and Safety
- Section 16: Bioterrorism

Procedures
Each section listed above consists of procedures. The procedures have been numbered and are referred to by number in cross-references in the text. The procedure number consists of the section number plus the number of the procedure (plus the number of a subprocedure if applicable). For example, “procedure 5.6” is the sixth procedure in section 5; “procedure 7.4.2” is the second subprocedure of the fourth procedure in section 7.
Page Numbers
The page number within a procedure is the procedure number followed by the number of the page within the procedure. Thus, from the examples given above, “page 5.6.10” is the 10th page within procedure 5.6, and “page 7.4.2.3” is the 3rd page within procedure 7.4.2. In all cases, the last number is the page number within a procedure.

The index is numbered beginning with an “I” followed by the number of the page within the index. For example, “page I.3” is the third page in the index.
Abbreviations

In this handbook, most abbreviations have been introduced in parentheses after the terms they abbreviate on their first occurrence, e.g., “a central nervous system (CNS) specimen.” Some exceptions to this rule are explained below and given in Tables 1 to 4.

Because of their frequent use in this handbook and/or their familiarity to readers, the terms listed in Table 1 have been abbreviated in the procedures; i.e., they have not been spelled out or introduced. Based on the editorial style for books and journals published by the American Society for Microbiology (ASM), the abbreviations listed in Table 2 have also been used without introduction in this handbook. Table 3 lists abbreviations that have been used without introduction in the bodies of tables. Abbreviations for commonly accepted units of measurement have been used without definition if they appeared with numerical values. Table 4 lists some common units of measurement appearing in this handbook. These last two items are also based on ASM style.

As readers use the various procedures in this handbook and see unfamiliar abbreviations that are not defined in the procedures themselves, they should refer to these tables for definitions.

Table 1 Common abbreviations used without introduction in this handbook

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BAP (not SBA)</td>
<td>5% Sheep blood agar plate</td>
</tr>
<tr>
<td>BHI</td>
<td>Brain heart infusion</td>
</tr>
<tr>
<td>BSL</td>
<td>Biosafety level</td>
</tr>
<tr>
<td>CAP</td>
<td>College of American Pathologists</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CHOC</td>
<td>Chocolate agar</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical and Laboratory Standards Institute (formerly NCCLS)</td>
</tr>
<tr>
<td>CMPH</td>
<td>Clinical Microbiology Procedures Handbook (first edition)</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>EIA</td>
<td>Enzyme immunoassay</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EMB</td>
<td>Eosin-methylene blue</td>
</tr>
<tr>
<td>EPCM</td>
<td>Essential Procedures for Clinical Microbiology</td>
</tr>
<tr>
<td>GLC</td>
<td>Gas-liquid chromatography</td>
</tr>
<tr>
<td>JCAHO</td>
<td>Joint Commission on Accreditation of Healthcare Organizations</td>
</tr>
<tr>
<td>MAC</td>
<td>MacConkey agar</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material safety data sheet</td>
</tr>
</tbody>
</table>

(continued)
Abbreviations

Table 1 Common abbreviations used without introduction in this handbook *(continued)*

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.A.</td>
<td>Numerical aperture</td>
</tr>
<tr>
<td>NBS</td>
<td>National Bureau of Standards (pertaining to a special calibrated thermometer)</td>
</tr>
<tr>
<td>NCCLS</td>
<td>National Committee for Clinical Laboratory Standards</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PMNs</td>
<td>Polymorphonuclear leukocytes</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal protective equipment</td>
</tr>
<tr>
<td>QA</td>
<td>Quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>Quality control</td>
</tr>
<tr>
<td>RBCs</td>
<td>Red blood cells or erythrocytes</td>
</tr>
<tr>
<td>TCBS</td>
<td>Thiosulfate citrate bile salt sucrose agar</td>
</tr>
<tr>
<td>THIO</td>
<td>Thioglycolate broth</td>
</tr>
<tr>
<td>TSA</td>
<td>Trypticase soy agar or tryptic soy agar</td>
</tr>
<tr>
<td>TSB</td>
<td>Trypticase soy broth or tryptic soy broth</td>
</tr>
<tr>
<td>WBCs</td>
<td>White blood cells or leukocytes</td>
</tr>
</tbody>
</table>

Table 2 Additional abbreviations used without introduction (according to ASM style)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS</td>
<td>Acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>AMP, ADP, ATP, GTP, dCMP, ddGTP, etc.</td>
<td>Adenosine 5′-monophosphate, adenosine 5′-diphosphate, adenosine 5′-triphosphate, guanosine 5′-triphosphate, deoxyctydine 5′-monophosphate, dideoxyguanosine triphosphate, etc.</td>
</tr>
<tr>
<td>ATPase, dGTPase, etc.</td>
<td>Adenosine triphosphatase, deoxyguanosine triphosphatase, etc.</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony-forming unit(s)</td>
</tr>
<tr>
<td>cRNA</td>
<td>Complementary ribonucleic acid</td>
</tr>
<tr>
<td>DEAE</td>
<td>Diethylaminoethyl</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNsae</td>
<td>Deoxyribonuclease</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetate, ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylene glycol-bis(β-aminoethyl ethyl)-N,N′,N′,N′-tetraacetic acid</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimal inhibitory concentration</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NAD+</td>
<td>Oxidized nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADH</td>
<td>Reduced nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADP</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NADPH</td>
<td>Reduced nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>oligo(dT), etc.</td>
<td>Oligodeoxythymidyl acid, etc.</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PFU</td>
<td>Plaque-forming unit(s)</td>
</tr>
<tr>
<td>poly(A), poly(dT), etc.</td>
<td>Polyadenylic acid, polydeoxythymidyl acid, etc.</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>tRNA</td>
<td>Transfer ribonucleic acid</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
</tbody>
</table>
Table 3 Abbreviations used without introduction in the bodies of tables

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>amt</td>
<td>Amount</td>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>approx</td>
<td>Approximately</td>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>avg</td>
<td>Average</td>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>concn</td>
<td>Concentration</td>
<td>sp act</td>
<td>Specific activity</td>
</tr>
<tr>
<td>diam</td>
<td>Diameter</td>
<td>sp gr</td>
<td>Specific gravity</td>
</tr>
<tr>
<td>expt</td>
<td>Experiment</td>
<td>temp</td>
<td>Temperature</td>
</tr>
<tr>
<td>exptl</td>
<td>Experimental</td>
<td>tr</td>
<td>Trace</td>
</tr>
<tr>
<td>ht</td>
<td>Height</td>
<td>vol</td>
<td>Volume</td>
</tr>
<tr>
<td>mo</td>
<td>Month</td>
<td>vs</td>
<td>Versus</td>
</tr>
<tr>
<td>mol wt</td>
<td>Molecular weight</td>
<td>wk</td>
<td>Week</td>
</tr>
<tr>
<td>no.</td>
<td>Number(s)</td>
<td>wt</td>
<td>Weight</td>
</tr>
<tr>
<td>prepn</td>
<td>Preparation</td>
<td>yr</td>
<td>Year</td>
</tr>
</tbody>
</table>

Table 4 Some common units of measurement used in this handbook

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
</tbody>
</table>

Icons

The three icons listed below are used throughout this handbook. The icons direct the readers to follow important directions as they carry out the procedures. As a reminder, an explanation of the icon appears next to it at each appearance in the text.

- ![Biohazard icon] It is imperative that these cultures be handled in a biological safety cabinet.
- ![Reagent container icon] Include QC information on reagent container and in QC records.
- ![Standard precautions icon] Observe standard precautions.
Preface

The third edition of the *Clinical Microbiology Procedures Handbook* (CMPH) is based on the value and user requirements following the first and second editions of CMPH, the companion volume *Essential Procedures for Clinical Microbiology*, and the 2007 update of the second edition.

Almost all of the sixteen sections of the second edition of CMPH have been revised and updated; sections that did not require extensive revision will be updated during the next cycle of changes.

The purpose of the third edition of CMPH remains constant. That is to provide everyone engaged in the microbiological analysis of clinical specimens with procedures that will enable them to correctly perform the appropriate tasks. CMPH remains a cookbook that provides step-by-step descriptions of the numerous procedures used by workers at the bench.

As with the second edition of CMPH and the 2007 update of the second edition, there is increased emphasis on molecular approaches, bioterrorism, infection control in medical facilities, and the host’s immunological responses to microbial challenges. Also, continued emphasis is placed on the need to respond to governmental regulations and fiscal constraints. Highly experienced workers with many years of bench experience have written these procedures, and the format adheres to CLSI document GP02-5A (5th ed., 2006).

All procedures have been reviewed extensively by section editors, the editor in chief, and the ASM Press editors. We continue to encourage the users of these documents to bring new methods of universal relevance to our attention so they can be incorporated into the next update and shared with the clinical microbiology community.

Readers are reminded that naming any specific product in CMPH is not intended as an endorsement of that specific product or a suggestion to exclude other equally acceptable products. CMPH is for laboratory use only by qualified, experienced individuals or by personnel under the direct supervision of qualified, experienced individuals. Every effort has been made to ensure that the contents of this update are comprehensive, accurate, reliable, and reproducible.

Not all existing microbiological protocols are included; however, the editors and authors are familiar with all commonly used protocols. As newer protocols become more widely accepted and used, they will be incorporated into future CMPH revisions.

The third edition of CMPH is available in print, on CD, and as a downloadable PDF.

Lynne S. Garcia
Acknowledgments

I thank each of the section editors and authors for their tremendous efforts in planning and completing the third edition of CMPH. Special thanks go to everyone who participated in the original version, the second edition, and the 2007 update of the second edition for their comprehensive contributions in developing and updating these diagnostic procedures for all microbiologists. Each new edition and update builds on the expertise of the previous editors and authors, all of whom provided outstanding contributions to CMPH. We continue to acknowledge and thank the late Dr. Henry D. Isenberg for his outstanding guidance and leadership during the development and updating of CMPH. All microbiologists owe him a tremendous debt of gratitude; he will always be known as the “father of CMPH” and its greatest supporter.

Our editors and authors join me in thanking the officers of ASM, the Publications Board, and, especially ASM Press. As editor in chief, I particularly want to acknowledge John Bell, Cathy Balogh, Susan Birch, and Jeff Holtmeier of ASM Press for their efforts in supporting this and former editions of CMPH.

It has been a great privilege to work with this current group of editors and authors on the third edition, and we all continue to support CMPH in memory of Dr. Isenberg.

Lynne S. Garcia
Reader Response Form

Dear Reader:
We solicit your help in improving the *Clinical Microbiology Procedures Handbook* (CMPH). Updates will be published periodically to keep CMPH current, accurate, and reliable. Your guidance will play an important role in achieving our objective of making CMPH the most useful laboratory procedures guide available. *Please copy this page for your continued use.*

1. Have you found any errors? Please list the section, procedure, and page number; describe the error.

2. Please list procedures that you deem to be outdated, confusing, or inadequately presented. List the section, procedure, and page number; explain.

3. Indicate the topics that you would like to see added. Please list your reasons for the selection.

4. Additional comments.

Thank you for your help. We are certain that future users will be grateful for your helpful suggestions. Please use extra sheets as needed.

Name:

Address:

Address:

Phone:

Mail to:

ASM Press

1752 N St., N.W.

Washington, DC 20036-2901
Disclaimer

Microbiological analysis of clinical specimens is a constantly changing discipline; new methods and technologies emerge. The contributors to the third edition of CMPH believe that the procedures and guidelines suggested here are from reliable sources and in line with the practices accepted at the time of publishing. Readers are reminded that the naming of any specific product is not intended as an endorsement of that specific product by ASM Press or any other agency, nor is it a suggestion to exclude other equally acceptable products. CMPH is for laboratory use only by qualified, experienced individuals or by personnel under the direct supervision of qualified, experienced individuals. Every effort has been made to ensure that the contents of this update are comprehensive, accurate, reliable, and reproducible.
Index

A-549 cells	10.2.2, 10.3.1, 10.3.7, 10.5.15, 10.5.18
A8 agar	3.15.12
Abbreviations	xix–xxi
ABCYE/H9251 medium	13.6.13
Abdominal specimen, anaerobes	4.2.2
Abiotrophia	3.17.44.2, 3.18.1.5, 3.18.1.11
Abiotrophia adiacens	5.2.11
Abiotrophia defectiva	3.17.44.1–3.17.44.2, 5.2.11
ABN, see Advance beneficiary notice	
Abortion, septic	3.9.1.3
Abscess material	2.1.7
ameba	9.9.2.1–9.9.2.8
Campylobacter and related organisms	3.8.2.2, 3.8.2.5
collection	3.13.1.4
culture	3.13.1.1–3.13.1.18
fungi	8.2.2
Gram stain	3.2.1.9–3.2.1.11
parasites	9.7.2.1–9.7.2.6
superficial vs. deep abscess	3.13.1.2
Absidia	8.3.1.4–8.3.1.5, 8.7.5, 8.9.3, 8.9.8, 8.9.13, 8.9.39, 8.9.50
Absidia corymbifera	8.9.8
Acanthamoeba	3.10.4, 3.10.7, 3.10.8, 3.10.10, 3.10.11
biopsy specimen	9.7.3.4
CSF specimen	3.7.4, 3.7.9
culture	9.9.2.1–9.9.2.8
cyst, calcofluor white stain	9.3.8.1–9.3.8.5
Acanthamoeba castellanii	9.9.2.2
Accession list	14.3.1–14.3.2, 14.3.7
Accessioning	10.4.6
Accidents, laboratory, see Laboratory accidents	
Accreditation, quality control of antimicrobial susceptibility testing	5.13.1–5.13.2
AccuProbe system	12.3.2.1–12.3.2.4
bacterium	12.3.2.12
Campylobacter	3.8.2.12
dimorphic fungi	8.9.12, 8.9.15
fungi	12.3.2.1–12.3.2.4
mycobacterial culture identification test	7.6.2.1–7.6.2.3
N. gonorrhoeae culture identification test	3.9.3.11
Acetampide agar	14.2.6
Acetamide agar	14.2.6
Acetamide hydrolysis medium	6.3.3.2
Acetamide hydrolysis test	6.2.1, 6.2.3, 6.2.6, 6.2.8
aerobes	3.17.1.1–3.17.1.2
Acetate agar	14.2.6
Acetate utilization test	3.17.2.1–3.17.2.2
Acetin	3.17.33.1
N-Acetyl-l-cysteine, see NALC-sodium hydroxide method	
6'-Acetyltransferase	5.5.4
Acromobacter	3.11.3.5, 3.18.2.20
Acromobacter xylosoxidans	3.17.11.12, 3.17.46.2, 3.18.2.10, 3.18.2.20
Acid buffer, stock	9.8.5.5, 9.8.6.4
Acid lability assay, virus	10.5.37–10.5.38
Acid production, from glucose fermentation	3.17.33.1
Acid water destain	9.8.8.4
Acid-alcohol solution	3.17.33.1
Acidaminococcus	3.2.1.14, 4.12.1
Acid-fast bacilli	7.2.1–7.2.4
Acid-fast stain	3.17.33.1
Acidoacterococcus	3.17.33.1
Acidovorax	3.18.2.16
Acinetobacter	3.11.3.5, 3.18.2.20
Acinetobacter baumannii	3.13.1.2, 5.13.6, 5.13.13, 14.1.11, 14.2.21
Acinetobacter lwoffii	4.6.3.2, 4.6.13.1, 5.13.13
Acremonium	8.2.2, 8.3.1.5–8.3.1.6, 8.7.6, 8.9.5, 8.9.13, 8.9.39, 8.9.45
Acremonium potronii	8.9.44
Acremonium strictum	8.9.44, 8.10.1.10
Acidine orange stain	3.2.2.1–3.2.2.4, 14.2.20
A.C.T. transport tube	4.2.3, 4.2.7
Gram-negative diplococci, 3.18.2.5
oxidase-positive, that grow on Thayer-Martin agar, 3.18.2.11
Gram-negative rods, 3.2.1.14
anaerobic, bile test, 4.6.7.1, 4.6.13.2, 4.10.2
catalase-negative, that grow on BAP agar with 4.10.2
poor growth on MAC agar, 3.18.2.13
catalase-positive
indole-negative, non-yellow-pigmented, 3.18.2.14
nonmotile, yellow, non-glucose-fermenting, 3.18.2.15
oxidase-negative, non-glucose-fermenting, 3.18.2.18
gastroenteritis, 3.8.1.1
indole-positive, that grow poorly on MacConkey medium, 3.18.2.12
motile, yellow, non-glucose-fermenting, 3.18.2.16
oxidase-positive
glucose-fermenting, 3.18.2.17
nonyellow, grow well on MacConkey agar, 3.18.2.20
that grow on Thayer-Martin agar, 3.18.2.11
that do not grow on BAP aerobically, 3.18.2.6
do not grow well on MacConkey agar, 3.18.2.7
that grow on BAP and MacConkey medium, 3.18.2.8, 3.18.2.10
that grow well on BAP and MacConkey medium, 3.18.2.9
Gram-positive bacilli, anaerobic, 4.11.1–4.11.9
nonsporeformers, 4.11.1, 4.11.4–4.11.6, 4.11.9
sporeformers, 4.11.1, 4.11.9
Gram-positive bacteria, 3.2.1.1
antibiogram, 5.13.14
direct smears from clinical specimens, 3.2.1.9–3.2.1.10
identification charts, 3.18.1.1–3.18.1.16
surveillance cultures from immunocompro-
mised hosts, 13.11.1–13.11.4
Gram-positive cocci, 3.2.1.13
anaerobes, 4.13.2–4.13.3
catalase-negative, 3.18.1.4
not beta-hemolytic, 3.18.1.5
PYR-negative, 3.18.1.11
PYR-positive, 3.18.1.6, 3.18.1.11
catalase-positive, 3.18.1.4
large white to yellow colonies, 3.18.1.8
identification charts, 3.18.1.1–3.18.1.16
PYR-positive, 3.18.1.10
Gram-positive coccobacilli, 3.2.1.13
Gram-positive rods, 3.2.1.13, 3.18.1.7
catalase-negative, that grow aerobically, 3.18.1.12
catalase-positive
spore producing and motile, 3.18.1.13
urease-negative, 3.18.1.14
yellow or pink-pigmented, 3.18.1.13
identification charts, 3.18.1.1–3.18.1.16
Gram-variable bacteria, 3.2.1.13
Granulicatella, 3.17.4.2, 3.18.1.15, 3.18.1.11
Granulicatella adiacens, 3.17.44.1
Granulicatella balanotereae, 3.17.44.1
Granulicatella eleanora, 3.17.44.1
Granulomatous amebic encephalitis, 9.3.8.1,
9.2.9.1, 9.10.2.6
Gribbles, 3.8.6.18
Grisofulvin, susceptibility testing, 8.10.1.5–
8.10.1.7, 8.10.1.9, 8.10.1.11
Group A streptococci
antibodies to extracellular products, 11.2.1.1–
11.2.1.2
anti-DNAse B test, 11.2.1.1–11.2.1.2,
11.2.3.1–11.2.3.3
antihyaluronidase test, 11.2.1.1
anti-streptokinase test, 11.2.1.1–11.2.1.2,
11.2.2.1–11.2.2.2
antistreptolysin test, 11.2.1.1–11.2.1.2,
11.2.2.1–11.2.2.2
culture, 3.11.8.1–3.11.8.7, 3.11.3.1
molecular methods, 12.1.1
nonculture tests, 3.11.8.1–3.11.8.8
interpretation, 3.11.8.6
limitations, 3.11.8.7
materials, 3.11.8.3–3.11.8.4
procedures, 3.11.8.4
reporting results, 3.11.8.6
specimen collection, 3.11.8.1–3.11.8.3
serologic diagnosis, 11.1.2.4
Streptolysin test, 11.2.1.2
Group A streptococcus culture, 3.11.1.2,
3.11.8.1–3.11.8.7
interpretation, 3.11.8.6
limitations, 3.11.8.6
materials, 3.11.8.3–3.11.8.5
principle, 3.11.8.1
procedure, 3.11.8.4–3.11.8.6
quality control, 3.11.8.3–3.11.8.5
reporting results, 3.11.8.6
specimen, 3.11.8.2
Group B streptococci, serologic diagnosis,
11.1.2.2
Group B streptococcus culture, 3.9.2.1–3.9.2.6,
3.11.2.9, 3.11.13
Group C streptococci, 3.11.2.9, 3.11.13
Group G streptococci, 3.11.2.9, 3.11.13
Growth factor tests, dermatophytes, 8.9.23–
8.9.31, 8.9.36–8.9.37, 8.9.56–8.9.57
Guanarito virus, 15.5.3.1, 16.13.22–16.13.23,
16.13.27
Guillain-Barré syndrome, 3.8.2.2, 3.8.2.5
Gymnascella hyalinospora, 8.9.15

H

H. pylori Ig ELISA kit, 11.9.2–11.9.3
H1N1 virus, see Avian influenza virus
H292 cells, 10.2.2
Haemobartonella, 3.4.34
Haemophilus, 3.3.1.2–3.3.1.3, 3.3.1.9, 3.3.2.5,
antimicrobial susceptibility testing, 5.1.3–
5.1.6, 5.1.9–5.1.10, 5.2.3, 5.2.6–5.2.10,
5.3.5, 5.8.7, 5.10.13.1, 5.10.27.5, 5.11.14,
5.16.1, 5.16.5
biochemical reactions, 3.9.1.12
biochemical tests, 3.17.3.1, 3.17.3.3, 3.17.9.1,
3.17.44, 3.17.45.1
bacteriotoxin, 16.6.4
blood culture, 3.4.1.9–3.4.1.10, 3.4.2.5–3.4.2.6
broth microdilution MIC testing, 5.2.10
disk diffusion susceptibility testing, 5.1.10
genital culture, 3.9.1.10, 3.9.3.5
hemin and NAD requirement, 3.17.44.1
identification schemes, 3.18.2.4, 3.18.2.11
respiratory tract culture, 3.11.2.1, 3.11.2.7,
3.11.3.3, 3.11.3.7, 3.11.4
satellite test, 3.18.2.11
staining, 3.2.1.11–3.2.1.14, 3.2.1.20
Haemophilus aphrophilus, 3.4.2.6, 3.18.2.13
Haemophilus ducreyi, 3.9.1.1–3.9.1.2, 3.9.1.6–
3.9.1.7, 3.9.1.9–3.9.1.13, 3.17.3.2,
3.17.44, 3.17.45.1–3.17.45.2, 3.18.2.6
Haemophilus ducreyi culture, 3.9.4.1–3.9.4.5

Index
clinical manifestations of disease, 10.1.5
cytopathic effect, 10.5.9, 10.5.12, 10.5.16
direct specimen testing, 10.7.1
hemagglutination characteristic, 10.5.41
identification, 10.5.9
inclusions, 10.7.9
serologic diagnosis, 11.1.2.4
shell vial culture, 10.5.4, 10.5.9
specimen collection and processing, 10.4.3
Measurement, units, xx
meca gene, 5.4.2–5.4.3, 12.5.3.1–12.5.3.3
Mellilinam, 5.16.3
Media, see Culture media
Medical instruments, see also Medical-device surfaces
complex, sampling, 13.10.10–13.10.11
critical, 13.10.8
noncritical, 13.10.8
semicritical, 13.10.8
Medical necessity issues, 1.1.1, 1.1.3, 1.2.2–1.2.4
Medication waste, shipping guidelines, 15.6.4, 15.6.8
Medical-device surfaces
microbiological assay
culture procedures, 13.10.3–13.10.7
culture workup, 13.10.8
interpretation, 13.10.8–13.10.9
materials, 13.10.2–13.10.3
monitoring plan, 13.10.1–13.10.2
recommendations against routine assays, 13.10.1
sampling, 13.10.3–13.10.7
rinse fluid, 13.10.3–13.10.6
rinse method using containment, 13.10.3, 13.10.7
rinse method using direct immersion, 13.10.3, 13.10.7
RODAC sampling-culture method, 13.10.3, 13.10.7
sponge-rinse method, 13.10.3, 13.10.6–13.10.7
swab-rinse method, 13.10.3, 13.10.6
wipe-rinse method, 13.10.3, 13.10.6–13.10.7
Medicare Carrier Advisory Committee (MCAC), 1.1.1
Medicare Program, 1.1.1–1.1.2
Mediocre spotty fever, 11.7.2.5
Mefoxin, see Cefoxitin
Megaspantha, 3.2.1.14, 4.12.1
Melaic, see Cefidormo
bacteriorusb, 16.9.1–16.9.11
Membrane filtration technique
blood parasitie concentration, 9.8.10.1–9.8.10.3
urine concentration, 9.6.9.1–9.6.9.4
Meningococcus
acanthamoebic, 3.7.4, 3.7.9
terietrial, 2.1.9, 3.7.1
Campylobacter, 3.8.2.25
viral, 3.7.4, 3.7.9
Meningococcal polysaccharide vaccine, labora-
torial personnel, 15.7.6
Meningococcal meningitis, 2.1.9
Mercuric chloride, 9.1.7
Meropenem, 5.2.10, 5.16.5
Merosporangia, 8.9.3
Merrem, see Meropein
Merthiolate-lodine-formalin (MIF), 9.2.2.5–9.2.2.7
meso-diaminopimelic acid, cell wall of actino-
mycetes, 6.1.1–6.1.2
procedures, 6.3.41–6.3.43
Methanobacterium, 9.10.23
Methanopara
acellular culture, 10.2.2–10.2.3
clinical manifestations of disease, 10.1.4
cytopathic effect, 10.5.9
identification, 10.5.9
specimen collection and processing, 10.4.3
Methanoregulare, 9.10.3
Methenamine-silver nitrate stain
biopsy specimen, 9.7.3.4
P. carinii, 8.3.2.1–8.3.2.8
quality control, 14.2.20
recipe, 8.3.2.7–8.3.2.8
Methicillin (oxacillin)-resistant staphylococci
5.1.5–5.1.8, 5.4.1, 5.8.5, 5.15.5, 5.16.3, 5.17.4
molecular methods for determining resistance, 12.1.5
Methillicin (oxacillin)-resistant staphylococci, 5.4.1, 5.8.5
M. avium, 5.13.3, 5.13.7, 5.17.4
M. avium complex, 5.13.3, 5.17.4
M. avium intracellulare,
5.13.3, 5.17.4
M. bovis, 5.13.3, 5.17.4
M. bovis BCG, 5.13.3, 5.17.4
M. leprae, 5.13.3, 5.17.4
M. marinum, 5.13.3, 5.17.4
M. scrofulaceum, 5.13.3, 5.17.4
M. tuberculosis, 5.13.3, 5.17.4
M. tuberculosis complex, 5.13.3, 5.17.4
Myco, see Mycobacterium
Mycolic acid, 8.3.5, 8.3.8, 8.6.9
Mycetes, 8.2.3, 8.2.5
Mycobacterium, 8.2.3, 8.2.7, 8.3.12–8.3.14, 8.9.11, 8.9.29
Mycobacterium gordonae, 8.9.11, 8.9.29
Mycobacterium lprag, 8.9.11, 8.9.29
Mycobacterium leprae, 8.9.11, 8.9.29
Mycobacterium leprae subgenus, 8.9.11, 8.9.29
Mycobacterium sp, 8.9.11, 8.9.29
Mycobacterium tuberculosis, 8.3.12–8.3.14, 8.9.11, 8.9.29
Mycobacterium xenopi, 8.9.11, 8.9.29
Mycobacterium avium intracellulare, 8.2.7, 8.3.12–8.3.14, 8.9.11, 8.9.29
Mycobacterium fortuitum, 8.2.7, 8.3.12–8.3.14, 8.9.11, 8.9.29
Mycobacterium kansasii, 8.2.7, 8.3.12–8.3.14, 8.9.11, 8.9.29
Mycobacterium marinum, 8.2.7, 8.3.12–8.3.14, 8.9.11, 8.9.29
Mycobacterium scrofulaceum, 8.2.7, 8.3.12–8.3.14, 8.9.11, 8.9.29
Mycobacterium xenopi, 8.2.7, 8.3.12–8.3.14, 8.9.11, 8.9.29
Mycobacterium xenopi, 8.2.7, 8.3.12–8.3.14, 8.9.11, 8.9.29
Specificity of test,
Solution hybridization antibody capture assay
2.1.11, 8.2.1–8.2.5
2.1.12, 10.4.1–10.4.10
unknown bioterrorism agent, 16.11.1
V. pestis, 16.7.1, 16.13.19–16.13.20
Specimen disposal, parasites, 9.1.6
Specimen labeling
bioterrorism agents, 16.3.1–16.3.4
cecal specimen, 3.8.1.4
Specimen packaging, see Shipping guidelines
Specimen preservation, fecal specimen, 9.2.2.1–9.2.2.7
Specimen processing, 3.3.1.1–3.3.1.9
anaerobes, 3.3.1.1–3.3.1.9
materials, 3.3.1.2–3.3.1.3
principle, 3.3.1.1
procedures, 3.3.1.4–3.3.1.10
quality control, 3.3.1.3–3.3.1.4
reporting results, 3.3.1.10
anaerobes, 4.1.1–4.1.2, 4.2.4–4.2.5
fungi, 8.4.1–8.4.6
parasites, 9.1.6
procedures, 2.1.23–2.1.24
specimen rejection criteria, 2.1.21–2.1.22
Specimen storage
Bacteroides fragilis, 4.1.1–4.1.2
C. burnetii, 16.5.2–16.5.3, 16.13.17
C. perfringens, 16.6.12, 16.13.14–16.13.15
bacteria, 2.1.10–2.1.16
blood specimen, 2.1.10, 3.4.1.1–3.4.1.4,
9.8.1.2–9.8.1.3
body fluids, 2.1.11, 3.5.1–3.5.3
Brucella, 16.6.2, 16.13.15–16.13.16
C. botulinum, 16.6.2–16.6.3, 16.13.17
Chlamydia, 10.6.1–10.6.3
procedure for pre-swabbing swabs, 10.6.5, 10.6.11
CJD, 15.5.8
CSF specimen, 2.1.12, 3.7.2, 3.7.4
F. tularensis, 16.8.1–16.8.2, 16.13.20–16.13.21
feecal specimen, 2.1.14, 3.8.1.2–3.8.1.3,
3.8.2–3.8.2.5, 3.8.3.2, 9.2.1.1–9.2.1.4
fungi, 2.1.18, 2.1.21–2.1.25
genital specimen, 3.9.2.1–3.9.2.2, 3.9.3.1–3.9.3.3,
3.9.4.1–3.9.4.2
Gram stain, 3.2.1.1–3.2.1.2
hemodialysis fluid, 13.7.1–13.7.2
hospital water, 13.6.2–13.6.3
infectious encrusted organisms, 2.1.17
from intravascular catheter, 13.12.1–13.12.3
mycobacteria, 7.1.21–7.1.22
mycoplasma, 3.15.1–3.15.17
nasal sinus specimen, 3.11.9.1–3.11.9.2
nasopharyngeal specimen, 3.11.6.1–3.11.6.4,
3.11.7.1–3.11.7.2
ocular specimen, 2.1.12, 3.10.1–3.10.6
otitis culture, 3.11.5.1–3.11.5.2
parasites, 2.1.19, 9.1.5
peritoneal dialysis fluid, 13.8.1–13.8.2
quality assurance, 14.1.15–14.1.16
quality control, 14.2.1–14.2.2
respiratory tract specimen, 2.1.14–2.1.15,
3.11.2.2–3.11.2.6, 3.11.3.2, 3.11.4.1–3.11.4.3
skin specimen, 2.1.15–2.1.16
small-bowel aspirate, 13.15.1
smallpox virus, 16.10.1–16.10.2, 16.13.22
soft tissue, 3.13.1–3.13.5
urine specimen, 3.12.1–3.12.4
urogenital tract specimen, 2.1.12–2.1.14,
3.9.1.5–3.9.1.9
viruses, 10.4.1–10.4.11
unknown bioterrorism agent, 16.11.1
wound material, 3.15.1–3.15.5, 3.13.2.1
Y. pestis, 16.7.1, 16.13.19–16.13.20
Specimen transport, 3.11.2.1–3.11.2.3
anaerobes, 2.1.10, 4.1.1–4.1.2, 4.2.1–4.2.7,
4.13.2
B. anthracis, 16.4.2–16.4.3, 16.13.14–16.13.15
bacteria, 2.1.10–2.1.16
blood specimen, 2.1.10, 3.4.1.1–3.4.1.4,
9.8.1.2–9.8.1.3
body fluids, 2.1.11, 3.5.1–3.5.3
Brucella, 16.6.2, 16.13.15–16.13.16
C. botulinum, 16.6.2–16.6.3, 16.13.17
Chlamydia, 10.6.1–10.6.3
procedure for pre-swabbing swabs, 10.6.5, 10.6.11
CJD, 15.5.8
CSF specimen, 2.1.12, 3.7.2, 3.7.4
F. tularensis, 16.8.1–16.8.2, 16.13.20–16.13.21
feecal specimen, 2.1.14, 3.8.1.2–3.8.1.3,
3.8.2–3.8.2.5, 3.8.3.2, 9.2.1.1–9.2.1.4
fungi, 2.1.18, 2.1.21–2.1.25
genital specimen, 3.9.2.1–3.9.2.2, 3.9.3.1–3.9.3.3,
3.9.4.1–3.9.4.2
Gram stain, 3.2.1.1–3.2.1.2
hemodialysis fluid, 13.7.1–13.7.2
hospital water, 13.6.2–13.6.3
infectious encrusted organisms, 2.1.17
from intravascular catheter, 13.12.1–13.12.3
mycobacteria, 7.1.21–7.1.22
mycoplasma, 3.15.1–3.15.17
nasal sinus specimen, 3.11.9.1–3.11.9.2
nasopharyngeal specimen, 3.11.6.1–3.11.6.4,
3.11.7.1–3.11.7.2