The Enterococci

Pathogenesis, Molecular Biology, and Antibiotic Resistance
Contents

Contributors vii
Preface ix

1 History, Taxonomy, Biochemical Characteristics, and Antibiotic Susceptibility Testing of Enterococci 1
Richard R. Facklam, Maria da Gloria S. Carvalho, and Lucia M. Teixeira

2 Nonhuman Reservoirs of Enterococci 55
Frank M. Aarestrup, Patrick Butaye, and Wolfgang Witte

3 Enterococci as Members of the Intestinal Microflora of Humans 101
Gerald W. Tannock and Greg Cook

4 Physiology of Enterococci 133
Mark M. Huycke

5 Enterococcal Cell Wall 177
Jacques Coyette and Lynn E. Hancock

6 Plasmids and Transposons 219
Keith E. Weaver, Louis B. Rice, and Gordon Churchward

7 Conjugation and Genetic Exchange in Enterococci 265
Don B. Clewell and Gary M. Dunny

8 Enterococcal Virulence 301
Michael S. Gilmore, Phillip S. Coburn, Sreedhar R. Nallapareddy, and Barbara E. Murray

9 Acquired Antibiotic Resistances in Enterococci 355
Vivek Kak and Joseph W. Chow

10 Enterococcal Disease, Epidemiology, and Treatment 385
Preeti N. Malani, Carol A. Kauffman, and Marcus J. Zervos

11 The Genome of Enterococcus faecalis V583: a Tool for Discovery 409
W. Michael McShan and Nathan Shankar

Index 417
Contributors

Frank M. Aarestrup • Danish Veterinary Institute, Bülowsvej 27, DK-1790 Copenhagen V, Denmark
Patrick Butaye • Veterinary and Agrochemical Research Centre, Goeselenberg 99, B-1180, Belgium
Maria da Gloria S. Carvalho • Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941 Brazil
Joseph W. Chow • Division of Infectious Diseases (11W), John D. Dingell VA Medical Center and Wayne State University, Detroit, MI 48201-1932
Gordon Churchward • Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
Don B. Clewell • Department of Biological and Materials Sciences, School of Dentistry, and Department of Microbiology and Immunology, School of Medicine, The University of Michigan, Ann Arbor, MI 48109-1078
Phillip S. Coburn • Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Stanton L. Young Biomedical Research Center, Rm. 356, P.O. Box 26901, Oklahoma City, OK 73190
Greg Cook • Department of Microbiology, University of Otago, P.O. Box 56, 720 Cumberland St., Dunedin, New Zealand
Jacques Coyette • Centre d’Ingénierie des Protéines, Institut de Chimie B6, Université de Liège, Sart Tilman, B-4000 Liège, Belgium
Gary M. Dunny • Department of Microbiology, University of Minnesota, Minneapolis, MN 55455
Richard R. Facklam • Streptococcus Laboratory, Respiratory Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Mailstop C0-2, 1600 Clifton Rd., N.E., Atlanta, GA 30333
Michael S. Gilmore • Departments of Ophthalmology and Microbiology, The University of Oklahoma Health Sciences Center, Robert M. Bird Library, Rm. 121, P.O. Box 26901, Oklahoma City, OK 73190
CONTRIBUTORS

Lynn E. Hancock • Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd., MEM-116, La Jolla, CA 92037

Mark M. Huycke • Infectious Diseases Section (111C), Department of Medicine, Department of Veterans Affairs Medical Center, and University of Oklahoma Health Sciences Center, 921 N.E. 13th St., Oklahoma City, OK 73104

Vivek Kak • Division of Infectious Diseases, B321 Life Sciences Bldg., Michigan State University, East Lansing, MI 48824

Carol A. Kauffman • Division of Infectious Diseases, Department of Internal Medicine, Ann Arbor Veterans Affairs Healthcare Center, University of Michigan Medical School, Ann Arbor, MI 48105

Preeti N. Malani • Division of Infectious Diseases, Department of Internal Medicine, Ann Arbor Veterans Affairs Healthcare Center, University of Michigan Medical School, Ann Arbor, MI 48105

W. Michael McShan • Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm. 1053, Oklahoma City, OK 73104

Barbara E. Murray • Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Molecular Genetics, The University of Texas-Houston Health Sciences Center, 6431 Fannin, JFB 1.728, Houston, TX 77030

Sreedhar R. Nallapareddy • Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Molecular Genetics, The University of Texas-Houston Health Sciences Center, 6431 Fannin, JFB 1.728, Houston, TX 77030

Louis B. Rice • Medical Service 111W, VA Medical Center, 10701 East Blvd., Cleveland State, OH 44106

Nathan Shankar • Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm. 1053, Oklahoma City, OK 73104

Gerald W. Tannock • Department of Microbiology, University of Otago, P.O. Box 56, 720 Cumberland St., Dunedin, New Zealand

Lucia M. Teixeira • Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941 Brazil

Keith E. Weaver • Division of Basic Biomedical Sciences, School of Medicine, University of South Dakota, Vermillion, SD 57069

Wolfgang Witte • Robert Koch Institute, Wernigerode Branch, Germany

Marcus J. Zervos • Division of Infectious Diseases, Department of Internal Medicine, William Beaumont Hospital, 3601 West 13 Mile Rd., Royal Oak, MI 48073, and Wayne State University, Detroit, MI 48201
Preface

The introduction of antibiotics represents, by many measures, the most important advance in modern medicine. Seemingly overnight, leading causes of death became treatable, and the average lifespan was dramatically extended. The inevitable consequence of what for millions, if not billions, was a life-saving miracle, was the rise to prominence of organisms that are unfazed by antibiotics because of either intrinsic ruggedness or the result of having acquired resistance traits. Enterococci have emerged among the vanguard of these bacteria both because they are intrinsically unaffected by many antibiotics and because they have acquired resistance genes to counter the antibiotics that once were effective. Beginning in the mid 1980s, enterococcal infections started cropping up that were untreatable with antibiotics; these infections now occur around the world, particularly in the United States, and the rate is increasing essentially unabated.

Those directly involved in health care quickly became aware of and alarmed by the emergence of “pan-resistant” enterococci. However, for a number of reasons relating to economics, bureaucratic inertia, and competing needs with higher-profile constituencies, an infrastructure to effectively combat the emergence of highly resistant bacteria did not exist. Arguably, this infrastructure is still far from being in place.

With the first signs of this emerging health care crisis arising in the late 1970s and early 1980s, a small coterie of dedicated and very persistent investigators began to coalesce around the few pioneers probing enterococcal disease, molecular biology, and antibiotic resistance. This group included the co-editors and many of the chapter authors for this volume, as well as a few who came before. As the percentage of variably resistant enterococci continued to climb, the gap between the magnitude of the problem and effective action spread, despite the best efforts of those engaged (and these efforts were impressively insightful and creative, with such discoveries as conjugative transposons, pheromone signaling among bacteria, and descriptions of entirely novel antibiotic resistance mechanisms). In late 1998 it became clear that enterococcal research was reaching either a break point or an inflection point. “Hypothesis driven” became the mantra of public research funding agencies, locking in the status quo and effectively thwarting the development of new research fields that lacked data on which a competitive hypothesis could be advanced.
This growing disparity spawned the 1st International ASM Conference on Enterococci, which was held in Banff, Canada, February 27–March 2, 2000. Thanks in large part to the organizational assistance provided by the American Society for Microbiology, and the robust support from the private sector, which survives by its ability to rapidly recognize and respond to an emerging problem, the conference was by all measures a success. During the course of the proceedings, it became clear that a key tool for recruitment of new investigators to the fray would be a comprehensive primary text on enterococci—not just the proceedings of the meeting—covering pathogenesis of infection, molecular biology, and antibiotic resistance. It was felt that such a resource would be of great value to those dealing daily with consequences of antibiotic-resistant infection, those actively engaged in enterococcal research, and those searching for a scientific basis for public policy decisions.

It has been immensely rewarding to see this idea grow from concept to press in exactly 2 years, and there are many to thank for their support and attention to detail. First I would like to thank my co-editors, who have done much to set the very positive and collaborative tone for enterococcal research. Second, I would like to thank the authors for their creative synthesis of uniformly authoritative chapters—and for commendably adhering to schedule. On that note I would also like to thank Greg Payne of ASM Press for being gentle but persistent in guiding this project to fruition. None of this would have happened without the support and assistance that staging the Banff meeting required, and although those contributors are too many to acknowledge here, there are several who rose above and beyond the call, including Don Clewell and David Shlaes, who served admirably as co-organizers of the Banff meeting (I still remember Don’s telephone call just days before the meeting asking whether I had ever stopped to consider the February temperature in Banff). Joe Ferretti, Jim Hoch, Yasu Ike, Molly Schmid, Lisa Nalker, Gail Cassell, Bob Cochran, Dan Sahm, and Julian Davies all made key contributions at particularly critical points in the process that were absolutely essential for the success of the meeting, and ultimately the production of this volume. Neither the book nor the meeting would have been possible without the energetic and enthusiastic support of the “Lab Guys”: Lynn Hancock, Brett Shepard, Phil Coburn, Wolfgang Haas, Michael Engelbert, Ken Hatter, Chris Cox, Keeta Gilmore, Midge Carey, Chris Pillar, Debbie Griggs, and associates Nathan Shankar, Arto Baghdayan, and Mark Huycke, who were unflinchingly loyal whenever pressed into service. With the next generation of enterococcal investigators of this caliber, I have great confidence in our ability to address the enterococcal problem. Finally, these undertakings invariably encroach into one’s personal life, and I gratefully acknowledge the love and support of my entire family, and especially my wife Keeta and my daughter Stephanie, who agonized with me over many of the details and uncertainties, who often had to cope with my absence, and who were also pressed into service on many occasions.

My hope is that this text will foster the transition from the path that follows the problem, to the one that leads to success.

Michael S. Gilmore
INDEX

A

AAC(6")-APH(2") bifunctional resistance enzyme, detection of, 33
aac(6')-Ie-aph(2")-Ia gene, in aminoglycoside resistance, 357-359
Abdominal infections, 386
Abscesses, 386
ace gene and product, of Enterococcus faecalis
amplification and probing of, 22
as virulence factor, 327-332, 329f, 331t
Acetate formation, in α-keto acid metabolism, 140f, 143
Acetate kinase, in α-keto acid metabolism, 140f, 143
Acetoin formation, in α-keto acid metabolism, 140f, 144-145
α-Acetolactate decarboxylase, in α-keto acid metabolism, 140f, 144-145
α-Acetolactate synthase, in α-keto acid metabolism, 140f, 144-145
Acetyl-coenzyme A, in α-keto acid metabolism, 140f, 141, 142
N-Acetylglucosamine, in cell wall peptidoglycans, 178-180, 179f, 191, 195
β-N-Acetylglucosaminidases, in peptidoglycans degradation, 191
N-Acetilmuramic acid, in cell wall peptidoglycans, 178-181, 179f, 182f, 183-184, 191, 195-196
β-N-Acetilmuramidases, in peptidoglycans degradation, 191
Acetyltransferases, aminoglycoside-modifying, in resistance, 357, 359
Acholeplasma laidlawii, sodium transport by, 152
ack gene and product, in α-keto acid metabolism, 140f, 143
adhE gene and product, in α-keto acid metabolism, 140f, 142-143
Adhesins, 322-332
Ace protein, 327-332, 329f, 331t
aggregation substance, 266, 268-271, 269f, 280-281, 322-325, 325f
enterococcal surface protein, 325-327
Enterococcus faecalis, 281
Adhesion for collagen (ace) gene, Enterococcus faecalis
amplification and probing, 22
as virulence factor, 327-332, 329f, 331t
Aerococcus
phenotypic characteristics, 3t
phylogeny, 9f
Agar dilution susceptibility testing
aminoglycoside resistance, 29, 30t, 31
vancomycin resistance, 30t, 32
Age differences, in enterococcal populations
in animals, 57, 59
in humans, 105-109, 107t-108t, 108f
Aggregation substance, 266, 268-271, 269f, 280-281, 322-325, 325f
Agmatine catabolism, 145-146, 146f
agr gene and product, Staphylococcus aureus, 321-322, 320f, 323f
D-Alanyl-D-alanine dipeptide, in cell wall synthesis, 181, 183
genes involved in, 363-366, 364f
glycopeptide interactions with, 360
D-Alanylation of cell wall lipoteichoic acid, 194-195
Alcohol dehydrogenase, in α-keto acid metabolism, 140f, 142-143
Alkali tolerance, in enterococci, 151-153
Allogenic factors, in intestinal flora regulation, 105
Alloioccoccus, phylogeny, 9f
Amensalism, in intestinal flora regulation, 105-106
Amidases, in peptidoglycans degradation, 191
Amikacin, acquired resistance to, 357-359
Aminoglycoside-modifying enzymes, in resistance, 238, 357–359

Aminoglycosides
resistance to
acquired, 357–359
in animals, 68–69
detection, 29, 30t, 31, 33
infection treatment in, 397
intrinsic, 114t, 116–117, 357
mechanisms of, 27t
plasmids, 248
susceptibility testing, 28t

Ampicillin
aminoglycoside-resistant infections, 397
antibiotic-susceptible infections, 396
endocarditis, 396
resistance to
acquired, 355–356
in animals, 76–77
detection, 32–33
intrinsic, 114–115
plasmids encoding, 223t

Amycolatopsis orientalis, acquired antimicrobial resistance, 367

Animals
antimicrobial agent use in aminoglycosides, 68–69
bacitracin, 69
chloramphenicol, 69
glycopeptides, 69–71, 72f, 74t–75t, 78–85, 79f, 80t, 81f, 82f, 83t, 84f
for growth promotion, 65, 66t, 67
macrolides, 71, 73, 74t–75t
occurrence of resistance in, 67, 74t–75t, 77t
oligosaccharides, 73
resistance gene transfer from, 77–85, 79f, 80t, 81f, 82f, 83t, 84f
selection for resistance in, 67
statistics, 65, 66t, 67
streptogramins, 73, 74t–75t, 76
tetracyclines, 76

enterococci in
age differences, 57, 59
vs. animal type, 57, 58t, 59–60, 59f
antimicrobial resistance, see Antimicrobial resistance, nonhuman reservoirs
from feeds, 61
host specificity, 56–57, 57t
infections from, 61–64, 63t

species common in, 55–56
transfer to humans from, 77–85, 79f, 80t, 81f, 82f, 83t, 84f

Antimicrobial(s)
childhood use of, immunologic effects, 111
intestinal flora composition and, 120–121, 120t
restriction of, for infection control, 391–392

Antimicrobial resistance, 29, see also specific antimicrobials and enterococci
acquired, 355–383
aminoglycosides, 357–359
chloramphenicol, 369
evernimicin, 371
glycopeptides, 359–367, 361t, 362f–364f, 363t
/3-lactams, 355–357
lincosamides, 368–369
macrolides, 368–369
oxazolidinones, 370
quinolones, 371–372
streptogramins, 368–369
tetracyclines, 370
cell wall structure and, 186–189
detection of
aminoglycoside high-level resistance, 29, 30t, 31
beta-lactam resistance, 32–33
phenotypic methods for, 26–33, 27t, 28t, 30t
quality control for, 32
typing methods for, 33–39, 34f, 36f
vancomycin resistance, 31–32
genes for, in nonhuman reservoirs, 77t
host factors, 390–391
infection treatment, 397–399
intrinsic, 114–120, 114t, 355
nonhuman reservoirs, 64–85
aminoglycosides, 68–69
antimicrobial use statistics, 65, 66t, 67
bacitracin, 69
chloramphenicol, 69
gene transfer, 77–85, 79f, 80t, 81f, 82f, 83t, 84f
glycopeptides, 69–71, 72f, 74t–75t
macrolides, 71, 73, 74t–75t
natural environment, 388
occurrence, 67–68, 74t–75t, 77t
INDEX

oligosaccharides, 73
selection for, 67
streptogramins, 73, 74t–75t, 76
tetracyclines, 76
penicillin-binding proteins, 186–189
prevention, 391–395
transfer, see Plasmid(s); Transposons
urinary tract infections, 386
Antioxidants, for reactive oxygen species regulation, see Reactive oxygen species production, antioxidants for
aph genes and products
in aminoglycoside resistance, 357–359
detection, 33
API systems, for identification, 23–24
Arbekacin
aminoglycoside-resistant infections, 397
resistance to, acquired, 358
Arginine catabolism, 145–146, 146f
Arthritis, septic, 388
asa1 gene and product, 268, 270, 280
asa373 gene and product, 270, 274f
Asc10, 269–270, 280–281
Aspartate transcarbamoylase, in pyrimidine synthesis, 157
Aspartic acid, in peptidoglycans synthesis, 185
Asthma, intestinal microflora population and, 110–111
Atopic disorders, intestinal microflora population and, 110–111
Autogenic factors, in intestinal flora regulation, 105
Autolysins, in peptidoglycans degradation, 190–192
Avilamycin, in animals, resistance, 73
Avoparcin, in animals
banning, 67
resistance, 69–71, 72f, 80t
Azithromycin, resistance to acquired, 368
transposons in, 237
Azotobacter vinelandii, respiration of, 149

B

B lymphocytes, response to intestinal microflora, 110–111
Bacillus, plasmids, 232

Bacillus coagulans cell wall, lipoteichoic acids of, 193
Bacillus megaterium cell wall, lipoteichoic acids of, 193
Bacillus subtilis
catabolite control protein A, 137
cell wall
lipoteichoic acids, 193–194
peptidoglycans, 178, 181
polysaccharides, 204
teichoic acids, 195
coenzyme requirements, 158
plasmids, 225–226, 229–230, 283–284, 284f
polysaccharides, 336t
reactive oxygen species metabolism, 163
SPOIIIJ protein, 272
stress response, 159–160
Bacillus thuringiensis, plasmids, 234
Bacitracin
in animals, 67, 69
for colonization eradication, 399
resistance to, 69
Bacteremia, 306, 387
cytolysin, 313–314
Bacteroides
in intestinal flora, 104, 104t
of infants, 107t
mucin degradation by, 134
transposons, 249
Benzylpenicillin, intrinsic resistance to, 115
Bifidobacterium
in intestinal flora, in infants, 107t
mucin degradation by, 134
population, indigestible oligosaccharide effects on, 123–124
Bile-esculin azide, for isolation, 25
Biofilms, enterococcal surface protein promoting, 326
Biological Freudianism, intestinal microflora and, 109
Biotin requirements, 158
Birds, enterococci in, 56–57, 60
antimicrobial resistance in, 68, 75t
infections from, 62, 63t, 64
bkd gene and product, in α-keto acid metabolism, 144
Blood agar, for isolation, 25–26
Brain-heart infusion agar, for isolation, 25–26
Broilers, see Poultry
Broth microdilution susceptibility testing
aminoglycoside resistance, 30t, 31
vancomycin resistance, 30t
buk gene and product, in α-keto acid metabolism, 144
Butyrivibrio, in intestinal flora, 105t

C
C-terminal-anchored proteins, in cell wall, 206
Calves, see Cattle
Campylobacter blood agar, for Enterococcus isolation, 26
Capsular polysaccharides, 199–205, 201f, 203f, 204f, 333–334
Carbamate kinases, in deiminase catabolism, 146, 146f
Carbamoyl phosphate synthetase, in pyrimidine synthesis, 157
Carbamoylpurines formation, in deiminase catabolism, 145–146, 146f
Carbapenems, acquired resistance to, 355–357
Carbohydrate metabolism, 134–139
glycerol, 137–139, 138f
mucin degradation, 134
pathways, 134–137, 136f
DD-carboxypeptidases, in peptidoglycans degradation, 191
Carnobacterium vs. Enterococcus, 8, 9f
cat genes, for chloramphenicol resistance, 369
Catabolite control protein A, in carbohydrate metabolism, 136f, 137
Catabolite repression, in carbohydrate metabolism, 137
Catalase, in reactive oxygen species regulation, 164
Cats, enterococci in, 58t, 59f, 60, 83t
infections from, 62, 63t, 64
Cattle, enterococci in, 57t, 58t, 59, 59f
antimicrobial resistance, 68, 75t, 76, 78
from feeds, 61
infections from, 62, 63t
Caulobacter crescentus, reactive oxygen species metabolism, 163
Impermeability to aminoglycosides, 116–117
nonpeptidoglycan polymers, 192–205
lipoteichoic acids, 193–195, 204f, 205
polysaccharides, 195–205, 201f, 203f, 204f
teicho acids, 195, 204f
peptidoglycans
biosynthesis, 180–189, 183f
expansion during cell growth, 189–190, 190f, 191f
hydrolases, 190–192
structure, 178–180, 179f
polysaccharides, 334–339, 335f, 336t, 337f
proportion of dry cell weight, 177
proteins, 206–207
structure, 177–178, 178f
peptidoglycan layer, 178–180, 179f
thickness, 177
Centers for Disease Control and Prevention, infection control guidelines, 391–392
Cephalosporins
intestinal flora composition and, 121
resistance to, 355–357
Chaperonin 60 (heat shock protein 60), sequencing and hybridization, 22
Chickens, see Poultry
Chloramphenicol
resistance to
acquired, 368–369
in animals, 69
mechanisms, 27t
plasmids encoding, 222t–223t
susceptibility testing, 397–398
Ciprofloxacin, acquired resistance to, 371–372
Citrate lyase, in α-keto acid metabolism, 140–141, 140f
Citrulline formation, in deiminase catabolism, 145–146, 146f
Clarithromycin
intestinal flora composition and, 121
resistance to
acquired, 368
transposons, 237
Classification methods, 8–26
commercial kits for, 23–25
conventional, 8–14, 10t, 11t
molecular, 14–23, 15t, 16f
INDEX

Clindamycin resistance
acquired, 368
intrinsic, 114t, 117
transposons, 237
Clostridium
intestinal flora, in infants, 107t
transposons, 249
Clostridium coccoides group, in intestinal flora, 105t
Clostridium difficile diarrhea, treatment, 392
Clostridium fervidus, sodium transport, 152
Clostridium leptum group in intestinal flora, 105t
Cna protein, Staphylococcus aureus, 329–331, 329f
Cobalamin requirements, 158
Coccolysin (gelatinase), 316–322, 320f, 323f
Collagen, Ace protein adherence to, 327–332, 329f, 331t
Colon, normal microflora, see Intestinal microflora
Colonization
of commensal vs. pathogenic strains, 301–302
control, 393–394
eradication, 399
in hemodialysis, 395
in home care, 395
host factors, 390
in long-term care facilities, 394–395
in outpatient setting, 395
sites, 388
Columbia colistin-nalidixic acid agar, for isolation, 25
Commensal strains vs. pathogenic strains, 301–302
Commercial kits for rapid identification, 23–25
Competition in intestinal flora regulation, 105–106
Complement in enterococcal killing, 333
Composite transposons, 237–240, 240f
Comprehensive Microbial Resource, genome data, 412–415
Conjugation, 265–299
aggregation substance, 266, 268–271, 269f, 280–281
inhibitors, 271–274, 271t, 273f
pheromone-responsive plasmids, see Pheromone-responsive plasmids
pheromone response regulation, 276f, 276–280
pheromone synthesis, 271–274, 271t, 273f
virulence development from, 280–281
Conjugative transposons, see also specific plasmids
 genetic organization, 274–276, 274f
list, 267t
vs. nonconjugative plasmids, 266
pheromone-responsive, see Pheromone-responsive plasmids
types, 265–266
in virulence development, 280–281
cop genes and products
copper transport, 154–155, 155f
plasmid replication, 226f, 228, 230
Copper transport in enterococci, 154–155, 155f
Corynebacterium, acquired antimicrobial resistance, 368
Cows, see Cattle
cps genes and products, in polysaccharide synthesis, 201–204, 203f, 334
Crystal gram-positive and Crystal Rapid gram-positive kits, 24–25
CspB protein, in glucose starvation, 160
CtsR, in stress response, 160
Culture media, for isolation, 25–26
Cystitis, 386
Cytochrome bd, in respiration, 147f, 148–149
Cytolysin
plasmid-encoded, 280
as virulence factor, 311–316, 315f, 324–327, 325f
Cytosine biosynthesis, 157

D

Dairy animals, see Cattle
Dairy products, enterococci in, 61
Daptomycin, for vancomycin-resistant infections, 399
ddl genes, sequencing and amplification, 20–21
Deiminase catabolism, 145–146, 146f
Deinococcus radiodurans, reactive oxygen species metabolism, 163
δ (delta) gene, in plasmid replication, 229
Demethylmenaquinone, in respiration, 147–148, 147f, 161–162, 161f
Diarrhea, in animals, 62, 63t
Dibekacin, acquired resistance to, 357–359
Diet
 intestinal microflora composition and, 112–113
 prebiotics in, intestinal microflora composition and, 123–124
Diglucosyldiacylglycerol synthase, in cell wall lipoteichoic acid synthesis, 193
Dihydrofolate reductase, in folate synthesis, 158–159
Dihydrolipoamide dehydrogenase, in α-keto acid metabolism, 140f, 141–142
Dihydrolipyl acetyltransferase, in α-keto acid metabolism, 140f, 141–142
Dihydroorotate dehydrogenase, in pyrimidine synthesis, 157
1,4-Dihydroxy-2-naphthoate octaprenyltransferase, in respiration, 148
Dilution susceptibility testing
 for aminoglycoside resistance, 29, 30t, 31
 guidelines, 28t
Disaccharide-peptide units, polymerization of, in cell wall peptidoglycans synthesis, 186–189
Disk diffusion susceptibility testing
 aminoglycoside resistance, 30t, 31
 guidelines, 28t
DLT A gene and product, in cell wall lipoteichoic acid synthesis, 194
DNA
 double-strand, in plasmid replication, 220
 single-strand, in plasmid replication, 220, 224–225, 224f
DNA analysis
 of intestinal flora, 102, 104, 104t, 105t
 for molecular characterization, 4–5, 6t–7t
 DNA gyrase, in quinolone action, 371–372
DNA sequencing analysis, 6t–7t, 18
DNAK chaperone, 159–160
Dogs, enterococci in, 58t, 59f, 60, 83t
 infections from, 62, 63t, 64
Dolosicoccus, phylogeny, 9f
Dolosigranulum, phylogeny, 9f
Donkeys, enterococci in, 56, 60
Doxycycline, for vancomycin-resistant infections, 397
dso, of plasmids, 220–221, 224–225, 224f
E
Education of health care workers for infection control, 392
Eep gene and product, in pheromone regulation, 272, 273f
EF-Tu elongation factor (tuf) gene, amplification of, 22–23
efaA gene and product
 amplification and probing, 22
 as virulence factor, 332
Electro transport, in antimicrobial resistance, 117
Electrophoresis
 clonal spread detection, 56
 intestinal flora characterization, 103t
 typing, 34f, 36f, 37–39
Elongation factor EF-Tu (tuf) gene, amplification, 22–23
Emden-Meyerhof-Parnas (glycolysis) pathway, 134–135, 136f
emtA gene, for avilamycin resistance, 73
Endocarditis, 303–305
 clinical features, 387–388
 pathogenesis, 281
 treatment, 396–397
 in aminoglycoside resistance, 397
 in vancomycin resistance, 398
DD-Endopeptidases, in peptidoglycans degradation, 191
Endophthalmitis, animal model, 312
Endotoxin, susceptibility to, early enterococcal population and, 109
Enterobacterium, in intestinal flora, in infants, 107t
Enterococcal binding substance, 268, 270
Enterococcal carbamate kinase, in deiminase catabolism, 146, 146f
Enterococcal polysaccharide antigen, 334–339, 335f, 336t, 337f
Enterococcal surface protein, 325–327
Enterococcosel agar, for isolation, 26

Enterococcus asini
- in animals, 56, 60
- identification, 10t, 13, 16f

Enterococcus avi um
- in animals
 - in infections, 63t
 - vs. species, 58t, 59–60, 59f
- cell wall peptidoglycans, 185
- distribution, 56
- identification
 - phenotypic characteristics, 10t, 12
 - rapid kits, 24
 - 16S rRNA gene analysis, 19
 - whole-cell protein profile, 16f
- in infections
 - animals, 63t
 - humans, 105
- in intestinal flora, 104
- lactoferrin binding to, 328–329
- typing, 38
- vancomycin-dependent, 366

Enterococcus casseliflavus
- in animals
 - antimicrobial resistance in, 68, 70
 - vs. species, 58t, 59–60
 - antimicrobial resistance in
 - acquired, 358, 360, 361t, 367
 - in animals, 68, 70
 - intrinsic, 117–118
 - cell wall peptidoglycans, 183
 - glycerol metabolism, 138
- identification
 - phenotypic characteristics, 10t, 12, 13
 - randomly amplified polymorphic DNA analysis, 17
 - rapid kits, 24
 - 16S rRNA gene analysis, 6t–7t, 19
 - superoxide dismutase *sodA* gene sequencing, 21
 - *van* gene amplification, 20–21
 - whole-cell protein profile, 15, 16f, 17
- in infections, in humans, 105
- lactoferrin binding to, 329
- in plants, 60
- respiration, 148
- typing, 38

Enterococcus cecorum
- in animals, 56, 57
 - vs. species, 58t, 59–60, 59f
- identification, 10t, 13, 19

Enterococcus columnae
- in animals, 56, 57, 60
- identification
 - phenotypic characteristics, 10t, 13
 - 16S rRNA gene analysis, 19
 - whole-cell protein profile, 16f

Enterococcus dispar
- glycerol metabolism, 137
- identification, 10t, 11t, 13–14, 16f

Enterococcus durans
- in animals
 - antimicrobial resistance in, 70
 - in infections, 62, 63t, 64
 - vs. species, 57, 58t, 59–61, 59f
 - antimicrobial resistance in
 - in animals, 70
 - intrinsic, 117
 - cell wall polysaccharides, 196–197
- identification
 - phenotypic characteristics, 10t, 11t, 13–14
 - randomly amplified polymorphic DNA analysis, 17–18
 - rapid kits, 24
 - 16S rRNA gene analysis, 19
 - whole-cell protein profile, 16f
- in infections
 - in animals, 62, 63t, 64
 - in humans, 105
 - in intestinal flora, 104, 106t
 - isolation of, 25–26
 - lactoferrin binding to, 328–329

Enterococcus faecalis
- Ace protein adherence, 327–332, 329f, 331t
- adhesins, 281, 327–332, 329f, 331t
- aggregation substance, 269, 269f, 323–325, 325f
- aminoglycoside resistance in, detection of, 29
- in animals
 - antimicrobial resistance in, 68–70, 75t, 76–77
 - infections with, 62, 63t, 64
 - vs. species, 57, 58t, 59–60, 59f
 - antigen A, 332
 - antimicrobial resistance, 398–399
 - in animals, 68–70, 75t, 76–77
 - gene transfer, 122
 - intrinsic, 114–116, 119
Enterococcus faecalis, antimicrobial resistance (continued)
plasmids, 225, 230
transposons, 250
vancomycin, 238
cell wall
lipoteichoic acids, 193–195
polysaccharides, 196–202, 201f, 203f, 204–205, 204f
proteins, 207
colonization by, host factors, 390
cytolysin, 311–316, 315f, 324–325, 325f
distribution, 55–56
dry phenotype, 279
enterococcal surface protein, 325–327
in foods, 61
fsr locus, 319–323, 320f
gelatinases, 318
genome database, 133
identification
ace gene amplification and probing, 22
efaA gene amplification and probing, 22
phenotypic characteristics, 10t, 12, 13, 10t, 11t
randomly amplified polymorphic DNA analysis, 17–18
rapid kits, 23–25
16S rRNA gene analysis, 19
van gene amplification, 20–21
whole-cell protein profile, 15, 16f
in infections
animal models, 309
in animals, 62, 63t, 64
antimicrobial susceptibility, 385
bacteremia, 387
endocarditis, 387
epidemiology, 306–307
in humans, 104–105
nosocomial, 306–307
in preantimicrobial era, 302, 304
treatment, 398–399
in intestinal flora, 104–105, 106t, 388
isolation, 25–26
noncytolytic, 313
pheromones, 271, 271t
physiology
coenzyme requirements, 158–159
deeinase catabolism, 145–146, 146f
ion transport, 153, 156
α-keto acid metabolism, 139–145, 140f
pyrimidine biosynthesis, 156–158
respiration, 147–151, 147f
stress responses, 159–160
sugar metabolism, 134–139, 136f, 138f
polysaccharides, 333–335, 335f, 336t, 337–338, 337f
as probiotic, in animal feed, 61
proteases, 317, 319, 322, 323f
reservoirs, 388
in Salmonella enterica protection, 111–112, 112t
transposons, 282–283
composite, 238
conjugative, 241
typing, 34f, 38–39
V583, genome, 409–415, 410t, 411f
vancomycin-dependent, 366
variable capsular carbohydrate, 333–334
in water, 60
Enterococcus faecium
Ace protein adherence to, 328
in animals
antimicrobial resistance in, 68–70, 72f, 73, 74t–75t, 76–78, 80t, 82, 83t, 85
from feeds, 61
in infections, 62, 63t, 64
vs. species, 56–57, 57t, 58t, 59–60, 59f
antimicrobial resistance, 398
acquired, 355–356, 358–359, 361t, 367–371
in animals, 68–70, 72f, 73, 74t–75t, 76–78, 80t, 82, 83t, 85
gene transfer, 122
intrinsic, 114–117
plasmids, 248
transposons, 250
vancomycin, 239
cell wall
lipoteichoic acids, 194–195
peptidoglycans, 178, 179f, 180–181, 185, 187–189
polysaccharides, 197, 200
proteins, 207
coenzyme requirements, 158
colonization by, host factors in, 390
distribution, 55–56
enterococcal surface protein, 326
in foods, 61
genome database, 133
glycerol metabolism, 137–138
identification
efaA gene amplification and probing, 22
pEM1225 gene amplification, 23
phenotypic characteristics, 10t, 12, 10t, 11t
randomly amplified polymorphic DNA analysis, 17–18
rapid kits, 24
16S rRNA gene analysis, 19
van gene amplification, 20–21
whole-cell protein profile, 15, 16f
in infections
in animals, 62, 63t, 64
antimicrobial susceptibility of, 385
bacteremia, 387
endocarditis, 387, 396
epidemiology, 306
in humans, 104–105
nosocomial, 306
in preantimicrobial era, 304, 302
treatment, 398
in intestinal flora, 104, 106t, 388
α-keto acid metabolism, 142–145
β-lactam resistance in, detection of, 32–33
lactoferrin binding to, 328–329
plasmids, 248, 265, 281
polysaccharides, 333
as probiotic, 113
reactive oxygen species metabolism, 165
reservoirs, 388
in Salmonella enterica protection, 111–112, 112t
transposons of, composite, 237, 239–240
vancomycin-resistant strains, 302
virulence, 339
Enterococcus flavescens
antimicrobial resistance
acquired, 358, 361, 361t, 367
intrinsic, 117–118
cell wall peptidoglycans, 183
Enterococcus gallinarum
aminoglycoside resistance in, detection of, 29
in animals
antimicrobial resistance, 68, 70
vs. species, 58t, 60
antimicrobial resistance acquired, 358, 361, 361t, 367
in animals, 68, 70
intrinsic, 117–118
cell wall peptidoglycans, 183
in foods, 61
identification
phenotypic characteristics, 10t, 12, 13
randomly amplified polymorphic DNA analysis, 17–18
rapid kits, 24
16S rRNA gene analysis, 6t–7t, 19
superoxide dismutase sodA gene sequencing, 21
van gene amplification, 20–21
whole-cell protein profile, 15, 16f, 17
in infections, in humans, 105
respiration, 148
typing, electrophoresis in, 36f, 38–39
Enterococcus gilvus, 4
identification, 6t–7t, 10t, 12
Enterococcus haemoperoxidus
identification, 14, 20
in water, 61
Enterococcus hirae
in animals
antimicrobial resistance in, 70
in infections, 62, 63t, 64
vs. species, 57, 58t, 59–60, 59f
antimicrobial resistance acquired, 356
in animals, 70
intrinsic, 115–116
plasmids, 249
cell wall
components, 177–178
peptidoglycans, 179f, 180–181, 183–185, 187–192, 190f
proteins, 207
in foods, 61
identification
phenotypic characteristics, 10t, 11t, 13–14
Enterococcus hirae, identification (continued)
randomly amplified polymorphic DNA analysis, 17
rapid kits, 24
whole-cell protein profile, 16f
in infections
in animals, 62, 63t, 64
in humans, 105
physiology of, ion transport, 151–155, 155f
reactive oxygen species metabolism, 162
respiration, 150

Enterococcus malodoratus
in animals, vs. species, 58t
identification
phenotypic characteristics, 10t, 12
16S rRNA gene analysis, 6t–7t
whole-cell protein profile, 16f

Enterococcus moraviensis
identification, 4, 20
in water, 61

Enterococcus mundtii
in animals, vs. species, 58t, 60
identification
ddl gene sequencing, 20
phenotypic characteristics, 10t, 12
whole-cell protein profile, 16f
in infections, in humans, 105
in plants, 60

Enterococcus pallens, 4, 10t, 12

Enterococcus porcinus, 5
identification, 10t, 11t, 13–14, 16f
in infections in animals, 62
typing, 38

Enterococcus pseudoavium
in animals
in infections, 62, 63t
vs. species, 58t, 59
identification, 10t, 12, 16f

Enterococcus raffinosus
in animals, vs. species, 58t, 60, 59
identification
ddl gene sequencing, 20
phenotypic characteristics, 10t, 12
rapid kits, 24
16S rRNA gene analysis, 6t–7t, 19
whole-cell protein profile, 16f
in infections, in humans, 105
typing, 38

Enterococcus ratti
identification
phenotypic characteristics, 10t, 11t, 13–14
16S rRNA gene analysis, 6t–7t
whole-cell protein profile, 16f
in infections, 62, 63t
typing, 38

Enterococcus saccharolyticus, identification, 10t, 12, 16f, 19

Enterococcus seriolicida, 4, 64

Enterococcus solitarius, 5

Enterococcus sulfureus
identification, 10t, 13, 19
in plants, 60

Enterococcus villorum, 5, 13–14
in animals, 56, 63t
Entner-Doudoroff pathway, 134–135, 136f
Environment, enterococci in, 60–61, 389–390
control, 394

epa gene and product, in polysaccharide synthesis, 334–339, 335f, 336t, 337f

Epididymitis, 386

e (epsilon) gene, in plasmid replication, 226f, 229–230

Eremococcus, phylogeny, 9f

ermA gene, for macrolide resistance, 368

ermAM gene
for macrolide resistance, 236, 236f, 249
transfer, 122

ermB gene, for macrolide resistance, 73, 368–369

ermGT gene, transfer, 122

Erysipelothere rhusiopathiae, acquired antimicrobial resistance, 367

Erythromycin, resistance to acquired, 368–369
in animals, 71
plasmids encoding, 222t–223t, 249
transposons, 237

Escherichia coli
antimicrobial resistance, 364, 370, 371
cell wall
peptidoglycans, 180–181, 183, 184, 188
polysaccharides, 198–199
coenzyme requirements, 158
commensal vs. pathogenic, 302
in meningitis, in infants, 109
mucin degradation by, 134
pathogenicity islands, 311
INDEX

in peritonitis, 386
polysaccharides, 334, 336t, 337
pyrimidine biosynthesis, 157
respiration, 149
esp gene and product, 325–327
Ethanol, formation of, in α-keto acid metabolism, 140f, 142–143
Eubacterium, in intestinal flora, 105t
Evernimicin, resistance to
acquired, 371
in animals, 73
Exopeptidases, in peptidoglycans degradation, 191

F

Facklamia, phylogeny, 9f
Facultatively anaerobic cocci, phenotypic characteristics, 2–3, 3t
Feces, normal microflora, see Intestinal microflora
Feeds, animal, enterococci in, 61
fem genes and products, in peptidoglycans synthesis
Fermentation, enterococci in, 134–139, 136f, 138f
Fₐ,Fₛ-ATP synthase, in respiration, 147f, 149–150
Fibronectin, enterococcal binding to, 328
Fish, enterococci in, infections from, 63t, 64
Fluorescent in situ hybridization (FISH), for intestinal flora characterization, 102, 103t
Fluoroquinolones
resistance to, 114t, 119
in susceptibility testing, 28t
for vancomycin-resistant infections, 397
Folate requirements, 158–159
Folypolyglutamate synthetase, in folate synthesis, 158
Foods, see also food animals, e.g., Cattle; Pigs; Poultry
enterococci in, 61
Fosfomycin, in susceptibility testing, 28t, 397
Free oxygen radicals, see Reactive oxygen species production
fsr genes and products, in virulence, 319–323, 320f
Fst protein, as par toxin, 235
Fumarate reductase, in respiration, 147f, 150–151
Fusobacterium, in intestinal flora, 105t

G

GAR-936 (tigicycline), for vancomycin-resistant infections, 399
Gatifloxacin, acquired resistance to, 371
gel genes, 317–318
Gelatinase biosynthesis-activating pheromone, 321–322
Gelatinases, as virulence factors, 316–322, 320f, 323f
Gemella
phenotypic characteristics, 3t
phylogeny, 9f
Gene(s), transfer of, see also Plasmid(s); Transposons
antimicrobial resistance
in animals, 77–85, 79f, 80t, 81f, 82f, 83t, 84f
in humans, 121–122, 121t, 122t
Genetic methods, for antimicrobial resistance detection, 33
Genome, of Enterococcus faecalis V583, 409–415, 410t, 411f
Gentamicin
for colonization eradication, 399
for endocarditis, 396–397
resistance
acquired, 357–358
in animals, 68
detection, 29, 30t, 31
infection treatment, 397
intrinsic, 116, 117
plasmids, 248, 249
Globicatella, phylogeny, 9f
Gls24 protein, in glucose starvation, 160
Glucose-1-phosphate thymidyltransferase, in polysaccharide synthesis, 335, 336t
Glucose starvation, response to, 160
Glutathione, formation of, in oxidative stress, 165–166
Glycerol metabolism, 137–139, 138f
Glycolipid anchor, in cell wall, 193–194
Glycolysis (Emden-Meyerhof-Parnas) pathway, 134–135, 136f
Glycopeptides, see also Vancomycin mechanism of action, 360
INDEX

Glycopeptides (continued)
resistance to
acquired, 359–367, 361t, 362f–364f, 363t
in animals, 69–71, 72f, 78–85, 79f, 80t, 82f, 83t, 84f
dependence with, 366
intrinsic, 114t, 117–119
mechanisms, 27t, 360–366, 361t, 362f–364f, 363t
origin, 366–367
in susceptibility testing, 28t
Glycosidases, in peptidoglycans degradation, 191
Glycosylation, of cell wall lipoteichoic acid, 194–195
Gram-positive cocci, in intestinal flora, in infants, 107t
GroEL chaperone, 159–160
Growth requirements, 1, 2, 25–26
gyr genes and products, in quinolone resistance, 371–372

H

Haemophilus influenzae, cell wall peptidoglycans, 181
Halobacterium halobium, acquired antimicrobial resistance, 370
Hand cleansing, in infection control, 393
Hbsu nucleoid organizing protein, in plasmid replication, 229
Health care workers, education of, for infection control, 392
Heat shock protein 60 (chaperonin 60), sequencing and hybridization, 22
Helcococcus
phenotypic characteristics, 3t
phylogeny, 9f
Hemodialysis centers, infection control in, 395
Hemolysin, plasmid-encoded, 280
Hemolytic activity, of cytolsin, 311–312
Hexosamine nucleotides, in peptidoglycans synthesis, 180–181
Histidine-containing phosphocarrier protein, in carbohydrate metabolism, 135–136, 136f
Historical perspective, 1–2
Hogs, see Pigs
Home care, infection control in, 395

Horses, enterococci in, 58t, 60
antimicrobial resistance, 68, 83t
infections from, 62, 63t
Hospital Infection Control Practices Advisory Committee, infection control guidelines, 391–392
Host factors, in enterococcal colonization and infection, 390–391
Hydrolases, peptidoglycans, 190–192
Hydroxamate siderophores, in iron transport, 156

I

iad/prgQ gene and product, 276f, 277–278
Identification, of enterococci, methods, 8–26
automated, 23–25
commercial kits, 23–25
conventional, 8–14, 10t, 11t
molecular, 14–23, 15t, 16f
Ignavigranum, phylogeny, 9f
Immunodeficiency, enterococcal infections in, 310
Immunologic effects of enterococci in intestinal microflora, 109–112, 112t
Inc18 plasmids, 222t–223t, 225–230, 226f–227f, 249
Inducer expulsion, in carbohydrate metabolism, 136–137
Infants
dietary oligosaccharides for, 123–124
enterococcal populations in, 105–107, 107t, 108f, 109
Infections (animal), 61–62, 63t, 64
Infections (human), 385–408
abdominal, 386
animal models, 308–310
antibiotic-resistant, 305–308
host factors, 390–391
before antimicrobial era, 303–305
bacteremia, 306, 313–314, 387
clinical features, 385–388
vs. commensal colonization, 301–302
control, 391–395
antimicrobial restrictions, 391–392
health care worker education, 392
in hemodialysis centers, 395
in home care, 395
in long-term care facilities, 394–395
microbiology laboratory, 392–395
INDEX

in outpatient setting, 395
procedures, 393–394
economic impact, 105
endocarditis, 281, 303–305, 387–388, 396–397
enterococci causing, 104–105
environmental factors, 389–390
epidemiology, 388–391
in immunodeficiency, 310
nosocomial, see Nosocomial infections
pathogenicity, 280–281
pelvic, 386
reservoirs, 388, see also Intestinal microflora; Reservoirs, nonhuman
resistance to, host factors in, 390
risk factors for, 302
soft tissue, 386
sources, 389
tissue culture models, 310
toxic metabolic products, 339
treatment, 395–399
 aminoglycoside-resistant, 397
 colonization eradication, 399
 endocarditis, 396–397
 nonendocarditis, 396
 vancomycin-resistant, 397–399
uncommon, 388
urinary tract, 305, 385–386, 396
virulence, see Virulence
Infrared spectroscopy, for identification, 17
Initiator protein, in plasmid replication, 220–221, 224–228, 224f, 227f
Inorganic pyrophosphatase, in reactive oxygen species regulation, 166
Insects, enterococci in, 60, 63t, 64
Insertion sequence (IS) elements, for transposon mobility, 237–239, 240f
Insertion sequences, see Transposons
Institute for Genome Research, The, E. faecalis V583 studies, 271, 410–415, 410f, 411f
Intestinal microflora of humans, 101–132
colonization, 106–107, 107t, 108f
enterococci in vs. age, 105–109, 107t–108t, 108f
antimicrobial effects, 120–121, 120t
antimicrobial resistance, 114–122, 114t, 121t, 122t
immunologic effects, 109–112, 112t
implications, 109–112, 112t
importance, 104–105, 106t
infections from, 388
as probiotics, 114
species included in, 104–105, 106t
gene transfers among, 121–122, 121t, 122t
molecular analysis, 102, 103t, 104, 104t, 105t
nonenterococcal species included in, 104, 104t, 105t
prebiotic effects on, 123–124
probiotic effects on, 113–114
regulation, 105–107
stress effects on, 112–113
viable but noncultivable, 102, 103t
Inulin, intestinal microflora composition and, 124
Ion transport, in enterococci, 151–156, 155f
Iron superoxide dismutase, in reactive oxygen species regulation, 165
Iron transport, in enterococci, 156
IRS 1 and IRS 2 (transcription terminators), in pheromone regulation, 276f, 277–279
IS elements, for transposon mobility, 237–239, 240f
Isepamicin, acquired resistance to, 358
Isolation in infection control, 393
methods, 25–26
Isoleucine metabolism, 143–144
K
Kanamycin, resistance to acquired, 357–359
in animals, 68
intrinsic, 116
plasmids encoding, 222f
Kep system, for potassium extrusion, 153–154
a-Keto acid metabolism
 branched-chain, 143–144
 pyruvate, 139–145, 140f
KtrI and KtrII, in potassium transport, 153
L
Laboratory, role in infection control, 392–393
\textbf{INDEX}

\textbf{β-Lactams, resistance to}
acquired, 355–357

detection, 32–33
intrinsic, 114–116, 114t
mechanisms, 27t
penicillin-binding proteins, 186–189

\textbf{Lactate}
formation, in α-keto acid metabolism, 140f, 145
oxidation, in respiration, 147f, 151
transport, 156

\textbf{Lactate dehydrogenase, in α-keto acid metabolism}, 140f, 145

\textbf{Lactobacillus}
antimicrobial resistance in, 122, 367
plasmids, 232
as probiotic, 113

\textbf{Lactobacillus viridescens}, cell wall peptidoglycans, 185

\textbf{Lactococcus}
identification, 10t, 12, 15
phylogeny, 9f
plasmids, 232

\textbf{Lactococcus garvieae}, 4–5, 64

\textbf{Lactococcus lactis}
cell wall peptidoglycans, 190
reactive oxygen species metabolism, 163, 165
respiration, 148, 150
sodium transport by, 152

\textbf{Lactoferrin, enterococcal binding to}, 328–329

\textbf{Lactulose, intestinal microflora composition and}, 123–124

\textbf{Laminin, enterococcal binding to}, 328

\textbf{Lancefield streptococcal serogroups}
lipoteichoic acids, 193–195
polysaccharides, 195–199

\textbf{Leuconostoc}
antimicrobial resistance, 367
phenotypic characteristics, 3t
phylogeny, 9f

\textbf{LinB gene (now InuB gene), for lincosamide resistance}, 368

\textbf{Lincomycin, resistance to}
acquired, 368
intrinsic, 114t, 117

\textbf{Lincosamide resistance}
acquired, 368–369
mechanisms, 27t
transposons, 236f, 237

\textbf{Linezolid}
resistance to, 370
for vancomycin-resistant infections, 398–399

\textbf{Lipid intermediates, in cell wall peptidoglycans synthesis}, 183–186

\textbf{Lipoic acid requirements}, 158

\textbf{Lipoproteins, cell wall}, 207, 272, 273

\textbf{Lincomycin, resistance to}
acquired, 368
intrinsic, 114t, 117

\textbf{M}

\textbf{Macrolides}
resistance to
acquired, 368–369
in animals, 71, 73
mechanisms, 27t
transposons, 236f, 237
in susceptibility testing, 28t

\textbf{Malic enzyme, in α-keto acid metabolism}, 139, 140f

\textbf{Manganese superoxide dismutase, in reactive oxygen species regulation}, 165

\textbf{Mannitol-1-phosphate 5-dehydrogenase, in carbohydrate metabolism}, 135

\textbf{Mastitis, bovine}, 62, 63t, 68

\textbf{mD protein, in pheromone response}, 276f, 277–278

\textbf{mefA gene, for macrolide resistance}, 368

\textbf{Menaquinone-specific isochorismate synthase, in respiration}, 148

\textbf{Meningitis}, 388
\textbf{Escherichia coli}, in infants, 109

\textbf{Metabolism, of enterococci}
deiminase, 145–146, 146f
α-keto acid, 139–145, 140f
reactive oxygen species, 160–166, 161f
sugar, 134–139, 136f, 138f

\textbf{Metalloproteases, as virulence factors}, 316–322, 320f, 323f

\textbf{Micrococcus luteus}, acquired antimicrobial resistance, 368

\textbf{Micrococcus xanthus}, polysaccharides, 336t
INDEX

Micrococcus zymogenes, 303

Microflora, normal, *see* Intestinal microflora

MicroScan gram-positive identification panel, 24

Minocycline, acquired resistance to, 370

Molecular techniques

for characterization, 4–5, 6t–7t, 8, 8f, 9f

intestinal flora, 102, 104, 104t, 105t

methods, 14–23, 15t

for typing, 34f, 35, 36f, 37–39

Moxifloxacin, acquired resistance to, 371

MraY transferase, in peptidoglycans synthesis, 183–184

msrA gene, for macrolide resistance, 368

Mucin degradation, 134

Mueller-Hinton agar, for isolation, 25–26

Multimer resolution systems, in plasmid replication, 228–229

mur genes and products, in peptidoglycans synthesis, 180–181, 182f, 183–185

Muramidases, in peptidoglycans degradation, 191–192, 207

MurG transferase, in peptidoglycans synthesis, 184

Mycoplasma mycoides, sodium transport by, 152

N

NADH oxidase, in reactive oxygen species regulation, 164

NADH peroxidase, in reactive oxygen species regulation, 162–163

NADH-peroxiredoxin oxidoreductases, in reactive oxygen species regulation, 163–164

napA gene and product, of sodium/hydrogen antiporter, 152

Neisseria, transposon-like elements in, 285

Netilmicin, acquired resistance to, 357–359

Newborns, intestinal flora of, 106–107, 107t, 108f, 109

Nicking, in plasmid replication, 220–221, 224f

Nicotinate requirements, 158

Nitrofurantoin

for antibiotic-susceptible infections, 396

in susceptibility testing, 28t

for vancomycin-resistant infections, 397

Nonhuman reservoirs, of enterococci, *see* Animals; Reservoirs, nonhuman

Normal microflora, *see* Intestinal microflora of humans

Nosocomial infections

control, 391–395

cytolysins in, 312–313

epidemiology, 306–307

Novobiocin, for colonization eradication, 399

npt genes and products

in potassium transport, 153

in sodium transport, 152

Nucleoid organizing proteins, in plasmid replication, 229

Nucleotidyltransferases, aminoglycoside-modifying, in resistance, 357, 359

Nutrition, intestinal microflora composition and, 112–113

O

Oenococcus, phylogeny, 9f

Oligosaccharides

indigestible, intestinal microflora composition and, 123–124

resistance to, in animals, 73

ω (omega) gene, in plasmid replication, 226f, 229, 230

Opp system, in pheromone regulation, 273f, 275

orf genes and products

in polysaccharide synthesis, 334–339, 336t, 337f

Organic hydroperoxidase resistance proteins, 163–164

Organic peroxyl reductases, in reactive oxygen species regulation, 163–164

ori genes, in plasmid replication, 226f, 275, 285

Origin of transfer, in conjugative transposition, 242

Oritavancin, for vancomycin-resistant infections, 399

Ornithine carbamoyltransferase, in deiminase catabolism, 145–146, 146f
Osteomyelitis, 388
Outpatient settings, infection control in, 395
Oxaloacetate, in α-keto acid metabolism, 139–140, 140f
Oxaloacetate decarboxylase, in α-keto acid metabolism, 140f, 141
Oxazolidinones, acquired resistance to, 370
Oxoline-esculin agar, for isolation, 25
Oxygen, reactive, see Reactive oxygen species production

P

Paenibacillus popilliae, acquired antimicrobial resistance, 367
Pantothenate requirements, 158
par genes and products
 in plasmid replication
 pheromone-sensitive, 231f, 233–235
 rolling circle, 226f
 in quinolone action, 371–372
Pase II (enzyme), in carbohydrate metabolism, 137
php genes, in antimicrobial resistance, 115–116, 188, 356

Pediococcus
 antimicrobial resistance, 367
 phenotypic characteristics, 3t
 phylogeny, 9f
Pelvic infections, 386
pEM1225 gene, amplification, 23
Penicillin(s)
 for antibiotic-susceptible infections, 396
 for endocarditis, 396
 resistance to
 acquired, 355–357
 in animals, 76–77
 detection, 32–33
 intrinsic, 114–116, 114t
 plasmids, 249
 susceptibility testing, 28t
Penicillin G, acquired resistance to, 355
Pentose phosphate pathway, 134–135, 136f
Peptidases, in peptidoglycans degradation, 191

Peptidoglycans, cell wall, 177–192
 biosynthesis, 180–189, 183f
 expansion during cell growth, 189–190, 190f, 191f
 hydrolases for, 190–192
 structure, 178–180, 178f, 179f
Peritonitis, 305–306, 386
Peroxiredoxins, in reactive oxygen species regulation, 163–164
Peroxyl reductases, in reactive oxygen species regulation, 163–164
Pfizer selective Enterococcus medium, for isolation, 25
Phagocytosis
cytolysin activity against, 313–314
susceptibility to, 333–334
Phenotypic characteristics
 of enterococci, 2–3, 3t
 in antimicrobial resistance detection, 26–33, 27t, 28t, 30t
 identification methods, 8–26, 10t, 11t, 15t, 16f
 in typing, 35
 of facultatively anaerobic cocci, 2–3, 3t
Phenylethyl alcohol agar, for isolation, 25
Pheromone(s)
 cell-bound, 272
 on cell surface, 207
 inhibitors, 271–274, 271t, 273f
 response to, regulation of, 267, 276–280, 276f
 secretion, 267, 272
 synthesis, 271–274, 271t, 273f
Pheromone-responsive plasmids, 230–235, 231f, 234f, 248, 266–268, 267t
 genetic organization, 274–276, 274f
 list, 267t
 regulation, 276f, 276–280
 in virulence development, 280–281
Phosphoenolpyruvate phosphotransferase system, 135–137, 136f
6-Phosphogluconate dehydrogenase, in carbohydrate metabolism, 135
Phosphotransacetylase, in α-keto acid metabolism, 140f, 143
Phosphotransferases, aminoglycoside-modifying, in resistance, 357–359
Phylogeny, 5, 8, 9f
 analysis of, 102, 103t, 104
Physiology, of enterococci, 133–175
 coenzyme requirements, 158–159
 deiminase catabolism, 145–146, 146f
ion transport, 151–156, 155f
α-keto acid metabolism, 139–145, 140f
pyrimidine biosynthesis, 156–158
reactive oxygen species metabolism, 160–166, 161f
respiration, 147–151, 147f
stress responses, 159–160
sugar metabolism, 134–139, 136f, 138f
Pigs, enterococci in, 56, 57y, 58t, 59–60, 59f
antimicrobial resistance in, 68–71, 72f, 73, 74t–75t, 76–77, 79, 80t, 81, 83t
from feeds, 61
infections from, 62, 63t, 64
Plants, enterococci in, 60
Plasmid(s), 219–235
aggregation substance and, 266, 268–271, 269f, 280–281
in antimicrobial resistance transmission, 247–249
classes, 219–220
conjugative, see Conjugative plasmids
genetic organization, 274–276, 274f
IncI8, 222t–223t, 225–230, 226f–227f, 249
pheromone-responsive, see Pheromone-responsive plasmids
rolling circle replicating, 220–221, 222t, 224–225, 224f
Plasmid pAD1, 231–234, 231f, 234f, 266–268, 267t
aggregation substance, 270
genomic organization, 274–275, 274f
hemolysin encoded by, 280
inhibitor precursor, 271t
phase variation, 279–280
pheromone (cAD1), 267t, 271–272, 276–280
pheromone precursor, 271t
regulation, 276f, 276–279
in virulence transfer, 281
Plasmid PD1
inhibitor precursor, 271t
pheromone (cPD1), 267t, 272
pheromone precursor, 271t
Plasmid pHKK701, in vancomycin resistance transfer, 281
Plasmid pHKK702, in vancomycin resistance transfer, 281
Plasmid pHKK703, in vancomycin resistance transfer, 281
Plasmid pIP501, 225–230, 226f
Plasmid pMG1, 265
Plasmid pOB1
inhibitor precursor, 271t
pheromone (cOB1), 267t, 271t
pheromone precursor, 271t
Plasmid pPD1, 231, 231f, 267–268, 267t
aggregation substance, 270
genomic organization, 274–275, 274f
regulation, 279
Plasmid pRE25, 266
Plasmid pSK41, 271
Plasmid pSM19035, 225–230, 226f, 266
Pneumonia, 388
Poly(glycerophosphate), in cell wall lipo-teichoic acid synthesis, 194
Polymerase chain reaction
ace gene amplification and probing, 22
antimicrobial resistance detection, 33
broad range, 19
chaperonin 60 sequencing, 22
ddi gene amplification, 20–21
efaA gene amplification and probing, 22
elongation factor EF-Tu (tuf) gene amplification, 22–23
intestinal flora characterization, 103t
pEM1225 gene amplification, 23
sodA gene sequencing, 21
typing, 37
Polymerase chain reaction (continued)
van gene amplification, 20–21
vanA gene typing, 83t

Polysaccharides
capsular, 199–205, 201f, 203f, 204f, 333–334
cell wall, 195–199, 204–205, 204f, 334–339, 335f, 336t, 337f
Porphyromonas, in intestinal flora, 104t
Postsegregation killing (PSK) mechanism, in plasmid replication, 226f, 229–230, 234, 234f

Potassium/hydrogen antiporter, 153–154
Potassium transport, in enterococci, 153–154
Poultry, enterococci in, 56–57, 57t, 58t, 59, 59f
antimicrobial resistance, 68–70, 73, 74t-75t, 76–79, 81, 83t
from feeds, 61
infections from, 62, 63t, 64
Prebiotics, intestinal microflora composition and, 123–124
Prevotella, in intestinal flora, 104, 104t
prg genes and products, 269f, 273f, 274f, 275–279, 276f, 280
Pristinamycin, resistance to, plasmids, 249
Probiotics
for atopic disorders, 111
enterococci as, 61, 113–114
intestinal microflora composition and, 113–114
Prostatitis, 386
Proteases, as virulence factors, 316–322, 320f, 323f
Protein(s), cell wall, 206–207
Protein A, efaA gene of, amplification and probing, 22
Proteolysis, regulated membrane, in pheromone regulation, 272
prsftm gene, in antimicrobial resistance, 356
Pseudomonas aeruginosa, reactive oxygen species metabolism, 163
psr genes, in antimicrobial resistance, 188, 356
ptb gene and product, in α-keto acid metabolism, 144
Pulsed-field gel electrophoresis
clonal spread detection, 56
typing, 34f, 36f, 37–39
Putrescine carbamoyltransferase, in deiminase catabolism, 146, 146f
pyr genes and products, in pyrimidine synthesis, 157
Pyridoxine requirements, 158
Pyrimidine biosynthesis, 156–158
Pyrophosphatase, inorganic, in reactive oxygen species regulation, 166
Pyruvate dehydrogenase complex, in α-keto acid metabolism, 140f, 141–142
Pyruvate formate-lyase, in α-keto acid metabolism, 140f, 142
Pyruvate kinase, in α-keto acid metabolism, 139, 140f
Pyruvate metabolism
acetate formation in, 140f, 143
arcohol dehydrogenase in, 140f, 142–143
branched-chain, 143–144
lactate formation in, 140f, 145
pathways, 139–141, 140f
pyruvate dehydrogenase complex in, 141–142
pyruvate formate-lyase in, 142
pyruvate:ferredoxin oxidoreductase in, 143
Pyruvate:ferredoxin oxidoreductase, in α-keto acid metabolism, 140f, 143
Q
Qa protein, in pheromone response, 276f, 277
Quality control, of antimicrobial resistance tests, 32
Quinolones, see also Fluoroquinolones
resistance to
acquired, 371–372
mechanisms, 27t
susceptibility testing, 28t
Quinones, in respiration, 147–148, 147f
Quinupristin-dalfopristin
resistance to, 398
acquired, 368–369
in animals, 73, 74t–75t, 76, 85
for vancomycin-resistant infections, 398
R
Raman spectroscopy, for identification, 17
Ramoplanin, for colonization eradication, 399
Randomly amplified polymorphic DNA analysis, for identification, 17–18
RAPD (randomly amplified polymorphic DNA) analysis, for identification, 17–18
Rats, enterococci in, infections from, 62, 63t
Reactive oxygen species production, 160–166, 339
antioxidants for catalase, 164
manganese superoxide dismutase, 165
NADH oxidase, 164
NADH peroxidase, 162–163
peroxyl reductases, 163–164
extracellular superoxide, 161–162, 161f, 339
glutathione formation in, 165–166
Regulated membrane proteolysis, in pheromone regulation, 272
rep genes and products, in plasmid replication
pheromone-responsive, 231f, 232–233, 274f, 275, 279–280
rolling circle, 220–221, 224–228, 224f, 227f
res genes, in plasmid replication, 226f
Reservoirs
human, see Intestinal microflora
nonhuman, see also Animals
animal feeds, 61
antimicrobial resistance in, see Antimicrobial resistance, in nonhuman reservoirs
ecological relationships between, 79f
environment, 60–61
foods, 61, see also food animals, e.g., Cattle; Pigs; Poultry
plants, 60
water, 60–61, 68
Resistance, antimicrobial, see Antimicrobial resistance
Resolvase-invertase proteins, in plasmid replication, 228–229
Respiration, of enterococci, 147–151
cytochrome bd in, 147f, 148–149
demethylmenaquinone in, 147–148, 147f, 161–162, 161f
F$_2$F$_{-}$-ATP synthase in, 147f, 149–150
fumarate reductase in, 147f, 150–151
l-lactate oxidation in, 147f, 151
overview of, 147, 147f
Restriction fragment length polymorphism analysis
antimicrobial resistance detection, 33
identification, 18
Rhamnose, in cell wall polysaccharides, 195–199, 204–205, 204f
Riboflavin requirements, 158
Rifampin, in susceptibility testing, 28t
rml genes and products, in polysaccharide synthesis, 196
RNA
antisense, in plasmid replication, 221
of intestinal flora, analysis, 102, 104, 104t, 105t
ribosomal, intergenic spacer analysis, 19
small-subunit ribosomal, analysis, 6t–7t, 17–19, 102, 103t, 104
transfer, intergenic spacer analysis, 19–20
Rodac imprint method, for enterococci detection on surfaces, 26
Rolling circle replicating plasmids, 220–221, 222t, 224–225, 224f
Ruminococcus in intestinal flora, 105t
mucin degradation by, 134
S
Salmonella enterica serovar Typhimurium enterococci protection against, 111–112, 112t
peroxiredoxin reductase, 163–164
polysaccharides, 335
reactive oxygen species metabolism, 163
Salt tolerance, in enterococci, 151–153
satA gene (vatD gene), for antimicrobial resistance, 368–369
satG gene (vatE gene), for antimicrobial resistance, 369
Seals, enterococci in, infections from, 63t, 64
Septic arthritis, 388
Serine proteinases, as virulence factors, 316–322, 320f, 323f
Sewage, enterococci in, 60–61
antimicrobial resistance in, 68, 70
Shigella flexneri, polysaccharides of, 335, 336t
Siderophores, in iron transport, 156
Sisomicin, acquired resistance to, 359
16S rRNA gene analysis, 6t–7t, 17–19
Skin infections, 386
sodA gene (manganese-dependent superoxide dismutase), sequencing, 21
Sodium/hydrogen antiporter, 151–153
Sodium transport, in enterococci, 151–153
Soft tissue infections, 386
Sortase, in cell wall protein anchoring, 206
Sows, see Pigs
Spectinomycin, resistance to, plasmids encoding, 222t
Spectroscopy, vibrational, for identification, 17
Spiramycin, in animals, 67, 71, 73
SPOIJI protein, of Bacillus subtilis, 272
sso, of plasmids, 220–221, 224–225, 224f
Staphylococci
antimicrobial resistance in, 358
plasmids, 232
Staphylococcus aureus
adhesins, 329–331, 329f
agr promoter, 321–322, 320f, 323f
antimicrobial resistance, 357, 370–372
in bacteremia, 387
cell wall
lipoteichoic acids, 193–194
peptidoglycans, 178, 180–181, 183–185, 187, 190
proteins, 206
Cna protein, 329–331, 329f
in peritonitis, 386
plasmids, 248, 271, 273–274
reactive oxygen species metabolism, 163
rolling-circle replicating plasmids, 220
transposons, 237, 238
Staphylococcus epidermidis, acquired antimicrobial resistance in, 357
Starvation
glucose, response to, 160
intestinal microflora composition in, 112–113
Streptococci
antimicrobial resistance in, 357, 368
vs. enterococci, 8, 9f
of fecal origin, renamed as enterococci, 1–2
Lancefield grouping
lipoteichoic acids in, 193–195
polysaccharides in, 195–199
phenotypic characteristics, 3t
Streptococcus agalactiae
cell wall polysaccharides, 202, 205
enterococcal surface protein, 325–326
plasmids, 225–230, 226f, 266
reactive oxygen species metabolism, 165
Streptococcus anguis, respiration, 150
Streptococcus bovis, 59, 152
Streptococcus faecalis var. hemolyticus, 317
Streptococcus faecalis var. liquefaciens, 317
Streptococcus faecalis var. zymogenes, 317
Streptococcus gordonii
cell wall lipoteichoic acids, 194
plasmids, 248, 273
Streptococcus mutans
cell wall
lipoteichoic acids, 194
polysaccharides, 196, 205
NADH peroxidase, 162
polysaccharides, 335, 336t
reactive oxygen species metabolism, 164
Streptococcus pneumoniae
antimicrobial resistance in, 358, 372
cell wall peptidoglycans, 181, 185, 187
polysaccharides, 335, 336t
reactive oxygen species metabolism, 164
transposons, 241, 285
Streptococcus pyogenes
cell wall polysaccharides, 196, 198, 202
plasmid pSM19035, 225–230, 226f
plasmids, 266
reactive oxygen species metabolism, 164–165
transposons, 285
Streptococcus thermophilus, reactive oxygen species metabolism, 165
Streptococcus uberis, in bovine mastitis, 62
Streptococcus zymogenes, 303
Streptogramin(s)
resistance to
acquired, 369
in animals, 73, 74t–75t, 76, 85
mechanisms, 27t
transposons, 236f, 237
for vancomycin-resistant infections, 398
Streptomyces toyacaensis, acquired antimicrobial resistance in, 367
Streptomycin
for endocarditis, 396–397
resistance to
acquired, 359
in animals, 68–69
detection, 29, 30t, 31
infection treatment, 397
intrinsic, 116
plasmids, 249
Stress
intestinal microflora composition and,
112–113
resistance to, 159–160
ionic imbalance, 151–156, 155f
reactive oxygen species, 160–166, 161f
2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid synthase, in respiration, 148
Sugar metabolism, 134–139
carbohydrate pathways, 134–137, 136f
glycerol, 137–139, 138f
mucin degradation, 134
Superoxide anion
production, 161–162, 161f, 339
regulation, see Reactive oxygen species production, antioxidants for
Superoxide dismutase
manganese-dependent, sodA gene sequencing, 21
in reactive oxygen species regulation, 165
Surface exclusion protein, 268–279, 269f
Surface stress theory of cell wall expansion, 189
Surfaces, inanimate, isolation of enterococci on, 26
Susceptibility testing, guidelines, 28t
Swine, see Pigs
SXT element, of Vibrio cholerae, 152
T
T lymphocytes, response to intestinal microflora, 110–111
tag genes and products, in cell wall teichoic acid synthesis, 195
Taxonomy, 4–5, 6t–7t, 8, 8f, 9f
Teichoic acids, in cell wall, 195, 204f
Teicoplanin
antibiotic-susceptible infections, 396, 397
endocarditis, 397
resistance to, 359, 361, 364, 365
vancomycin-resistant infections, 398
Temperature extremes, response to, 159
tet genes, for tetracycline resistance, 76, 249, 370
in conjugative transposition, 242, 242f, 246, 282–283, 284f
transfer, 121, 121t
Tetracyclines
for colonization eradication, 399
resistance to
acquired, 370
in animals, 76
plasmids encoding, 222t–223t
transposons, 282–285, 284f
susceptibility testing, 28t
Tetragenococcus vs. Enterococcus, 5, 8, 9f
phenotypic characteristics, 3t
Thymidylate synthetase, in folate synthesis, 159
Thymine biosynthesis, 157
Tigecycline, for vancomycin-resistant infections, 399
Tissue culture models for infections, 310
Tn3-family transposons, 235–237, 236f
Tn21-subfamily transposons, 235–236, 236f
Tn926 transposon, 241–244, 241f–243f, 245f, 246–247, 249, 282–285, 284f
Tn917 transposon, 236–238, 236f
Tn1545 transposon, 241, 249, 250
Tn1546 transposon, 236f, 237
Tn1547 transposon, 238
Tn1549 transposon, 238, 285
Tn3703 transposon, 285
Tn4001 transposon, 238
Tn5251 transposon, 285
Tn5252 transposon, 285
Tn5253 transposon, 285
Tn5254 transposon, 285
Tn5281 transposon, 238, 285
Tn5381 transposon, 240f
Tn5382 transposon, 239, 250
Tn5384 transposon, 238
Tn5385 transposon, 239, 240f, 249
INDEX

Tn amp transposon, 239–240
Tobramycin, resistance to
 acquired, 357–359
 intrinsic, 116
top genes and products, in plasmid replication, 226f, 229
Topoisomerases, in quinolone action, 371
Toxin-antitoxin pairs, in plasmid replication, 226f, 229–230
tra genes and products, of plasmids, 271, 274f, 275–280, 276f
Transcription terminators, in pheromone regulation, 276f, 277–279
Transglycosylation, in cell wall peptidoglycans synthesis, 186
Transpeptidation, in cell wall peptidoglycans synthesis, 186, 188–189, 356–357
Transposons, 235–247
 in antimicrobial resistance transmission, 249–250
 classes, 235
 composite, 237–240, 240f
Tn3 family, 235–237, 236f
Trimethoprim-sulfamethoxazole, intrinsic resistance to, 114t, 119
 tuf gene, amplification, 22–23
Tylisin, in animals, 67, 71
Typing methods, 33–39
 molecular, 34f, 35, 36f, 37–39
 phenotypic, 35
U
Ulcers, skin, 386
Uracil biosynthesis, 157
Uridine pyrophosphate derivatives, in peptidoglycans synthesis, 180–181, 182f, 183–184
Urinary tract infections, 305, 326, 386, 396
V
Vacuolar ATPases, in sodium transport, 152–153
Vagococcus
 vs. Enterococci, 5, 9f
 phenotypic characteristics, 10t, 13
 whole-cell protein profile, 15
Valine metabolism, 143–144
van genes and products, amplification, 20–21
vanA gene and product
crystal structure, 364–365
distribution, 78–79, 80t, 81, 81f, 82f, 83t
function, 361, 361t, 363–364, 363t, 364f
location, 70
molecular typing, 83t
overview, 361, 361t
plasmid-mediated transfer, 79, 81, 81f, 82f
polymorphisms, 81, 81f, 82f, 83t
vanA operon, 362–365, 362f–364f, 363t
vanB gene and product, 361, 361t, 364f
vanB operon, 362f, 365
vanC gene and product, 118–119, 361, 361t
vanD gene and product, 361, 361t
vanD operon, 362f, 365
vanE gene and product, 361–362, 361t
vanE operon, 362f, 365–366
vanG gene, 361–362, 361t
vanG operon, 362f, 366
vanH gene and product, 362–364, 362f, 363f, 364f
vanR genes and products, 118–119, 362–364, 362f, 363f, 363t
vanS genes and products, 118–119, 362, 362f, 363t, 363f, 363t
vanT genes and products, 118–119, 365
vanW gene and product, 365
vanX genes and products, 362, 362f, 363t, 364–365, 364f
vanXY genes and products, 118–119, 365
vanY gene and product, 362, 362f, 363t, 364–365, 364f
vanZ gene and product, 362, 362f, 364
Vancomycin
 for antibiotic-susceptible infections, 396, 397
 for endocarditis, 397
 enterococci dependent on, 366
 resistance to
 acquired, 359–367
 in animals, 69–71, 74t–75t
 in bacteremia, 387
 cell wall construction and, 183
decolonization and, 399
dependence with, 366
detection, 30t, 31–32, 33
 in endocarditis, 387–388
INDEX

enterococci isolation in, 25–26
in Enterococcus faecalis V583, 409–415, 410t, 411f
environmental reservoirs for, 389–390
epidemiology, 359–360, 388–391
esp gene in, 326
in hemodialysis centers, 395
in home care, 395
host factors, 390–391
infection control measures and, 391–395
infection transmission and, 389
infection treatment, 397–399
intrinsic, 114t, 117–119
in long-term facilities, 394–395
mechanisms, 27t, 360–366, 361t, 362f–364f, 363t
natural reservoirs, 388
origin, 366–367
in outpatient setting, 395
plasmids, 248, 250, 281
risk factors, 360
screening, 392–393
vs. species, 385
transposons, 236f, 237–240
in urinary tract infections, 386
in susceptibility testing, 28t
vatD (satA) gene, for antimicrobial resistance, 76, 368–369
vatE (satG) gene, for antimicrobial resistance, 76, 369
V_{f}F_{v}-ATPase, in sodium transport, 152–153
vgb gene, for streptogramin resistance, 369
Viable but noncultivatable bacteria, in intestinal microflora, 102, 103t
Vibrational spectroscopy, for identification, 17
Vibrio cholerae
reactive oxygen species metabolism, 163
SXT element, 152
Virginiamycin, in animals, 73, 398
banning, 67
resistance to, 76
Virulence, 280–281, 301–354
Ace protein, 327–332, 329f, 331t
adhesins, 322–332
aggregation substance, 266, 268–271, 269f, 280–281, 322–325, 325f
animal models, 308–310
before antimicrobial era, 303–305
after antimicrobial introduction, 305–306
commensal strains and, 301–302
common cell wall polysaccharide, 334–339, 335f, 336t, 337f
cytolysin, 311–316, 315f, 324–327, 325f
early descriptions, 303–305
enterococcal surface protein, 325–327
Enterococcus faecalis antigen A, 332
of Enterococcus faecium, 339
fsr gene, 316–322, 320f, 323f
gelatinase, 316–322, 320f, 323f
mechanisms of conjugation in, 280–281
polysaccharides, 332–339, 335f, 336t, 337f
proteases, 316–322, 320f, 323f
toxic metabolic products, 339
variable capsular carbohydrate, 333–334
Vitamin requirements, 158–159
Vitek system, for identification, 24
Vitronectin, enterococcal binding to, 328

W
Wastes, human and animal, enterococci in, 60–61
Water, enterococci in, 60–61, 68
Weissella
phenotypic characteristics, 3t
phylogeny, 9f
Whole-cell protein profiles, 4–5, 6t–7t
methods, 14–15, 16f, 27

X
Xanthomonas campestris, reactive oxygen species metabolism of, 163
xis gene and product in conjugative transposition, 241–244, 241f–243f, 246–247, 283–284, 284f

Y
yppP gene and product in cell wall lipoteichoic acid synthesis, 193–194

Z
ζ (zeta) gene, in plasmid replication, 226f, 229–230