From a letter written on December 20, 1675, to the Royal Society of London:

“In the past summer I have made many observations upon various waters, and in almost all discovered an abundance of very little and odd animalcules, whereof some were incredibly small...”

Antonie van Leeuwenhoek
Contents

Preface ix
About the Author xiii

1 Leeuwenhoek Discovers a New Galaxy of Organisms 1
2 The Microbial Kingdom Has Many Subjects 7
3 Some Microbes Prefer Life without Air 12
4 Important Molecules in Microbes, Plants, and Animals 16
5 Where Do Microbes Come From? 26
6 How Microbes Are Isolated and Identified 29
7 The Care and Feeding of Microbes 37
8 Hardy Survivors in the Microbial Kingdom 43
9 Microbes and the Carbon Cycle 50
10 Bacteria That Produce and Use Methane 58
11 Microbes Recycle Nitrogen 65
12 Bacteria Spin the Sulfur Cycle 72
13 Extraordinary Ecology: an Amazing Diversity of Life Styles 75
14 Fungi 90
15 Bioenergetics: “Energy Currency” 95
16 The Roles of Vitamins 105
17 Microbes and Sewage Treatment 110
18 Infectious Diseases: History of the “Germ Theory” 117
19 Three Giants of Infectious Disease Research: Pasteur, Koch, and Jenner 124
20 Infection and Immunity 128
21 Viruses Confound Microbe Hunters 140
22 Killing Unwanted Microbes 145
23 The Central Role of DNA: New Vistas in Microbial Biotechnology 150
24 Microbes: Earth’s First Inhabitants 169
PREFACE

Why is microbiology one of the most exciting disciplines of modern science? Several major developments led to its emergence as a dynamic force in both science and technology. Of particular significance was the realization that microbes provide unique experimental systems for analyzing the basic processes of all forms of life. Research with bacteria led to the important discovery, in 1944, that genes are composed of DNA. In turn, this paved the way for development of many sophisticated and powerful techniques used in current molecular biological research. These are now the major “tools” of biotechnology. The exploitation of microbes for biotechnological applications now appears to have almost unlimited horizons. In the decades ahead, we can expect that microbial-based technologies will solve problems in medicine, public health, agriculture, space exploration, environmental pollution, and industrial manufacturing.

Before 1674, no one had seen or suspected that there were living organisms invisible to the naked eye. During that year, a self-educated Dutch shop-keeper discovered the existence of “very little animalcules” in diverse places, for example, human mouths, lake water, watery suspensions of ground pepper, and sap dripping from a vine branch. Thus, using a simple microscope of his own design, Antonie van Leeuwenhoek (see photo in Chapter 1) had discovered the invisible world of microbes. Leeuwenhoek communicated his findings in letters to members of the Royal Society of London, but his discoveries disappeared into obscurity for two centuries.

During the 1870s, the French chemist Louis Pasteur turned his attention to biological problems and demonstrated that the alcoholic fermentations responsible for wine and beer production were caused by living microbes. This was an early recognition of the fact that microbes have the power to catalyze chemical transformations on a large scale.
Indeed, we now know that bacteria and other microbes are essential in the massive recycling of major chemical elements that constantly occurs in the Earth’s biosphere. If all microbes were to die suddenly due to some cataclysmic event, all life—plant and animal—would soon come to a standstill.

There are thousands of species of microbes that live and reproduce in a wide range of habitats, some quite extreme with respect to temperature and chemical conditions. Most known species are harmless to animals and plants; in fact, many are beneficial, playing important roles in symbiotic relationships with higher forms of life. During the latter part of the 19th century, however, it became clear that certain kinds of microbes cause infectious diseases of animals and plants. The isolation and study of pathogenic microbes, begun during the closing decades of the 19th century, eventually led to great improvements in combating infectious diseases, but more research is still needed in connection with a number of diseases caused by microbes and viruses.

Following Pasteur’s work, a continuing avalanche of basic discoveries in microbiology and related sciences has led to marked improvements in the quality and longevity of human life. Some of the highlights have been:

- 1880: A procedure is discovered for making a vaccine to immunize against a bacterial disease
- 1882: Proof that a bacterium, *Mycobacterium tuberculosis*, causes animal tuberculosis
- 1884: First isolation of the bacteria that cause typhoid and diphtheria
- 1885: *Escherichia coli* is found to be a normal inhabitant of the intestinal tract
- 1891: Evidence that antibodies are important in immunity against microbial diseases
- 1899: The first virus discovered is the tobacco mosaic virus, which attacks tobacco plants
- 1912: Development of an effective cure for syphilis, the first specific chemotherapeutic agent for a bacterial disease
- 1928: Discovery of the antibacterial action of penicillin, produced by the mould *Penicillium*
- 1935: For the first time, a virus is crystallized (tobacco mosaic virus)
- 1944: Experiments with the bacterium *Streptococcus pneumoniae* prove that genes are made of DNA
• 1946: Methods of studying bacterial reproduction advanced (in *Escherichia coli*); later, this led to a cornucopia of procedures essential for modern biotechnology
• 1964: With *E. coli* used as the experimental organism, it is established that the sequence of the chemical units of DNA defines the sequence of amino acids in proteins
• 1979: The disease smallpox is declared officially eliminated
• 1982: Discovery of the bacterium *Helicobacter pylori* as a primary cause of peptic ulcers
• 1983: Identification of the HIV virus, the cause of AIDS
• 1995: First description of the complete DNA genome sequence of a bacterium (*Haemophilus influenzae*)
• 1997: DNA genome sequence of *Helicobacter pylori* is completed
• 1998: DNA genome sequence of *Mycobacterium tuberculosis* is completed
• 1999: A research conference report predicts that “within the next decade, the DNA genomes of every significant bacterial pathogen of humans, animals and plants will have been sequenced” and that this vast amount of new data will provide us “with the ability to probe the inner depths of some of mankind’s oldest enemies (and some of the new ones)"
• 2002: More than 60 microbial genome sequences have been determined, and at least 100 more are being analyzed

It has been demonstrated repeatedly that applications of basic research strongly influence the course of human history. The research efforts of the pioneers of microbiology and biochemistry have had far-reaching effects on our lives. The Biographical Notes at the end of this book gives short biographies of some of the leading contributors to our understanding of the world of microbes.

In 1987, my experience in teaching a course in microbiology for nonscientists led me to write a text titled *The World of Microbes*. Since then, scientists’ understanding of the universe of microbes has expanded almost as much again as in the preceding century. *Microbes: an Invisible Universe* is a reflection of this new knowledge, but retains the same spirit as the former book: to provide a “guidebook” to the many interactions of microbes with the environment and with higher forms of life, and to introduce scientists and nonscientists alike to the pioneers of this fascinating discipline and their discoveries.
My grateful appreciation goes as always to my colleagues at Indiana University; to Dr. Thomas Brock for supplying valuable illustrative matter; and to the many people named in the Credits and Acknowledgments section who generously provided illustrations. Finally, my greatest debt is to my wife Virginia for her unfailing encouragement, patience, and support.
About the Author

Howard Gest is Distinguished Professor Emeritus of Microbiology and Adjunct Professor of History and Philosophy of Science at Indiana University, Bloomington. He received the Bachelor of Arts degree in bacteriology from the University of California, Los Angeles (U.C.L.A.) in 1942, and his Ph.D. degree from Washington University in St. Louis in 1949. During World War II, as a chemist on the Manhattan (Atomic Bomb) Project, he did basic research on the radioactive elements formed in uranium fission. He has been on the faculties of Case Western Reserve University, Washington University, and Indiana University and has been a visiting researcher at the California Institute of Technology, Dartmouth Medical School, Stanford University, Oxford University, Tokyo University, and U.C.L.A. Professor Gest has twice been named a Guggenheim Fellow and has served on a number of advisory committees of the United States government. During his second Guggenheim Fellowship, he studied problems of biochemical evolution as a member of the Precambrian Paleobiology Group. He is widely recognized for his research on microbial physiology and metabolism, especially with photosynthetic bacteria. Professor Gest is a Fellow of the American Association for the Advancement of Science, American Society for Microbiology, American Academy of Microbiology, and American Academy of Arts and Sciences.
Index

A
Acidophiles, 80–82
Acquired immunodeficiency syndrome, see AIDS
Adenosine triphosphate, see ATP
Aerobic bacteria, in sewage treatment, 114–115
Aerobic respiration, 39, 54–55
AIDS (acquired immunodeficiency syndrome), infection susceptibility in, 131–133
Air, bacteria growing without, see Anaerobes
Alcoholic fermentation, 13–15, 96–98, 189
American Type Culture Collection (ATCC), 41–42, 178–179
Amino acids, 22–23, 154–156
Ammonification, 65–69
Anaerobes, 12–15
as first forms of life, 170
methane formation and, 58–64, 113–114
in nitrogen cycle, 67, 69–70
in sewage treatment, 113–114
Anthrax, 47–49, 191–192
Antibiotics, 146–149
resistance mutation, 156
Antigens, microbial, 130–131
Antimetabolites, 146
Antiseptics, 146
Ants, leaf-cutter, fungi domestication by, 94
Archaebacteria, 171
ATP (adenosine triphosphate), as microbial energy source, 39, 95–98, 100–103
Auden, W. H., on microbial ecology, 133–136
Autotrophs, in carbon cycle, 51–52
Avery, Oswald T., 194

B
Bacteria, emphasis on, 10–11
Bacteriophages, 142
Bassi, Antonio, 120–123, 194
Beer, fermentation in, 14–15, 21–22
Beijerinck, Martinus W., 185, 194
Bergey’s Manual of Systematic Bacteriology, 10
Bioenergetics, 95–104
Biotechnology, 164–168
Bioterrorism, microbial, 191–193
Boghurst, William, 119

C
Carbohydrates, 21–22
Carbon, in organic compounds, 19–20
Carbon cycle, 50–52
Carbon dioxide
in carbon cycle, 50–52
in photosynthesis, 100–101
Cell preservation techniques, 41–42
Chemical(s), for microbial killing, 145–146
Chemical bonds, 18–20
Index

Clostridium, spores of, 43–45
Coal, formation of, 56–57
Coenzymes, 105–109
Cold environment, bacteria in, 77–78
Compounds, chemical, 17
Crick, Francis, 154
Cryptobiosis, 45–46
Cultures, 29–36
 enrichment, 29–31
 growth requirements for, 37–40
 pure, 31–36
 storage of, 40–42
Cyanobacteria, 101–104

D
Dead Sea, bacteria in, 78–80
Deep subsurface and deep sea environments, 84–86
Delbrück, Max, 195
Denitrification, 67
Deoxyribonucleic acid, see DNA
Desulfovibrio, in sulfur cycle, 73
Disinfectants, 146
DNA (deoxyribonucleic acid), 150–168
 in biotechnology, 164–168
 in evolution, 171–172
 fingerprinting, 163–164
 gene transfer and, 157–159
 genetic engineering and, 159–163,
 165–167
 genomes and, 168
 mutations in, 156–157, 165
 protein formation from, 154–156
 replication of, 154
 structure of, 151–153

E
Ecology
 diversity of, 75–89
 normal microbial populations, 133–136
Eijkman, Christiaan, 195
Electron microscopes, 140–141
Elements, chemical, 17–18
Energy, in methane, 61–62
Energy currency, 95–104
Enrichment cultures, 29–31
Enzymes, 24
Epidemics, 117–119, 122, 193
Ergotism, 92–93
Escherich, Theodor, and _Escherichia coli_, 37–40, 195
Eukaryotes, 7–9, 170–171
Evolution, of microbes, 169–174

F
Fats, 24–25
Fermentation, 12–15
 bioenergetics of, 96–98
 methane formation in, 58–64
 in prison camp, 186–190
Fertilizers, nitrogen cycle and, 65–71
Fleming, Alexander, in penicillin discovery, 146–148, 195
Florey, Howard W., 147–148, 195
Food, chemistry of, 20–25
Fossil fuels, formation of, 56–57
Fracastoro, Girolamo, 120, 195
Freeze-dried microbes, storage of, 41–42
Fungi, 90–94

G
Gene transfer, 157–159, 172–173
Genetic engineering, of microbes, 159–163, 165–167
Genetics, see DNA
Genomes, 168
Germ theory, 117–123
Germfree animals, 136–139
Glucose
 chemistry of, 21
 fermentation of, 96–98
Gram, Christian, and Gram stain, 8, 10

H
Haber, Fritz, 68–69, 200–201
Hales, Stephen, photosynthesis studies of, 98–99
Index

<table>
<thead>
<tr>
<th>Letter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haiphiles, 78–80</td>
<td></td>
</tr>
<tr>
<td>Heat, for microbial killing, 145</td>
<td></td>
</tr>
<tr>
<td>Heterotrophs, in carbon cycle, 51–52</td>
<td></td>
</tr>
<tr>
<td>Hooke, Robert, 1–2, 196</td>
<td></td>
</tr>
<tr>
<td>Hot environment, bacteria in, 75–76</td>
<td></td>
</tr>
<tr>
<td>Human immunodeficiency virus infection, infection susceptibility in, 131–133</td>
<td></td>
</tr>
<tr>
<td>Identity, of microbes, see Culture</td>
<td></td>
</tr>
<tr>
<td>Immunity, 128–133</td>
<td></td>
</tr>
<tr>
<td>Immunodeficiency in AIDS, 131–133</td>
<td></td>
</tr>
<tr>
<td>Immunodeficiency severe combined, 139</td>
<td></td>
</tr>
<tr>
<td>Infections in AIDS, 131–133</td>
<td></td>
</tr>
<tr>
<td>Infections defenses against, 128–133</td>
<td></td>
</tr>
<tr>
<td>Infections in fictional Martians, 181</td>
<td></td>
</tr>
<tr>
<td>Infections germ theory of, 117–123</td>
<td></td>
</tr>
<tr>
<td>Infections vaccinations for, 124–127, 131</td>
<td></td>
</tr>
<tr>
<td>Ingen-Housz, Jan, 196</td>
<td></td>
</tr>
<tr>
<td>Ireland, potato blight in, 93–94</td>
<td></td>
</tr>
<tr>
<td>Isolation, of microbes, see Culture</td>
<td></td>
</tr>
<tr>
<td>Jenner, Edward, in smallpox vaccination development, 126–127, 196</td>
<td></td>
</tr>
<tr>
<td>Koch, Robert, 31–34, 124–125, 196</td>
<td></td>
</tr>
<tr>
<td>Küster, Ernst, and germfree experiments, 136–138</td>
<td></td>
</tr>
<tr>
<td>Lactic acid fermentation, in milk, 12–13</td>
<td></td>
</tr>
<tr>
<td>Landfills, methane formation in, 60–61</td>
<td></td>
</tr>
<tr>
<td>Lederberg, Joshua, 191–192, 196</td>
<td></td>
</tr>
<tr>
<td>Leeuwenhoek, Antonie van, 1–6, 175–177, 196–197</td>
<td></td>
</tr>
<tr>
<td>Lipids, 24–25</td>
<td></td>
</tr>
<tr>
<td>Magnetotactic bacteria, 82–84</td>
<td></td>
</tr>
<tr>
<td>Mars, real and fictional life on, 180–184</td>
<td></td>
</tr>
<tr>
<td>Media, culture, 37–40</td>
<td></td>
</tr>
<tr>
<td>Mesophiles, 76–77</td>
<td></td>
</tr>
<tr>
<td>Metabolism, 25</td>
<td></td>
</tr>
<tr>
<td>Metchnikoff, Élie, 129–130, 197</td>
<td></td>
</tr>
<tr>
<td>Methane, 58–64</td>
<td></td>
</tr>
<tr>
<td>Methylotrophs, 63–64</td>
<td></td>
</tr>
<tr>
<td>Niacin (nicotinic acid), 107–109 Nitrogen cycle, 65–71</td>
<td></td>
</tr>
<tr>
<td>Ocean, deep, microbes in, 84–86 Oil, formation of, 56–57 Oral microbes, Leeuwenhoek viewing of, 5–6 Organic compounds, 19–20, 50–52 Osmophiles, 78–80</td>
<td></td>
</tr>
<tr>
<td>Pasteur, Louis, 197 fermentation studies of, 12–15 infection research of, 124–125, 131 on microbial origin, 26–28 Pasteurization, 13</td>
<td></td>
</tr>
</tbody>
</table>
Pellagra, 107
Penicillin, discovery of, 146–149
Petri, R. J., 33–34
Phagocytosis, 129–130
Photosynthesis
 in bacteria, 101–104
 in plants, 52–56, 98–101
Plagues
 in history, 117–119, 122–123
 discovery of infectious agents in,
 119–123
Pollution, sewage treatment and,
 110–116
Potato blight, in Ireland, 93–94
Priestley, Joseph, 53–56, 197
Prokaryotes, 7–9, 170, 171
Proteins, 22–24, 154–156
Psychrophiles, 77–78
Purple bacteria, 101–104

R
Radiation, for microbial killing, 145
Respiration, 54–55
Restriction enzymes, in bacterial fingerprinting, 163–164
Rhizobium, in nitrogen fixation, 70–71
Rice, saccharification of, in prison camp, 186–188
RNA (ribonucleic acid), in evolution, 171–172
Rumen symbiosis, methane formation in, 59–60

S
Salt-loving bacteria, 78–80
Science fiction, microbes in, 180–184
Severe combined immunodeficiency disease, 139
Sewage treatment, 60–61, 110–116
Silkworms, muscardine disease of,
 120–123
Smallpox, 126–127, 192–193
Social communication, among bacteria, 86–89
Soybeans, fermentation of, 189–190
Spontaneous generation theory,
 26–27
Spores, 43–49, 169
Sterilization, 145
Sulfur cycle, 72–74, 86–87
Survival, in microbial kingdom,
 43–49

T
Temperature extremes, 75–77
Thermoactinomycetes spores, 47–48
Thermophiles, 75–76
Thiobacillus, in sulfur cycle, 74
Tyndall, John, 197–198

V
Vaccinations, 124–127, 131
Viruses, 140–144
Vitamins, 105–109
Volta, Allesandro, 58–59, 198

W
Waksman, Selman A., 198
Watson, James, 154
Welles, Orson, radio broadcast of,
 181–182
Wells, H. G., War of the Worlds,
 180–181
Wine, fermentation in, 13–15
Winogradsky, Sergei N., 198

Y
Yeast
 in fermentation, 14–15
 production of, in prison camp,
 187–189