Molecular Biology of Picornaviruses
Molecular Biology of Picornaviruses

EDITED BY

Bert L. Semler
Department of Microbiology and Molecular Genetics,
College of Medicine, University of California, Irvine, CA 92697-4025

Eckard Wimmer
Department of Molecular Genetics and Microbiology,
School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794
The Editors would like to dedicate this book to the memory of our colleague, Donald F. Summers, a true pioneer in the study of picornavirus molecular biology and one of our real-life heroes in science.
Contents

Contributors xi
Preface xix

HISTORICAL PERSPECTIVE
1. History of Poliomyelitis and Poliomyelitis Research 3
 HANS J. EGGERS

TAXONOMY
2. Molecular and Biological Basis of Picornavirus Taxonomy 17
 GLYN STANWAY, TAPANI HOVI, NICK J. KNOWLES, AND TIMO HYYPIÄ

VIRION STRUCTURE
3. Picornavirus Structure Overview 27
 MICHAEL G. ROSSMANN
4. Antibody Interactions with Rhinovirus 39
 THOMAS J. SMITH
5. Antigenic Variation in Foot-and-Mouth Disease Virus 51
 DAVID J. ROWLANDS AND FRED BROWN

VIRUS ENTRY
6. Cellular Receptors of Picornaviruses: an Overview 61
 ELIZABETH RIEDER AND ECKARD WIMMER
7. Poliovirus Receptors and Cell Entry 71
 JAMES M. HOGLE AND VINCENT R. RACANIELLO
8. Interaction of Major Group Rhinoviruses with Their Cellular Receptor,
 ICAM-1 85
 RICHARD J. KUHN AND MICHAEL G. ROSSMANN
9. Human Rhinovirus Minor Group Receptors 93
 DIETER BLAAS
10. Receptors for Coxsackieviruses and Echoviruses 107
 JEFFERY M. BERGELSON
11. Foot-and-Mouth Disease Virus-Receptor Interactions: Role in Pathogenesis and
 Tissue Culture Adaptation 115
 BARRY BAXT, SHERRY NEFF, ELIZABETH RIEDER, AND PETER W. MASON

VIRAL GENOMES
12. Picornavirus Genome: an Overview 127
 VADIM A. AGOL
13. Alignments and Comparative Profiles of Picornavirus Genera 149
 ANN C. PALMENBERG AND JEAN-YVES SGRO

INITIATION OF TRANSLATION
 Internal Ribosome Entry Site 159
 ELLIE EHRENFELD AND NATALYA L. TETERINA
15. Proteins Involved in the Function of Picornavirus Internal Ribosomal Entry
 Sites 171
 RICHARD J. JACKSON
PROTEOLYTIC PROCESSING

16. Processing Determinants and Functions of Cleavage Products of Picornavirus Polyproteins 187
 LOUIS E.-C. LEONG, CHRISTOPHER T. CORNELL, AND BERT L. SEMLER

17. Structure and Function of Picornavirus Proteases 199
 TIM SKERN, BERNHARD HAMPOLZ, ALBA GUARNÉ, IGNACIO RITA,
 ERNST BERGMANN, JENS PETERSEN, AND MICHAEL N. G. JAMES

18. The Aphtho- and Cardiovirus “Primary” 2A/2B Polypeptide “Cleavage” 213
 MARTIN D. RYAN, GARRY LUKE, LORRAINE E. HUGHES,
 VANESSA M. COWTON, EDWIN TEN DAM, XUEJUN LI,
 MICHELLE L. L. DONNELLY, AMIT MEHROTRA, AND DAVID GANI

VIRAL RNA REPLICATION

19. Possible Unifying Mechanism of Picornavirus Genome Replication 227
 ANIKO V. PAUL

20. Role of Cellular Structures in Viral RNA Replication 247
 DENISE EGGERT, RAINER GOETZ, AND KURT BIENZ

 CRAIG E. CAMERON, DAVID W. GOHARA, AND JAMIE J. ARNOLD

22. Picornavirus Genetics: an Overview 269
 VADIM A. AGOL

23. Error Frequencies of Picornavirus RNA Polymerases: Evolutionary Implications for Virus Populations 285
 ESTEBAN DOMINGO, ERIC BARANOWSKI, CRISTINA ESCARMÍS,
 FRANCISCO SOBRINO, AND JOHN J. HOLLAND

SHUTOFF OF HOST CELL TRANSLATION AND TRANSCRIPTION

24. Picornavirus Proteinase-Mediated Shutoff of Host Cell Translation: Direct Cleavage of a Cellular Initiation Factor 301
 ERNST KUECHLER, JOACHIM SEIPERT, HANS-DIETER LIEBIG, AND
 WOLFGANG SOMMERGRUBER

25. Poliovirus-Mediated Shutoff of Host Translation: an Indirect Effect 313
 MIGUEL ZAMORA, WILFRED E. MARISSEN, AND RICHARD E. LLOYD

26. Effects of Picornavirus Proteinases on Host Cell Transcription 321
 ASIM DASGUPTA, PADMAJA YALAMANCHILI, MELODY CLARK,
 STEVEN KLEWER, LEE FRADKIN, SHERYL RUBINSTEIN, SAUMITRA DAS,
 YUHONG SHEN, MARY K. WEIDMAN, RAJEEV BANERJEE, UTPAL DATTA,
 MEGAN IGO, PALLOB KUNDU, BHASWAT BARAT, AND ARNOLD J. BERK

27. Effects of Viral Replication on Cellular Membrane Metabolism and Function 337
 LUIS CARRASCO, ROSARIO GUINEA, ALICIA IRURZUN, AND
 ÁNGEL BARCO

PATHOGENICITY

28. Clinical Significance, Diagnosis, and Treatment of Picornavirus Infections 357
 HARLEY A. ROTBART

29. Determinants of Poliovirus Pathogenesis 367
 MATTHIAS GROMEIER AND AKIO NEMOTO

30. Poliovirus Vaccines: Molecular Biology and Immune Response 381
 P. D. MINOR AND J. ALMOND

31. Immunology of the Coxsackieviruses 391
 NORA M. CHAPMAN, CHARLES J. GAUNT, AND STEVE TRACY

32. Pathogenesis of Coxsackievirus B Infections 405
 REINHARD KANDOLF, HANS-CHRISTOPH SELINKA, AND KARIN KLEIN

33. Hepatitis A Virus Pathogenesis and Attenuation 415
 ROBERT H. PURCELL AND SUZANNE U. EMERSON
CONTENTS

34. Pathogenesis of Theiler's Murine Encephalomyelitis Virus-Induced Disease 427
 RAYMOND P. ROOS
35. Persistent Infections by Picornaviruses 437
 FLORENCE COLBERE-GARAPIN, ISABELLE PELLETIER, AND
 LAURENT OUILOU

CELL-FREE SYNTHESIS AND CELL-FREE GENETICS OF
POLIOVIRUS
36. Cell-Free Genetics of Poliovirus 451
 ROHIT DUGGAL
37. Poliovirus RNA Replication and Genetic Complementation in Cell-Free
 Reactions 461
 DAVID J. BARTON, B. JOAN MORASCO, LUCIA EISNER SMERAGE, AND
 JAMES B. FLANEGAN

GLOBAL ERADICATION OF POLIOVIRUS
38. Global Eradication of Poliovirus: History and Rationale 473
 WALTER R. DOWDLE AND STEPHEN L. COCHI
39. The Mechanism of Poliovirus Eradication 481
 OLEN M. KEW AND MARK A. PALLANSCH

Color plates following p. 156

Index 493
Contributors

VADIM A. AGOL
M. P. Chumakov Institute of Poliomyelitis & Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region 142782, and M. V. Lomonosov Moscow State University, Moscow 119899, Russia

J. ALMOND
Research and Development (France), Aventis Pasteur SA, Campus Mérieux, 1541 Ave. Marcel Mérieux, 69280 Marcy-L'Etoile, France

JAMIE J. ARNOLD
Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802

RAJEEV BANERJEE
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, and The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1747

ERIC BARANOWSKI
Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

BHASWATI BARAT
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, and The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1747

ÁNGEL BARCO
Center for Neurobiology and Behavior, Columbia University, 722 West 68th St., 6th Floor, New York, NY 10032

DAVID J. BARTON
Department of Microbiology and Molecular Biology Program, University of Colorado Health Sciences Center, Denver, CO 80262, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610-0245

BARRY BAXT
U.S. Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944-0848

JEFFREY M. BERGELSON
Division of Immunologic and Infectious Diseases, Children's Hospital of Philadelphia, Abramson 1202, 3516 Civic Center Blvd., Philadelphia, PA 19104-4318

ERNST BERGMANN
CIHR Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada

ARNOLD J. BERK
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, and The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1747

KURT BIENZ
Institute for Medical Microbiology, Petersplatz 10, University of Basel, CH-4033 Basel, Switzerland

DIETER BLAAS
Institute of Medical Biochemistry, VBC, University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
FRED BROWN
Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944

CRAIG E. CAMERON
Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802

LUIS CARRASCO
Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

NORA M. CHAPMAN
Department of Pathology and Microbiology, University of Nebraska Medical Center, 600c South 42nd St., Omaha, NE 68198-6495

MELODY CLARK
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, and The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1747

STEPHEN L. COCHI
Vaccine Preventable Disease Eradication Division, National Immunization Program, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS/E-05, Atlanta, GA 30333

FLORENCE COLBÈRE-GARAPIN
Groupe de Génétique Virale-Unité NRSN, Département de Virologie, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris Cedex 15, France

CHRISTOPHER T. CORNELL
Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697-4025

VANESSA M. COWTON
Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, Biomolecular Sciences Building, North Haugh, St. Andrews, Fife KY16 9ST, Scotland

SAUMITRA DAS
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, and The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1747

ASIM DASGUPTA
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, and The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1747

ESTEBAN DOMINGO
Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

MICHIEL L. L. DONNELLY
Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, United Kingdom

WALTER R. DOWDLE
World Health Organization, The Task Force for Child Survival and Development, Suite 400, 750 Commerce Dr., Decatur, GA 30030

ROHIT DUGGAL
Agouron Pharmaceuticals, 10777 Science Center Dr., San Diego, CA 92121
DENISE EGGER
Institute for Medical Microbiology, Petersplatz 10, University of Basel, CH-4003 Basel, Switzerland

HANS J. EGGERS
Institute of Virology, University of Cologne, Fuerst-Puckler-Str. 56, 50935 Cologne, Germany

ELLIE EHRENFELD
Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 50, Room 6120, MSC 8011, Bethesda, MD 20892-8011

SUZANNE U. EMERSON
Hepatitis Viruses and Molecular Hepatitis Sections, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 7/202, 7 Center Dr., MSC 0740, Bethesda, MD 20892-0740

CRISTINA ESCARMÍS
Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

IGNACIO FITA
Centre d’Investigació i Desenvolupament (CSIC), Jordi Girona Salgado 18-26, E-08034 Barcelona, Spain

JAMES B. FLANEGAN
Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610-0245

LEE FRADKIN
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, and The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1747

DAVID GANI
The School of Chemistry, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

CHARLES J. GAUNTT
Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78284-7758

DAVID W. GOHARA
Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802

RAINER GOSERT
Institute for Medical Microbiology, Petersplatz 10, University of Basel, CH-4003 Basel, Switzerland

MATTHIAS GROMEIER
Department of Microbiology, Duke University Medical Center, Durham, NC 27710

ALBA GUARNÉ
Centre d’Investigació i Desenvolupament (CSIC), Jordi Girona Salgado 18-26, E-08034 Barcelona, Spain

ROSARIO GUINEA
Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

BERNHARD HAMPOLZ
Institute of Medical Biochemistry, Vienna Bio Center, University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria

JAMES M. HOGLE
Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
JOHN J. HOLLAND
Department of Biology and Center for Molecular Genetics, University of California,
San Diego, La Jolla, CA 92093-1006

TAPANI HOVI
Enterovirus Laboratory, KTL, Mannerheimintie 166, 00300 Helsinki, Finland

LORRAINE E. HUGHES
Centre for Biomolecular Sciences, School of Biology, University of St. Andrews,
Biomolecular Sciences Building, North Haugh, St. Andrews, Fife KY16 9ST, Scotland

TIMO HYYPÄ
Department of Virology, Haartmann Institute, University of Helsinki, P.O. Box 21, 00014
Helsinki, Finland

MEGAN IGO
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of
Medicine, and The Molecular Biology Institute, University of California, Los Angeles,
Los Angeles, CA 90095-1747

ALICIA IRURZUN
Centro de Biologia Molecular “Severo Ochoa,” Universidad Autónoma de Madrid,
Cantoblanco, 28049 Madrid, Spain

RICHARD J. JACKSON
Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd., Cambridge
CB2 1GA, United Kingdom

MICHAEL N. G. JAMES
CIHR Group in Protein Structure and Function, Department of Biochemistry,
University of Alberta, Edmonton, Alberta T6G 2H7, Canada

REINHARD KANDOLF
Department of Molecular Pathology, University Hospital of Tübingen, Liebermeisterstr.
8, D-72076 Tübingen, Germany

OLEN M. KEW
Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases,
Centers for Disease Control and Prevention, 1600 Clifton Rd., Mailstop G-10,
Atlanta, GA 30333

STEVEN KLIEWER
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of
Medicine, and The Molecular Biology Institute, University of California, Los Angeles,
Los Angeles, CA 90095-1747

KARIN KLINGEL
Department of Molecular Pathology, University Hospital of Tübingen, Liebermeisterstr.
8, D-72076 Tübingen, Germany

NICK J. KNOWLES
Institute for Animal Health (IAH), Pirbright Laboratory, Ash Road, Pirbright, Woking,
Surrey GU24 0NF, United Kingdom

ERNST KUECHLER
Institute of Medical Biochemistry, University of Vienna, Dr. Bohr-Gasse 9/3, Vienna,
A-1030, Austria

RICHARD J. KUHN
Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392

PALLOB KUNDU
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of
Medicine, and The Molecular Biology Institute, University of California, Los Angeles,
Los Angeles, CA 90095-1747
LOUIS E.-C. LEONG
Invitrogen Corp., 1600 Faraday Ave., Carlsbad, CA 92008

XUEJUN LI
Centre for Biomolecular Sciences, School of Biology, University of St. Andrews,
Biomolecular Sciences Building, North Haugh, St. Andrews, Fife KY16 9ST, Scotland

HANS-DIETER LIEBIG
Institute of Medical Biochemistry, University of Vienna, Dr. Bohr-Gasse 9/3, Vienna,
A-1030, Austria

RICHARD E. LLOYD
Department of Molecular Virology and Microbiology, Baylor College of Medicine, One
Baylor Plaza, Houston, TX 77030

GARRY LUKE
Centre for Biomolecular Sciences, School of Biology, University of St. Andrews,
Biomolecular Sciences Building, North Haugh, St. Andrews, Fife KY16 9ST, Scotland

B. JOAN MORASCO
Department of Biochemistry and Molecular Biology, College of Medicine, University of
Florida, Gainesville, FL 32610-0245

WILFRED E. MARISSEN
Department of Molecular Virology and Microbiology, Baylor College of Medicine, One
Baylor Plaza, Houston, TX 77030

PETER W. MASON
U.S. Department of Agriculture, Agricultural Research Service, Plum Island Animal
Disease Center, P.O. Box 848, Greenport, NY 11944-0848

AMIT MEHROTRA
The School of Chemistry, The University of Birmingham, Edgbaston, Birmingham B15
2TT, United Kingdom

P. D. MINOR
Division of Virology, NIBSC, Blanche Lane, South Mimms, Potters Bar, Herts EN6
3QG, United Kingdom

SHERRY NEFF
U.S. Department of Agriculture, Agricultural Research Service, Plum Island Animal
Disease Center, P.O. Box 848, Greenport, NY 11944-0848

AKIO NOMOTO
Department of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo
113-0033, Japan

LAURENT OUZILOU
Groupe de Génétique Virale-Unité NRSN, Département de Virologie, Institut Pasteur,
25, rue du Dr. Roux, 75724 Paris Cedex 15, France

MARK A. PALLANSCH
Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases,
Centers for Disease Control and Prevention, 1600 Clifton Rd., Mailstop G-17,
Atlanta, GA 30333

ANN C. PALMENBERG
Institute for Molecular Virology, University of Wisconsin-Madison, 1525 Linden Dr.,
Madison, WI 53706

ANIKO V. PAUL
Department of Molecular Genetics and Microbiology, State University of New York at
Stony Brook, Stony Brook, NY 11790

ISABELLE PELLETIER
Groupe de Génétique Virale-Unité NRSN, Département de Virologie, Institut Pasteur,
25, rue du Dr. Roux, 75724 Paris Cedex 15, France
JENS PETERSEN
Astra Zeneca, R & D Molndal, S-431 83 Molndal, Sweden

ROBERT H. PURCELL
Hepatitis Viruses and Molecular Hepatitis Sections, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 7/202, 7 Center Dr., MSC 0740, Bethesda, MD 20892-0740

VINCENT R. RACANIELLO
Department of Microbiology, Columbia University College of Physicians & Surgeons, 701 W. 168th St., New York, NY 10032

ELIZABETH RIEDER
Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794

RAYMOND P. ROOS
Department of Neurology/MC2030, University of Chicago Medical Center, 5841 S. Maryland Ave., Chicago, IL 60637

MICHAEL G. ROSSMANN
Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392

HARLEY A. ROTBART
University of Colorado Health Sciences Center, 4200 E. 9th Ave., Box C227, Denver, CO 80262

DAVID J. ROWLANDS
Division of Microbiology, School of Biochemistry and Molecular Biology, The Old Medical School, University of Leeds, Leeds LS2 9JT, United Kingdom

SHERYL RUBINSTEIN
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, and The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1747

MARTIN D. RYAN
Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, Biomolecular Sciences Building, North Haugh, St. Andrews, Fife KY16 9ST, Scotland

JOACHIM SEIPELT
Institute of Medical Biochemistry, University of Vienna, Dr. Bohr-Gasse 9/3, Vienna, A-1030, Austria

HANS-CHRISTOPH SELINKA
Department of Molecular Pathology, University Hospital of Tübingen, Liebermeisterstr. 8, D-72076 Tübingen, Germany

BERT L. SEMLER
Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697-4025

JEAN-YVES SGRO
Institute for Molecular Virology, University of Wisconsin-Madison, 1525 Linden Dr., Madison, WI 53706

YUHONG SHEN
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, and The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1747

TIM SKERN
Institute of Medical Biochemistry, Vienna Bio Center, University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria

LUCIA EISNER SMERAGE
Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610-0245
THOMAS J. SMITH
Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132

FRANCISCO SOBRINO
Centro de Biologia Molecular “Severo Ochoa” and CISA-INIA, 28130 Valdeolmos, Madrid, Spain

WOLFGANG SOMMERGRUBER
Boehringer Ingelheim Austria, A-1121 Vienna, Austria

GLYN STANWAY
Department of Biological Sciences, Central Campus, University of Essex, Colchester C04 3SQ, United Kingdom

EDWIN TEN DAM
Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, Biomolecular Sciences Building, North Haugh, St. Andrews, Fife KY16 9ST, Scotland

NATALYA L. TETERINA
Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 50, Room 6120, MSC 8011, Bethesda, MD 20892-8011

STEVE TRACY
Department of Pathology and Microbiology, University of Nebraska Medical Center, 600c South 42nd St., Omaha, NE 68198-6495

MARY K. WEIDMAN
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, and The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1747

ECKARD WIMMER
Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794

PADMAJA YALAMANCHILI
Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, and The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1747

MIGUEL ZAMORA
Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
Preface

Animal virology began with foot-and-mouth-disease virus (FMDV). This infectious entity was discovered by Friedrich Loeffler and Paul Frosch in 1898 as a "filterable agent" causing foot-and-mouth disease, an enduring curse in agriculture even today. Because of its highly contagious nature, Loeffler began to conduct all research with FMDV in northern Germany on the small island of Riems in 1908, thereby establishing the first animal virus research institute ("Forschungsanstalt für Tierseuchen") in the world.

In 1909, Karl Landsteiner and Edwin Popper succeeded in infecting two Old World monkeys with a filtrate of spinal cord material from a polio victim who had died of the terrible human disease called poliomyelitis. The monkeys developed a disease syndrome resembling that of the human disease. Landsteiner and Popper thus not only identified a virus as the cause of poliomyelitis, but also established an animal model for the study of this agent.

FMDV and poliovirus, of course, are picornaviruses. Immediately after their discovery, they were intensely studied because of the dreaded diseases they cause. In the succeeding decades, a large number of viruses have been discovered with physical properties similar to those of FMDV and poliovirus. Collectively, these viruses are classified as members of the family Picornaviridae.

Research on picornaviruses has yielded numerous landmark discoveries, often with an impact on virology and even biology in general. Such discoveries include the growth of these viruses in cultured human cells, development of inactivated and attenuated vaccines to prevent paralytic poliomyelitis, the demonstration that genomic RNA is infectious, the discovery of receptor-mediated determinants of susceptibility to picornavirus infection, demonstration of the first RNA-dependent RNA polymerase activity of an animal virus, the discovery of polyproteins as precursors to viral polypeptides, the discovery of virally encoded proteinases mediating polyprotein processing, the first chemical structure of the genome of an autonomously replicating RNA virus [including a 5'-linked protein and 3'-terminal poly(A)], the demonstration that a cDNA copy of a picornavirus genome could produce infectious virus, the first resolution of the three-dimensional structures of animal viruses at the atomic level, the discovery of internal ribosome entry to initiate translation on uncapped picornavirus RNAs, and the production of infectious virus in cell-free extracts programmed only with purified viral RNA.

These and numerous other remarkable studies have placed picornavirus research at the forefront of discovery in molecular virology. However, the precise details of molecular events of picornavirus replication, such as virion uncoating, translation initiation, viral RNA replication, virus assembly, and the many layers of virus-host interactions (including mechanisms of pathogenesis) remain to be elucidated. This is well documented in many chapters of this volume. It is our hope that the contributions to this volume will provide not only a summary of the many significant accomplishments in picornavirus research but also a road map of the path to future exciting discoveries for this amazing group of simple but elegant animal viruses.

In the not-too-distant future, a major payoff of picornavirus research may include the worldwide eradication of poliovirus as an agent of human disease. Such a remarkable event will mark the sunset to decades of research on wild-type polioviruses as infectious agents and will signal a new era in picornavirus research, with a challenge to develop novel models of picornavirus pathogenesis while continuing to provide experimental systems and analytical tools to address the many unsolved mechanistic questions of the picornavirus infectious cycle. Considering that human picornaviruses alone cause an estimated 6 billion infections per year in humans, inflicting misery, debilitation, and even death, these viruses will remain a challenge to humankind.

We would like to thank all authors for their excellent contributions (and their patience!) and the editorial staff at ASM Press, particularly Eleanor S. Tupper and Jeff Holtmeier, for their help in bringing this book to fruition.

Bert Semler
Irvine, California

Eckard Wimmer
Stony Brook, New York
Cell culture

coxsackievirus, 442
echovirus, 441-442
enterovirus, 361
foot-and-mouth disease virus, 440-441, 441f
hepatitis A virus, 416, 419-420, 421
poliovirus, 442, 442t, 443f, 444-445
Cell-free systems, for poliovirus study, see Poliovirus(es), cell-free systems for
Cell membranes
P2 protein action on, 190-191
permeability of, 337-339, 338f
replication effects on, 247-250, 248f, 249f, 357-354
early, 357, 338f
glycoprotein processing, 338f, 341-342, 343f
intracellular membranous vesicle proliferation, 338f, 339, 340f-341f, 342-344
late, 337-342, 338f, 340f-342f
lipase activity changes, 341, 342f
lipid composition changes, 339-341
permeability enhancement, 337-339, 338f
proteins involved in, 338f, 344-348, 345f-348f
schematic representation of, 337, 338f
vesicular trafficking inhibition, 338f, 341-342, 343f
Cellular immune response
to hepatitis A virus, 418-419
to Theiler’s murine encephalomyelitis virus, 422, 433, 439f
Centers for Disease Control, poliovirus eradication program, 476, 477
Charcot, M., on poliomyelitis neuropathy, 4-5
Chat strain, poliovirus, 381
Chemokines, in Theiler’s murine encephalomyelitis virus infections, 432
Chimeras, 277
Chimpanzees model
for hepatitis A, 416, 417f, 418c
for poliovirus, 8-9
Chronic obstructive pulmonary disease, exacerbation of, in rhinovirus infections, 358
Chymotrypsin, vs. 3C protease, 203-204
Cleavage
of initiation factors, 302f, 303-306, 304f
by poliovirus, 313-320, 315f-317f
in polyprotein processing
of cellular proteins, 200, 202-203, 202t
genomic determinants of, 131
of host substrates, 192-193
primary, 199, 213-223
mechanism of, 217, 219
mutagenic analysis of, 216
in nonenveloped viruses, 215f, 216-217, 218f
proteinase hypothesis of, 217
sequences in, 213-216, 214f, 215f
structural aspects of, 217
substrate hypothesis of, 217
translational model for, 219-222, 220f
secondary, 199-200, 201f
Cloverleaf structure, in replication, 231, 231t, 232f, 233-234
CLUSTAL algorithm, for genomic sequence alignment, 150
Common cold, rhinovirus, 357-360
Comoviruses, structures of, 29t, 30f, 31f

Complement system, activation of, in coxsackievirus infections, 392
Complementation, 275-276, 458-469, 458f, 459f
in genetic analysis, 276
in poliovirus replication, 458-460, 456f, 459f, 461-469
cis-active RNA sequence identification in, 464-465, 465f, 466f, 467
negative-strand synthesis in, 462f, 463, 463f, 467
positive-strand synthesis in, 462f, 463, 463f
precursor identification in, 463-464, 464f
synchronous RNA replication in, 461, 463
translation-replication reactions in, 461
Complexity, evolution and, 291
Conformational changes, in virus-antibody neutralization, 44-45
Congenital infections, enterovirus, 361-362
 Conjunctivitis, enterovirus, 360
Cowpea chlorotic mottle virus, structure of, 27, 29
Cowpea mosaic virus, replication, of translation coupling with, 234
Cowpea mottle virus, structure of, 29f
Cox strain, poliovirus, 381
Coxsackie-adenovirus receptor (CAR), 62f, 63t, 64-66, 108-110, 108f
pathogenesis and, 407-409, 409f
Coxsackievirus(es)
cell culture of, 442
cellular signaling pathway activation by, 409-411, 411f, 412f
chimeras of, 277
evolution of, 291-292
genome of, anti-host determinants in, 134
in host cell translation shutoff, 302-306
host range of, 270
in host substrate cleavage, 202, 202t
immune response to, 391-403
adaptive, 392
antigen-presenting cells in, 392
autoimmunity and, 397-398
B lymphocytes in, 395-396
complement system activation, 392
natural killer cells in, 391-392
NIm sites in, 396-397
T lymphocytes in, 392-395, 393f-395f
T infections due to adaptive immune responses in, 392
antigen-presenting cells in, 392
autoimmunity aspects of, 397-398
B-lymphocyte responses in, 395-396
clinical manifestations of, 368f
complement system in, 392
diabetes mellitus in, 391, 397
humoral immune responses in, 395-396
myocarditis in, 391-398, 405-411, 406f, 404f, 408f-411f, 439-440
natural killer cells in, 391-392
NIm sites in, 396-397
pancreatic effects of, 391, 397
persistent, 405-411, 406f, 404f, 408f-411f, 439-440
routes of, 391
spectrum of, 391
T-lymphocyte responses in, 392-395, 393f-395f
internal ribosomal entry sites of, 162
NIm sites of, 396-397
pathogenicity of, variability of, 271
proteases of, host cell interactions with, 406-407, 407t, 409-411, 410f, 411f
proteins of, host cell membrane effects of, 344
receptors for, 61, 64-65, 368
accessory factors for, 65
attachment sites for, 65-66, 66f
clinical manifestations and, 63t
group A, 110
group B, 107-110, 108f
interactions with, 32
multiple, 109-110
paralytic disease and, 371
pathogenesis and, 67, 407-409, 409f
types of, 62, 62f, 64-65
virus structure and, 109
replication of

cell membrane alterations in, 247
cis-acting RNA elements in, 233
host cell intracellular membranous vesicle proliferation in, 339
host cell lipid alterations in, 341
host cell membrane effects of, 337-338, 344
intracellular membrane proliferation in, 342
proteins involved in, 231t
resistance in, 287
serotypes of, 391
structures of, 28t, 109
Coxsackievirus B, infections due to, pathogenesis of, 405-411, 406f, 404t, 408f-411f
CREB (cyclic AMP-responsive element binding protein), cleavage of, 202, 202t
cre (C2) element, in replication, 232f, 233
Cricket paralysis virus
proteins of, 216, 218f
structure of, 27
Cuba, poliovirus eradication in, 474
Cucumber mosaic virus, structure of, 29f
Culture, see Cell culture
Cutter incident, 376
Cyclic AMP-responsive element binding protein (CREB), cleavage of, 202, 202t, 325-327, 327f
Cytokeratin, cleavage of, 202, 202t, 306
Cytokines
in coxsackievirus infections, 393-394
in intercellular adhesion molecule 1 expression, 85-86
Cytolytic T lymphocytes, response of, to hepatitis A virus, 418-419
Cytopath, 247
genomic determinants of, 135
host cell cleavage in, 200, 202-203, 202t
Cytoplastic osinophilic paranuclear mass, in replication, 247, 248f
Cytoskeletal proteins, cleavage of, in host cell translation shutoff, 306

D

3D protease, activity of, 189f
DA strain, Theiler's murine encephalomyelitis virus, 428, 428f, 431, 437-438
Data bases, for viral genomes, 149-150
de Macedo, Guerra, in poliovirus eradication program, 476
de Quadros, Ciro, in poliovirus eradication program, 478
Decay accelerating factor (CD55), as viral receptor, 61, 62f, 63t, 64-66
coxsvirus, 107-110, 108f, 407-409, 409f

echovirus, 110
enterovirus, 371
Declaration of Taloires (1988), on poliovirus eradication, 476
Deletion/insertion genomes, 271
Demethylaminase, in Theiler's murine encephalomyocarditis virus infection, 425, 428, 431–433
DI (deletion/insertion) genomes, 271
Diabetes mellitus, in coxsackievirus infections, 391, 397
Disorganized
for enterovirus infections, 362
for rhinovirus infections, 359
DNA, protein-primed, synthesis of, vs. picornavirus RNA synthesis, 241–242, 242f
Drosophila C virus, proteinases of, 216, 218f
Drosophila Drosophila C virus, proteinases of, 216, 218f
Encephalomyocarditis virus (EMCV)
deletion/insertion genomes, 271
Declaration of Talloires (1988), on poliovirus evasion, 476
Disoxaril for rhinovirus infections, 359
gene of
intracellular membrane proliferation in, 339, 340
structure of, 161f, 162, 163
replication of
receptors for, 63, 65, 108f, 110–111, 368
replication of cis-acting RNA elements in, 233
host cell intracellular membranous vesicle proliferation in, 339
intracellular membrane proliferation in, 342
structure of, 28c
eIF4GIase, 315–318, 315f–317f
eIFs (initiation factors)
cleavage of, 200, 202, 202t, 302f, 303–306, 304f
by poliovirus, 313–320, 315f–317f
in internal ribosomal entry site activity, 164–165, 172–177, 174f, 174t, 176f
Encephalitis, enterovirus, 361
Encephalomyocarditis virus (EMCV)
evolution of, 291
genome of
vs. other picornaviruses, 137
translation determinants in, 129–130
infections due to
clinical manifestations of, 368t
persistent, 440
internal ribosomal entry sites of, 234
canonical initiation factors and, 174t, 175–176, 176f
cellular RNA-binding proteins and, 179–180
mechanism of action of, 165–166
structure of, 161f, 162, 163
nucleotide preferences of, 152
P3 proteins of, 229
polypeptides of, 228
proteinases of, 216
receptors for, 63t, 67, 368
replication of cis-acting RNA elements in, 233, 234
host cell intracellular membranous vesicle proliferation in, 339
host cell lipid alterations in, 339
host cell membrane permeability enhancement in, 337
internal ribosomal entry sites in, 234
intracellular membrane proliferation in, 342
proteins involved in, 231t
RNA polymerase of, evolution of, 288
serotypes of, 18t
similarity plots of, 150–151
translation of, historical perspective of, 159
Enders, John, on poliovirus tissue culture, 9–10
Enterovirus (es), see also specific viruses
tissue culture of, 361
antigens of, 19
serotypes of, 18t
RNA polymerase of, evolution of, 288
proteins involved in, 231t
serotypes of, 18t
translation determinants in, 129
in host cell translation shutoff, 302–306
infections due to, 360–362
clinical manifestations of, 358t, 360–361, 368t
diagnosis of, 361
epidemiology of, 360
persistent, 439
receptor determinants in, 361–362
interactions with other viruses, 275–276
internal ribosomal entry sites of
canonical initiation factors and, 172, 177
cellular RNA-binding proteins and, 177–179
structure of, 160, 162
nucleotide preferences of, 151–152, 154
pathogenicity of, variability of, 271
PCR detection of, 361
proteinases of, 188f, 214f
2A, 188–189, 228
in cleavage, 199, 200, 200f
proteins of, host cell membrane effects of, 344
receptors for, 63t, 66t, 67, 368
paralytic disease and, 371
replication of cis-acting RNA elements in, 231, 233
host cell intracellular membranous vesicle proliferation in, 339
host cell membrane effects of, 344
resistance in, 270
serotypes of, 18t
similarity plots of, 150–151, 152f
structure of, 28c
taxonomy of, see Taxonomy
Enterovirus 70, receptors for, paralytic disease and, 371
Enterovirus 71, receptors for, paralytic disease and, 371
Environmental control and trafficking, genetic determinants of, 132–133
Equine rhinovirus A virus, 407, 407t
nucleotide preferences of, 152
serotypes of, 18t
Equine rhinovirus B virus, 407, 407t
nucleotide preferences of, 152
serotypes of, 18t
Equine rhinovirus, evolution of, 291
Eradication poliovirus, see Poliovirus(es), eradication of
smallpox, 474
Erbivirus genome of, 20f, 21, 21t
serotypes of, 18t
taxonomy of, see Taxonomy
ERK/MAPK pathway, activation of, by coxsackieviruses, 409–411, 410f, 411f
Eukaryotic initiation factors, see Initiation factors
Evolution, 285–289; see also specific viruses
antibody effects on, 287–288
antigenic site coevolution with receptor-recognition sites, 289–290
antiviral strategies and, 292
complexity and, 291
drug effects on, 287–288
error frequencies in, 287–289
high mutation rates in, 289–292
host cell tropism, 290–291
long-term, 287
measurement of, 288–289
memory and, 291–292
overview of, 285
proofreading activity in, 286
protein replacements in, 290–291
quasispecies in, 286–287, 291–292
rate of, 274
regulatory region replacements in, 290–291
structure conservation in, 29
taxonomy based on, 21–23
vs. viral reproduction cycle length, 274
of virulence, 290–291
Exercise, provocation poliomyelitis in, 374–376, 375f
F
Fab virus complexes, in antibody interactions, 42–44, 42t, 43t
Fever, in enterovirus infections, 360
Fitness gains or losses of, 286
variability of, 270
Flexner, S., on poliomyelitis, 7
FMDV, see Foot-and-mouth disease virus(es)
Foot-and-mouth disease virus(es), 51–58
antibody interactions with, 45–46
antigens of
discovery of, 51–52
structures of, 52–55, 53f, 54f
cell culture of, 51–52
vaccine preparation and, 52
variability of, 52, 270
arginine-glycine-aspartic acid sequence of, in cell binding, 116–117
cell culture of, 440–441, 441f
economic significance of, 115
genome of
anti-host determinants in, 133
essential vs. nonessential elements of, 136
vs. other picornaviruses, 137, 138
plasticity of, 274
polyprotein processing determinants in, 131
translation determinants in, 130
in host cell translation shutoff, 303–305, 304f
host range of, 118–119, 119f, 270
in host substrate cleavage, 202, 202t
infections due to
clinical manifestations of, 368t
persistent, 438t, 439–441, 441f
interactions with other viruses, 275
internal ribosomal entry sites of
canonical initiation factors and, 172
sev...
Foot-and-mouth disease virus(es), internal ribosomal entry sites of (continued)
structure of, 162, 163
as virulence determinant, 165
L protein of, 187–188
in host substrate cleavage, 192
structure of, 206–209
nucleotide preferences of, 152
polypeptides of, 228
proteinases of, see also L protein in cellular protein cleavage, 200
in primary cleavage, 213–214, 214f, 215f, 216
in secondary cleavage, 199–200
structures of, 203t
proteins of, host cell membrane effects of, 344, 348
quasispecies of, memory in, 291–292
receptors for, 115–123, 118–119, 119t, 368
alternative, 118–119, 119t
binding of, 56, 116–117
clinical manifestations and, 63t
early studies of, 115–116, 116f
integrins as, 117–119
interactions of, 56
pathogenesis and, 67
types of, 62, 65
replication of
host cell membrane alterations in, 347
host cell intracellular membranous vesicle proliferation in, 339
host cell lipid alterations in, 339
host cell membrane effects of, 344, 348
intracellular membrane proliferation in, 342
resistance in, 288
serotypes of, 18t, 19, 115
discovery of, 51–52
structures of, 55–56, 55f
variation in, 52
similarity plots of, 151, 152f
structures of, 31, 55–56, 55f
vaccines for, practical considerations with, 52
virulence of, 290–291
alteration of, 118–119, 119t
VPg proteins of, 229

G
Gastrointestinal disorders, in poliomyelitis, 368
GDVII strain, Théler’s murine encephalomyelitis virus, 427–431, 428t, 437–438
GenBank, 149
Genetics
overview of, 269–284
chimeras, 277
geneic analysis, 276–277
genome variability, 271–275, 272f, 273f
mimicries, 269
phenotype variability, 270–271
replicons, 277
templates, 277
vectors, 277
viral interactions, 275–276
taxonomy based on, 21, 22f
Genome(s), picornavirus, 127–155; see also specific viruses
alignments of, 150
coding organization of, 138
complexity of, 291
data base for, 149–150
determinants of
anti-host offense and defense, 133–134
antipapoptotic activity, 133–134
autocatalytic cleavages, 131
cleavage sites, 131
elongation, 130
encapsulation signals, 134
environmental control and trafficking, 132–133
immune response modulation, 134
intracellular structural and environmental changes, 132–133
macromolecular shutoff, 133
maturation cleavage, 134–135
polyprotein processing, 130–131
proteinases, 131
replication, 131–132
RNA internalization, 135–136
termination, 130
translation, 128–130
virus assembly, 134–135
virus release, 135
essential vs. nonessential elements in, 136
evolutionary aspects of, 137–138
274–275
functional coordination in, 136
historical studies of, 127–128
interactions among, 275–276
vs. nonpicornavirus genomes, 137–138
nucleotide preferences in, 151–154, 154f
overall design of, 128, 128f
phenotypes and, 136–137
plasticity of, 273–274
point mutations in, 271
proteins encoded in, 187, 188f
rearrangements of, 271–273, 272f, 273f
replication of, see Replication
similarity plots of, 150–151, 152f–153f
taxonomy based on, 20–21, 20f
variability of, 271–275, 272f, 273f
variation of, 137
Global eradication, of poliovirus, see Poliovirus(es), eradication of Glycophorin A, as viral receptor, 61, 63t
Glycoprotein processing, in host cell membranes, replication effects on, 339f, 341–342, 343f
Guandine hydrochloride, as viral inhibitor, 270
resistance to, 287
H
Hand-foot-mouth syndrome, enterovirus, 360–361
Headache, enterovirus, 361
Heine, Jacob, on infantile paralysis, 3–4
Heparan sulfate, as viral receptor, 63t, 64, 65, 118
Hepatitis, infectious, see Hepatitis A virus, infections due to Hepatitis A virus antibodies to, 417–418
attenuation of, 419–421
cell culture of, 419–420, 441
cell interactions with, 417–418
characteristics of, 415–416
evolution of, 290
genome of, 415–416
anti-host determinants in, 133
mutations in, 419–421
polyprotein processing determinants in, 131
replication determinants in, 132
translation determinants in, 129
virus assembly determinants in, 134–135
virus release determinants in, 135
host range of, 270, 416
immune response to, 418–419
infections due to, 415–425
animal models of, 416–417, 417f, 418t, 419–420
clinical manifestations of, 368t
epidemiology of, 415
historical perspective of, 415
pathogenesis of, 417–419
pathology of, 418
persistent, 441
spectrum of, 418
internal ribosomal entry sites of, 160,
161f, 415
adjacent sequences affecting, 164
canonical initiation factors and, 172,
174t, 177
nucleotide preferences of, 152–154
P3 proteins of, 229
polypeptides of, 228
proteinases of, structures of, 203–206,
203t, 204t, 205f
proteins of, host cell membrane effects of, 346, 348
receptors for, 368
clinical manifestations and, 63t
types of, 62f, 64, 65
replication of, 415–420
host cell membrane alterations in, 247
cis-acting RNA elements in, 233
host cell membrane effects of, 346, 348
proteins involved in, 231t
resistance in, 288
serotypes of, 18t, 19
strains, 419–420
taxonomy of, 416
translation of, 415
transmission of, 415
vaccines for, 421
virulence of, molecular basis of, 420–421
Hepatitis B virus, transmission of, 415
Hepatitis C virus
evolution of, 285
genome of, 291
internal ribosomal entry sites of, canonical initiation factors and, 172, 174t
RNA polymerase of, structure of, 235–256
Hepatocytes, hepatitis A virus entry into, 417–418
Hepatoviruses, see also Hepatitis A virus genome of, 20f, 21, 21f, 150
infections due to, clinical manifestations of, 368t
internal ribosomal entry sites of, 160,
161f, 162
nucleotide preferences of, 151
proteinases of, in primary cleavage, 199,
200f
receptors for, 368
replication of, cis-acting RNA elements in, 231
serotypes of, 18t
similarity plots of, 150–151, 152f, 153f
taxonomy of, see Taxonomy
Herpangina, enterovirus, 360
Hidden Markov model, for genomic sequence alignment, 150
Histone H3, cleavage of, 202, 202t
Historical perspective, of poliomyelitis, 3–14
HMMER program, for genomic sequence alignment, 150
Hortmann, Dorothy, on viremia in poliomyelitis, 9
Host cell(s), see also Host cell shutoff attachment to, in virus-antibody neutralization, 45
destruction of, cleavage in, 200, 202–203, 202t
entry of, calcium in, 416
hepatitis A virus interactions with, 417–418
internal changes of, genomic determinants of, 132–133
intracellular membranous vesicle proliferation in, 338f, 339, 340f–341f, 342–344
membranes of, see Cell membranes
poliovirus entry of, see Poliovirus(es), cell entry by proteins of, in viral replication, 229–231, 231t
structure of, after infection, 247, 248f
subcellular fractions of, RNA synthesis in, 249–250, 249f
tropism of, evolution and, 290–291
variability of, 270
virus action on, 200, 202–203, 202t
Host cell shutoff, 200, 202, 202t

cell membrane alterations in, see Cell membranes, replication effects on transcription, poliovirus in, see Poliovirus(es), in host cell transcription shutoff translation, 301–311
initiation factor cleavage in, 303–306, 304f
initiation of protein synthesis and, 301–302, 302f
Host defenses, suppression of, genomic determinants of, 133–134
Host factors, in poliomyelitis severity, 374–376, 379f
Human immunodeficiency virus evolution of, 285, 286
RNA polymerase of, 255
Humoral immune response to coxsackievirus, 395–396
to hepatitis A virus, 418
to Theiler's murine encephalomyelitis virus, 432, 439
2-(a-Hydroxybenzyl)-imidazole, resistance to, 287
Hyponidragobulinemia, poliovirus excretion in, after vaccination, 387, 439

I
Immune globulin(s), enterovirus, 361–362
immunologic response to coxsackievirus, 391, 392, 395–396
to hepatitis A virus, 418–419
to Theiler's murine encephalomyelitis virus, 432–433, 433t, 439
Immune globulin(s), in coxsackievirus infections, 395–396
Immunglobulin G, viral receptors resembling, 65–66, 66f
Independent International Certification Commission, for poliovirus eradication, 477
Infantile paralysis, see Poliomyelitis
Infectious flachetic virus, proteinases of, 216, 218f
Infectious hepatitis, see Hepatitis A virus, infections due to
Influenza virus antibody interactions with, 46
entry of, 71
Initiation factors cleavage of, 192–193, 200, 202, 202t, 302f, 303–306, 304f
by poliovirus, 313–320, 315f–317f
in internal ribosomal entry site activity, 164–165, 172–177, 174f, 174t, 176f
Injury, muscle, provocation poliomyelitis in, 374–376, 375f
Innate immune response, to coxsackieviruses, 391–392
Insect picornaviruses proteinases of, 214f, 216, 218f
structures of, 27, 28t
Integrins, as viral receptors, 61–62, 62f, 65, 66
coxsackievirus, 109, 110
enterovirus, 371
foot-and-mouth disease virus, 117–119
Intercellular adhesion molecule 1 soluble preparation of, for rhinovirus infections, 359
as viral receptor, 61–63, 62f, 63t, 65–67, 66f
coxsackievirus, 108f, 110
echovirus, 108f
rhinovirus, 85–91
complex formation, 86–90, 87t, 88f, 89f
mechanism of, 89–90, 90f
structural aspects of, 85–86, 86f
specificity of, 87–89
stimulation of, 85–86
structure of, 85–86, 86f, 97
Interacellular adhesion molecule 2, vs. intercellular adhesion molecule 1, 87–88
Interference, among picornaviruses, 276
Interferon(s), for rhinovirus infections, 358
Interferon-γ, in coxsackievirus infections, 393
Interleukin(s), in coxsackievirus infections, 393–394
Internal ribosomal entry site(s) (IRES)
apthovirus, cellular RNA-binding proteins and, 179–180
boundaries of, 162
canonical initiation factors and, 172–177, 174f, 174t, 176f
cardiovirus, cellular RNA-binding proteins and, 179–180
cellular RNA-binding proteins and, 177–180, 179f
classes of, 160, 161f
common sequence motifs in, 162
discovery of, 172
domains of, trans-action of, 165
efficiency of, sequences affecting, 163–164
encephalomyocarditis virus canonical initiation factors and, 174t, 175–176, 176f
cellular RNA-binding proteins and, 179–180
enterovirus canonical initiation factors and, 172, 177
cellular RNA-binding proteins and, 177–179
essential domains of, 162
foot-and-mouth disease virus, canonical initiation factors and, 172
hepatitis A virus, 172, 174t, 177, 415
hepatitis C virus, 172, 174t
historical perspective of, 159–160, 160f, 171, 172
mechanism of action of, 164–165
in non-picornaviruses, 160
pestivirus, 172, 174t
in picornavirus genome, 128–130
poliovirus canonical initiation factors and, 177
discovery of, 172
in replication, 234
rhinovirus canonical initiation factors and, 172, 177
cellular RNA-binding proteins and, 177–179, 179f
structures of, 163–165, 161f
adjacent sequences affecting, 163–164
higher order, 163
Theiler's murine encephalomyelitis virus, 180, 431
translation initiation factor recruitment by, 164–165
types of, 302
as virulence determinant, 165–166
Internal ribosomal entry site-specific translation factors, in picornavirus genome, 130
International Symposium on Poliomyelitis Control (1983), 476
International Symposium on Poliomyelitis Control (1988), 475
IRES, see Internal ribosomal entry site(s)

J
Jaundice, campaign, 415
JNK/SAPK pathway, activation of, by coxsackieviruses, 409–411, 410f, 411f
Joffroy, A., on poliomyelitis, 4–5

K
Kling, C., on poliomyelitis, 7
Kobuvirus
genome of, 20f, 21, 21t
internal ribosomal entry sites of, 160
serotypes of, 18t
taxonomy of, see Taxonomy

L
L protein action of, 187–188, 188f, 189f
in cellular protein cleavage, 302–306, 302f, 304f
in host cell translation shutoff, 302–306, 302f, 304f
in host substrate cleavage, 192, 202t
in P protein recognition, 208–209 vs. papain, 208
structure of, 187–188, 203t, 208–209
substrate binding to, 208
L* protein action of, 189f
Theiler's murine encephalomyelitis virus, 428–430, 429f
La protein, in internal ribosomal entry site activity, 177
Landsreiter, K., on poliomyelitis etiology, 6–7
Leader protein, see L protein
Leon strain, poliovirus, 382, 383f, 384f
Lipase action, in host cells, viral replication effects on, 415
Lipid alterations, in host cells, in viral replication, 339–341, 342f

INDEX 497
Liver, hepatitis A virus effects on, 418
Low density lipoprotein receptor (LDLR), 61, 64
rhinovirus
identification of, 94–95
minireceptor type, 98–100, 98f–100f
regulation of, 95, 96f
structural requirements for, 97–100,
97f–100f
superfamily of, 95–96, 95f, 96f
Low density lipoprotein receptor-related pro-
tein (LRP), 66, 96
LS-C 2ab strain, poliovirus, 383f
Lymph nodes, coxsackievirus persistence in,
440

M
Macnamara, Jean, on poliovirus strains, 8
Macromolecular synthesis, suppression of,
earcellular membranes
Macrophages, poliovirus proliferation in,
340
Macnamara, Jean, on poliovirus strains, 8
Mengovirus
Memory, evolution and, 291–292
Medin, K. O., on poliomyelitis clinical im-
Meningoencephalitis, enterovirus, 439
Meningitis, enterovirus, 361, 362, 439
Meningitis, enterovirus, 361
Meningitis, enterovirus, 362
Minireceptor type
Mengovirus genome of
Mengovirus
replication determinants in, 132
early studies of, 127
replication determinants in, 132
variation assembly determinants in, 134
host range of, 270
infections due to, clinical manifestations of,
368f
proteins of, 214f
receptors for, 368
replication of
cell membrane alterations in, 247
cis-acting RNA elements in, 232f, 233
host cell intracellular membranous vesi-
cle proliferation in, 339
host cell lipid alterations in, 339–341
host cell membrane permeability en-
hancement in, 337–338
intracellular membrane proliferation in,
343
resistance in, 288
structure of, 38f
vs. Theiler's murine encephalomyelitis vi-
rus, 427
Meningitis, enterovirus, 361, 362, 439
Meningoencephalitis, enterovirus, 439
β-Microglobulin, as viral receptor accessory,
65, 111
Microtubule-associated protein 4, cleavage of,
202, 202f, 314
Molecular clock data, for polioviruses, 485
Molok strain, poliovirus, 383f
Monkey model, of hepatitis A, 417, 419–
420
Monoclonal antibody-resistant mutations,
287–288
Mouse hepatitis virus, replication of, transla-
tion coupling with, 234
Muller's ratchet, in evolution, 274
Multiple sclerosis, Theiler's murine encepha-
omyelitis virus infection resembling, 428,
428f, 431–433
Multiplicity-of-infection passages, in viral
replication, 271
Muscle injury, provocation poliomyelitis in,
374–376, 375f
Mutation(s)
evolution and, 274–275; see also Evolution
frequencies of, 285–292
hepatitis A virus, 419–421
mapping of, 276
measurement of, 288–289
monoclonal antibody-resistant, 287–288
in mutational analysis, 276
neutral, 274
point, 271
poliovirus, 274, 371, 372f, 373–374
RNA polymerase, 261, 261f
rates of, 285–292
Myocarditis, Theiler's murine encepha-
omyelitis virus, 419–421
N
National Immunization Days, for poliovirus
eradication program of, 477, 477, 481, 484
National Poliomyelitis Control Program, Bra-
ziol, 474–475
Natural killer cells, in coxsackievirus re-
sponse, 391–392
Necrosis, liver, in hepatitis A, 418
Nectins, in poliovirus replication, 71
Neurovirulence
polioviruses, 371–374, 372f
Theiler's murine encephalomyelitis virus,
430–431, 437–438
Neutralizing antibodies
coxsackievirus, 396
virus interactors with, 31, 46–47, see also
Rhinovirus(es), antibody interactions with
Neutralizing immunogenic sites of, viruses
39, 40f, 43
NLM sites, coxsackievirus, 396–397
Nonreplicative rearrangements, 272f, 273
Octamer-binding protein, cleavage of, in
host cell shutoff, 326–327, 328f
Oral cavity, enterovirus infections of, 360–
361
Orf in replication, 233
onR, in replication, 233, 274
Otitis media
enterovirus, 360
rhinovirus, 357
Ovarian vitellogenin/very low density lipo-
protein receptor, 96
Pan American Health Organization, poliovi-
rus eradication program of, 475–476
Pancreas, coxsackievirus effects on, 391, 397
Papain, vs. L protein, 208
Parechovirus(es)
genome of, 20, 21, 21f
alignments of, 150
translation determinants in, 129
infections due to, clinical manifestations of,
368f
internal ribosomal entry sites of, 160, 162
nucleotide preferences of, 152, 154
proteins of, in primary cleavage, 199, 200f
receptors for, clinical manifestations and,
63f
serotypes of, 18f
similarity plots of, 150–151, 153f
taxonomy of, see Taxonomy
Pathogenicity, see also specific viruses
variability of, 271
PCNA, see Polymerase chain reaction
Permeability, of host cell membranes, in vi-
ral replication, 337–339, 338f
Persistent infections, 437–448
coxsackievirus, 405–411, 406f, 404t,
408f–411f, 439–440
echovirus, 441–442
encephalomyocarditis virus, 440
enterovirus, 439
foot-and-mouth disease virus, 438, 439–
441, 441f
hepatitis A virus, 441
poliovirus, 384–387, 438f, 439, 440, 442,
443f, 442f, 444–445, 448
Théiler's murine encephalomyelitis virus,
437–439, 438f, 440
Pestivirus, internal ribosomal entry sites of,
canonical initiation factors and, 172, 174f
Petterston, A., on poliomyelitis, 7
Pharyngitis, enterovirus, 360–361
Phenotypes, viral, genetic basis of, 136–137
variability of, 270–271
Philanthropic organizations, for poliomyelitis
research, 8
Phospholipase action, in host cells, viral rep-
lication, 229, 230t, 249
Phylogeny, 21–23
of polioviruses, 484–485, 485f–486f
Physalis mollis virus, structure of, 29f
Picornavirus(es), see also specific viruses
interactions among, 275–276
structures of, 27–35, 28f–29f
taxonomy of, see Taxonomy
Picornavirus Sequence Database, 149
Pirodavir, for rhinovirus infections, 359
Plasticity, genome, 273–274
Plecanaril
for enterovirus infections, 362
mechanism of action of, 32–34, 34f
for rhinovirus infections, 359
Pleurodynia, enterovirus, 361
PLOTSIMILARITY program, 150–151,
152f–153f
Pneumonia, enterovirus, 360
Pocket factor
drug resistance and, 287
in receptor interactions, 32, 33, 33f, 34f.
44
Polio Eradication Initiative, organizations in-
olved in, 477

INDEX

National Immunization Days in, 476, 477, 481, 484
Pan American Health Organization and, 475–476
Poliovirus(es), RNA polymerases of (continued)
in host cell transcription shutoff, 322–325, 323f–326f, 327–330, 329f–331f
kinetic constants of, 262, 263f
mutations of, 261, 261t
oligomerization of, 256–257, 258t, 259f
properties of, 229, 230t
replication complex of, 257, 259–264
ribavirin action and, 292
structure of, 255–256, 259t
thermodynamic constants of, 262, 263t
Sabin strains of, see Sabin strains, poliovirus
serotypes of, 18t, 19
similarity plots of, 152f
in replication, 227–229, 230t
Polyproteins
Cleavage, in polyprotein processing, primary, 207–208
vs. 3C proteinase, 206–207, 207f
substrates for proteins, 188f, 189–192, 227–229, 230t
in host cell transcription shutoff, poliovirus, see Poliovirus(es), in host cell transcription shutoff
in viral structure, 30–31, 31f
Protein(s)
Proofreading-repair activity, in replication, 227–229, 230t
in host cell transcription shutoff, poliovirus, see Poliovirus(es), in host cell transcription shutoff
in replication, 227–229, 230t
translation and, 302–307, 304f
Proteinases
see also specific viruses
in replication, 227–229, 230t
structures of, 28t, 72f–73f, 76, 77f
in replication, 227–229, 230t
Poly(A) tails, in internal ribosomal entry site activity, 178–180, 179f
in replication, 230
molecules serving as, 61–62, 62f, 63t, 64 multiple, 109–110
number of per virus, 64–65
overview of, 61–69, 62f, 63t, 66t
paralytic disease and, 368–369
protease recognition, 205–206
properties of, 230t
in replication, 230t
RNA binding site of, 206
sequence alignment of, 203–204, 204t, 205f
INDEX

Thiel's murine encephalomyelitis virus, 368, 430
Receptor-associated protein, 96
Recombination
in genetic analysis, 276–277
between picornaviruses, 276
in poliovirus replication, 451–458, 452f
- cell-free systems for, 451–458, 452f–457f
- crossover sites in, 451–452, 455–456, 453f–455f
- frequencies of, 451–452
- guanidine hydrochloride effects on, 452, 454–455
- temperature effects on, 456–458, 456f, 457f
Red clover mottle virus, structure of, 29t
Replication, 227–246; see also specific viruses
- cell membrane alterations in, see Cell membranes, replication effects on cellular proteins in, 229–231, 231t
cis-acting RNA elements for, 231, 232f, 233–234
- complex of, 250–251
- in crude complexes, 235
- DNA vs. RNA, 241–242, 241f
evolution in, see Evolution
genomic determinants of, 131–132
- host cells in, 247–251
- cleavage of, 200, 202–203, 202t
- destruction of, 247
- membrane alterations in, 247–250, 248f, 249f
- vesicles formation in, 248–250, 248f, 249f
- membranous structures for, 234
- model for, 235–241, 236f, 237f, 239f
- multiplicity-of-infection passages in, 271
- pathway for, 227, 228f
- proofreading-repair activity in, 286
- proteinases in, see Proteinases
- synthesis products of, 234–235
- translation coupling with, 234
- viral proteins for, 227–229, 230f
- Replicative rearrangements, 272–273, 272f, 273f
- Replicons, 277
- Resistance, to virus inhibitors
evolution of, 287–288
- variability of, 270
- Respiratory disorders, enterovirus, 360
- Retrograde axonal transport, of polioviruses, 368–369, 376
Rhinovirus(es)
- antibody interactions with, 39–49
- antibody strength and, 49, 40f, 41
- canyon hypothesis of, 46–47
- crystal structure of, 42–44, 43t
- Fab virus complexes in, 42–44, 42t, 43t
- in vitro versus in vivo, 45–46
- mechanisms of, 44–45
- profiles of, 39, 40f, 41
- pseudo-atomic models of, 42, 42t
- structural analysis of, 41–42
- antigenic variability of, 270
- evolution of, 291
- genome of, 20f, 21, 21t
- alignments of, 150
- anti-host determinants in, 133
- vs. other picornaviruses, 137
- replication determinants in, 132
- translation determinants in, 129
- virion assembly determinants in, 134
in host cell translation shutoff, 302–306, 304f
- in host substrate cleavage, 202, 202t
- infections due to clinical manifestations of, 357–358, 358f, 368f
- diagnosis of, 358
- epidemiology of, 357
- treatment of, 358–360
- internal ribosomal entry sites of, 234
- canonical initiation factors and, 172, 177
- cellular RNA-binding proteins and, 160, 162
- major group of, receptor interactions of, 85–91
- minor group of definition of, 85
- receptor interactions of, 93–105
- nucleotide preferences of, 151, 152, 154
- P3 proteins of, 229
- proteinases of, 188f, 214f
- 2A, 188–189, 228
- in cellular protein cleavage, 200
- in primary cleavage, 199, 200f
- in secondary cleavage, 200
- structures of, 203–204, 203f, 204t, 205f, 206–208, 207f
- receptors for, 368
- attachment sites for, 65–66, 66t
- clinical manifestations and, 63
- identification of, 93–97, 94t–96f
- interactions with, 32
- major group, 85–91
- minor group, 93–105
- open questions involving, 100–101
- pathogenesis and, 67
- significance of, 66
- structures of, 72f–73f, 97–100, 97f–100f
- replication of cell membrane alterations in, 247
cis-acting RNA elements in, 231, 232f, 233–234
- host cell membrane permeability enhancement in, 337
- internal ribosomal entry sites in, 234
- plus-strand RNA synthesis in, 237
- proteins involved in, 231t
- resistance in, 270, 287
- RNA polymerase of, 229
- serotypes of, 18t
- similarity plots of, 150–151, 152f
- structures of, 28t
- taxonomy of, see Taxonomy
- VPg proteins of, 229
- Ribavirin, RNA polymerase activity and, 292
- RIPO and RIVOS strains, poliovirus, 388
- RNA
- folding of, prediction of, 162–163
- internal ribosomal entry sites of, see Internal ribosomal entry site(s)
- internalization of, genomic determinants of, 135–136
- replication of, see Replication
- synthesis of, 285–292
- error-prone, 285–292
- genomic determinants of, 131–132
- minus-strand, 236–239, 236f, 237f
- plus-strand, 239, 239f, 241
- products of, 234–235
- protein 3A in, 346–348, 348f
- translation of, see Internal ribosomal entry site(s); Translation
- RNA-binding proteins, cellular, in internal ribosomal entry site activity, 177–180, 179f
- RNA polymerase(s)
- evolution of, 288
- mutations of, 271
- polioviruses, see Poliovirus(es), RNA polymerases of in rearrangements, 272
- in replication, 227
- Robbins, Frederick
- on poliovirus eradication, 475
- on poliovirus tissue culture, 9–10
- Rosette formation, formation of, 249–250, 249f
- Ross River virus, antibody interactions with, 315
- Rotary International, in poliovirus eradication program, 476
- Rotavirus(es), proteinsases of, 214f, 216, 218f
- Sabin, Albert B.
- on poliovirus eradication, 473–474
- Sabin strains, poliovirus
- alternatives to, 387–388
- attenuated, 382–383, 386f–386f, 385–386
- derivation of, 383f
- molecular biology of, 382–386, 383f–386f
- persistent excretion of, 437–439
- safety of, 371, 372f, 373–374, 381–382
- vaccine efficacy and, 382f
- Salk (inactivated, IPV) vaccine, for poliovirus, 381, 382f
- Satellite tobacco mosaic virus, structure of, 27
- Serotype(s), picornavirus, taxonomy based on, 18t, 19–20
- Senecia mosaic virus, structure of, 29t
- Shannon entropies, 285
- Signaling pathways, activation of, by coxsackieviruses, 409–411, 410f, 411f
- Simian immunodeficiency virus, evolution of, 285
- Similarity plots, of picornaviruses, 150–151, 152f–153f
- Simian virus 40, 41
- Sinusitis, in rhinovirus infections, 357–358
- Skin lesions, enterovirus, 360–361
- Smallpox, eradication of, 474
- Syndrome, of coxsackieviruses, 409–411, 410f, 411f
- Spleen, coxsackievirus persistence in, 440
- Stabilization, virion, in virus-antibody neutralization, 44
- Streptococcal pharyngitis, antibiotic treatment of, 204–207, 204t
- Strains, poliovirus, 27–38, 28t–29t; see also specific viruses and components
- antiviral compound binding to, 32–34, 34f
- assembly of, 29–30
- capsid, 27, 29, 30t, 31f
- evolution of, 29
- neutralizing antibody interactions and, 31
- proteins, 30–31, 31f
- receptor interactions with, 31–32, 32f, 33f
- Subnational Immunization Days, for poliovirus, 476
- Swine vesicular disease virus, evolution of, 204
- T lymphocytes, response of to coxsackieviruses, 392–395, 393f–395f
- to hepatitis A virus, 418–419
T lymphocytes, response of (continued) to Theiler's murine encephalomyelitis virus, 432–433, 433t, 439
Talloires, France, Declaration of (1988), on poliovirus eradication, 476
Tamarin model, of hepatitis A, 416–417, 417f, 418t
TATA-binding protein, cleavage of, 202
Tamarin model, of hepatitis A, 416–417, 417f, 418t
Taxonomy, 17–24, 18t
Template switching (replicative rearrangement), 272–273, 272f, 273f
Teschovirus, genome of, 20f, 21, 21t, 150
serotypes of, 18t
similarity plots of, 150–151, 153f
T hep A virus, 416
TO (Theiler’s original) strain, 427–428, 428t, 430–433, 437–438
structure of, 28t
subgroups of, 427–428, 428t
susceptibility to, 431–433, 433t, 439
virulence factors in, 430–431, 437–438
Theiler’s virus, serotypes of, 18t
Those asgn virus, proteinases of, 216, 218f
Tissue culture, poliovirus, 9–10
TMoV, see Theiler’s murine encephalomyelitis virus
TO (Theiler’s original) strain, Theiler’s murine encephalomyelitis virus, 427–428, 428t, 430–433, 437–438
Toxoplasma gondii, 429–430
Tobacco etch virus, replication of, translation coupling with, 234
Tobacco ringpot virus, structure of, 29t
Tomato bushy stunt virus, structure of, 29t, 30f
Transcription, host cell, proteinase effects on, 321–335
Transcription factor(s), in host cell transcription shutoff, 322, 323t, 327–330, 329f, 330f
Transcription factor IIIC, cleavage of, 202, 202t
transcription shutoff, 322, 323f, 327–330, 332f, 333f
Transcription factor IIIC, cleavage of, 202, 202t
Transcriptional activator Oct-1, cleavage of, 202, 202f
Translation, canonical initiation factors in, 164–165, 172–177, 174f, 174t, 176f
historical perspective of, 159–160, 160f, 171
host cell shutoff of poliovirus, 313–320
proteinase-mediated, 301–311, 302f, 304f
internal ribosomal entry sites in, see Internal ribosomal entry site(s)
replication coupled with, 234
Theiler’s murine encephalomyelitis virus protein, 429–430
Tremacma, for rhinovirus infections, 359
Trombone, for rhinovirus infections, 359
Tropism
host cell, evolution and, 290–291
polioviruses, 369–371, 370f
Troponimia, proteinases of, 214f, 216–217, 218f
Tumor necrosis factor-α in coxsackievirus infections, 393–394
inhibition of, genomic determinants of, 134
Turnip yellow mosaic virus, structure of, 29t
U
Underwood, Michael, on poliomyelitis, 3
Warren, T., on polio, 118–119, 119t, 165
hepatitis A virus, 420–421
internal ribosomal entry sites as, 165–166
polioviruses, 371–374, 372f
Theiler’s murine encephalomyelitis virus, 165, 430–431, 437–438
variability of, 271
Vitamin C, for rhinovirus infections, 360
Vitronecitin, as viral receptor, 65, 371
VPg protein in replication, 228f
structure of, 230
Vulpian, A., on poliomyelitis, 4–5
W
Weller, Thomas, on poliovirus tissue culture, 9–10
Wernstedt, W., on poliomyelitis, 7
White matter disease, Theiler’s murine encephalomyelitis virus, 428, 428t, 431–433
Wickman, I., on poliomyelitis epidemiology, 134–135
World Health Assembly, poliovirus eradication goals of, 477
World Health Organization, poliovirus eradication activities of
Expanded Program on Immunization, 474, 475
leadership, 477
World Summit for Children (1990), on poliovirus eradication, 477
Z
Zinc, for rhinovirus infections, 360