Contents

Contributors .. vii
Preface .. xi

1. The Cellular Immunological Aspects of the Granulomatous Response. Dov L. Boros ... 1

2. Cytokines and Chemokines in Granulomatous Inflammation. Stephen W. Chensue and Steven L. Kunkel ... 29

5. Murine Leishmaniasis. Paul M. Kaye and Christian R. Engwerda ... 117

6. Murine Schistosomiasis. Thomas A. Wynn ... 147

7. Human Tuberculosis. Stephan K. Schwander and Jerrold J. Ellner ... 173

8. Human Leprosy. Linda B. Adams and James L. Krahenbuhl 207

10. Sarcoidosis. Carlo Agostini and Gianpietro Semenzato 265

11. Crohn’s Disease. Joel V. Weinstock ... 293

Index .. 321
Contributors

Linda B. Adams • National Hansen’s Disease Programs Laboratory, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803

Carlo Agostini • Department of Clinical and Experimental Medicine, Padua University School of Medicine, Via Giustiniani 2, 35128 Padua, Italy

Randall J. Basaraba • Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523

Dov L. Boros • Department of Immunology and Microbiology, Wayne State University School of Medicine, 540 E. Canfield Ave., Detroit, MI 48201

Arturo Casadevall • Department of Medicine, Division of Infectious Diseases, and Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461

Stephen W. Chensue • Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, and Pathology and Laboratory Medicine, Veterans Affairs Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI 48105

Jerrold J. Ellner • Department of Medicine and Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, UMD–New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103

Christian R. Engwerda • Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
Contributors

Andrew P. Fontenot • Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262

Anthony A. Frank • Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523

David L. Goldman • Department of Pediatrics, Division of Infectious Diseases, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461

Paul M. Kaye • Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom

James L. Krahenbuhl • National Hansen’s Disease Programs Laboratory, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803

Steven L. Kunkel • Department of Pathology, University of Michigan Medical School, Medical Science Building 1, Ann Arbor, MI 48109

Lee S. Newman • National Jewish Medical and Research Center, 1400 Jackson St., Room G211, Denver, CO 80206, and University of Colorado Health Sciences Center, Denver, CO 80262

Ian M. Orme • Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523

Stephan K. Schwander • Department of Medicine and Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, UMD–New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103

Gianpietro Semenzato • Department of Clinical and Experimental Medicine, Padua University School of Medicine, Via Giustiniani 2, 35128 Padua, Italy

Oliver C. Turner • Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
Contributors ix

Joel V. Weinstock • Division of Gastroenterology, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242

Thomas A. Wynn • Laboratory of Parasitic Diseases, Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6154, MSC 8003, Bethesda, MD 20892
Preface

The various granulomatous diseases are globally prevalent and afflict hundreds of millions of humans. The granulomatous tissue pathology was first described in tuberculous lungs over 200 years ago. Since then, great advances in the characterization of the granulomatous tissue response have been made. Work in the fields of descriptive histopathology, bacteriology, T-lymphocyte-mediated immunology, and cytokine/chemokine-related molecular biology contributed to our knowledge of the granulomatous response. With the advent of modern microbiology and immunology, several useful animal models that contributed important concepts to the understanding of this chronic multicellular tissue inflammation were created. The acquired knowledge established two major concepts: (i) granulomata are protective host responses and (ii) they can cause considerable tissue destruction and pathology.

Because granulomatous conditions occur in a wide array of diseases with microbial, fungal, protozoan, viral, helminthic, or metallic etiologic agents, the published literature is widely dispersed. Therefore, periodic summaries of the state of the art of the field are warranted. The aim of the present book was to bring together under one cover updated knowledge on experimental and clinical granulomatoses. There was no intent to include in the book all the existing granulomatous diseases; rather, the intent was to present prototypic models and diseases and to establish a blueprint for the formation and maintenance of the granulomatous process.

An overview of the chapters shows the tremendous progress made during the past decades. With regard to pathogens/invaders, the granuloma remains an acknowledged, efficient protective response. The importance of the T-lymphocyte-mediated immune response in sarcoidosis and Crohn’s disease, which as yet lack identifiable etiologic or inducer agents, has also been recognized. Cytokines and chemokines took center stage as the key mediators of tissue inflammation. Researchers now probe the role of cellular receptors, signal transducing factors, and gene regulation to gain a better understanding of the protective/destructive potential of the granulomata. It is hoped that such advances will be translated into improved modalities of therapy, especially in the separation of protection from tissue destruction.
The major goal of the book was to promote the interchange among microbiologists, immunologists, researchers of inflammation, and clinicians. I was fortunate to be able to secure in this venture the participation of contributors who are leaders in their field. Their efforts in providing high-quality thought-provoking chapters and their patience during the revisions are much appreciated. The essential help provided by Arthur M. Dannenberg and Noel R. Rose, who reviewed the proposal for the book and recommended its publication, is gratefully acknowledged.

Lastly, great appreciation and gratitude is expressed to Gregory Payne, Senior Editor of ASM Press, who enthusiastically received the suggestion of an updated granuloma-oriented book and patiently guided us to bring this book from inception to its final production.

Dov L. Boros
November 2002
Index

Acquired immunodeficiency syndrome, see Human immunodeficiency virus infection
Adaptive immunity, in leprosy, 223
Addressins, 5
Adhesion molecules, 5
AIDS, see Human immunodeficiency virus infection
Alveolitis, lymphocytic, in tuberculosis, 183, 185, 187
Amastigotes, Leishmania, 118
Aminosalicylates, for Crohn’s disease, 310
Amphotericin B, for cryptococcosis, 106–107
ANCAs (antineutrophil cytoplasmic autoantibodies), in Crohn’s disease, 307–308
Anemia, in Crohn’s disease, 295
Angiotensin converting enzyme, in berylliosis, 252
Ankylosing spondylitis, in Crohn’s disease, 295
Antibody(ies)
cryptococcal polysaccharide antigen, 98–99, 107
Saccharomyces cerevisiae, in Crohn’s disease, 307–308
Antigen-bead model, for pulmonary granuloma formation, 43–52
antibody-mediated neutralization studies in, 49–50
chemokine expression in, 45–47
chemokine function in, 49–52
chemokine receptors in, 47–49
description of, 43–45
Antigen-presenting cells
in leprosy, 218–221
in sarcoidosis, 279
Antineutrophil cytoplasmic autoantibodies, in Crohn’s disease, 307–308
Antivitronectin receptors, in tuberculosis, 178
Apoptosis, of T cells, dysregulation of, 18–19
in sarcoidosis, 282
in tuberculosis, 193–194
Appendectomy, Crohn’s disease and, 301–302
Arginase, in schistosomiasis, 161
Armadillos, leprosy in, 208
Arthritis, in Crohn’s disease, 295
Autoantibodies, in Crohn’s disease, 307–308
Azathioprine, for Crohn’s disease, 311
B cells
in Crohn’s disease, 307–308
in schistosomiasis, 158
in tuberculosis, 73–74
B7 costimulatory molecules, in cryptococcosis, 104
Berylliosis, 245–264
chronic, 247–249
clinical features of, 247–248
diagnosis of, 248–249
epidemiology of, 246
history of, 245–246
occupations associated with, 245–246
organs affected in, 247
pathogenesis of, 249–259
animal models of, 258
cytokines in, 250
genetic factors in, 251–252
T cells in, 250, 252–258
pathology of, 13
prevention of, 259
sensitization in, 246–247
treatment of, 259
Beryllium lymphocyte proliferation test, 248–249
Biliary cirrhosis, primary, chemokines in, 41
Biliary tract, disorders of, in Crohn’s disease, 295
Bone marrow, leishmaniasis of, 125
Borderline disease, in leprosy, 211–212
Bronchoalveolar lavage
in berylliosis, 249
in tuberculosis, 182
cAMP response element-binding protein, in tuberculosis, 177
Cancer, in Crohn’s disease, 295
Caseation necrosis, 11–12, 75–77, 79, 191–192
CD, see Crohn’s disease
CD1 antigen
in leprosy, 216–217
in tuberculosis, 71, 73
Cell-mediated immunity, 4–8, see also T cell(s)
in cryptococcosis, 92–93
defective, 9–11
in leprosy, 221–232
Central nervous system, cryptococcosis of animal models of, 88–90
clinical features of, 87–89
treatment of, 105–106
Chemokines, 6–8, 38–39
in animal models of disease, 42–43
antibody-mediated neutralization studies of, 49–50
in antigen-bead pulmonary granuloma models, 43–52
in Crohn’s disease, 6–7, 306
in cryptococcosis, 96–97
cytokine networking with, 52–53
in hypersensitivity pneumonitis, 41
knockout mouse studies of, 51–52
in leishmaniasis, 125, 128
nomenclature of, 39–40
in periapical granulomas, 41
in primary biliary cirrhosis, 41
in pulmonary granuloma, 47–49
receptors for, 39–40, 47–49
in sarcoidosis, 6, 41, 271–272, 278, 280
in schistosomiasis, 7, 41
in tuberculosis, 41, 42, 67, 69
Chemotaxis, cryptococcal polysaccharide effects on, 100–102
Clofazimine
for erythema nodosum leprosum, 233
for leprosy, 232
Cobalt, allergic reactions to, 258
Colectomy, for Crohn’s disease, 312
Collagen, deposition of, 13, 283
Collectins, of pulmonary surfactant, in tuberculosis, 179
Complement receptors
in leprosy, 219
in tuberculosis, 179
Computed tomography, in berylliosis, 248
Corticosteroids
for berylliosis, 259
for Crohn’s disease, 310–311
for sarcoidosis, 284–285
Costimulating molecules
in cryptococcosis, 104
in leishmaniasis, 136–138
Crohn’s disease, 293–320
animal models of, 302–304
apoptosis dysregulation in, 18–19
B cells in, 307–308
cellular components in, 308
chemokines in, 6–7
clinical features of, 293–297
cytokines in, 5, 304–307
environmental influences in, 299–302
epithelial cells in, 309
extraintestinal manifestations of, 295
 genetic factors in, 297–299
granulomas in, 297
immunoglobulins in, 307–308
immunological basis of, 302–310
mucosal permeability in, 309–310
neuropeptides in, 310
pathology of, 14, 293–297
susceptibility to, 297–302
in syndromes, 299
treatment of, 310–312
Cryptococcosis, 85–116
animal models of, 89–93
cellular immunity in, 92–93
central nervous system
animal models of, 88–90
clinical features of, 87–89
treatment of, 105–106
chemokines in, 96–97
clinical features of, 87–89
cytokines in, 94–96
epidemiology of, 85
in human immunodeficiency virus infection, 85
melanin in, 105
natural killer cells in, 94
nitric oxide in, 97–98
organism causing, 85–87
polysaccharide antigen in, 99–104
antibodies to, 98–99, 107
chemotactic effects of, 100–102
components of, 99–100
costimulatory molecules and, 104
cytokine expression and, 102–103
nitric oxide expression and, 103–104
pathogenic effects of, 86
suppressor response induction by, 104
prostaglandins in, 105
pulmonary
animal models of, 90–92
clinical features of, 87–88
susceptibility to, 85–86
transmission of, 87
treatment of, 105–107
urease in, 105
urokinase-type plasminogen activator in, 97
CTLA4, inhibitors of, for leishmaniasis, 123, 136
CXCL chemokines, in sarcoidosis, 278
Cyclosporine A, 285
Cytokines, see also specific cytokines
in berylliosis, 250–251
chemokine networking with, 52–53
classification of, 30
in Crohn’s disease, 5, 304–307
in cryptococcosis, 94–96, 102–103
definition of, 30
inhibitors of, in sarcoidosis, 285–286
JAK-STAT activating, 32–37
in leishmaniasis, 42–43, 128–129, 131–133, 135
in leprosy, 8, 17–18, 223–227, 230–232
nuclear factor-κB activating, 31–32
patterns of, 38
protective effect of, 8–9
receptor tyrosine kinase activating, 37
in sarcoidosis, 5–6, 275–277, 284
inhibitors of, 285–286
in schistosomiasis, 8, 15–16, 42, 149–163
interventions and, 159–163
pathological effects of, 154–159
protective function of, 152–154
SMAD activating, 37–38
in tuberculosis, 9, 17, 18, 175–177, 181–182, 186, 188, 193–194

Dapsone, for leprosy, 232
Defensins, in tuberculosis, 178
Dendritic cells
in leishmaniasis, 119, 128
in leprosy, 218
in sarcoidosis, 283

in schistosomiasis, 150–151
in tuberculosis, 71, 188, 190

Effector cells, in tuberculosis, 190–191
Eggs, *Schistosoma*, see Schistosomiasis
Eicosanoids, in Crohn’s disease, 306
Encephalitis, cryptococcal
animal models of, 88–90
clinical features of, 87–89
Environmental factors, in Crohn’s disease, 299–302
Eosinophils, in tuberculosis, 75, 77, 79
Eotaxin, in schistosomiasis, 7
Epidermal growth factor, 37
Epithelial cells
in berylliosis, 251
in Crohn’s disease, 309
Epithelioid cells
in sarcoidosis, 283
in tuberculosis, 67, 195
Erythema nodosum leprosum, 212, 217, 224, 233
Erythrocyte complement receptor 1, in sarcoidosis, 272
Extracellular matrix, in granulomas, 4
Extravasation, of leukocytes, in granuloma formation, 5
Eye, Crohn’s disease manifestations in, 295
Fas/Fas-L system
in apoptosis, 18
in sarcoidosis, 282
in tuberculosis, 182
Fibroblast growth factor, 37
Fibrosis
in berylliosis, 13–14
in sarcoïdosis, 13–14, 283–284
in schistosomiasis, 13–14, 154–155
in tuberculosis, 13–14
Fistulae, in Crohn’s disease, 293–295
Fluconazole, for cryptococcosis, 107
Fractalkine, in Crohn’s disease, 7, 306
Galactoxylomannan, in cryptococcal polysaccharide capsule, 99
Genetic factors
in berylliosis, 251–252
in Crohn’s disease, 297–299
in leishmaniasis, 119–120
in leprosy, 212–215
in sarcoidosis, 269–272
Index

Ghon complex, 4
Giant cells
 in sarcoidosis, 283
 in tuberculosis, 67
Glucuronoxylomannan, in cryptococcal polysaccharide capsule, 86, 91, 99–100, 102–104
Granulocyte-macrophage colony-stimulating factor, 5, 36–37
 in sarcoidosis, 277
 in tuberculosis, 193
Granuloma(s), see also specific diseases
 artificial model for, 7–8
 cellular components of, 2–4
 cytokines in, see Cytokines
definition of, 1
 formation of, mechanism of, 4–8
 inflammation regulation in, 15–19
 nonprotective, cytokines in, 9–11
 pathology of, 11–15
 protective, cytokines in, 8–9
Granulysin, in leprosy, 226
Granzyme B, in cytotoxic T cell action, in leprosy, 226
Growth factors, 37, 277–278
HAART (highly active antiretroviral therapy), for human immunodeficiency virus infection, with cryptococcosis, 106
Hard metal lung disease, 258
Helminths, Crohn’s disease and, 300–301
Highly active antiretroviral therapy, for human immunodeficiency virus infection, with cryptococcosis, 106
Human immunodeficiency virus infection cryptococcosis in, 85–86, 88–89, 106
highly active antiretroviral therapy (HAART) for, 106
leprosy and, 221
 tuberculosis with, 175, 182, 194–195
Human leukocyte antigens
 in berylliosis, 251–258
 in leishmaniasis, 121
 in leprosy, 213
 in sarcoidosis, 270–271
Hypersensitivity pneumonitis, chemokines in, 41
 antigen-bead model for, 43–52
Ileum, Crohn’s disease of, see Crohn’s disease
Immunodeficiency, see also Human immunodeficiency virus infection
 cryptococcosis in, 85–86, 88–89
Immunoglobulin(s), in Crohn’s disease, 307–308
Immunosuppressive therapy, for sarcoidosis, 285
Immunotherapy, for tuberculosis, 196–197
Inflammatory bowel disease, see Crohn’s disease
Infliximab
 for Crohn’s disease, 311
 for sarcoidosis, 286
Innate immunity, in leprosy, 222–223
Integrins, 5, 178
Intercellular adhesion molecule, 5
Interferon-α, 33, 190
Interferon-β, 33, 190
Interferon-γ, 2, 32–33
 in berylliosis, 250
 in caseation necrosis, 12
 in collagen synthesis suppression, 13–14
 in Crohn’s disease, 303–305
 in cryptococcosis, 93–96, 106–107
 interleukin 18 promotion of, 32
 in leishmaniasis, 122, 130–133
 in leprosy, 13, 223–225, 228
 protective effect of, 8–9, 10–11
 in pulmonary granuloma, 43–44, 52–53
 regulation of, 17
 in sarcoidosis, 275, 278, 281
 in schistosomiasis, 149, 153, 157–158, 160, 163
 in tuberculosis, 71, 175–177, 181–182, 186, 188, 193, 196–197
Interleukin 1, 31
 in leprosy, 223
 in sarcoidosis, 271–272, 276
 in schistosomiasis, 154, 157
 in tuberculosis, 190
Interleukin 1 receptor antagonist, in Crohn’s disease, 305–306
Interleukin 1α, 5, 6
 in Crohn’s disease, 305–306
 in cryptococcosis, 102
 protective effect of, 8
 in tuberculosis, 186, 193
Interleukin 2, 2, 33
in berylliosis, 250
in Crohn’s disease, 304–305
in cryptococcosis, 103
in leprosy, 223, 224
in sarcoidosis, 275
in schistosomiasis, 149
Interleukin 2 receptor, in leishmaniasis, 128
Interleukin 3, 36–37
Interleukin 4, 2, 9, 34
 in collagen synthesis promotion, 13
 in Crohn’s disease, 305
 in cryptococcosis, 97, 103
 in leishmaniasis, 135
 in leprosy, 224
 in pulmonary granuloma, 43–44, 52–53
 regulatory effects of, 16
 in sarcoidosis, 276
 in schistosomiasis, 149–156, 158, 161, 162
 in tuberculosis, 193
Interleukin 5, 2, 34
 in Crohn’s disease, 305
 in cryptococcosis, 97
 in leprosy, 224
 in pulmonary granuloma, 43–44
 in tuberculosis, 193
Interleukin 6, 5, 6, 34–35
 in Crohn’s disease, 306
 in leprosy, 223–224
 in tuberculosis, 186
Interleukin 8, 5
 in Crohn’s disease, 6–7, 306
 in cryptococcosis, 100, 102
 in leprosy, 224
 in pulmonary granuloma formation, 52
 in sarcoidosis, 6
 in tuberculosis, 178, 191
Interleukin 9, 35
Interleukin 10, 2, 9, 35–36
 in berylliosis, 250
 in Crohn’s disease, 303, 307
 in cryptococcosis, 93, 103
 in leishmaniasis, 122, 128–129
 in leprosy, 223–224
 in pulmonary granuloma formation, 52
 regulatory effects of, 16–17
 in sarcoidosis, 276
 in schistosomiasis, 149, 151, 153–154, 157–158, 162
 in tuberculosis, 176, 181–182
Interleukin 12, 36
 in collagen synthesis suppression, 13
 in Crohn’s disease, 303, 304
 in cryptococcosis, 95
 in leishmaniasis, 128, 130–133
 in leprosy, 223–224
 protective effect of, 8
 in sarcoidosis, 277
 in schistosomiasis, 15, 150, 151, 157, 161
 in tuberculosis, 71, 181–182, 186, 190, 193
Interleukin 13, 2, 9, 36
 in collagen synthesis promotion, 13–14
 in leishmaniasis, 135
 in pulmonary granuloma, 43–44, 52
 in schistosomiasis, 149, 150, 155–156, 161, 163
Interleukin 14, in leprosy, 13, 223
Interleukin 15, 33
 in Crohn’s disease, 306
 in sarcoidosis, 277, 281–282
Interleukin 18, 32
 in Crohn’s disease, 304
 in cryptococcosis, 96
 protective effect of, 8
 in sarcoidosis, 277

JAK-STAT, cytokines activating, 32–37, see also specific cytokines
Joints, Crohn’s disease manifestations in, 295

Katayama fever, 154–155
Koch’s phenomenon, 11
Kupffer cells, Leishmania infection of, 122–124, 127, 129–130
Kveim-Siltzbach test, for sarcoidosis, 272–273

Lacto-N-fucopentaose III, in schistosomiasis, 151
Lamina propria, lymphocytes of, in Crohn’s disease, 308
Laminin, of nerves, Mycobacterium leprae binding to, 230
Leflunomide, for sarcoidosis, 285
Leishmaniasis
 human
 clinical features of, 117
 granulomas in, 138
organisms causing, 117
pathogenesis of, 118–119
pathology of, 138
murine, 117–146
asynchronous granuloma formation in, 129–130
chemokines in, 42–43
continued active inflammation in, 135–136
costimulation-based interventions in, 136–138
cytokines in, 128–129, 131–133, 135
 genetic factors in, 119–120
hepatic granulomatous response in, 123–125
immunity to, determinants of, 121–123
model for, 119–123
organisms causing, 117
pathology of, 131–135
T-cell receptors in, 125–128
T cells in, 130–131
treatment of, 135–138

Lepromatous leprosy
clinical features of, 211
cytokines in, 9, 17–18
defective cellular response in, 10
genetic factors in, 213
pathology of, 13
T cells in, 215–218
Lepromin test, 214
Leprosy, 207–244
adaptive immunity in, 223
animal models of, 208, 227–229
apoptosis dysregulation in, 19
borderline disease, 211–212
cell-mediated immunity in, 221–232
cytokines in, 8, 9, 17–18, 223–227, 230–232
defective cellular response in, 10
dendritic cells in, 218
erythema nodosum leprosum in, 212, 217, 224, 233
genetic factors in, 212–215
incubation period of, 208
innate immunity in, 222–223
lepromatous, see Lepromatous leprosy
macrophages in, 218–221
borderline, 211–212
cytotoxic T-cell lysis of, 225–227
multibacillary, 211
mononuclear phagocytes in, 218–221
multibacillary, 209–211
Mycobacterium leprae, 208–209
natural killer cells in, 217
nerve destruction in, 229–232
pathology of, 12–15
paucibacillary, 209–210
protection in, 221–222
reactions in, 212
resistance to, 221–222
reversal reactions in, 232–233
spectrum of, 209–212
T cells in, 12–13
CD1-restricted, 216–217
cytotoxic, 225–227
gamma-delta receptors on, 218
subsets of, 215–216
Th1 and Th2, 223–224
treatment of, 224–225, 232–233
tuberculoid, see Tuberculoid leprosy
Leukotrienes, in Crohn’s disease, 306
Lipoarabinomannan
leprosy and, 217, 219
tuberculosis and, 188, 191
Lipophosphoglycan, Leishmania, 118
Liver
disorders of, in Crohn’s disease, 295
leishmaniasis of, 123–125
Symmers’ pipestem fibrosis of, in schistosomiasis, 154–155
Lung
berylliosis of
clinical features of, 247–248
diagnosis of, 248–249
cryptococcosis of
animal models of, 90–92
clinical features of, 87–88
sarcoidosis of, 283–284
T cells in, 274
tuberculosis of, see Tuberculosis
Lymphotoxin
in leprosy, 223
in tuberculosis, 193
Lymphotoxin-alpha (tumor necrosis factor-β), 31–32
Macrophage(s), 5–7
in caseation necrosis, 11–12
in Crohn’s disease, 308
in cryptococcosis, 96–97
damage to, from reactive species, 15
defective, 10–11
in leishmaniasis, 122, 126
in leprosy, see Leprosy, macrophages in
in sarcoidosis, 273–274, 276–280, 283
in schistosomiasis, 160–161
in tuberculosis, 67, 74–79, 177–181, 192, 193, 195
Macrophage inflammatory protein
in cryptococcosis, 96–97, 103
in pulmonary granuloma, 47
in sarcoidosis, 6
in schistosomiasis, 7
in tuberculosis, 7
Macrophage mannose receptor, in leprosy, 219
Major histocompatibility complex, see Human leukocyte antigens
Malabsorption, in Crohn’s disease, 295, 297
Mammalian toll-like receptors, in leprosy, 222
Mannoprotein, in cryptococcal polysaccharide capsule, 99, 102
Mast cells, in berylliosis, 251
Measles virus, latent, Crohn’s disease and, 301
Melanin, in cryptococcosis, 105
Meningitis, cryptococcal
animal models of, 88–90
clinical features of, 87–89
treatment of, 105–106
6-Mercaptopurine, for Crohn’s disease, 311
Metalloproteinases, in tuberculosis, 69
Methotrexate, for sarcoidosis, 285
Metronidazole, for Crohn’s disease, 311
Microorganisms, in sarcoidosis pathogenesis, 268–269
Minocycline, for leprosy, 232
Monocyte(s)
in sarcoidosis, 276–280
in tuberculosis, 69, 176–177, 190, 192
Monocyte chemoattractant proteins
in animal models, 42–43
in Crohn’s disease, 306
in cryptococcosis, 96–97, 103
in pulmonary granuloma, 47, 49–50, 53
in sarcoidosis, 6, 278
in schistosomiasis, 7
in tuberculosis, 7, 178, 191
Mucosal permeability, in Crohn’s disease, 309–310
Multibacillary leprosy, 209–211
Mycobacteria, in sarcoidosis pathogenesis, 268–269
Mycobacterium avium, in granulomas, 10
Mycobacterium leprae, see Leprosy
Mycobacterium paratuberculosis, Crohn’s disease and, 301
Mycobacterium tuberculosis, see Tuberculosis
Natural killer cells, 3
in cryptococcosis, 94
in leprosy, 217
in tuberculosis, 71
Natural resistance-associated macrophage protein (Nramp1), in leprosy, 213–214
Necrosis
caseation, 11–12, 75–77
in tuberculosis, 191–192
in leishmaniasis, 135–136
Nerve destruction, in leprosy, see Leprosy
Neuropeptides, in Crohn’s disease, 310
Neutrophil(s), migration of, cryptococcal polysaccharide effects on, 102
Nickel, allergic reactions to, 256–258
Nitric oxide, 9, 14–15
in cryptococcosis, 96, 97–98, 103–104
in leishmaniasis, 122, 134
in leprosy, 220–221
in schistosomiasis, 160
in tuberculosis, 180
Nitric oxide synthase, 14–15
in cryptococcosis, 97–98, 103–104
in leishmaniasis, 122
in leprosy, 228
in schistosomiasis, 153, 161
in tuberculosis, 180
Nitrogen, reactive intermediates of, 9, see also Nitric oxide
in leprosy, 220–221
NOD2 gene defects, in Crohn’s disease, 299–301
Nramp1 gene product, in leprosy, 213–214
Nuclear factor-kB
cytokines activating, 31–32, see also specific cytokines
in tuberculosis, 176
Occupational exposure, to beryllium, 245–246
Occupational Safety and Health Administration, beryllium standards of, 259
Ofloxacin, for leprosy, 232
Oral contraceptives, Crohn’s disease and, 301–302
OX40 costimulating molecule, inhibitors of, for leishmaniasis, 136–137
Oxidants, in Crohn’s disease, 306
Oxygen, reactive intermediates of in caseation necrosis, 12
in leishmaniasis, 134
in leprosy, 219–220
Paramyxovirus, Crohn’s disease and, 301
Paucibacillary leprosy, 209–210
Perforin, in cytotoxic T cell action, in leprosy, 226–227
Periapical granulomas, chemokines in, 41
Peroxynitrite, 9, 220
Phagocytosis, cryptococcal polysaccharide effects on, 100
Plasma cells, in tuberculosis, 67
Plasminogen activator, urokinase-type, in cryptococcosis, 97
Platelet-derived growth factor, 37
Pleurisy, in tuberculosis, immune response in, 181–182
Pneumonitis, hypersensitivity chemokines in, 41
antigen-bead model for, 43–52
T cells in, 3
Polysaccharide antigen, cryptococcal, see Cryptococcosis, polysaccharide antigen in
Prednisone
for berylliosis, 259
for erythema nodosum leprosum, 233
for leprosy, 232–233
Promastigotes, Leishmania, 118
Propionibacterium acnes, in sarcoidosis pathogenesis, 269
Prostaglandins
in Crohn’s disease, 306
in cryptococcosis, 105
Protective response, 8–9
in leprosy, 221–222
mechanism of, 4–8
in schistosomiasis, 152–154
Purified protein derivative, sensitization with, in antigen-bead model of pulmonary granuloma, 43–52
RANTES
in Crohn’s disease, 7
in pulmonary granuloma, 49–50, 53
in sarcoidosis, 6, 280
in schistosomiasis, 7
in tuberculosis, 7, 191
Reactive nitrogen intermediates, 9, see also Nitric oxide
in caseation necrosis, 12
in leprosy, 220–221
in tuberculosis, 180
Reactive oxygen intermediates in caseation necrosis, 12
in leishmaniasis, 134
in leprosy, 219–220
Receptor tyrosine kinase activating cytokines, 37
Rickettsia helvetica, in sarcoidosis pathogenesis, 269
Ridley-Jopling classification, of leprosy, 209, 210
Rifampin, for leprosy, 232
Saccharomyces cerevisiae, antibodies to, in Crohn’s disease, 307–308
Sandfly, in leishmaniasis transmission, 117–118
Sarcoidosis, 265–292
apoptosis dysregulation in, 18–19
versus berylliosis, 247
cellular molecular factors in, 273–275
chemokines in, 6, 41, 278
colony-stimulating factors in, 277
cytokines in, 5–6, 275–277
epidemiology of, 265
experimental models for, 272–273
familial, 269–272
genetic factors in, 269–272
granulomas in development of, 279–280
fibrosis in, 13–14, 282–284
pathology of, 267
T-cell homeostasis dysregulation in, 280–282
infective agents in, 268–269
Kveim-Siltzbach test for, 272–273
macrophage-derived molecules in, 276–278
natural history of, 265
pathology of, 12–14
T-cell-derived molecules in, 275–276
treatment of, 265–266, 284–286
Schistosomal egg antigen, sensitization
with, in antigen-bead model of
pulmonary granuloma, 43–52
Schistosomiasis
human
acute toxemic, 154–155
chemokines in, 7, 41
cytokines in, 8, 15–16
epidemiology of, 147
murine, 147–172
chemokines in, 42
cytokines in, 149–163, 152–157
inflammation response in, 150–152
microbiology of, 148
pathogenesis of, 148–150
pathology of, 154–159
protection in, 152–154
regulation of, 157–159
treatment of, 159–163
vaccines for, 147, 160–163
pathology of, 13–15
Schwann cells, Mycobacterium leprae
 tropism for, 13, 231
Selectins, 5, 100–101
Sensitization, to beryllium, 246–247
SIRP-α, in leishmaniasis, 127
Skin
berylliosis of, 247–248
Crohn’s disease manifestations in, 295
leishmaniasis of, 125
SMAD activating cytokines, 37–38, see also
Transforming growth factor-β
Small intestine, Crohn’s disease of, see
Crohn’s disease
Smoking, Crohn’s disease and, 301
Spleen, leishmaniasis of, 125
STAT4 protein, in schistosomiasis, 150
STAT6 protein, in schistosomiasis, 150, 155
Strictures, in Crohn’s disease, 294
Stricturoplasty, for Crohn’s disease, 312
Sulfasalazine, for Crohn’s disease, 310
Surfactant, pulmonary, in tuberculosis, 179
Surgery, for Crohn’s disease, 312
Symmers’ pipestem fibrosis, of liver, in
schistosomiasis, 154–155
T cell(s)
in berylliosis, 250, 252–258
in caseation necrosis, 11–12
in Crohn’s disease, 308
in cryptococcosis, 92–93, 104
cytokines produced in, see Cytokines;
specific cytokines
cytotoxic, 3, 225–227
in granulomas, 2–3
in leishmaniasis, 121–123
in leprosy, see Leprosy
natural killer, see Natural killer cells
receptors for, see T-cell receptors
in sarcoidosis, 273–274
homeostasis disturbance, 280–282
macrophage interactions with, 279
pathology and, 283–284
in schistosomiasis, 158–159
in tuberculosis, 69–74, 79–81, 175–177,
180–181, 185–186, 188, 192–193
with human immunodeficiency virus
infection, 195
in household contacts, 183
in pleurisy, 181–182
T-cell receptors, 2
in berylliosis, 252–253
in leishmaniasis, 125–130
in leprosy, 222–223
TARC (Th2 cell attractant), in Crohn’s
disease, 7
TB, see Tuberculosis
Th1 response, 2
in berylliosis, 250
collagen synthesis suppression in, 13
in Crohn’s disease, 304–305
in cryptococcosis, 93
in hypersensitivity granuloma
formation, antigen-bead model of,
43–52
in leishmaniasis, 122, 130–131
in leprosy, 218, 223–224
pathologic effects of, 14
protective effect of, 8–9
in sarcoidosis, 274–275, 283, 284
in schistosomiasis, 149
in tuberculosis, 11, 175
Th2 response, 2
in berylliosis, 250
collagen synthesis promotion in, 13
in Crohn’s disease, 305
in cryptococcosis, 95
in hypersensitivity granuloma formation, antigen-bead model of, 43–52
in leishmaniasis, 122
in leprosy, 218, 223–224
protective effect of, 9
in sarcoidosis, 276, 284
in schistosomiasis, 149–157
Thalidomide, for erythema nodosum leprosum, 233
Toll-like receptors, 6
in cryptococcosis, 103
in tuberculosis, 73
Toll receptors, in tuberculosis, 73
Transforming growth factor-β, 37–38, 122–123
in Crohn’s disease, 303, 307
in leishmaniasis, 128–129
regulatory effects of, 17–19
in tuberculosis, 176, 181–182, 186, 193
Tuberculin test, 175
Tuberculoid leprosy
clinical features of, 209
defective cellular response in, 10
geneic factors in, 212–213
nerve destruction in, 229–230
pathology of, 12–13
T cells in, 215–216, 218
Tuberculosis (animal), 65–84
chemokines in, 42
cytokines in, 17, 18
guinea pig model of, 74–81
mouse model of, 66–74
pathology of, 66–74
vaccines for, 80
Tuberculosis (human), 173–206
apoptosis dysregulation in, 19, 193–194
chemokines in, 41
cytokines in, 5–7, 9
epidemiology of, 173, 194
fibrosis in, 13–14
granuloma in, 1, 191–194
in human immunodeficiency virus infection, 175, 182, 194–195
immune response in bronchoalveolar lavage studies of, 182
dendritic cells in, 188–190
effector cell migration in, 190–191
effector molecules in, 179–181
granuloma regulation in, 191–194
in human immunodeficiency virus infection, 194–195
in vitro models of, 177–181
in pleurisy, 181–182
pulmonary, 183–188
in recently exposed household contacts, 182–183
sputum studies in, 195–196
systemic, 175–177
immunotherapy for, 195–196
natural history of, 174–175, 194–195
pathology of, 11–14, 191–194
transmission of, 174–175
vaccines for, 195–196
Tumor necrosis factor alpha, 2, 5–7, 31–32
in berylliosis, 252
in caseation necrosis, 12
in collagen synthesis promotion, 13
in Crohn’s disease, 303–305
in cryptococcosis, 95, 102
inhibitors of, for Crohn’s disease, 311
in leishmaniasis, 133
in leprosy, 223–224, 233
promoter of, polymorphism of, in leprosy, 214
protective effect of, 8–9, 10–11
in pulmonary granuloma, 43, 52–53
receptor for, 32
in sarcoidosis, 271, 276, 281
in schistosomiasis, 149, 153, 154, 160
in tuberculosis, 69, 176, 179, 181–182, 186, 190, 193–194
Tumor necrosis factor β, 31–32, 193
Ulcer(s), in Crohn’s disease, 293, 295
Urease, in cryptococcosis, 105
Urokinase-type plasminogen activator, in cryptococcosis, 97
Vaccines
for schistosomiasis, 147, 160–163
for tuberculosis, 80, 196–197
Vascular adhesion molecule, 5
Vascular endothelial growth factor, 37
Visceral leishmaniasis, see Leishmaniasis
Vitamin D receptor, in leprosy, 214
World Health Organization, leprosy classification of, 209, 210
Worms, Crohn’s disease and, 300–301