Bacteria versus Antibacterial Agents
AN INTEGRATED APPROACH
Bacteria versus Antibacterial Agents
AN INTEGRATED APPROACH

Oreste A. Mascaretti
Department of Organic Chemistry
Faculty of Biochemistry and Pharmacy
Universidad Nacional de Rosario
Rosario, Argentina

WASHINGTON, D.C.
This book is dedicated to the memory of Dr. Guillermo O. Cobeñas, a rural medical doctor in Salliquelo, Buenos Aires Province, Argentina, where I was born and raised and where I received my elementary and secondary education. Dr. Cobeñas introduced me to what it means to be a university graduate. He embodied professional excellence and was a humanitarian, always committed to give his best to his patients.
Contents

Foreword xv
Preface xvii
Acknowledgments xix

Chapter 1

Structure and Function of Prokaryotic and Eukaryotic Cells 1
Cells as the Basic Units of Life 1
Eukaryotic and Prokaryotic Cells 2
Eukaryotic Cell Organization 3
 The Plasma Membrane 4
 Cytoplasmic Structures 5
Bacterial Morphology 7
Bacterial Cell Organization 8
 The Bacterial Cell Wall 8
 The Outer Membrane 17
 The Periplasmic Space 22
 The Cytoplasmic Membrane 22
 Capsules and Slime Layers 24
 Endospores 24
 Bacterial Cell Appendages 24
 The Cytoplasmic Matrix 25
Summary 28
 The Bacterial Cell Wall and Its Polymers 29
 Bacterial Membranes, Porins, and the Periplasmic Space 29
viii CONTENTS

The Cytoplasm 29
The Nucleoid and Genetic Elements 29
Appendages 30
References and Further Reading 30

chapter 2
Bacterial Pathogenesis 33
Definitions 33
Bacterial Invasion of Human Cells 34
Steps in Bacterial Invasion 35
Bacterial Adhesion 35
Toxins 37
Bacterial Toxins 37
Vaccines 39
Superantigens 39
Endotoxins 39
Pathogenicity Islands 40
Bacterial Biofilms 40
Concluding Remarks 40
References and Further Reading 40

chapter 3
Essentials of the Immune System 43
The Immune System: an Overview 44
Immunodeficiencies 44
Immunocompromised Hosts 44
Innate Immunity 44
Anatomical Barriers 45
Phagocytosis 46
Inflammation 46
Adaptive Immunity 46
Passive Immunity 47
Active Immunity 47
Mechanisms of the Adaptive Immune Response 47
Immunogens and Antigens 47
The Major Histocompatibility Complex 47
Cells and Tissues of the Immune System 48
Cytokines 54
Antibodies 55
The Complement System 58
Opsonization and Phagocytosis 58
Extracellular and Intracellular Bacteria 59
Intracellular Bacteria 63
Interactions between Bacteria, Immune Defenses, and Antibacterial Drugs 64
Antibacterial Penetration into Eukaryotic Cells 64
Schematic Integrated Overview of Mechanisms of Host Defense against Bacteria 65
References and Further Reading 65

chapter 4
Molecular Genetics of Bacteria 69
Definitions 69
Replication of the Bacterial Chromosome and Cell Division 71
Gene Expression 71
The Genetic Code 71
Mutations 71
Rate of Mutations in Bacteria 72
Types of Mutations 72
Transition and Transversion Mutations 73
Mutagens 73
Genetic Recombination 76
Extrachromosomal Genetic Elements 77
Mobile Gene Cassettes and Integrons 80
Gene Transfer 81
Bacterial Conjugation 81
DNA Transformation 83
Transduction 84
Significance of the Origin, Transmission, and Spread of Bacterial Resistance Genes 85
References and Further Reading 85

chapter 5
Mechanisms of Bacterial Resistance to the Action of Antibacterial Agents 87
Definition of Bacterial Resistance 87
Background 87
Historical Perspective 88
Current Status of Bacterial Resistance 88
Characteristics of Bacterial Resistance 88
Sources of Resistance Genes 88
Detection Methods 89
General Mechanisms of Bacterial Resistance 89
Ertapenem 155
Carbapenem Preparations Commercially Available in the United States 156
Monobactams 156
Aztreonam 156
Monobactam Preparation Commercially Available in the United States 157
References and Further Reading 157

chapter 11
β-Lactam Compounds as β-Lactamase Inhibitors 159
Natural Irreversible Inhibitors 159
Clavulanic Acid 159
Semisynthetic Irreversible Inhibitors 162
Sulbactam 162
Tazobactam 163
Clavulanic Acid, Sulbactam, and Tazobactam β-Lactamase-Inhibitory Activity 164
Combinations of a β-Lactam Antibiotic and a Serine β-Lactamase Inhibitor 165
Amoxicillin-Potassium Clavulanate 165
Ticarcillin-Potassium Clavulanate 165
Sodium Ampicillin-Sodium Sulbactam 166
Sultamicillin 166
Piperacillin-Sodium Tazobactam 166
Cefoperazone-Sulbactam 168
Comparative Studies of the Activity of the Combinations of a β-Lactam Antibiotic and a β-Lactamase Inhibitor 168
Combinations of a β-Lactam Antibiotic and a β-Lactamase Inhibitor Commercially Available in the United States 168
References and Further Reading 168

chapter 12
Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases 171
Extended-Spectrum β-Lactamases 172
TEM β-Lactamases 173
SHV-Type β-Lactamases 174
OXA-Type β-Lactamases 181
Altered Penicillin-Binding Proteins 181
tem Factors 182
Inducible AmpC β-Lactamases 182
Research and Developments in Novel β-Lactam Antibiotics and β-Lactam Inhibitors of Serine and Metallo-β-Lactamases 184
New Developments in β-Lactam Antibiotics 185
New Developments in Inhibitors of Serine and Metallo-β-Lactamases 187
References and Further Reading 194

chapter 13
Inhibitors of Peptidoglycan Biosynthesis: Fosfomycin and D-Cycloserine 199
Overview of Biosynthesis of the Bacterial Peptidoglycan Unit 199
Fosfomycin 199
Mechanism of Action 199
Spectrum of Antibacterial Activity 200
Clinical Uses 200
Bacterial Resistance 200
Fosfomycin Preparation Commercially Available in the United States 202
D-Cycloserine 202
Mechanism of Action 202
Spectrum of Antibacterial Activity 202
Clinical Uses 202
Bacterial Resistance 202
References and Further Reading 202

chapter 14
Inhibitors of Peptidoglycan Biosynthesis: Bacitracin and Glycopeptides 203
Summary of the Last Steps of Peptidoglycan Biosynthesis 203
Bacitracin 204
Mechanism of Action 204
Antibacterial Activity 205
Clinical Uses 205
Bacterial Resistance 205
Bacitracin Preparations Commercially Available in the United States 205
Glycopeptides 205
Chemical Structures of Vancomycin and Teicoplanins 205
Target of Glycopeptide Antibiotics 206
chapter 15
Antibiotics That Affect Membrane Permeability: Cyclic Peptides 217
Polymyxins 217
Mechanism of Action 217
Antibacterial Activity 217
Clinical Uses 218
Polymyxin Preparations Commercially Available in the United States 218
References and Further Reading 218
chapter 16
Antibiotic Inhibitors of Bacterial Protein Synthesis 219
Protein Synthesis: an Overview 219
The Ribosome at Atomic Resolution 219
X-Ray Crystal Structure of the 70S Ribosome 220
X-Ray Crystal Structure of the 30S Ribosomal Subunit 220
X-Ray Crystal Structure of the 50S Ribosomal Subunit 220
tRNA Structure 221
Protein Synthesis 221
Activation of Amino Acids 221
Initiation Step in Prokaryotes 222
Elongation of the Polypeptide Chain 222
Termination of Protein Synthesis 224
Newly Synthesized Polypeptide Chains Undergo Processing and Folding 225
Processing 225
Folding 225
Antibiotics That Inhibit Bacterial Protein Synthesis 225
References and Further Reading 227

chapter 17
Inhibitors of the 30S Ribosomal Subunit: Aminoglycosides and Tetracyclines 229
Aminoglycosides 229
Chemistry 230
Summary of Clinical Uses 233
Adverse Effects 234
Transport through Membranes 234
Mechanism of Action 234
Bacterial Resistance 236
Structure-Activity Relationships among Aminoglycoside Derivatives 238
Recent Advances in the Development of Novel Aminoglycosides 239
Aminoglycoside Preparations Commercially Available in the United States 239
Tetracyclines 239
History and Overview 239
Chemical Properties 240
Antibacterial Activity and Clinical Uses 241
Mechanism of Action 242
Transport through Membranes 242
Bacterial Resistance 243
Development of Novel Semisynthetic Tetracyclines 244
Tetracycline Preparations Commercially Available in the United States 244
References and Further Reading 245

chapter 18
Inhibitors of the 50S Ribosomal Subunit: Macrolides, Lincosamides, and Streptogramins 247
Macrolides 247
Structure and Classification 247
Historical Perspective on Research to Develop Novel Macrolides 248
14- and 15-Member Ring Macrolides 248
Chemical Modification at the Erythronolide A 251
Roxithromycin 251
Dirithromycin 251
Azithromycin 252
Clarithromycin 253
16-Member Ring Macrolides 254
CONTENTS

Intracellular Concentration of Macrolides 254
Mechanism of Action 255
Mechanism of Bacterial Resistance 257
Trends in Macrolide Research: Novel Macrolides To Overcome Bacterial Resistance 259
Macrolide Preparations Commercially Available in the United States 261

Lincosamides 261
Historical Perspective and Structure of Lincomycin and Clindamycin 261
Mechanism of Action 262
Antimicrobial Activity and Clinical Uses 263
Bacterial Resistance 263
Lincosamide Preparations Commercially Available in the United States 263

Streptogramins 263
Historical Perspective 263
Pristinamycins IA and IIA 263
Quinupristin and Dalfopristin 265
Antimicrobial Activity and Clinical Uses 265
Mechanism of Action 266
Bacterial Resistance 266
Streptogramin Preparations Commercially Available in the United States 267

References and Further Reading 267

chapter 19
An Inhibitor of the 50S Ribosomal Subunit: Chloramphenicol 273
Structure and Current Status of Clinical Uses 273
Structural Features and Structure-Activity Relationships 273
Antimicrobial Activity and Clinical Uses 274
Mechanism of Action 274
Bacterial Resistance 275
Enzymatic Inactivation 275
Active Efflux 276
References and Further Reading 277

chapter 20
Inhibitors of the Formation of the First Peptide Bond: Oxazolidinones 279
Linezolid 279
Antibacterial Activity 280
Clinical Uses 280
Mechanism of Action of Oxazolidinones 280
Bacterial Resistance 280
Oxazolidinone Preparations Commercially Available in the United States 282
References and Further Reading 282

chapter 21
An Inhibitor of Isoleucyl-tRNA Synthetase: Mupirocin 285
Antimicrobial Activity 285
Clinical Uses 286
Mechanism of Action 286
Bacterial Resistance 286
Mupirocin Preparations Commercially Available in the United States 287
References and Further Reading 287

chapter 22
Inhibitors of DNA-Dependent RNA Polymerase: Rifamycins 289
Overview of the Transcription Process 289
Structure of Bacterial DNA-Dependent RNA Polymerase 290
RNA Synthesis 290
Chemistry of Rifamycins 290
Rifampin 291
Mechanism of Action 291
Resistance 291
Rifabutin 292
Rifapentine 292
Rifamycin Preparations Commercially Available in the United States 292
References and Further Reading 292

chapter 23
Inhibitors of DNA Gyrase and Topoisomerase IV: Quinolones 295
Brief History and Overview of the Quinolones 295
Mechanism of Action 297
Supercoiling 298
Topoisomerases 298
Models of Quinolone Interactions with DNA Gyrase 299
High-Resolution Crystal Structure of a Domain of GyrA 301
Structure-Activity Relationships 302
Routes of Quinolone Permeation in Escherichia coli 302
Clinical Uses of First-, Second-, and Third-Generation Quinolones Available in the United States 302
First-Generation Quinolones 303
Second-Generation Quinolones 303
Third-Generation Quinolones 304
Bacterial Resistance 305
DNA Gyrase 305
Topoisomerase IV 306
Resistance Due to Altered Access of Drugs to Target Enzymes 306
Quinolone Preparations Commercially Available in the United States 306
References and Further Reading 307

chapter 24
Antibacterial Agents That Cause DNA Damage in Obligate Anaerobic Organisms: 5-Nitroimidazoles 311
Brief History of the Development of 5-Nitroimidazoles 311
Metronidazole 312
Antimicrobial Activity 312
Mechanism of Action 312
Clinical Uses 313
FDA Indications 313
Acquired Resistance 313
Nitroimidazole Preparations Commercially Available in the United States 314
References and Further Reading 314

chapter 25
Antibacterial Agents That Cause Damage to DNA: 5-Nitrofurans 315
Nitrofurantoin 316
Spectrum of Antimicrobial Activity 316
Mechanism of Action 316
Acquired Resistance 316
Clinical Uses 316
5-Nitrofuran Preparations Commercially Available in the United States 316
References and Further Reading 317

chapter 26
Compounds That Interfere with Tetrahydrofolate Acid Biosynthesis: Sulfonamides and Trimethoprim 319
Sulfonamide Structure 319
Brief History of the Development of Sulfonamides as Antibacterial Drugs 319
Nomenclature 320
Sulfamethoxazole 321
Biosynthesis of Sulfonamides in Bacteria 321
Mechanism of Action of Sulfonamides 321
Inhibitors of Dihydrofolate Reductase 321
Trimethoprim 321
Trimethoprim-Sulfamethoxazole Combination 322
Spectrum of Antimicrobial Activity 323
Overview of the Mechanism of Action of Sulfonamides and Trimethoprim 323
Tetrahydrofolate Cofactors: the Metabolism of C1 Units 323
A Unique Methylation Reaction Produces dTMP from dUMP 323
Precursors of the Purine Ring of Nucleotides 323
Biosynthesis of Glycine 323
Biosynthesis of Methionine 323
Clinical Uses of the Trimethoprim-Sulfamethoxazole Combination 323
Urinary Tract Infections 323
Respiratory Tract Infections 323
Gastrointestinal Infections 324
Other Infections 325
Trimethoprim and Sulfonamide Resistance 325
Transport-Related Mechanisms 325
Resistance to Sulfonamides 326
Resistance to Trimethoprim 326
Sulfonamides Commercially Available in the United States 327
References and Further Reading 328
chapter 27

New Antibacterial Drugs in Development That Act on Novel Targets 329

Background and Outlook 329

Novel Targets 330
 Peptide Deformylase 330

Enzyme Inhibitors as Drugs 331
 Amide Hydrolysis: Peptidases (Proteases) 331

Two-Component Signal Transduction in Bacteria 336
 Inhibitors of Two-Component Regulatory Systems in Bacteria 337

Novel Antibacterial Agents Based on the Cyclic Dl-α-Peptide Architecture 338

Antimicrobial Cationic Peptides 341
 Antimicrobial Cationic Peptides and Toll-Like Receptors 341

Bacterial Fatty Acid Biosynthesis 341

Inhibitors of Bacterial Fatty Acid Biosynthesis 342

Inhibitors of Bacterial Tyrosyl-tRNA Synthetase 344

Inhibitors of the Enzymes of the Diaminopimelate Pathway 344

Inhibitors of UDP-N-Acetylglucosamine Reductase (MurB) 345

Inhibitors of the Bacterial Cell Wall Biosynthesis Enzyme MurC 345

Selective Cleavage of D-Alanyl-D-Lactic Acid Termini of Peptidoglycan Precursors 346

Inhibitors of Bacterial Adhesins 346
 β-Lactams as Potential Inhibitors of Pilus Assembly in Pathogenic Bacteria 347

Inhibitors of Lipid A Biosynthesis 347

Bacterial Genome Sequencing and Antibacterial Drug Discovery 348

Novel Antibacterial Compounds Identified by Using Synthetic Combinatorial Library Technology 348

How the Pharmaceutical Industry Brings an Antibacterial Drug to the Market in the United States 349

Concluding Remarks and Overview of This Chapter 349

References and Further Reading 349

Epilogue 355

Appendix A Amino Acids, the Building Blocks of Proteins 357

Appendix B Enzyme Catalysis and Enzyme Inhibition 361

Appendix C Lipids and Membranes 367

Appendix D Antibiotic Influx and Efflux Systems 371

Index 379
Since they were first introduced in the 1940s, antibiotics have transformed medicine; most infectious diseases can be effectively controlled by the appropriate use of the correct drugs. Bacterial diseases which frequently decimated the world’s population throughout history, such as plague, typhus, cholera, and tuberculosis, are little more than history to most people living in industrialized countries. The situation is such that antibiotics are taken for granted by the physicians who prescribe them and the public that consumes them. For most of the latter half of the past century, the production and sale of antibiotics have been highly competitive, with billions of dollars a year in sales. More recently, the competition has intensified in another sense; bacteria are responding to antibiotics by a variety of avoidance tactics, and the next phase of antibiotic development will take on a different focus: restoring their efficacy. This will require considerable research effort.

Thus, the importance of antibiotics to public health and well-being worldwide cannot be underestimated, and the availability of a text that describes all aspects of these magical small molecules is welcomed. *Bacteria versus Antibacterial Agents: an Integrated Approach* is such a text, and it will be welcomed as a source for university and medical school use.

In addition to the discovery and production of antibiotics, studies of the modes of action by which these compounds act on target cells have revealed fascinating biochemical stories. This information has been important in elucidating the mechanisms of replication, transcription, translation, and cell wall synthesis in bacteria and other living organisms. It also provided the experimental and conceptual basis for what is now known as chemical biology, wherein complex biological processes are dissected by analyzing inhibition by small molecules and using mutants refractory to inhibition as a means to identify key components of reactions.

Subsequent studies by three-dimensional structure analyses provided a detailed understanding of inhibitor-receptor interactions and the underlying
structure-activity relationships. Such has been the case for many of the inhibitors of ribosome function and DNA synthesis.

Along with its many notable successes in therapy and in basic science, the use of antibiotics has had its downside; the target organisms can employ a variety of genetic and biochemical strategies to evade inhibition by small molecules, and there exists a real threat that many antibiotics will become useless as a result. New approaches to the discovery of novel inhibitors are desperately needed, and a great deal of effort is going into attempts to find new active molecules or to redesign old ones in order to stem the threat of emerging resistant pathogens.

These goals can be realized only by an understanding of the biology of the target organism, the biochemical action of the antibiotic, and the potential resistance mechanisms, not to mention the participation of the host response. Oreste Mascaretti touches on all of these matters in this book and has done a real service in providing a readable and well-illustrated account of the world of antibiotics.

Finally, while this book focuses on antibacterials, the same principles of chemistry, microbiology, genetics, and biochemistry apply in the development of antivirals and anticancer agents. The work done on antibacterials that is so clearly described here has meaningful lessons beyond infectious diseases.

Julian Davies
Department of Microbiology and Immunology
University of British Columbia
Vancouver, British Columbia, Canada
Preface

This book presents an integrated approach to both the basic concepts and the most recent developments in the field in a form which is suitable for the needs of those who are studying clinical and molecular microbiology, biotechnology, biochemistry, chemical biology, bioorganic chemistry, pharmacy, or any of the related biomedical sciences.

The book was designed as an introductory text on antibacterial agents with broad coverage of the subject. I have tried to provide a comprehensive and concise overview of important subject areas. Supplanting a more detailed discussion of each topic, a list of references is included at the end of each chapter. The reference lists are limited mostly to some leading books, recent reviews, and a few classic articles where appropriate.

The understanding of the mechanisms of bacterial resistance has rapidly advanced in recent years, opening the way for the design of new antibacterial agents tailored to overcome the mechanisms that bacteria use to resist the action of traditional antibacterial agents.

In compiling diverse information into a single and comprehensive book, I have attempted to give a clear presentation of cutting-edge knowledge. The key features I present are as follows:

• The basics of bacterial cell structure and function for a better understanding of cellular metabolism and mechanisms of antibiotic action, as well as the mechanisms developed by prokaryotic cells to overcome the action of antibiotics
• The characteristic features of bacterial pathogenicity
• How antibacterial drugs reach their targets in gram-positive and gram-negative bacteria
• How the human immune system is involved in a wide range of immune responses in the battle against bacterial infections
• The genetic basis of resistance to antibacterial drugs

• The biochemical mechanisms of action of antibacterial drugs
• Improved penicillins, cephalosporins, tetracyclines, quinolones, macrolides, and glycopeptides developed by pharmaceutical companies to restock the antibacterial arsenal
• Recent advances in the research on and development of new classes of antibacterial drugs to combat the rising tide of drug-resistant bacterial infections

In preparing this textbook, I have striven for a coherent overall presentation. I have had the chapters read by experts (see the acknowledgments) who helped me to eliminate errors. However, any shortcomings of the book are solely my responsibility. There is no doubt that I have omitted some topics and given too much room to others, but the field of antibiotics covers such a broad area of interest that I had to make a personal judgment on what had to be included and what could be left out.

Where appropriate, mechanistic aspects of the action of antibacterial agents and β-lactamase inhibitors are discussed to help the reader understand the underlying principles of action on a particular target in bacteria. Additionally, each chapter on a group or subgroup of antibiotics or other antibacterial class also surveys the topic of structure-activity relationships.

The most recent and most significant developments in new antibacterial agents with novel modes of action are presented by using selected examples. Key terms are printed in bold type, and their definitions are given, when they are first encountered in the text.

I hope that medicinal and bioorganic chemists, molecular biologists, microbiologists, geneticists, and immunologists each will find relevant topics from disciplines that they are not too familiar with. I expect that some of the information provided in this book will be useful in the development of new antibiotics and synthetic antibacterial agents, and I also hope to see more interdisciplinary cooperation between scientists in these different disciplines.

Any comments or suggestions for improvements in future editions would be gratefully received.

Oreste A. Mascaretti
Department of Organic Chemistry
Facultad de Ciencias Bioquímicas y Farmacéuticas
Universidad Nacional de Rosario
Suipacha 531
S 2000 LRK Rosario
Argentina
Fax: 54-(0)341-4370477
E-mail: masca@citynet.net.ar
I express my gratitude for the constructive advice that I received from the following scientists: Eduardo L. Setti (Celera, San Francisco, Calif.), Lina Quatrocchio (Roche Bioscience, Palo Alto, Calif.), Nancy D. Hanson (Center for Research in Anti-infectives and Biotechnology, Creighton School of Medicine, Omaha, Nebr.), Heinz G. Floss (Department of Chemistry, University of Washington, Seattle, Wash.), Ronald J. Dworkin (Infectious Disease Reference Laboratory, Providence Portland Medical Center, Portland, Oreg.), Julian Davies (Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada), Stephen H. Zinner (Department of Medicine, Harvard Medical School, Cambridge, Mass.), Moreno Galleni (Centre for Protein Engineering, University of Liége, Belgium), André Bryskier (Anti-infective Diseases Group, Aventis Pharma, Romainville, France), Nafsika H. Georgopapadakou (Newbiotics Inc., San Diego, Calif.), Joyce Sutcliffe (Rib-X Pharmaceuticals, Inc., New Haven, Conn.), Michael W. Russell (Department of Microbiology/Oral Biology, University of Buffalo, The State University of New York, Buffalo, N.Y.), Christopher N. C. Body (Department of Chemical Engineering, Stanford University, Stanford, Calif.), James P. Nataro (Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Md.), Alexander S. Mankin (Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Ill.), George M. Eliopoulos (Department of Medicine, Massachusetts General Hospital, Boston, Mass.), Carlos A. Fossati (Departamento de Inmunología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina), and Eleonora García Vescovi and Fernando C. Soncini (Departamento de Microbiología, Facultad de Ciencias Bioquímicas, Universidad Nacional de Rosario, Rosario, Argentina). I also thank Ada Yonath (Weizmann Institute, Rehovot, Israel) for her comments on the discussion of the structural basis for the antibiotic activity of the ketolide ABT-773 in chapter 18 and Christopher Schofield (Dyson Perrins Labora-
tory, Oxford University, Oxford, United Kingdom) for providing the photo of the monument in the Botanic Garden of Oxford University, which appears in the epilogue.

Thanks are also due to the following ASM Press staff members: Jeff Holtmeier (director) for the confidence he put in me, Kenneth April (senior production editor) for coordinating the publication process, and Jennifer Adelman for her assistance while I was writing the book. I also thank Yvonne Strong for copyediting the manuscript, Paula Ellison for editing and sizing the figures, Russell Burnett for proofreading the book, Susan Schmidler for designing the cover and interior, and Mary Boss, Sara Gryske, and others on the staff of Impressions Book and Journal Services for project management.
Index

A
ABT-773 (ketolide), 260–261
Accessory cells, 53–54
Accumulation, antibiotic, 372
N-Acetylmuramic acid, as peptido-
glycan component, 12–13
Acyltransferases
in aminoglycoside resistance, 237–238
in chloramphenicol resistance, 275–276
Acid-fast staining, 9–10
Actinobacter
β-lactam antibiotic combinations for, 165–167
carbapenems for, 154
netilmicin for, 233
resistance in, 201
Acquired resistance, 87
Actin filaments, in cytoskeleton, 7
Actinomyces, vancomycin for, 208
Actinonin, in peptide deformylase inhi-
bition, 334–335
Actinoplanes, antibiotics from, 103,
104, 205
Active-efflux mechanisms, of resistance, 90–92
Acyllides, 261
Adaptive immunity, 46–58
antibodies in, 55–58
antigen-presenting cells in, 53–54
antigens in, 47
blood in, 48
bone marrow in, 48–49
complement system in, 58
cytokines in, 53
to extracellular bacteria, 60–61
immunogens in, 47
to intracellular bacteria, 64
lymph in, 48
lymphocytes in, 49–53
major histocompatibility complex in, 47–48
thymus in, 49
Adhesins, 35–37
inhibitors of, 346–347
nonpilus, 37
of pili, 25, 36
Adhesion, 35–37
Aeromonas, trimethoprim and sulfon-
amides for, 323
Aeromonas hydrophila, β-lactamase of, 189
D-Alanyl-D-lactic acid termini, of pepti-
doglycan precursors, precursors
of, 346
Aldomycin, 374
Algae, definition of, 2
Alkylating agents, as mutagens, 74–75
7-Alkyldenecephalosporin sulfones, 188
Ambler molecular classification, of
β-lactamases, 116
Amino acids
activation of, in protein synthesis, 221–223, Color Plate 16.2
nomenclature of, 357–360
structures of, 357–358
Aminoacyl-tRNA synthetases, in pro-
tein synthesis, 221–223, Color Plates 16.2–16.5
P-Aminobenzesulfonamide derivatives, see Sulfonamides
7-Aminocyclitol nucleus, of aminoglyco-
sides, 229–233
7-Aminodeacetoxycephalosporanic acid, 139–140
Aminoglycoside(s), 229–239, see also
specific antibiotics
activity of, vs. structure, 238–239
adverse effects of, 234
chemistry of, 230–233
classification of, 230–233
clinical uses of, 233–234
in combinations, 233–234
discovery of, 229
enzymes modifying, 237
inactivation of, 92
interchangeability of, 233
mechanism of action of, 234–236
membrane transport of, 234
new, 239
preparations of, 239
resistance to, 63, 236–238
structures of, 98, 229–233
vs. activity, 238–239
Amikacin, 232
Alkylating agents
activity of, vs. structure, 238–239
INDEX

380

Aminoglycoside transferases, in inactivation, 92
6-β-Aminopenicillanic acid, 109
Aminopenicillins, 134–135
Aminopeptidases, 331
Aminopyridine derivatives, in fatty acid synthesis inhibition, 342
Amoxicillin, 134
Anthrax, see Bacillus anthracis
Antimicrobial agents, synthetic vs. antibiotics, 97–98
classification of, 98–103
Antibiosis, definition of, 98
Antibiotics
accumulation of, 372
bacitracin from, 204
endospores of, 24
polymyxins from, 23
encapsulated, 24
erythromycin for, 250
toxins of, 38
Bacillus
bacitracin from, 204
endospores of, 24
polymyxins from, 23
Bacillus anthracis
capsule of, 24
erythromycin for, 250
toxins of, 38
Bacillus cereus, 121–123, 189–190
Bacillus fragilis, 123–124, 192
Bacillus megaterium, morphology of, 217
Bacillus subtilis
cholic peptides for, 339
peptide deformylase of, 334
two-component regulatory system of, 338
Bacitracin, 204–205
Bacteria
appends of, 24–25
capsules of, 24
cell wall of, 8–17, 102
cytoplasmic matrix of, 25–28
cytoplasmic membrane of, see Cytoplasmic membrane
division of, in replication, 71
endospores of, 24
vs. eukaryotic cells, 2–3
genome of, 27–28
morphology of, 7–8
outer membrane of, see Outer membrane, of bacteria
pathogenicity of, see Pathogenesis, bacterial
periplasmic space of, 22
slime layers of, 24
Bacteriocins, 79
Bacteriophages, 3, 85
Bacteroides
β-lactam antibiotic combinations for, 165–166
cephalosporins for, 143
erpentem for, 155
lincomamides for, 262, 263
metronidazole for, 312–313
quinolones for, 303
Bacteriophage, in peptidoglycan synthesis, 13
Bartonella, erythromycin for, 250, 251
Base pair substitution, 72
BB-78484, in lipid A inhibition, 348
BB-78485, in lipid A inhibition, 348
BB-3497 (N-formylhydroxylamine), in peptide deformylase inhibition, 336
Benzathine penicillin G, 131–132
Benzylopencillin, see Penicillin G
β-Lactam antibiotics, 107–111, see also specific antibiotics
approval dates of, 171
β-Lactamase inhibitor combinations with, 165–168, 171, see also specific combinations as β-lactamase inhibitors, see β-Lactamase inhibitors
chemical properties of, 111
hydrolysis of, β-lactamases in, see β-Lactamase
mode of action of, 111
new, 184–187
nomenclature of, 108
in plus inhibition, 347
proteins binding, see Penicillin-binding proteins
resistance to, 171–172, see also β-Lactamase
efflux mechanisms in, 63
siderophores linked to, 187
spectral characteristics of, 109–110
structures of, 98, 107–108
β-Lactamase(s), 115–124
actions of, 92
AmpC, 182–184
catalytic mechanism of
class A, 117–119
class B, 122–124
class C, 119
class D, 120
classification of, 115–116
discovery of, 129–130
extended-spectrum, see Extended-spectrum β-lactamases
functions of, 115
nomenclature of, 115
production of, 115
serine, 116–124
class A, 117–119
class B metallo-, see Metallo-β-lactamases
class C, 119
class D, 119–120
evolution of, 117
functions of, 116–117
inhibitors of, 187–189
structure of
class A, 117

Aminoglycoside transferases, in inactivation, 92
6-β-Aminopenicillanic acid, 109
Aminopenicillins, 134–135
Aminopeptidases, 331
Aminopyridine derivatives, in fatty acid synthesis inhibition, 342
Amoxicillin, 134
Anthrax, see Bacillus anthracis
Antimicrobial agents, synthetic vs. antibiotics, 97–98
classification of, 98–103
Antibiosis, definition of, 98
Antibiotics
accumulation of, 372
bacitracin from, 204
endospores of, 24
polymyxins from, 23
encapsulated, 24
erythromycin for, 250
toxins of, 38
Bacillus
bacitracin from, 204
endospores of, 24
polymyxins from, 23
Bacillus anthracis
capsule of, 24
erythromycin for, 250
toxins of, 38
Bacillus cereus, 121–123, 189–190
Bacillus fragilis, 123–124, 192
Bacillus megaterium, morphology of, 217
Bacillus subtilis
cholic peptides for, 339
peptide deformylase of, 334
two-component regulatory system of, 338
Bacitracin, 204–205
Bacteria
appends of, 24–25
capsules of, 24
cell wall of, 8–17, 102
cytoplasmic matrix of, 25–28
cytoplasmic membrane of, see Cytoplasmic membrane
division of, in replication, 71
endospores of, 24
vs. eukaryotic cells, 2–3
genome of, 27–28
morphology of, 7–8
outer membrane of, see Outer membrane, of bacteria
pathogenicity of, see Pathogenesis, bacterial
periplasmic space of, 22
slime layers of, 24
Bacteriocins, 79
Bacteriophages, 3, 85
Bacteroides
β-lactam antibiotic combinations for, 165–166
cephalosporins for, 143
erpentem for, 155
lincomamides for, 262, 263
metronidazole for, 312–313
quinolones for, 303
Bacteriophage, in peptidoglycan synthesis, 13
Bartonella, erythromycin for, 250, 251
Base pair substitution, 72
BB-78484, in lipid A inhibition, 348
BB-78485, in lipid A inhibition, 348
BB-3497 (N-formylhydroxylamine), in peptide deformylase inhibition, 336
Benzathine penicillin G, 131–132
Benzylopencillin, see Penicillin G
β-Lactam antibiotics, 107–111, see also specific antibiotics
approval dates of, 171
β-Lactamase inhibitor combinations with, 165–168, 171, see also specific combinations as β-lactamase inhibitors, see β-Lactamase inhibitors
chemical properties of, 111
hydrolysis of, β-lactamases in, see β-Lactamase
mode of action of, 111
new, 184–187
nomenclature of, 108
in plus inhibition, 347
proteins binding, see Penicillin-binding proteins
resistance to, 171–172, see also β-Lactamase
efflux mechanisms in, 63
siderophores linked to, 187
spectral characteristics of, 109–110
structures of, 98, 107–108
β-Lactamase(s), 115–124
actions of, 92
AmpC, 182–184
catalytic mechanism of
class A, 117–119
class B, 122–124
class C, 119
class D, 120
classification of, 115–116
discovery of, 129–130
extended-spectrum, see Extended-spectrum β-lactamases
functions of, 115
nomenclature of, 115
production of, 115
serine, 116–124
class A, 117–119
class B metallo-, see Metallo-β-lactamases
class C, 119
class D, 119–120
evolution of, 117
functions of, 116–117
inhibitors of, 187–189
structure of
class A, 117
class B, 120–122
class C, 119
class D, 119–120
β-Lactamase inhibitors, 159–169, see also specific antibiotics
activity of, 164–165
approval dates of, 171
β-lactam combinations with, 165–168, 171, see also β-
Lactam antibiotics, β-lactamase inhibitor combinations with natural, 159–162
new, 188–194
resistance to, 171–172
semi-synthetic, 162–164
Biaryl acids in peptide deformylase inhibition, 336
Bilayer structure of outer membrane, 40
Biofilms, 40
Biphenyl tetrazoles, as inhibitors, 185
Bleeding, immune function of, 48
Boron, toxicities of, 38
Burkholderia cepacia, 185
Brucella, 5
5-Bromouracil as mutagen, 74
Braun’s lipoprotein, 20
Blood, immune function of, 48
Biphenyl tetrazoles, as inhibitors, 185
Biofilms, 40
Biaryl acid analogs in peptide deformylation inhibition, 336
Bilayer structure of outer membrane, 18
Biofilms, 40
Biphenyl tetrazoles as β-lactamase inhibitors, 192
Blood, immune function of, 48
BMS-180680 (β-lactam antibiotic), 187
BMS-247243 (cephalosporin), 185
Bone marrow, immune function of, 48–49
Bordetella pertussis erythromycin for, 250, 251
Toxins of, 38
Borrelia burgdorferi, erythromycin for, 250
Botulism, toxins in, 38
Brain’s lipoprotein, 20
3-Bromouracil as mutagen, 74
Brucella, intracellular, 63
Burkholderia cepacia, trimethoprim and sulfonamides as, 323, 325
Bush-Jacoby-Medeiros classification of β-lactamases, 116
C
Cahn-Ingold-Prelog convention, for amino acids, 358–360
Calpeptin in peptide deformylation inhibition, 336
Campylobacter jejuni erythromycin for, 250, 251
Quinolones for, 303
Capsules, 24, 61, 63
Carbachemoph, 145
Carbenem, 145
Carbenem(s)
activity of, 154
clinical uses of, 154–156
discovery of, 153
for methicillin-resistant
Staphylococcus aureus, 185–186
structures of, 107, 153–154
Carbenemases, 120–124
Carboxyimedicins, 135–136
Carboxypeptidases, 113, 331
Cassettes, gene, 80–81
Catalase, 6
Catalysis, enzymes in, 361–364
Cationic peptides, 341
N-CBZ-Leu-norleucinal (calpeptin), in peptide deformylation inhibition, 336
Cefaclor, 145, 146, 148
Cefadroxil, 141, 144
Cefamandole, 145, 146, 148
Cefazolin, 143, 144
Cefdinir, 147
Cefdinor, 147
Cefditoren pivoxil, 147–149
Cefepime, 143, 151
Cefixime, 147
Ceftazidime, 147, 148
Ceftibuten, 141
Cefmetazole, 144, 145, 148
Cefonicid, 145, 148
Cefotetan, 144–146, 148
Cefotaxime, 147, 148
Cefoxitin, 144, 145
Cefpodoxime proxetil, 147, 148
Cefpirome, 149, 151
Cephalosporin C, 139, 140
Cephalosporin(s), 139–152
Cephalosporanic acid, 109
Cephalexin, 141, 144
Cephalothin, 143, 144
Cenata (cephalosporin), 151
Ceftizoxime, 141
Ceftobuten, 147
Cefuroxime axetil, 143–145, 148
Cefuroxime, 145, 146, 148
Ceftriayone, 147, 148
Ceftobuten, 147
Ceftobuten, 147
Ceftizoxime, 141, 147
Ceftobuten, 147
Ceftiraxone, 147, 148
Cefuroxime, 146, 148
Cefuroxime axetil, 143–145, 148
Celsi, see also specific cell types
constituents of, 1–2
Cytoskeleton of, 6–7
Cytoskeleton of, 6–7
Cyanocobalamin, 5
Cations, 2
Chloramphenicol and sulfonamides for, 323, 325
Chemicals and sulfonamides for, 323, 325
Chemicals in mutagenesis, 74–76
Chemotaxis, flagella in, 25
Chiral configuration of amino acids, 357
Chlamydia azithromycin for, 252–254
Chloramphenicol for, 274
erythromycin for, 250
intracellular, 63
Chlamydia pneumoniae, quinolones for, 303–305
Chloramphenicol activity of, 273–274
adverse effects of, 274
clinical uses of, 273–274
resistance to, 63, 92–93, 275–276
structure of, 100, 273–274
Chloramphenicol N-acetyltransferase, 275–276
chromogenic, 151
classification of, 140, 146, 148
clinical uses of, 140
first-generation, 143
fourth-generation, 149
second-generation, 144, 146
third-generation, 148–149
development of, 139–140
discovery of, 107
first-generation, 140, 143, 150
fluoroquinolones use with, 142
fourth-generation, 140, 149–151
historical aspects of, 139–140
manufacturers of, 150
for methicillin-resistant
Staphylococcus aureus, 185
mode of action of, 111
preparations of, 150
second-generation, 140, 143–146, 150
spectral characteristics of, 109–110
structures of, 98, 107, 109, 139–140
fourth-generation, 149
second-generation, 143–145
third-generation, 147, 148
synthesis of, from penicillins, 141–143
third-generation, 140, 147–150
trade names of, 150
Cephalosporin C, 139, 140
Cephalosporinases, 116
Cephalosporium acremonium, antibiotics from, 107, 108, 139
Cephalothin, 142, 144
Cephapirin, 144
Cephalosporins, 144
Cephadrine, 141
Cephalonium, 250
Cephalonium, 250
Cerulenin, 342
Chaperones
in adhesion, 36
definition of, 34
in protein folding, 225
Chemicals, in mutagenesis, 74–76
Chloramphenicol azithromycin for, 252–254
Chloramphenicol for, 274
Cephalosporins, 144
Cephalosporinases, 116
Cephalosporinum acremonium, antibiotics from, 107, 108, 139
Cephalothin, 142, 144
Cephalosporin C, 139, 140
Cephalosporinases, 116
Cephalosporinum acremonium, antibiotics from, 107, 108, 139
Cephalothin, 142, 144
Cephalosporin C, 139, 140
Cephalosporinases, 116
Cephalosporinum acremonium, antibiotics from, 107, 108, 139
Cephalothin, 142, 144
Cephalosporin C, 139, 140
Cephalosporinases, 116
Cephalosporinum acremonium, antibiotics from, 107, 108, 139
Cephalothin, 142, 144
Cephalosporin C, 139, 140
Cephalosporinases, 116
Chlamydia azithromycin for, 252–254
Chloramphenicol for, 274
erythromycin for, 250
intracellular, 63
Chlamydia pneumoniae, quinolones for, 303–305
Chloramphenicol activity of, 273–274
adverse effects of, 274
clinical uses of, 273–274
resistance to, 63, 92–93, 275–276
structure of, 100, 273–274
Chloramphenicol N-acetyltransferase, 275–276
INDEX 381
Elongation, in protein synthesis, 222, 224, 290, Color Plates 16.3–16.5
Enantiomers, 363
of amino acids, 357
Endocytosis, definition of, 4
Endopeptidases, 331
Endoplasmic reticulum, 6
Endospores, 24
Endotoxin, 18, 37, see also
Lipopolysaccharides
Energy requirements, of antibiotic
uptake, 373
Enoxacin
clinical uses of, 303
structure of, 297
Entamoeba histolytica
Endotoxin, 18, 37, see also
Lipopolysaccharides
Enterococcus faecalis
Enterococcus faecium
Enterobacteriaceae
Enterobacter
β-lactam antibiotic combinations for, 165–168
kanamycin for, 232
metronidazole for, 255–256
quinolones for, 303
tetracyclines for, 241
trimethoprim and sulfonamides for, 323, 325
Enantiomers, 363
Enzyme(s)
See also specific enzymes
Enzymes
Enterococcus
gentamicin for, 233
glycopeptides for, 209
morphology of, 8
surfactants for, 316
quinolones for, 303
resistance in
aminoglycosides, 237
glycopeptides, 209–210, 213
Enterococcus faecalis
carbapenems for, 154
cyclic peptides for, 339
quinolones for, 303
resistance, 280–281
Enterococcus faecium
linezolid for, 279–281
resistance to
lincosamides, 263
streptogramins, 267
streptogramins for, 265
Enterococcus, definition of, 34
Enzyme(s)
in catalysis, 361–364
classification of, 361
enantioselectivity of, 363
inhibition, 364–365
inhibitors of, 331–336
kinetics of, 363
substrate complex formation with,
362–364
terminology of, 361
Episome, definition of, 77
Epitopes, 47
erm genes, in resistance, 257
Ertapenem, 155–156
Erythrocyanes, immune function of, 48
Erythromycin(s), 248–251
Erythromycin, 248–251
Erythrocytes, immune function of, 48
Ertapenem, 155–156
Erythromycin, 248–251
Erythrocytes, immune function of, 48
Ecosynthetic, definition of, 2–3
phases of, 2–3
plasma membrane of, 4–5
vs. prokaryotic cells, 2–3
Exocytosis, definition of, 4–5
Exopeptidases, 331
Exotoxins, 37–38
Extracellular bacteria, 34–35
Extracellular bacteria, 34–35
Extracellular bacteria, 34–35
Immune response to, 59–63
Eye, barrier mechanisms in, 45
F
F (fertility) factor, in recombination, 77
Facultative intracellular bacteria, 63
Fatty acids, 367–368
synthesis of, inhibitors of, 341–344
ferm factors, 182
FemXAB enzymes, in peptidoglycan
synthesis, 13–14
FepA, in transport, 374–375, Color
Plate D1
Fermentation, in antibiotic production, 104
Ferrichrome, 374
Fertility factor, in recombination, 77
Fever, 46
FluA protein, in transport, 374
Filaments, intermediate, in cyto-
skeleton, 7
Fimbriae, see Pilis (fimbriae)
Fischer convention, for amino acids, 358
Flagella, 24–25
Flagellin, 25
Flumequine, 296
Fluoroquinolones, see also specific
antibiotics
activity of, 302
cephalosporin use with, 142
resistance
active-efflux mechanisms in, 90
efflux mechanisms of, 375
macrolides, 259
quinolones, 305–306
sulfonamides, 326
target site alterations in, 93–94
trimethoprim, 326
ribosomes of, 28
RNA polymerase of, 290
SurA protein of, 225
tetracyclines for, 241
topoisoamerase of, 299
trimethoprim and sulfonamides for, 323
Esterase, in resistance, 259
Eukaryotic cells, 3–7
cytoplasmic structures of, 5–7
plasma membrane of, 4–5
vs. prokaryotic cells, 2–3
Exocytosis, definition of, 4–5
Exopeptidases, 331
Exotoxins, 37–38
Extended-spectrum β-lactamases, 148,
172–181
discovery of, 172
IRT, 174, 176–178
OXA, 181
SHV, 174, 179–181
TEM, 173–178, Color Plate 12.1
types of, 172–173
Extracellular bacteria, 34–35
Immune response to, 59–63
Eye, barrier mechanisms in, 45
F
F (fertility) factor, in recombination, 77
Facultative intracellular bacteria, 63
Fatty acids, 367–368
synthesis of, inhibitors of, 341–344
ferm factors, 182
FemXAB enzymes, in peptidoglycan
synthesis, 13–14
FepA, in transport, 374–375, Color
Plate D1
Fermentation, in antibiotic production, 104
Ferrichrome, 374
Fertility factor, in recombination, 77
Fever, 46
FluA protein, in transport, 374
Filaments, intermediate, in cyto-
skeleton, 7
Fimbriae, see Pilis (fimbriae)
Fischer convention, for amino acids, 358
Flagella, 24–25
Flagellin, 25
Flumequine, 296
Fluoroquinolones, see also specific
antibiotics
activity of, 302
cephalosporin use with, 142
INDEX

Fluoroquinolones *(continued)*
clinical uses of, 302–305
DNA gyrase interactions with, 299–302
Escherichia coli interactions with, 302
historical aspects of, 295–297
mechanisms of action of, 297–302
new, 377
overview of, 295–297
preparations of, 306
resistance to, 305–306
active efflux in, 90
efflux mechanisms in, 63
structures of, 101, 295–297, 302
Folding, in protein synthesis, 225
Food poisoning, toxins in, 38
N-Formylhydroxylamines, in peptide deformylase inhibition, 335–336
Fosfomycin, 199–202, 304–305
FosA protein, in resistance, 201
Gatifloxacin, 297, 304–305
Gastrointestinal tract, barrier mechanisms in, 45
Gastric juice, barrier function of, 45
Gas gangrene, toxins in, 38
Gamma radiation, in mutagenesis, 76
Gammatradiation, in mutagenesis, 76
Gluconobacter, 99
Glycolcyclines, 244, 377
Glycoproteins, in immunity, 48
Glycylcyclines, 244, 377
Glycine, 199
Gram-negative bacteria
structures of, 99, 205–206
resistance to, 209–213
preparations of, 214
resistance to, 209–213
structures of, 99, 205–206
Glycoproteins, in immunity, 48
Glycylcyclines, 244, 377
Glycine, 199
Gram-positive bacteria
staining of, 8–9
Gram-positive bacteria
staining of, 8–9
surface proteins of, 11
Gram stain, 8–9
Grepafloxacin, 296
Gyrase, DNA, see DNA gyrase

H
Haemophilus, streptogramins for, 264
Haemophilus ducreyi, azithromycin for, 253
β-lactam antibiotic combinations for, 165–166
erthyromycin for, 250, 251
Haemophilus influenzae,
actinorin for, 315
azithromycin for, 252, 253
β-lactam antibiotic combinations for, 165–166
carbapenems for, 154
cephalosporins for, 143, 148, 149
chloramphenicol for, 274
dirithromycin for, 253, 254
dirimethycin for, 251
erthyromycin for, 250
evasion mechanisms of, 61
genome of, 27
quinolones for, 303–305
resistance in, 259, 326
transformation in, 84
trimethoprim and sulfonamides for, 323–324
Haemophilus parainfluenzae,
quinolones for, 303–305
Haloarcula marismortui, ribosomes of, 219–220
Haploid bacteria, 26
Haptens, 47
Heavy chains, of antibodies, 55
Helicobacter pylori, clarithromycin for, 253–254
metronidazole for, 312–313
Hematopoiesis, 49
Histidine kinase, inhibitors of, 337–338
Histones, 5
Homologous recombination, 76–77
Hopanoids, in cytoplasmic membrane, 23
Human immunodeficiency virus infection, immunodeficiency in, 44
Human immunodeficiency virus proteinase, structure of, Color Plate A2
Human leukocyte antigens, 48
Hydronaphthacene groups, in tetracyclines, 99
Hydrophilic pathway, for antibiotic uptake, 372–373
Hydrophilic portion, of phospholipids, 23
Hydrophobic portion, of phospholipids, 23
Hydroxamates
amino acid-derived, as β-lactamase inhibitors, 190
in peptide deformylase inhibition, 334–335
6-(Hydroxyalkyl)penam sulfones, 188
Hypervariable regions, of antibodies, 55
I
Illicit uptake, of antibiotics, 373–375
Imidazoles, in fatty acid synthesis inhibition, 342
Imipenem, 154–155
Immune response, 47–58, see also specific components
antibodies in, 35–58
antigens in, 47
blood in, 48
bone marrow in, 48–49
cells of, 48–54
complement system in, 58
cytokines in, 54
immunogens in, 47
to intracellular bacteria, 63–64
lymph in, 48
major histocompatibility complex in, 47–48
thymus in, 49
Immune system, 43–67, see also Immune response; Immunity
antibiotic interactions with, 64
bacterial interactions with, 64
defects in, 44, 64
evasion of, 64
overview of, 44, 65, Color Plate 3.1
terminology of, 43–44
Immunity active, 47
INDEX

Adaptive, see Adaptive immunity

Antibiotics

Antibiotic action in, 64

Antibiotic combinations for, 267

Antibiotics, 109–110

Antibiotics for, 175

Antibiotics for, 187

Antibiotics for, 188

Antibiotics for, 189

Antibiotics for, 190

Antibiotics for, 191

Antibiotics for, 192

Antibiotics for, 193

Antibiotics for, 194

Antibiotics for, 195

Antibiotics for, 196

Antibiotics for, 197

Antibiotics for, 198

Antibiotics for, 199

Antibiotics for, 200

Antibiotics for, 201

Antibiotics for, 202

Antibiotics for, 203

Antibiotics for, 204

Antibiotics for, 205

Antibiotics for, 206

Antibiotics for, 207

Antibiotics for, 208

Antibiotics for, 209

Antibiotics for, 210

Antibiotics for, 211

Antibiotics for, 212

Antibiotics for, 213

Antibiotics for, 214

Antibiotics for, 215

Antibiotics for, 216

Antibiotics for, 217

Antibiotics for, 218

Antibiotics for, 219

Antibiotics for, 220

Antibiotics for, 221

Antibiotics for, 222

Antibiotics for, 223

Antibiotics for, 224

Antibiotics for, 225

Antibiotics for, 226

Antibiotics for, 227

Antibiotics for, 228

Antibiotics for, 229

Antibiotics for, 230

Antibiotics for, 231

Antibiotics for, 232

Antibiotics for, 233

Antibiotics for, 234

Antibiotics for, 235

Antibiotics for, 236

Antibiotics for, 237

Antibiotics for, 238

Antibiotics for, 239

Antibiotics for, 240

Antibiotics for, 241

Antibiotics for, 242

Antibiotics for, 243

Antibiotics for, 244

Antibiotics for, 245

Antibiotics for, 246

Antibiotics for, 247

Antibiotics for, 248

Antibiotics for, 249

Antibiotics for, 250

Antibiotics for, 251

Antibiotics for, 252

Antibiotics for, 253

Antibiotics for, 254

Antibiotics for, 255

Antibiotics for, 256

Antibiotics for, 257

Antibiotics for, 258

Antibiotics for, 259

Antibiotics for, 260

Antibiotics for, 261

Antibiotics for, 262

Antibiotics for, 263

Antibiotics for, 264

Antibiotics for, 265

Antibiotics for, 266

Antibiotics for, 267

Antibiotics for, 268

Antibiotics for, 269

Antibiotics for, 270

Antibiotics for, 271

Antibiotics for, 272

Antibiotics for, 273

Antibiotics for, 274

Antibiotics for, 275

Antibiotics for, 276

Antibiotics for, 277

Antibiotics for, 278

Antibiotics for, 279

Antibiotics for, 280

Antibiotics for, 281

Antibiotics for, 282

Antibiotics for, 283

Antibiotics for, 284

Antibiotics for, 285

Antibiotics for, 286

Antibiotics for, 287

Antibiotics for, 288

Antibiotics for, 289

Antibiotics for, 290

Antibiotics for, 291

Antibiotics for, 292

Antibiotics for, 293

Antibiotics for, 294

Antibiotics for, 295

Antibiotics for, 296

Antibiotics for, 297

Antibiotics for, 298

Antibiotics for, 299

Antibiotics for, 300

Antibiotics for, 301

Antibiotics for, 302

Antibiotics for, 303

Antibiotics for, 304

Antibiotics for, 305

Antibiotics for, 306

Antibiotics for, 307

Antibiotics for, 308

Antibiotics for, 309

Antibiotics for, 310

Antibiotics for, 311

Antibiotics for, 312

Antibiotics for, 313

Antibiotics for, 314

Antibiotics for, 315

Antibiotics for, 316

Antibiotics for, 317

Antibiotics for, 318

Antibiotics for, 319

Antibiotics for, 320

Antibiotics for, 321

Antibiotics for, 322

Antibiotics for, 323

Antibiotics for, 324

Antibiotics for, 325

Antibiotics for, 326

Antibiotics for, 327

Antibiotics for, 328

Antibiotics for, 329

Antibiotics for, 330

Antibiotics for, 331

Antibiotics for, 332

Antibiotics for, 333

Antibiotics for, 334

Antibiotics for, 335

Antibiotics for, 336

Antibiotics for, 337

Antibiotics for, 338

Antibiotics for, 339

Antibiotics for, 340

Antibiotics for, 341

Antibiotics for, 342

Antibiotics for, 343

Antibiotics for, 344

Antibiotics for, 345

Antibiotics for, 346

Antibiotics for, 347

Antibiotics for, 348

Antibiotics for, 349

Antibiotics for, 350

Antibiotics for, 351

Antibiotics for, 352

Antibiotics for, 353

Antibiotics for, 354

Antibiotics for, 355

Antibiotics for, 356

Antibiotics for, 357

Antibiotics for, 358

Antibiotics for, 359

Antibiotics for, 360

Antibiotics for, 361

Antibiotics for, 362

Antibiotics for, 363

Antibiotics for, 364

Antibiotics for, 365

Antibiotics for, 366

Antibiotics for, 367

Antibiotics for, 368

Antibiotics for, 369

Antibiotics for, 370

Antibiotics for, 371

Antibiotics for, 372

Antibiotics for, 373

Antibiotics for, 374

Antibiotics for, 375

Antibiotics for, 376

Antibiotics for, 377

Antibiotics for, 378

Antibiotics for, 379
INDEX

Macrolides (continued)
resistance to, 257–259, 375–376
semisynthetic, 254
structures of, 98, 247
types of, 248–254
Macrophages, 53
Magnetic resonance spectroscopy of
β-lactam antibiotics, 110
Major facilitator family, antibacterial
eflux in, 91, 375
Major histocompatibility complex,
47–48
T-lymphocyte interaction with, 53
Maltoporin (LamB), 21–22
Mass spectrometry, in resistance detec-
tion, 93–94
MDL62,476 (glycopeptide), 214
Mechanisms of action, of antibiotics,
102–103, see also specific
antibiotics
mef genes, in resistance, 258, 375–376
Membrane(s)
cytoplasmic, see Cytoplasmic mem-
brane
outer, see Outer membrane
plasma, see Plasma membrane
Memory cells, 49, 51
N-(3-Mercapto-2-n-buty1)propionyl-
1-leucyl-antramide, in peptide
deformylase inhibition, 334
Mercaptoacetic acid thiol ester deriva-
tives, as β-lactamase inhibitors, 190
Mercaptopenylacetic acid thiol esters,
as β-lactamase inhibitors, 190
Mero nome, 155
Mesosomes, of cytoplasmic membrane,
23–24
Messenger RNA, see mRNA
Metabolic plasmids, 79
Metabolism, mitochondria in, 6
Metabolites, formation of, in antibiotic
production, 103
Metallo-β-lactamases, 120–124
inhibitors of, 189–194
current research on, 189–192
future research on, 192
IMP-1, 192–194
Metalloenzymes, 361
Metalloproteinases, inhibitors of,
330–331, Color Plate A2
Methacycline, structure of, 240
Methicillin, 133
resistance to, see Staphylococcus
aureus, methicillin-resistant
Metionine aminopeptidase, in protein
synthesis, 225
[2-R-(3-Methyl-2-oxiranyl)phosphonic
acid], see Fosfomycin
Methykarbapenems, class B metallo-
β-lactamases as, see Metallo-β-
lactamases
Methyltransferases, in resistance, 257
Metronidazole, 311–314
activity of, 312
clinical uses of, 313
historical aspects of, 311–312
mechanism of action of, 312–313
preparations of, 314
resistance to, 313
structure of, 101–102
Mezlocillin, 135, 136
Michaelsis-Menten constant, 363
Micrococcus, morphology of, 8
Microfilaments, in cytoskeleton, 7
Microglobulin, in immunity, 48
Micromonsoropa, antibiotics from,
103, 104, 230
Micromonsoropa thyroensis, sisomycin
from, 233
Micromonsoropa purpurea, gentamicin
from, 233
Microtubules, in cytoskeleton, 7
Miconycin, 240, 241
Miokamycin, 254
Missense mutations, 72–73
Mitochondria, 6
Mitosis, nucleus division in, 5
Molecular genetics, 69–86
Mitochondria, 6
Mitogen-activated protein kinase
(MAPK), 53
Moxalactam, 146, 147
Moxifloxacin, 297, 305
mRNA, 28, 289, 290
rRNA interaction with, 220
Mucous membranes, barrier function
of, 45
Multidrug and toxic compound extru-
sion family, antibacterial efflux in,
91, 375
Multiple resistance, mechanisms of,
90–91
MupA protein, in mupirocin resistance,
287
Mupirocin, 285–287
activity of, 285–286
clinical uses of, 286
historical aspects of, 285
mechanism of action of, 286
preparations of, 287
resistance to, 286–287
structure of, 101, 285
MurB, inhibitors of, 345
MurC, inhibitors of, 345
Murine, 10
Mutagenesis
chemical agents in, 74–75
definition of, 70
radiation in, 75
site-directed, 363
spontaneous, 70
Mutagens, 70, 73–76
Mutant, definition of, 70
Mutation(s), 71–76
spontaneous, 70
definition of, 70, 71
deletions, 73
frameshift, 73
insertions, 73
missense, 72–73
mutagen causing, 73–76
nonsense, 73
point, 72
rate of, 72
of resistance genes, 88–89, 171, 326
silent, 72
transition, 73
transversion, 73
types of, 72–73
Myecelium, 3
Mycobacterium
acid-fast stains for, 9–10
intracellular, 63
Mycobacterium avium
clarithromycin for, 253
rifamycins for, 292
Mycobacterium fortuitum, aminoglyco-
sides for, 234
Mycobacterium fortuitum, aminoglyco-
sides for, 234
Mycobacterium tuberculosis
aminoglycosides for, 237–238
quinolones, 306
trimethoprim and sulfonamides for,
323
Motifs, in protein structures, 360
Moxalactam, 146, 147
Moxifloxacin, 297, 305
Molecular genetics, 69–86
Mitosis, nucleus division in, 5
rifamycins for, 291–292
Mycoplasma, streptogramins for, 264
Mycoplasma pneumoniae
- azithromycin for, 252, 254
erythromycin for, 250
quinolones for, 303
streptogramins for, 265

N
Nafcillin, 132–134
Naive lymphocytes, 49
Naiveidic acid
c clinical uses of, 303
historical aspects of, 295–296
structure of, 101
Natural killer cells, 50, 64
Neisseria
resistance in, sulfonamides, 326
streptogramins for, 264
Neisseria gonorrhoeae
actinonin for, 335
β-lactam antibiotic combinations for,
165–166
caplocillin for, 143, 148, 149
peptide deformylase of, 335
quinolones for, 303, 305
spectinomycin for, 231
tetracyclines for, 241
vancomycin for, 208
Neisseria meningitidis
caplocillin for, 143
chloramphenicol for, 274
streptogramins for, 265
tetracyclines for, 241
Neomycin, 231, 234–235
Nephrotoxicity, of aminoglycosides, 234
Neostreptomycin, 231, 234–235
5-Nitroimidazoles, 311–314
activity of, 312
c clinical uses of, 313
historical aspects of, 311–312
mechanism of action of, 312–313
preparations of, 314
resistance to, 313
structures of, 101–102
Nocardia
antibiotics from, 103, 108
trimethoprim and sulfonamides for,
323
Noncovalent interactions, 364
Nonsense codons, 71, 224–225
Nonsense mutations, 73
Noremoycin, 231
Nucleotidyltransferases, in aminoglyco-
Nucleotides, 26
Nucleolar proteins, 19–22
Nucleolus, 5
Nucleoid, 2, 25–27
Nucleic acids, synthesis of, inhibition
of, 102–103
Nucleoid, 2, 25–27
Nucleolus, 5
Nucleophilic components, of enzyme
reactions, 361
Nucleotides, 26
Nucleotidytransferases, in aminoglyco-
side resistance, 238
Nucleus, 2, 5

O
O antigen, of outer membrane, 19
O-specific chain, of lipopolysaccha-
dries, 18
Obligate intracellular bacteria, 63
Oftloxacin, 296, 297
Oleandomycin, 251
Oligosaccharides, core, 18
OmpC, 21
OmpF, 21
OmpK, 22
Opportunistic pathogens, definition of,
34
Opsonization, 46, 58, 61
Optical activity, of amino acids, 357
Organelles, 5
Oritavancin (LY333328), 212–214
Oxacillin (OmpC), 21
Oxotopicity, of aminoglycosides, 234
Outer core, of lipopolysaccharides, 19
Outer membrane, of bacteria, 370
antibiotic transport across, 373–375,
Color Plate D1
characteristics of, 17–18
cyclic peptide action on, 217–218
in drug efflux, 91
lipopolysaccharides in, 18–19
peptidoglycan precursor inhibitors, 347
resistance, 305
hydrolysis of, 119–120
Oxazolidinones, 279–283
activity of, 280
c clinical uses of, 280
 discovery of, 279
mechanism of action of, 280
preparations of, 282
resistance to, 280–281
structures of, 101
Oxford University, penicillin research
at, 335
Oxazosantrone, 279–283
activity of, 280
clinical uses of, 280
 discovery of, 279
mechanism of action of, 280
preparations of, 282
resistance to, 280–281
structures of, 101
Oxytetracycline, 240

P
PADAC (cephalosporin), 151
Pancreatic enzymes, barrier function of,
45
PapG adhesins, 37
inhibitors of, 347
ParC and ParE proteins, in quinolone
resistance, 305
Paromomycin, 231
Pathogen, definition of, 33
Pathogenesis, bacterial, 33–42
adhesion in, 35–37
biofilms in, 40
cell invasion in, 34–37
pathogenicity islands in, 40
superantigens in, 39–40
terminology of, 33–34
toxins in, 37–39
Pathogenicity, definition of, 33
Pathogenicity islands, 40
PCLNA (peptide deformylase inhibitor), 332–333
Penam, 109, 111
Penam 3-aldehyde, in plus inhibition, 279–283
activity of, 280
c clinical uses of, 280
 discovery of, 279
mechanism of action of, 280
preparations of, 282
resistance to, 280–281
structures of, 101
Oxford University, penicillin research
at, 335
Oxazosantrone, 279–283
activity of, 280
clinical uses of, 280
 discovery of, 279
mechanism of action of, 280
preparations of, 282
resistance to, 280–281
structures of, 101
Oxford University, penicillin research
at, 335
Oxidation, peroxisomes in, 6
Oxytetracycline, 240

Penicillanic acid, 109
antipseudomonal derivatives of, 135–137
Penicillanic acid sulphone, 116–117
Penicillin(s), 129–137
Penicillanic acid sulfone, 116–117
Penicillanic acid, 109
Peptide deformylase, 135–137
Peptide(s), 111–115
Peptidases, antibiotics from, 98, 103, 107–109
Penicillium, 135–136
Penicillinase, 116
Penicillin V
Penicillin in protein synthesis, 225
types of, 331
Peptide(s)
cationic, 341
cyclic, see Cyclic peptides; Polymyxins
formation of, in protein synthesis, 222, 224
oxazolidinone inhibition of, 279–283
Peptide aldehydes, in peptide deformylase inhibition, 336
Peptide deformylase, 135–137
active site of, 331
as drug target, 330–331, Color Plate A2
functions of, 331–332
inhibitors of
biaryl acid analogs, 336
discovery and development of, 332
N-formylhydroxylamine, 335–336
hydroxamate, 334–335
mechanisms of, 333
peptide aldehyde, 336
phosphorus derivatives, 332–333
thiol, 333–334
in protein synthesis, 225

Peptidoglycans, 10–15
cross-links of, 12
glycopeptide binding to, 206
inhibitors of, 111, see also specific antibiotics
polymers attached to, 15–17
precursors of, inhibitors of, 346
structure of, 11–17
synthesis of, 12–15, 199, 203
thickness of layers, 10

Peptidyltransferases
chemical properties of, 130
clavulanic acid, 135–136
carboxypenicillins, 135–136
dicloxacillin, 135–136
dicloxacillin, 135–136
low-molecular-weight, 112
high-molecular-weight, 112
alterations of, resistance in, 181–182
ureidopenicillins, 135–137
transformation of, to cephalosporins, 134–135
transformation of, to cephalosporins, 134–135
trade names of, 137
manufacturers of, 137
mode of action of, 111
natural, 131–132
nomenclature of, 109
preparations of, 137
proteins binding, see Penicillin-binding proteins
repository, 132
spectral characteristics of, 109–110
stereochemistry of, 109
structures of, 98, 107–109, 131–132
adhesins in, 36
in bacterial conjugation, 81–82
astaphylococcal, 113
staphylococcal, 113
Staphylococcus aureus, 113
Staphylococcus aureus, 113
Pili (fimbriae), 25

Phagocytosis, 46, 58
Phages, 32
Phagosomal membrane, 23
Phagocytosis, 46, 58
Phagosomes, 6
Phage, see Bacteriophages
Phagocytosis, 46, 58
Phagocytes, 46, 58
cells in, 53
definition of, 5
of intracellular bacteria, 64
Phenotype, definition of, 70
Phenoxymethylpenicillin, see Penicillin V
Penicillin V
(R)-3-[(Phenylsulfonyl)heptanoic acid hydroxymethyl, in peptide deformylase inhibition, 335
Phospholipids, 23, 367, 370
Phosphonotransferases, in aminoglycoside resistance, 238
(S)-2-O-(H-Phosphonooxy)-L-caproyl-L-leucyl-p-nitroanilide (PCLNA), in peptide deformylase inhibition, 332–333
Phosphoporphin (PhoE), 21
Phosphorus derivatives, in peptide deformylase inhibition, 332–333
Pili (fimbriae), 25
Piperacillin, 135–137
Piperacillin-sodium tazobactam, 166–168
Pityrosporum ovale, tetracyclines for, 242
Plasma membrane, 4–5
disruption of, 102
peptidoglycan synthesis in, 13–14
Plasmid(s), 26
Col, 78
conjugative, 77, 88–89
DNA in, 69
metabolic, 79
disruption of, 79
in resistance, 77–78, 326
types of, 77–79
virulence, 78–79
Plasmid(s), 26
Col, 78
conjugative, 77, 88–89
DNA in, 69
metabolic, 79
disruption of, 79
in resistance, 77–78, 326
types of, 77–79
Plasmid(s), 26
Col, 78
conjugative, 77, 88–89
DNA in, 69
metabolic, 79
disruption of, 79
in resistance, 77–78, 326
types of, 77–79
Plasmid(s), 26
Col, 78
conjugative, 77, 88–89
DNA in, 69
metabolic, 79
disruption of, 79
in resistance, 77–78, 326
types of, 77–79

Plasmodium falciparum
lincosamides for, 262
tetracyclines for, 242
Pneumocystis carinii, trimethoprim and sulfonamides for, 323–324
Point mutation, 72
Polymers
DNA, in replication, 27
RNA, 71
dNA-dependent, inhibitors of, 289–293
Polymyxins
activity of, 217–218
clinical uses of, 218
effect on cytoplasmic membrane, 23
mechanism of action of, 217, 373
preparations of, 218
structures of, 100, 217
Porins, 18, 21–22
in drug efflux, 91
functions of, 373
structures of, 21–22
Proteotella, metronidazole for, 312
Pristinamycins, 263–265
Procaine penicillin G, 131–132
Prokaryotic cells, vs. eukaryotic cells, 2–3
structures of, functions of, 8
Promoter, in protein synthesis, 290
Prontosil, 319–320
Propionibacterium acnes, tetracyclines for, 242
Proteases, inhibitors of, 331–336
Protein(s), structural hierarchy of, 360, Color Plates A1 and A2
Protein synthesis
amino acid activation in, 221–223,
Color Plate 16.2
elongation step in, 222, 224, 290,
Color Plates 16.3–16.5
inhibition of, 102, 225–226, Color Plate 16.6, see also specific
antibiotics
in first peptide bond formation, 279–283
isoleucyl-tRNA synthetase inhibition, 285–287
30S ribosomal subunit, 229–246
50S ribosomal subunit, 247–277
initiation step in, 222–223, 290,
Color Plates 16.2 and 16.3
overview of, 219
polypeptide chain processing and
folding in, 225–226
ribosomes in, 219–221
termination step in, 224–225, 290
tRNA in, 221, Color Plate 16.1
Proteus
β-lactam antibiotic combinations for, 166–168
kanamycin for, 232
quinolones for, 303
trimethoprim and sulfonamides for, 323, 325
Proteus mirabilis
cephalosporins for, 148
quinolones for, 303–304
Protists, 2–3
Protozoa, definition of, 2
Providencia
β-lactam antibiotic combinations for, 165
β-lactamases of, 183
quinolones for, 303
Pseudomonas
cephalosporins for, 135–137
resistance in, 201
Pseudomonas aeruginosa
adhesions of, inhibitors of, 347
aminoglycosides for, 236
aztreonam for, 156
β-lactam antibiotic combinations for, 165, 167, 168
β-lactamases of, 119–120, 189–191
AmpC, 183
OXA, 181
SHV, 174
TEM, 173
biofilms of, 40
carbapenems for, 153–156
cephalosporins for, 148, 149, 151
genome of, 27
permeability of, 373
polymyxins for, 218
Quinolones, 295–309, see also Fluoroquinolones;
specific antibiotics
activity of, 302
clinical uses of, 302–305
DNA gyrase interactions with,
299–302
Escherichia coli interactions with, 302
first-generation, 296, 303
historical aspects of, 295–297
mechanisms of action of, 297–302
overview of, 295–297
preparations of, 306
resistance to, 295–306
structures of, 101, 295–297, 302
third-generation, 296, 304–305
Quinupristin, 100–101, 265, 266
R (resistance) factors, in recombina-
tion, 77–78
Radiation, in mutagenesis, 76
Reactive oxygen intermediates
in metronidazole action, 312–313
Receptors, signal, in plasma
membrane, 4
Recipient cell, in bacterial conjugation,
81
Recombination, genetic, 76–80
Redox potential, in metronidazole
action, 312–313
Replication
of bacteria, after invasion, 34–35
chromosome and cell division in,
71 of plasmids, 79
Replicative transposons, 79
Repliscons, 27, 70
Research, on drug development, 349
Resistance, 87–95
acquired, 87
to aminoglycosides, 63, 236–238
to aminopenicillins, 134
to β-lactam antibiotics, 63
β-lactamases in, see β-Lactam
antibiotics
characteristics of, 88
to chloramphenicol, 63
constitutive, 257
current status of, 88
to cycloserine, 202
definition of, 87
detection of, 89
Enterobacteriaceae, 237, 259
Enterococcus
aminoglycosides, 237
glycopeptides, 209–210, 213
Enterococcus faecalis, 280–281
Enterococcus faecium, 263, 267
Escherichia coli
macrolides, 259
quinolones, 305–306
sulfonamides, 326
trimethoprim, 326
fem factors in, 182
to fluoroquinolones, 305–306
to fosfomycin, 200–201
genes for
sources of, 88–89
spread of, 85
Haemophilus influenzae
macrolides, 259
sulfonamides, 326
trimethoprim, 326
historical aspects of, 88
inducible, 257
intrinsic, 325
to kanamycins, 238
to lincosamides, 263
to linezolid, 280–281
to macrolides, 257–259, 375–376
management of, new drug develop-
ment for, 329
mechanisms of, 89–94
efflux, see Efflux mechanisms
enzymatic inactivation, 92–93
target site alteration, 93–94
to methicillin, Staphylococcus aureus, see Staphylococcus
aureus, methicillin-resistant
to metronidazole, 313
multiple, see Multiple resistance
to mupirocin, 286–287
Mycobacterium tuberculosis,
237–238, 306
natural, 87
Neisseria, 326
to nitrofurantoin, 316
to nitroimidazoles, 313
to oxazolidinones, 280–281
penicillin-binding protein alterations
in, 181–182
plasmids in, 77–78
Pseudomonas aeruginosa, 259, 325
to quinolones, 305–306
to rifamycins, 291–292
Salmonella enterica serovar
Typhimurium, 306
Serratia marcescens, 237
specific genes for, 171

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Sat, 07 Dec 2019 20:00:56
INDEX

Resistant (continued)
Staphylococci, 326
Staphylococcus aureus
aminoglycosides, 238
methicillin, see Staphylococcus aureus, methicillin-resistant
mupirocin, 286–287
quinolones, 306
streptogramins, 266–267
trimethoprim, 327
Staphylococcus haemolyticus, 263
Streptococcus pneumoniae
macrolides, 258
quinolones, 305, 306
trimethoprim, 327
Streptococcus pyogenes, 263
Streptococcus pneumoniae
264
Staphylococcus aureus, methicillin-resistant
quinolones for, 306
strains for, 165–167
Staphylococcus aureus
beta-lactamases of, 174–176
linked to beta-lactam antibiotics, 187
Signal receptors, in plasma membrane, 4
Silent mutations, 72
Sisomicin, 233
Site-directed mutagenesis, 363
Skin barrier function of, 45
structure of, 45
Slime layers, 24
SM-17466 (carbapenem), for methicillin-resistant
Staphylococcus aureus, 186
Small multidrug resistance family, antibacterial efflux in, 91, 375
Smooth endoplasmic reticulum, 6
Sparfloxacin, 297, 304
Specialized transduction, 85
Spectinomycin, structure of, 230
Sphingolipids, 367
Spiramycin, 254
Spontaneous mutagenesis, 70
Spores, formation of, in endospores, 24
SPrPC5 molecule, 346
Staphylococci
linezolid for, 280
morphology of, 8
mupirocin for, 285
netilmicin for, 233
peptidoglycans of, 13
resistance in, sulfonamides, 326
streptogramins for, 264
Staphylococcus agalactiae
azithromycin for, 252
Staphylococcus aureus
actinomycin for, 335
antistaphylococcal beta-lactamase-resistant penicillins for, 132–134
azithromycin for, 252
bacitracin for, 205
beta-lactam antibiotic combinations for, 165–167
cephalosporins for, 143, 149
cycloc peptides for, 339
erthyromycin for, 230, 251
fatty acid inhibitors for, 343–344
gentamicin for, 233
methicillin-resistant, 133
carbapenems for, 185–186
gene expression, 27–28
methicillin-binding protein alterations in, 181–182
vancomycin for, 208–209
mupirocin for, 286
nitrofurantoin for, 316
penicillin-binding proteins of, 113
peptidoglycans of, 12, 13
quinolones for, 297, 304, 305

Rifampicin, 291, 292
RNA functions of, 28
messenger, see mRNA in mitochondria, 6
ribosomal, see tRNA structure of, 28
synthesis of, 71, 290, Color Plate 22.2
transfer, see tRNA
DNA-dependent, inhibitors of, 289–293
function of, 289–290
in RNA synthesis, 290, Color Plate 22.2
structures of, 290, Color Plate 22.1
Roxithromycin, 251, 255–257
Rubidobacter capsulatus, porins of, 21
Ribosomal RNA, see rRNA
Ribosymes, 6
RNA in, 5, 6, 28
305, 219
function of, 220
inhibitors of, see Aminoglycoside(s); Tetracycline(s)
structure of, 220
50S, 219, 220
function of, 221
inhibitors of, 247–271, see also Specific antibiotics
structure of, 220–221
70S, 219, 220
structures of, 28, 219–221
Rickettsia
chloramphenicol for, 274
intracellular, 63
Rifabutin, 291, 292
Rifampin
mechanism of action of, 291
resistance to, 291–292
structure of, 99, 291
Rifampicin(s), 289–293
chemistry of, 290–291
mechanism of action of, 289–290, Color Plates 22.1 and 22.2
preparations of, 292
types of, 291–292
Rifampicin B, 291
Rifampicin SV, 291
SHV spectrum beta-lactamases, 174, 179–181
Siderophores, 373–374
linked to beta-lactam antibiotics, 187
Signal receptors, in plasma membrane, 4
Silent mutations, 72
Sisomicin, 233
Site-directed mutagenesis, 363
Skin barrier function of, 45
structure of, 45
Slime layers, 24
SM-17466 (carbapenem), for methicillin-resistant
Staphylococcus aureus, 186
Small multidrug resistance family, antibacterial efflux in, 91, 375
Smooth endoplasmic reticulum, 6
Sparfloxacin, 297, 304
Specialized transduction, 85
Spectinomycin, structure of, 230
Sphingolipids, 367
Spiramycin, 254
Spontaneous mutagenesis, 70
Spores, formation of, in endospores, 24
SPrPC5 molecule, 346
Staphylococci
linezolid for, 280
morphology of, 8
mupirocin for, 285
netilmicin for, 233
peptidoglycans of, 13
resistance in, sulfonamides, 326
streptogramins for, 264
Staphylococcus agalactiae
azithromycin for, 252
Staphylococcus aureus
actinomycin for, 335
antistaphylococcal beta-lactamase-resistant penicillins for, 132–134
azithromycin for, 252
bacitracin for, 205
beta-lactam antibiotic combinations for, 165–167
cephalosporins for, 143, 149
cycloc peptides for, 339
erthyromycin for, 230, 251
fatty acid inhibitors for, 343–344
gentamicin for, 233
methicillin-resistant, 133
carbapenems for, 185–186
gene expression, 27–28
methicillin-binding protein alterations in, 181–182
vancomycin for, 208–209
mupirocin for, 286
nitrofurantoin for, 316
penicillin-binding proteins of, 113
peptidoglycans of, 12, 13
quinolones for, 297, 304, 305

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Sat, 07 Dec 2019 20:00:56
Streptococcus pneumoniae
resistance in,
see also Staphylococcus aureus, methicillin-resistant
lincomycin derivatives, 263
mupirocin, 286–287
quinolones, 306
streptogramins, 266–267
trimethoprim, 327
streptogramins for, 265
tetracyclines for, 241
tobramycin for, 233
toxins of, 38, 39–40
trimethoprim and sulfonamides for, 323
tyrosyl-tRNA synthetase inhibitors for, 344
Streptococcus pyogenes
Streptococcus bovis,
vancomycin for, 208
Streptococcus pneumoniae
fatty acid inhibitors for, 344
linezolid for, 279, 280
penicillin-binding proteins of, 113–115
peptide deformylase of, 335
quinolones for, 296, 297, 303–305
resistance in
macrolides, 258
quinolones, 305, 306
trimethoprim, 327
streptogramins for, 265
tetracyclines for, 241
toxins of, 38–40
Streptococcus pyogenes
Streptococcus pyogenes
azithromycin for, 252, 253
cloxacillin for, 205
cephalosporins for, 148, 149
erthyromycin for, 249, 251
quinolones for, 303
resistance in, 258
streptogramins for, 265
toxins of, 38–40
Streptococcus pneumoniae
Streptococcus pneumoniae
activity of, 265
clinical uses of, 265
historical aspects of, 263
mechanism of action of, 266
preparations of, 267
resistance to, 266–267
structures of, 100–101, 263
types of, 263–265
Streptococcus pneumoniae
Streptococcus pneumoniae
Streptococcus pneumoniae
antibiotic combinations for, 166–168
nitrofurantoin for, 316
quinolones for, 303
streptogramins for, 265
tetracyclines for, 242
vancomycin for, 208–209
Staphylococcus baemolyticus, resistance in, 263
Staphylococcus capturica
Staphylococcus capturica
nitrofurantoin for, 316
trimethoprim and sulfonamides for, 323
Stem cells, hematopoietic, 49
Stenotrophomonas maltophilia,
β-lactamase-resistant penicillins for, 133–134
β-lactam antibiotic combinations for, 166–168
nitrofurantoin for, 316
quinolones for, 303
streptogramins for, 265
tetracyclines for, 242
vancomycin for, 208–209
Staphylococcus epidermidis
antistaphylococcal β-lactamase-resistant penicillins for, 133–134
β-lactam antibiotic combinations for, 166–168
nitrofurantoin for, 316
quinolones for, 303
streptogramins for, 265
tetracyclines for, 242
vancomycin for, 208–209
Staphylococcus epidermidis
Staphylococcus epidermidis
vancomycin for, 208
Straptozymes
Streptomyces antibioticus
Streptomyces antibioticus
antibiotic combinations for, 229–230
antibiotic synthesis of, 97, 103, 104, 108
fusidic acid from, 199
macrolides from, 247, 254
nitroimidazoles from, 311
penicillin-binding proteins of, 114
spectinomycin from, 261
streptogramins from, 263
tetracyclines from, 240
Streptomyces cattleya,
carbapenems from, 153
Streptomyces clavuligerus,
clavulanic acid from, 160
Streptomyces fradiae,
neomycin from, 231
Streptomyces kanamyceticus,
kamycin from, 232
Streptomyces lincolnensis,
lincosamides from, 261
Streptomyces rimosus,
paromomycin from, 231
Streptomyces tendeuranus,
tobramycin from, 232
Streptomyces venezuelae,
chloramphenicol from, 273
Streptomyces, 230, 236
Substrates, of enzyme activity, 361–365
Suicide substrates, 365
Sulbactam, 162–163
activity of, 164–165
in antibiotic combinations, 166, 168
Sulfamethoxazole, 101, 321
with trimethoprim, see Trimethoprim-sulfamethoxazole
Sulfanilamide, 320
Sultamicillin, 166
Superantigens, 39–40
Supercoiling DNA, 26, 69–70, 298–300, Color Plate 22.2
SurA protein, as chaperone, in protein folding, 225
Surface active agents, polymyxins as, 217
Susceptibility testing, 89
Svedberg unit, 6
Sykes and Matthew classification, of β-lactamases, 115–116
T
T lymphocytes, 47, 49–50
accessory molecules of, 53
cytolytic or cytotoxic, 50
in defense against intracellular bacteria, 64
functions of, 51, Color Plate 3.1
helper, 50
in B lymphocyte activation, 51, 52
Target site alterations, in resistance, 93–94, 257–258
Tazobactam
Tazobactam
activity of, 164–165
in antibiotic combinations, 166–168
mechanism of action of, 163–164
TEA0777 (acyclide), 261
Tears, barrier function of, 45
Teichuronic acids, 17
Teicoplanin
Teicoplanin
activity of, 209
analogs of, 214
c hemical structure of, 205–206
discovery of, 205
in intramolecular complex formation, 208
mechanism of action of, 203
Teicoplanin (continued)
resistance to, 209
structure of, 99
Telithromycin, 99, 259–260
TEM β-lactamases, 173–178, Color Plate 12.1
Temofloxacin, 296
Termination, in protein synthesis, 224–225, 290
Tet protein, in resistance, 90, 375
Tetanus, toxins in, 38
3,3',4',5-Tetrachloroacetylclanilide, in twocomponent regulatory system
inhibition, 338
Tetracycline(s), 239–244
Thermus aquaticus, 1,2,3,4-Tetrahydropyridol[3,4-
Tetracycline(s), 239–244
Thermus thermophilus
Transmission, DNA, in gene transfer, 83–84
Transglycosylation, in peptidoglycan
synthesis, 13
Transition state, in enzyme reactions, 362
Translation, 5, 289
Translocation, in protein synthesis, 224, Color Plate 16.5
Transpeptidases
Penicillin-binding proteins as, 113
in peptidoglycan synthesis, 12–13
Urinary antiseptics, 315–317
Vaccines, toxins used in, 39
Vagina, acidic environment in, 45
VanA, in vancomycin resistance, 210–213
VanC, in vancomycin resistance, 212, 213
Vancomycin
activity of, 208
analogs of, 213–214
chemical structure of, 205–206
clinical uses of, 208–209
dimerization of, 207
discovery of, 205
mechanism of action of, 203, 206–207
preparations of, 214
resistance to, 209–213, 346
phenotypes of, 209–210
VanA in, 210–213
VanC in, 213
structure of, 99
Variable regions, of antibodies, 55
Vibrio cholerae
chloramphenicol for, 274
genome of, 27
toxins of, 38
Vibrios, morphology of, 8
Viburniaceae, 263, 264, 266
Virulence, definition of, 33

U
UDP-20-N-acetylenolpyruvylglucosamine
reductase, inhibitors of, 345
Ultraviolet radiation, in mutagenesis, 76
Ultraviolet spectroscopy, of β-lactam antibiotics, 110
Undecaprenol, in peptidoglycan synthesis, 13
Ureaplasma urealyticum, erythromycin
for, 250, 251
Uredipenicillins, 135–137
Uridine diphosphate–2-N-acetylmuramic
acid, in peptidoglycan synthesis, 12–13
Virulence factors, definition of, 33–34
Virulence plasmids, 78–79
Virulent bacteriophages, 85
Virus, definition of, 3

W
Watson-Crick model, of DNA structure, 26
Whooping cough, toxins in, 38

Wild-type strains, definition of, 70

X
X rays, in mutagenesis, 76
XS043 (oxazolidinone), 280

Y
Yeasts, definition of, 3
Yersinia enterocolitica, trimethoprim and sulfonamides for, 323
Yersinia pestis, aminoglycosides for, 234
Yersinia pseudotuberculosis, invasin of, 37

Z
Zinc bacitracin, 205