Microbiology of Fresh Produce
Emerging Issues in Food Safety
SERIES EDITOR, Michael P. Doyle

Microbiology of Fresh Produce
Edited by Karl R. Matthews

ALSO IN THIS SERIES
Microbial Source Tracking (2006)
Edited by Jorge W. Santo Domingo and Michael J. Sadowsky

Microbial Risk Analysis in Foods (2007)
Edited by Donald W. Schaffner

Enterobacter sakazakii (2007)
Edited by Jeffrey M. Farber and Stephen Forsythe
Microbiology of Fresh Produce

EDITED BY

Karl R. Matthews
Department of Food Science, Cook College,
Rutgers, The State University of New Jersey,
New Brunswick, New Jersey

WASHINGTON, D.C.
Contents

Contributors vii
Series Editor’s Foreword ix
Preface xi

1 Microorganisms Associated with Fruits and Vegetables 1
Karl R. Matthews

2 Role of Good Agricultural Practices in Fruit and Vegetable Safety 21
Elizabeth A. Bihn and Robert B. Gravani

3 Biology of Foodborne Pathogens on Produce 55
Ethan B. Solomon, Maria T. Brandl, and Robert E. Mandrell

4 Postharvest Handling and Processing: Sources of Microorganisms and Impact of Sanitizing Procedures 85
Jorge M. Fonseca

5 Microbiological Safety of Fresh-Cut Produce: Where Are We Now? 121
Arvind A. Bhagwat
6 Seed Sprouts: the State of Microbiological Safety 167
William F. Fett, Tong-Jen Fu, and Mary Lou Tortorello

7 Consumer Handling of Fresh Produce 221
Christine M. Bruhn

Index 233
Contributors

ARVIND A. BHAGWAT
Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, 10300 Baltimore Avenue, Bldg. 002, BARC-W, Beltsville, MD 20705-2350

ELIZABETH A. BIHN
Department of Food Science, Cornell University, Ithaca, NY 14853

MARIA T. BRANDL
Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710

CHRISTINE M. BRUHN
Center for Consumer Research, University of California, Davis, Davis, CA 95616-8598

WILLIAM F. FETT
Food Safety Intervention Technologies Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038

JORGE M. FONSECA
Yuma Agricultural Center, The University of Arizona, Yuma, AZ 85364

TONG-JEN FU
National Center for Food Safety and Technology, U.S. Food and Drug Administration, Summit-Argo, IL 60501
ROBERT B. GRAVANI
Department of Food Science, Cornell University, Ithaca, NY 14853

ROBERT E. MANDRELL
Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710

KARL R. MATTHEWS
Department of Food Science, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901

ETHAN B. SOLOMON
DuPont Chemical Solutions Enterprise, Experimental Station Laboratory—E402/3223, P.O. Box 80402, Wilmington, DE 19880-0402

MARY LOU TORTORELLO
National Center for Food Safety and Technology, U.S. Food and Drug Administration, Summit-Argo, IL 60501
This is the first book in a new series of monographs that will address emerging topics of the microbiological safety of foods. Reports of estimates of tens of millions of cases of foodborne illness in the United States annually indicate the magnitude of this problem. Epidemiologists report that in the United States foodborne illnesses are more common than influenza or the common cold. Microorganisms or their metabolites are responsible for the vast majority of foodborne illnesses, but there are many unknowns regarding disease agents, including their epidemiology, mechanisms of pathogenicity, infectious or toxic dose, host sensitivity, detection and subtyping methods, and treatments for inactivation. Microbiologists continue to unravel these mysteries, often renouncing age-old beliefs that were long considered dogma. Hence, the need exists to provide scientists interested in the microbiological safety and quality of foods a medium for an authoritative presentation of seminal issues of major significance to the field.

Fresh produce consumption in the United States is increasing at a dramatic rate, more than doubling over the past two to three decades. Concomitant with this has been a substantial increase in the importation of fruits and vegetables and in the incidence of foodborne illnesses associated with fresh produce consumption. An incredible amount of new information has been published during the past few years addressing the microbiological safety of fresh produce. In some instances, questions have been raised regarding long-held dogmas, an example being that the internal contents of intact fruits and vegetables are sterile. Recent reports have dispelled this principle with experimental findings revealing that tomatoes and lettuce can be internally contaminated by harmful microorganisms, depending on
growing and processing conditions. Therefore, it is most fitting that the first monograph in this series focuses on this important and timely topic.

My compliments to Karl Matthews and his team of coauthors who have been truly remarkable in pulling together in record time the state-of-the-art information regarding the microbiological safety of fresh produce. Well done.

MICHAEL P. DOYLE, Series Editor
Emerging Issues in Food Safety
The microbiological quality of fresh fruits and vegetables is essential to ensuring the availability of a high-quality, safe product for the consumer. Consumption of fresh fruits and vegetables is an important part of a healthy diet, supplying much-needed vitamins, minerals, and fiber. Health promotion aspects of fruits and vegetables are beginning to be widely acknowledged through their role in the prevention of heart disease, cancer, and diabetes. Consumers now expect fresh produce year-round and in the United States purchase grapes, cantaloupe, or lettuce grown in Central or South America within days of harvest.

Preventing the exposure of raw fruits and vegetables to microorganisms while in the field, orchard, or vineyard is impossible. Fruit and vegetables are produced in a natural environment and are therefore exposed to a wide range of microorganisms. The majority of microorganisms that are recovered from raw fruits and vegetables at harvest do not represent a human health risk but may cause spoilage. However, the number of outbreaks caused by foodborne pathogens associated with fresh produce has increased during the past three decades. Without further efforts to understand the complex interactions between microbes and fresh fruits and vegetables and the mechanisms by which contamination occurs from the farm to the fork, this trend will likely continue.

Consumers now demand fresh fruits and vegetables that may have been produced in remote areas of the world packaged for convenience and available at a reasonable price at the local supermarket. Produce must be of high quality microbiologically, or the product will spoil or potentially cause human illness. Knowledge of the microbiology of fresh fruits and vegetables
preharvest and at all stages postharvest (i.e., processing, packaging, storage, and at retail outlets) is imperative to the development of new technologies and implementation of innovative methods to ensure that a wholesome, microbiologically safe product reaches the consumer.

This book provides the essential information on the microbiology of fresh produce. It focuses on the unique challenges to the control of microorganisms on produce from the farm to the consumer. The latest technologies for reducing microbial load, packaging, and detection are discussed. Consumer knowledge of produce handling, foodborne illness risks, and future product desires are covered. The association of human pathogens with outbreaks of foodborne illness and a perspective on the microbiological safety of produce are presented. This book will be of interest to microbiologists, food safety experts, extension specialists, food scientists, and specialists in academia, government, and industry concerned with the microbiological quality of fresh fruits and vegetables.

I am grateful to each of the subject experts who authored chapters of this book and to the many people who have made important contributions to it. Their promptness and cooperation made possible the timely completion of this book.

KARL R. MATTHEWS
Index

A
Acetic acid, as sanitizer, 98, 101–102, 179–180
Acid tolerance, of microbes, 136–138
Acidic electrolyzed water, as sanitizer, 100, 177, 186
Adaptation, microbial, to fresh-cut-produce operations, 132–139
Adhesins, in microbial attachment, 59–60, 62–64
Agrobacterium, attachment to plant surfaces, 59–62
Air-handling systems, microbial contamination of, 90–91
Alkaline sanitizers, 91–92
Ammonia, as sanitizer, 180
Anaerobic conditions, in modified-atmosphere packaging, 125
Antibrowning treatment, 130–131
Antimicrobial substances, see also Sanitizers and disinfectants naturally produced, 106–107
Ascorbic acid, as antibrowning agent, 130
Attachment, microbial, 56–64
to fresh-cut produce, 135–137
mechanisms of, 58–64
plant environment and, 56–57
to sprouts, 171
Azospirillum, attachment to plant surfaces, 61, 64

B
Bacteriocins, antimicrobial action of, 106, 177
Bacteriophages, for biocontrol, 145, 184–185
Bean sprouts, see Sprouts
Biocontrol agents, for fresh-cut produce, 145
Biodegradable coatings, 105–106
Biofilms on packinghouse surfaces, 40
sanitizer effects on, 93
on sprouts, 171
Bioluminescence methods, for contamination trace back, 148
Biosecurity, 45–47
Bird control, in packinghouses, 38–39
Browning, of fruits, treatments for, 130–131

C
Calcinated calcium, as sanitizer, 100, 176
Calcium hypochlorite, as sanitizer, 94–96, 176, 179, 185
Calcium salts, as antibrowning agents, 130
Campylobacter, outbreaks of, 123
Canada, irrigation water quality guidelines of, 32
Carvacrol, as sanitizer, 100–101
Cellulose fibrils, in microbial attachment, 61
Centers for Disease Control, food safety jurisdiction of, 149
Chitosan, as edible coating, 105–106
Chlorine dioxide, as sanitizer, 91, 96–97, 102, 141–142
Chlorine gas, as sanitizer, 94–96
for fresh-cut produce, 140–141
for sprouts, 176, 177–179
Chromogenic agar media, for contamination trace back, 149
Cinnamaldehyde, as sanitizer, 100
Coatings, edible, 105–106
Composting, of manure, 37
Consumer handling of produce, 221–231
 education program for, 8, 22
 future concerns, 228–229
 perception of microbiological hazards and, 225
 perception of safety and, 223–225
 practices of, 225–226
 selection of, 221–223, 226–228
Contamination
 in food preparation, 227–228
 in home storage, 226–227
 prevention of, 4–5, see also Good agricultural practices (GAPs)
Crisis management plan, 46
Critical control points, in storage temperatures, 127
Crop protection, water quality for, 34–35
Cryptosporidium, 2
 outbreaks of, 14–15
 in sprouts, 201, 203
Cuticle, microbial attachment to, 56–57
Cyclospora cayetanensis
 outbreaks of, 10–11, 14–15, 25–26
 in sprouts, 201

D
Department of Agriculture
 food safety jurisdiction of, 149–152
 proactive safety measures of, 152–153
Disinfectants, see Sanitizers and disinfectants
Distribution, of produce, see Processing

E
Edible coatings, 105–106
Education, for good agricultural practices, 27–31
Electrolyzed oxidizing water, as sanitizer, 99–100
Employees, see Workers
Enterobacter agglomerans, attachment to plant surfaces, 63
Enterobacteriaceae, in sprouts, 169–170
Equipment
 harvest
 pathogens on, 6–7
 sanitation for, 38
in packinghouse, 40
as pathogen source, 5–7
for sanitizing, 101–103
for washing, 101–102
Escherichia coli
 adaptation of, in fresh-cut produce, 133, 135, 136, 139
 infective dose of, 136–137
 in manure, 4
 pasteurization for, 102
Escherichia coli O157:H7, 101
 acid resistance in, 21
 adaptation of, in fresh-cut produce, 137
 attachment of, 57–58
 chlorine dioxide effects on, 142
 in fresh-cut produce, 137, 140
 hydrogen peroxide effects on, 143
 internalization of, 69–72, 86, 88
 in irrigation water, 3
 localization in fruit, 67
 localization in leaves, 65–66
 localization in roots, 68
 in manure, 3
 novel antimicrobial treatments for, 99–101
 outbreaks of, 5, 10–12, 123
 persistence of, 73–74
 postharvest treatments for novel, 99–101
 sanitizers in, 92–99
 technology for, 101–106
 in sprouts, 167–168, 173–206
 survival of, 73–74, 87
Ethylenediamine tetraacetic acid salts, antimicrobial activity of, 143

F
Feces
 animal, see Manure
 human, pathogens in, 23
Flagella, in microbial attachment, 64
Food and Drug Administration
 food safety jurisdiction of, 149–152
Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables, 24
 produce pathogen survey of, 2
 sprout guidelines of, 168
 on storage temperatures, 126
Food preparation, see also Fresh-cut produce, preparation of carelessness in, 22
 pathogen sources in, 7–8

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Sat, 07 Dec 2019 19:59:15
Foodborne illnesses, see also specific pathogens
- Economic impact of, 25–26
- Food preparation and, 7–8
- In the immunocompromised, 22
- Infective dose in, 136–138
- Irrigation water quality and, 132
- Outbreaks of, see Outbreaks
- From produce workers, 130
- Unpasteurized juice and, 25

FoodNet, 150–151

Fresh-cut produce, 121–165
- Antibrowning treatments for, 130–131
- Contamination trace back in, 146–149
- Freshness indicators for, 152
- Health-conscious eating and, 121–123, 154
- Information on, 154
- Microbial attachment to, 107–108
- Microbial contamination of, 138
- Microbial growth in, 87–88
- Pathogen control on, 139–149
- Postharvest biocontrol for, 145
- Preharvest biocontrol for, 145
- Preparation of
 - Clean conditions for, 129
 - Microbial adaptation to, 132–139
 - Microbial quality before, 128–129
 - Personal hygiene during, 129–130
 - Water quality in, 132
- Proactive safety measures for, 152–153
- Regulations on, 149–152
- Respiration in, 125
- Sales statistics for, 7, 122, 223
- Sanitation importance with, 6–7
- Sanitizers for, 93, 140–145
- In school lunch programs, 122
- Spoilage of, 123–128
- Temperature abuse of, 125–128
- Unique characteristics of, 129
- As wounded plant tissue, 124–125

Freshness indicators, 152

Glutamate-dependent acid resistance system, 138–139

Good agricultural practices (GAPs), 5, 21–53, 149–150
- Biosecurity plan in, 45–46
- Choosing to implement, 25–27
- Crisis management plan in, 46
- Definition of, 22–23
- Future of, 48–50
- Introduction of, 24
- Irrigation water quality and, 31–35
- Manure use and, 35–37
- Modification of, 48
- Principles of, 24–25
- Produce safety assurance pyramid based on, 26–27
- Record keeping for, 44–45
- Role of, 47–48
- Sanitation practices in, 37–45
 - Field, 37–38
 - Packinghouse, 38–43
- Soil type and, 35–37
- For specialty produce markets, 46–47
- For sprouts, 205
- Training programs for, 27–31
- Worker health and hygiene in, 29–31

Good manufacturing practices, for sprouts, 206

H

HACCP, see Hazard analysis critical control point plan

Hand washing, 30, 42, 227

Harvest, pathogen sources in, 5–6

Hazard analysis critical control point plan
- Development of, 47–48
- For fresh-cut produce, 7–8, 139–140
- For juice, 25
- For sprouts, 206–207
- Verification of, 153

Heat treatment, 102–103, 180–181, 183

Hepatitis A virus
- Irradiation of, 103
- Outbreaks of, 13–14

“Hurdle concept,” in contamination, 94

Hydrogen peroxide, as sanitizer, 93, 98–99, 102, 107, 142–143

Hygiene, worker, see Workers, hygiene practices for

I

Identification, product, 45

Immunocompromised persons, susceptibility
Immunocompromised persons, susceptibility to foodborne pathogens, 22

Imported produce, pathogen sources in, 8–9

Infective dose, 136–138

Insect control, in packinghouses, 38–39

Integrated pest management, 224–225

Internalization, microbial, 69–72
 through damaged tissue, 70
 through natural openings, 69–70
 preharvest, 70–72
 sanitizer failure in, 93–94
 in sprouts, 171–172

Iodine-based sanitizers, 91

Irradiation, of produce, 103, 144, 182

Irrigation water
 GAP recommendations for, 35
 methods of applying, 32, 34–35, 86
 pathogens in, 3, 14, 23, 132
 for sprouts, 185–187, 190–191
 supply versus demand of, 33

K

Klebsiella, attachment to plant surfaces, 63

L

Lactic acid bacteria
 antimicrobial action of, 106
 for sprout decontamination, 184

Lactic acid salts, antimicrobial activity of, 143

Leaves
 microbial attachment to, 56–57
 microbial localization in, 65–66

Lectins, in microbial attachment, 62

Lipopolysaccharides, in microbial attachment, 61–62

Listeria monocytogenes
 adaptation of, in fresh-cut produce, 135, 136
 attachment of, 58, 64
 in biofilms, 93
 chlorine dioxide effects on, 142
 edible coatings effects on, 106
 in fresh-cut produce, 8, 140
 hydrogen peroxide effects on, 143
 in imported produce, 9
 irradiation of, 103, 144
 localization in fruit, 67
 localization in roots, 68
 outbreaks of, 123, 128
 sanitizers for, 91–92, 94–95, 97–100

in sprouts, 173–174, 182, 184, 186, 189, 198

Localization, microbial, 64–72
 in fruits, 66–68
 in leaves, 65–66
 in roots, 68

M

Manure
 application of, 36–37
 composting of, 37
 pathogens in, 3–4, 23, 36

Microbiological data program, 151–152

Modified-atmosphere packaging, 89, 104–105, 125, 139

Mutations, in adaptive response, 133, 139

N

Nisin, antimicrobial activity of, 106, 144

Norovirus, outbreaks of, 10, 13, 30

O

Organic produce
 consumer perception of, 224
 fresh-cut, biocontrols for, 145
 manure use for, 36, 37
 microbiological quality of, 4, 87
 sprouts, 175–176, 186–187

Outbreaks, 9–15
 Campylobacter, 123
 from cantaloupe contamination, 129
 consumer buying habits affected by, 225
 contamination trace back in, 146–149
 Cryptosporidium, 14–15
 Cyclospora cayetanensis, 10–11, 14–15, 25–26
 economic impact of, 25–26
 Escherichia coli O157:H7, 5, 10–12, 123
 from fresh-cut produce, 123–124, 128, 146–149
 hepatitis A, 13–14
 information gathering in, 150–151
 Listeria monocytogenes, 123, 128
 from melon contamination, 129
 norovirus, 10, 13, 30
 from organic produce, 87
 parasitic infections, 123
 Salmonella, 10–11, 13, 129
 Shigella, 10, 12, 123, 129
 from sprouts, 5, 167–168, 172–175
 Vibrio, 123
worker health and hygiene practices and, 29–31

Oxygen, limitation of, in fresh-cut produce packages, 125

Ozone, as sanitizer, 97–98, 178, 183

Packinghouse, 38–43
design and construction of, 39–40
employee facilities in, 40–43
equipment for, 40
pest management in, 38–39
water quality in, 43

Packinghouse, 38–43
design and construction of, 39–40
employee facilities in, 40–43
equipment for, 40
pest management in, 38–39
water quality in, 43

Packedhouse, 38–43
design and construction of, 39–40
employee facilities in, 40–43
equipment for, 40
pest management in, 38–39
water quality in, 43

Pasteurization, of produce, 102

Pathogens, see also specific pathogens
sources of, 2–9
on farm, 23–24
food preparation, 7–8
harvest, 5–6
imported products, 8–9
preharvest, 2–5
processing, 6–7
survival of, versus soil type, 36–37
types of, 2

Perishability, see Spoilage

Peroxyacetic acid, as sanitizer, 98–99

Pest management
integrated programs for, 224–225
in packinghouses, 38–39

Pesticides
consumer concerns about, 224
water mixed with, 34–35

Petting zoos, pathogens in, 46–47

Phenolic compounds, as sanitizers, 91, 100–101

“Pick-your-own” markets, 46

Plant surfaces, colonization of, 56–57

Polymerase chain reaction, for contamination trace back, 146–148

Polyphenol oxidase inhibitors, as antibrowning agents, 130

Polysaccharides, in microbial attachment, 61–62

Postharvest handling and processing, 85–120, see also Fresh-cut produce
equipment for, 101
for fresh-cut produce, 145
future developments in, 107–108
microbiology of, 85–88
novel antimicrobial treatments of, 99–101
potential treatment strategies for, 106–107
prior to packaging, 88–92
procedures for, 101–106
sanitation in, 90–92
shelf life and, 88–90
of sprouts, 185–187
wash treatments in, 92–99

Potassium permanganate, as sanitizer, 100

Preharvest
biocontrol during, 145
pathogen sources in, 2–5
Preparation, see Food preparation; Fresh-cut produce, preparation of
Pressure treatment, of sprouts, 182

Probiotics, for sprout decontamination, 183–185

Processing, pathogen sources in, 6–7

 Produce safety assurance pyramid, 26–27
Pseudomonas
attachment to plant surfaces, 63
in biofilms, 93
growth of, 87–88, 104–105
in modified-atmosphere packaging, 104–105
in sprouts, 169–170

PulseNet, 150–151

Q
“Qualified through Verification” program, 153

Quaternary ammonium compounds, as sanitizers, 91

R

Radiation treatment, of produce, 103, 144, 182, 186

Radio frequency treatment, 103

Rapid test kits, for microorganisms, in sprouts, 190–191

Recall, product, 45, 46

Recall, product, 45, 46

Record keeping, for GAP implementation, 44–45

Regulations, for fresh-cut produce safety, 149–152

Respiration, of wounded plant tissue, 125

Restaurants, produce-related outbreaks in, 11–12

Retail markets, microbiological quality in, 9

Reverse transcriptase-polymerase chain reaction, for contamination trace back, 148

Rhizobium, attachment to plant surfaces, 58, 60, 61
Rhizoplane, microbial attachment to, 57
RNA polymerase, in adaptive response, 133
Rodent control, in packinghouses, 38–39
Roots
microbial attachment to, 57
microbial localization in, 68
rpoS gene mutations, in adaptation, 133, 135, 139

S
Salmonella
acid resistance of, 138
adaptation of, in fresh-cut produce, 133, 135–138
attachment to plant surfaces, 64
chlorine dioxide effects on, 142
in fresh-cut produce, 8, 140
hydrogen peroxide effects on, 143
in imported produce, 9
infective dose of, 136–137
internalization of, 70–72, 86
localization in fruit, 66–67
localization in leaves, 65
localization in roots, 68
in manure, 3, 4
outbreaks of, 10–11, 13, 129
pasteurization of, 102
permeabilization of, 74
sanitizers for, 92–95, 97–98, 100
in sprouts, 167–168, 173–206
survival of, 74
Sanitation
field, 37–38
packinghouse, 38–43
Sanitizers and disinfectants
agents for, 91–92, 94–99
combinations of, 144–145
efficacy of, 92–94
for equipment, 90–91
equipment for, 101–102
for facilities, 90–91
for fresh-cut produce, 93, 140–145
future of, 107–108
importance of, 6
microbial attachment and, 135–136
microbial susceptibility to, 94
novel, 99–101
for packinghouse, 40, 43
for sprouts, 176–183
visual effects of, 88–89
School lunches, fruit and vegetable promo-
tion for, 122
Security, 45–47
Seed sprouts, see Sprouts
Shelf life, 88–90
at chilling temperatures, 127–128
heat treatment effects on, 102–103
modified-atmosphere packaging for, 89, 104–105, 125–127, 139
Shigella
adaptation of, in fresh-cut produce, 133, 136, 137
infective dose of, 136–137
outbreaks of, 10, 12, 123, 129
sanitizers for, 101
survival of, in modified-atmosphere packaging, 105
Shredders, microbes in, 90
Sigma factors, in adaptive response, 133, 135
Sodium hypochlorite, as sanitizer, 94–96, 107, 176, 185
Sorbic acid, antimicrobial activity of, 143–144
Specialty produce markets, 46–47
Spoilage
of fresh-cut produce, 123–128
freshness indicators for, 152
microbes causing, 4
microbial growth in, 89–90
prevention of, sanitizers for, 96
temperature conditions in, 125–128
Sprouts, 167–219
deoxygenation of, 175–187
biological interventions for, 183–185
chemical interventions for, 176–180, 182–183
physical interventions for, 180–183
postharvest, 185–187
during sprouting, 185–187
good agricultural practices for, 205
good manufacturing practices for, 206
hazard analysis and critical control point systems for, 206–207
native microbes on, 168–172
outbreaks related to, 5, 167–168, 172–175
pathogens in, 5
detection of, 187–202
reduction of, 204–207
types of, 172–175
sanitizers for, 176–183
seeds for, pathogens in, 202–204
Storage, of produce, at home, 226–227
Surfactant, with sanitizers, 96, 176
Survival, microbial, 72–74

Temperature conditions, for fresh-cut produce, 125–127, 152
Titanium dioxide, for air decontamination, 91
Toilet facilities, for workers, 30–31, 41
Training, for good agricultural practices, 27–31
Trisodium phosphate, as sanitizer, 100
Tsunami, as sanitizer, 99

Ultrasound, with chlorine compounds, as sanitizers, 99
UV light
 for air decontamination, 90–91
 as produce sanitizer, 103–104, 144

Vacuum infiltration, of sanitizers, 102
Vapor-phase sanitizing treatment, 101–102, 179–180
Vibrio, outbreaks of, 123
Vibrio cholerae, adaptation of, in fresh-cut produce, 137
Victory water, as sanitizer, 99
Viruses, sanitizers for, 96

Washing
 equipment for, 101–102
 in fresh-cut-produce operations, 132
 in home kitchen, 228
 novel treatments in, 99–101
 pathogen sources in, 6–7
 procedure for, 94–99
 sanitizers for, see Sanitizers and disinfectants
Wastewater reuse, in agriculture, 32
Water
 for crop protection, 34–35
 in fresh-cut-produce operations, 132
 irrigation, see Irrigation water
 ozonated, 97–98
 postharvest, 43
Workers
 hygiene practices for, 5–6
 in fresh-cut produce preparation, 129–130
 importance of, 29–31
 postharvest, 88
 packinghouse, facilities for, 40–43
World Health Organization, irrigation water quality guidelines of, 32

Xanthomonas vesicatoria, attachment to plant surfaces, 63